
Red Hat OpenShift Pipelines 1.19

CI/CD パイプラインの作成

OpenShift Pipelines でのタスクとパイプラインの作成と実行の開始

Last Updated: 2025-07-16

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

OpenShift Pipelines でのタスクとパイプラインの作成と実行の開始

法律上の通知

Copyright © 2025 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

概要

このドキュメントでは、OpenShift Pipelines でのタスクとパイプラインの作成と実行に関する情報
を提供します。

. .

. .

. .

. .

. .

目次

第1章 OPENSHIFT PIPELINES を使用したアプリケーションの CI/CD ソリューションの作成
1.1. 前提条件
1.2. プロジェクトの作成およびパイプラインのサービスアカウントの確認
1.3. パイプラインタスクの作成
1.4. パイプラインのアセンブル
1.5. 制限された環境でパイプラインを実行するためのイメージのミラーリング
1.6. パイプラインの実行
1.7. トリガーのパイプラインへの追加
1.8. 複数の NAMESPACE を提供するようにイベントリスナーを設定する
1.9. WEBHOOK の作成
1.10. パイプライン実行のトリガー
1.11. ユーザー定義プロジェクトでの TRIGGERS のイベントリスナーのモニタリングの有効化
1.12. GITHUB INTERCEPTOR でのプルリクエスト機能の設定
1.13. 関連情報

第2章 WEB コンソールでの RED HAT OPENSHIFT PIPELINES の使用
2.1. DEVELOPER パースペクティブで RED HAT OPENSHIFT PIPELINES を使用する
2.2. 関連情報
2.3. ADMINISTRATOR パースペクティブでのパイプラインテンプレートの作成
2.4. WEB コンソールのパイプライン実行に関する統計情報

第3章 リゾルバーを使用したリモートパイプライン、タスク、およびステップアクションの指定
3.1. TEKTON カタログからのリモートパイプライン、タスク、またはステップアクションの指定
3.2. TEKTON バンドルからのリモートパイプライン、タスク、またはステップアクションの指定
3.3. 匿名 GIT クローンでのリモートパイプライン、タスク、またはステップアクションの指定
3.4. 認証された GIT API でのリモートパイプライン、タスク、またはステップアクションの指定
3.5. HTTP リゾルバーを使用したリモートパイプライン、タスク、またはステップアクションの指定
3.6. 同じクラスターからのパイプライン、タスク、またはステップアクションの指定
3.7. OPENSHIFT PIPELINES NAMESPACE で提供されるタスク
3.8. OPENSHIFT PIPELINES NAMESPACE で提供されるコミュニティータスク
3.9. OPENSHIFT PIPELINES で提供されるステップアクション定義
3.10. バージョン付けされていないタスクとバージョン付けされたタスクとステップアクションについて
3.11. 関連情報

第4章 OPENSHIFT PIPELINES での手動承認の使用
4.1. MANUAL APPROVAL GATE CONTROLLER の有効化
4.2. 手動承認タスクの指定
4.3. 手動承認タスクの承認

第5章 パイプラインでの RED HAT エンタイトルメントの使用
5.1. 前提条件
5.2. ETC-PKI-ENTITLEMENT シークレットの手動コピーによる RED HAT エンタイトルメントの使用
5.3. 共有リソース CSI ドライバー OPERATOR を使用してシークレットを共有することによる RED HAT エンタイ
トルメントの使用
5.4. 関連情報

3
3
3
4
4
7

10
12
16
18
19

20
21
25

26
26
39
39
40

43
43
48
51

54
62
65
68
97

106
114
116

117
117
118
119

122
122
123

124
127

目次

1

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

2

第1章 OPENSHIFT PIPELINES を使用したアプリケーションの
CI/CD ソリューションの作成

Red Hat OpenShift Pipelines を使用すると、カスタマイズされた CI/CD ソリューションを作成して、
アプリケーションをビルドし、テストし、デプロイできます。

アプリケーション向けの本格的なセルフサービス型の CI/CD パイプラインを作成するには、以下のタ
スクを実行する必要があります。

カスタムタスクを作成するか、既存の再利用可能なタスクをインストールします。

アプリケーションの配信パイプラインを作成し、定義します。

以下の方法のいずれかを使用して、パイプライン実行のためにワークスペースに接続されてい
るストレージボリュームまたはファイルシステムを提供します。

永続ボリューム要求を作成するボリューム要求テンプレートを指定します。

永続ボリューム要求を指定します。

PipelineRun オブジェクトを作成し、Pipeline をインスタンス化し、これを起動します。

トリガーを追加し、ソースリポジトリーのイベントを取得します。

このセクションでは、pipelines-tutorial の例を使用して前述のタスクを説明します。この例では、以下
で構成される単純なアプリケーションを使用します。

pipelines-vote-ui Git リポジトリーにソースコードがあるフロントエンドインターフェイス(
pipelines-vote-ui)。

pipelines-vote-api Git リポジトリーにソースコードがあるバックエンドインターフェイス(
pipelines-vote-api)。

pipelines-tutorial Git リポジトリーにある apply-manifests および update-deployment タス
ク。

1.1. 前提条件

OpenShift Container Platform クラスターにアクセスできる。

OpenShift OperatorHub に一覧表示されている Red Hat OpenShift Pipelines Operator を使用
して OpenShift Pipelines をインストールしている。インストールの完了後にクラスター全体に
適用できる。

OpenShift Pipelines CLI をインストールしている。

GitHub ID を使用してフロントエンドの pipelines-vote-ui およびバックエンドの pipelines-
vote-api Git リポジトリーをフォークしており、これらのリポジトリーに管理者権限でアクセ
スできる。

オプション： pipelines-tutorial Git リポジトリーのクローンを作成している。

1.2. プロジェクトの作成およびパイプラインのサービスアカウントの確認

手順

第1章 OPENSHIFT PIPELINES を使用したアプリケーションの CI/CD ソリューションの作成

3

https://github.com/openshift/pipelines-vote-ui/tree/pipelines-1.19
https://github.com/openshift/pipelines-vote-api/tree/pipelines-1.19
https://github.com/openshift/pipelines-tutorial/tree/pipelines-1.19
https://docs.redhat.com/en/documentation/red_hat_openshift_pipelines/1.19/html-single/installing_and_configuring/#installing-pipelines
https://docs.redhat.com/en/documentation/red_hat_openshift_pipelines/1.19/html-single/pipelines_cli_tkn_reference/#installing-tkn
https://github.com/openshift/pipelines-vote-ui/tree/pipelines-1.19
https://github.com/openshift/pipelines-vote-api/tree/pipelines-1.19
https://github.com/openshift/pipelines-tutorial/tree/pipelines-1.19

1. OpenShift Container Platform クラスターにログインします。

$ oc login -u <login> -p <password> https://openshift.example.com:6443

2. サンプルアプリケーションのプロジェクトを作成します。このサンプルワークフローで
は、pipelines-tutorial プロジェクトを作成します。

$ oc new-project pipelines-tutorial

注記

別の名前でプロジェクトを作成する場合は、サンプルで使用されているリソース
URL をプロジェクト名で更新してください。

3. pipeline サービスアカウントを表示します。
Red Hat OpenShift Pipelines Operator は、イメージのビルドおよびプッシュを実行するのに十
分なパーミッションを持つ pipeline という名前のサービスアカウントを追加し、設定します。
このサービスアカウントは PipelineRun オブジェクトによって使用されます。

$ oc get serviceaccount pipeline

1.3. パイプラインタスクの作成

手順

1. pipelines-tutorial リポジトリーから apply-manifests および update-deployment タスクリ
ソースをインストールします。これには、パイプラインの再利用可能なタスクのリストが含ま
れます。

2. tkn task list コマンドを使用して、作成したタスクをリスト表示します。

出力では、apply-manifests および update-deployment タスクリソースが作成されていること
を検証します。

1.4. パイプラインのアセンブル

パイプラインは CI/CD フローを表し、実行するタスクによって定義されます。これは、複数のアプリ
ケーションや環境で汎用的かつ再利用可能になるように設計されています。

パイプラインは、from および runAfter パラメーターを使用してタスクが相互に対話する方法および実

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/pipelines-
1.19/01_pipeline/01_apply_manifest_task.yaml
$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/pipelines-
1.19/01_pipeline/02_update_deployment_task.yaml

$ tkn task list

NAME DESCRIPTION AGE
apply-manifests 1 minute ago
update-deployment 48 seconds ago

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

4

パイプラインは、from および runAfter パラメーターを使用してタスクが相互に対話する方法および実
行順序を指定します。これは workspaces フィールドを使用して、パイプラインの各タスクの実行中に
必要な 1 つ以上のボリュームを指定します。

このセクションでは、GitHub からアプリケーションのソースコードを取り、これを OpenShift
Container Platform にビルドし、デプロイするパイプラインを作成します。

パイプラインは、バックエンドアプリケーションの vote-api およびフロントエンドアプリケーション
vote-ui に対して以下のタスクを実行します。

git-url および git-revision パラメーターを参照して、Git リポジトリーからアプリケーションの
ソースコードのクローンを作成します。

openshift-pipelines namespace で提供される buildah タスクを使用してコンテナーイメージ
をビルドします。

image パラメーターを参照して、イメージを OpenShift イメージレジストリーにプッシュしま
す。

apply-manifests および update-deployment タスクを使用して新規イメージを OpenShift
Container Platform にデプロイします。

手順

1. 以下のサンプルのパイプライン YAML ファイルの内容をコピーし、保存します。

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: build-and-deploy
spec:
 workspaces:
 - name: shared-workspace
 params:
 - name: deployment-name
 type: string
 description: name of the deployment to be patched
 - name: git-url
 type: string
 description: url of the git repo for the code of deployment
 - name: git-revision
 type: string
 description: revision to be used from repo of the code for deployment
 default: "pipelines-1.19"
 - name: IMAGE
 type: string
 description: image to be built from the code
 tasks:
 - name: fetch-repository
 taskRef:
 resolver: cluster
 params:
 - name: kind
 value: task
 - name: name
 value: git-clone

第1章 OPENSHIFT PIPELINES を使用したアプリケーションの CI/CD ソリューションの作成

5

パイプライン定義は、Git ソースリポジトリーおよびイメージレジストリーの詳細を抽象化しま
す。その詳細は、パイプラインのトリガーおよび実行時に params として追加されます。

2. パイプラインを作成します。

 - name: namespace
 value: openshift-pipelines
 workspaces:
 - name: output
 workspace: shared-workspace
 params:
 - name: URL
 value: $(params.git-url)
 - name: SUBDIRECTORY
 value: ""
 - name: DELETE_EXISTING
 value: "true"
 - name: REVISION
 value: $(params.git-revision)
 - name: build-image
 taskRef:
 resolver: cluster
 params:
 - name: kind
 value: task
 - name: name
 value: buildah
 - name: namespace
 value: openshift-pipelines
 workspaces:
 - name: source
 workspace: shared-workspace
 params:
 - name: IMAGE
 value: $(params.IMAGE)
 runAfter:
 - fetch-repository
 - name: apply-manifests
 taskRef:
 name: apply-manifests
 workspaces:
 - name: source
 workspace: shared-workspace
 runAfter:
 - build-image
 - name: update-deployment
 taskRef:
 name: update-deployment
 params:
 - name: deployment
 value: $(params.deployment-name)
 - name: IMAGE
 value: $(params.IMAGE)
 runAfter:
 - apply-manifests

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

6

$ oc create -f <pipeline-yaml-file-name.yaml>

または、Git リポジトリーから YAML ファイルを直接実行することもできます。

3. tkn pipeline list コマンドを使用して、パイプラインがアプリケーションに追加されていること
を確認します。

$ tkn pipeline list

この出力では、build-and-deploy パイプラインが作成されていることを検証します。

NAME AGE LAST RUN STARTED DURATION STATUS
build-and-deploy 1 minute ago --- --- --- ---

1.5. 制限された環境でパイプラインを実行するためのイメージのミラーリン
グ

OpenShift Pipelines を非接続のクラスターまたは制限された環境でプロビジョニングされたクラスター
で実行するには、制限されたネットワークに Samples Operator が設定されているか、クラスター管理
者がミラーリングされたレジストリーでクラスターを作成しているかを確認する必要があります。

以下の手順では、pipelines-tutorial の例を使用して、ミラーリングされたレジストリーを持つクラス
ターを使用して、制限された環境でアプリケーションのパイプラインを作成します。pipelines-tutorial
の例が制限された環境で機能することを確認するには、フロントエンドインターフェイス (pipelines-
vote-ui)、バックエンドインターフェイス (pipelines-vote-api) および cli のミラーレジストリーからそ
れぞれのビルダーイメージをミラーリングする必要があります。

手順

1. フロントエンドインターフェイス (pipelines-vote-ui) のミラーレジストリーからビルダーイ
メージをミラーリングします。

a. 必要なイメージタグがインポートされていないことを確認します。

出力例

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/pipelines-
1.19/01_pipeline/04_pipeline.yaml

$ oc describe imagestream python -n openshift

Name: python
Namespace: openshift
[...]

3.8-ubi9 (latest)
 tagged from registry.redhat.io/ubi9/python-38:latest
 prefer registry pullthrough when referencing this tag

 Build and run Python 3.8 applications on UBI 8. For more information about using this
builder image, including OpenShift considerations, see https://github.com/sclorg/s2i-
python-container/blob/master/3.8/README.md.
 Tags: builder, python

第1章 OPENSHIFT PIPELINES を使用したアプリケーションの CI/CD ソリューションの作成

7

b. サポートされるイメージタグをプライベートレジストリーに対してミラーリングします。

c. イメージをインポートします。

イメージを定期的に再インポートする必要があります。--scheduled フラグは、イメージ
の自動再インポートを有効にします。

d. 指定されたタグを持つイメージがインポートされていることを確認します。

出力例

2. バックエンドインターフェイス (pipelines-vote-api) のミラーレジストリーからビルダーイ
メージをミラーリングします。

a. 必要なイメージタグがインポートされていないことを確認します。

出力例

 Supports: python:3.8, python
 Example Repo: https://github.com/sclorg/django-ex.git

[...]

$ oc image mirror registry.redhat.io/ubi9/python-39:latest <mirror-registry>:
<port>/ubi9/python-39

$ oc tag <mirror-registry>:<port>/ubi9/python-39 python:latest --scheduled -n openshift

$ oc describe imagestream python -n openshift

Name: python
Namespace: openshift
[...]

latest
 updates automatically from registry <mirror-registry>:<port>/ubi9/python-39

 * <mirror-registry>:<port>/ubi9/python-39@sha256:3ee...

[...]

$ oc describe imagestream golang -n openshift

Name: golang
Namespace: openshift
[...]

1.14.7-ubi8 (latest)
 tagged from registry.redhat.io/ubi8/go-toolset:1.14.7
 prefer registry pullthrough when referencing this tag

 Build and run Go applications on UBI 8. For more information about using this builder
image, including OpenShift considerations, see https://github.com/sclorg/golang-
container/blob/master/README.md.

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

8

b. サポートされるイメージタグをプライベートレジストリーに対してミラーリングします。

c. イメージをインポートします。

イメージを定期的に再インポートする必要があります。--scheduled フラグは、イメージ
の自動再インポートを有効にします。

d. 指定されたタグを持つイメージがインポートされていることを確認します。

出力例

3. cli のミラーレジストリーからビルダーイメージをミラーリングします。

a. 必要なイメージタグがインポートされていないことを確認します。

出力例

 Tags: builder, golang, go
 Supports: golang
 Example Repo: https://github.com/sclorg/golang-ex.git

[...]

$ oc image mirror registry.redhat.io/ubi9/go-toolset:latest <mirror-registry>:
<port>/ubi9/go-toolset

$ oc tag <mirror-registry>:<port>/ubi9/go-toolset golang:latest --scheduled -n openshift

$ oc describe imagestream golang -n openshift

Name: golang
Namespace: openshift
[...]

latest
 updates automatically from registry <mirror-registry>:<port>/ubi9/go-toolset

 * <mirror-registry>:<port>/ubi9/go-
toolset@sha256:59a74d581df3a2bd63ab55f7ac106677694bf612a1fe9e7e3e1487f55c421
b37

[...]

$ oc describe imagestream cli -n openshift

Name: cli
Namespace: openshift
[...]

latest
 updates automatically from registry quay.io/openshift-release-dev/ocp-v4.0-art-
dev@sha256:65c68e8c22487375c4c6ce6f18ed5485915f2bf612e41fef6d41cbfcdb143551

第1章 OPENSHIFT PIPELINES を使用したアプリケーションの CI/CD ソリューションの作成

9

b. サポートされるイメージタグをプライベートレジストリーに対してミラーリングします。

c. イメージをインポートします。

イメージを定期的に再インポートする必要があります。--scheduled フラグは、イメージ
の自動再インポートを有効にします。

d. 指定されたタグを持つイメージがインポートされていることを確認します。

出力例

関連情報

制限されたクラスターの Samples Operator の設定

非接続インストールミラーリングについて

1.6. パイプラインの実行

PipelineRun リソースはパイプラインを開始し、これを特定の呼び出しに使用する必要のある Git およ
びイメージリソースに関連付けます。これは、パイプラインの各タスクに対して TaskRun を自動的に
作成し、開始します。

手順

 * quay.io/openshift-release-dev/ocp-v4.0-art-
dev@sha256:65c68e8c22487375c4c6ce6f18ed5485915f2bf612e41fef6d41cbfcdb143551

[...]

$ oc image mirror quay.io/openshift-release-dev/ocp-v4.0-art-
dev@sha256:65c68e8c22487375c4c6ce6f18ed5485915f2bf612e41fef6d41cbfcdb143551
<mirror-registry>:<port>/openshift-release-dev/ocp-v4.0-art-dev:latest

$ oc tag <mirror-registry>:<port>/openshift-release-dev/ocp-v4.0-art-dev cli:latest --
scheduled -n openshift

$ oc describe imagestream cli -n openshift

Name: cli
Namespace: openshift
[...]

latest
 updates automatically from registry <mirror-registry>:<port>/openshift-release-dev/ocp-
v4.0-art-dev

 * <mirror-registry>:<port>/openshift-release-dev/ocp-v4.0-art-
dev@sha256:65c68e8c22487375c4c6ce6f18ed5485915f2bf612e41fef6d41cbfcdb143551

[...]

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

10

https://docs.openshift.com/container-platform/latest/openshift_images/configuring-samples-operator.html#samples-operator-restricted-network-install
https://docs.openshift.com/container-platform/4.17/disconnected/mirroring/index.html

1. バックエンドアプリケーションのパイプラインを起動します。

直前のコマンドは、パイプライン実行の永続ボリューム要求を作成するボリューム要求テンプ
レートを使用します。

2. パイプライン実行の進捗を追跡するには、以下のコマンドを入力します。

上記のコマンドの <pipelinerun_id> は、直前のコマンドの出力で返された PipelineRun の ID で
す。

3. フロントエンドアプリケーションのパイプラインを起動します。

4. パイプライン実行の進捗を追跡するには、以下のコマンドを入力します。

上記のコマンドの <pipelinerun_id> は、直前のコマンドの出力で返された PipelineRun の ID で
す。

5. 数分後に、tkn pipelinerun list コマンドを使用して、すべてのパイプライン実行をリスト表示
してパイプラインが正常に実行されたことを確認します。

出力には、パイプライン実行がリスト表示されます。

6. アプリケーションルートを取得します。

$ tkn pipeline start build-and-deploy \
 -w name=shared-
workspace,volumeClaimTemplateFile=https://raw.githubusercontent.com/openshift/pipelines-
tutorial/pipelines-1.19/01_pipeline/03_persistent_volume_claim.yaml \
 -p deployment-name=pipelines-vote-api \
 -p git-url=https://github.com/openshift/pipelines-vote-api.git \
 -p IMAGE='image-registry.openshift-image-registry.svc:5000/pipelines-tutorial/pipelines-
vote-api' \
 --use-param-defaults

$ tkn pipelinerun logs <pipelinerun_id> -f

$ tkn pipeline start build-and-deploy \
 -w name=shared-
workspace,volumeClaimTemplateFile=https://raw.githubusercontent.com/openshift/pipelines-
tutorial/pipelines-1.19/01_pipeline/03_persistent_volume_claim.yaml \
 -p deployment-name=pipelines-vote-ui \
 -p git-url=https://github.com/openshift/pipelines-vote-ui.git \
 -p IMAGE='image-registry.openshift-image-registry.svc:5000/pipelines-tutorial/pipelines-
vote-ui' \
 --use-param-defaults

$ tkn pipelinerun logs <pipelinerun_id> -f

$ tkn pipelinerun list

 NAME STARTED DURATION STATUS
 build-and-deploy-run-xy7rw 1 hour ago 2 minutes Succeeded
 build-and-deploy-run-z2rz8 1 hour ago 19 minutes Succeeded

第1章 OPENSHIFT PIPELINES を使用したアプリケーションの CI/CD ソリューションの作成

11

上記のコマンドの出力に留意してください。このルートを使用してアプリケーションにアクセ
スできます。

7. 直前のパイプラインのパイプラインリソースおよびサービスアカウントを使用して最後のパイ
プライン実行を再実行するには、以下を実行します。

関連情報

シークレットを使用したリポジトリーでのパイプラインの認証

1.7. トリガーのパイプラインへの追加

トリガーは、パイプラインがプッシュイベントやプル要求などの外部の GitHub イベントに応答できる
ようにします。アプリケーションのパイプラインをアセンブルし、起動した後
に、TriggerBinding、TriggerTemplate、Trigger、および EventListener リソースを追加して GitHub
イベントを取得します。

手順

1. 以下のサンプル TriggerBinding YAML ファイルの内容をコピーし、これを保存します。

2. TriggerBinding リソースを作成します。

または、TriggerBinding リソースを pipelines-tutorial Git リポジトリーから直接作成できま
す。

3. 以下のサンプル TriggerTemplate YAML ファイルの内容をコピーし、これを保存します。

$ oc get route pipelines-vote-ui --template='http://{{.spec.host}}'

$ tkn pipeline start build-and-deploy --last

apiVersion: triggers.tekton.dev/v1beta1
kind: TriggerBinding
metadata:
 name: vote-app
spec:
 params:
 - name: git-repo-url
 value: $(body.repository.url)
 - name: git-repo-name
 value: $(body.repository.name)
 - name: git-revision
 value: $(body.head_commit.id)

$ oc create -f <triggerbinding-yaml-file-name.yaml>

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/pipelines-
1.19/03_triggers/01_binding.yaml

apiVersion: triggers.tekton.dev/v1beta1
kind: TriggerTemplate
metadata:

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

12

https://docs.redhat.com/en/documentation/red_hat_openshift_pipelines/1.19/html-single/securing_openshift_pipelines/#authenticating-pipelines-repos-using-secrets

テンプレートは、ワークスペースのストレージボリュームを定義するための永続ボリューム要
求を作成するためのボリューム要求テンプレートを指定します。そのため、データストレージ
を提供するために永続ボリューム要求を作成する必要はありません。

4. TriggerTemplate リソースを作成します。

または、TriggerTemplate リソースを pipelines-tutorial Git リポジトリーから直接作成できま
す。

 name: vote-app
spec:
 params:
 - name: git-repo-url
 description: The git repository url
 - name: git-revision
 description: The git revision
 default: pipelines-1.19
 - name: git-repo-name
 description: The name of the deployment to be created / patched

 resourcetemplates:
 - apiVersion: tekton.dev/v1
 kind: PipelineRun
 metadata:
 generateName: build-deploy-$(tt.params.git-repo-name)-
 spec:
 taskRunTemplate:
 serviceAccountName: pipeline
 pipelineRef:
 name: build-and-deploy
 params:
 - name: deployment-name
 value: $(tt.params.git-repo-name)
 - name: git-url
 value: $(tt.params.git-repo-url)
 - name: git-revision
 value: $(tt.params.git-revision)
 - name: IMAGE
 value: image-registry.openshift-image-registry.svc:5000/pipelines-
tutorial/$(tt.params.git-repo-name)
 workspaces:
 - name: shared-workspace
 volumeClaimTemplate:
 spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 500Mi

$ oc create -f <triggertemplate-yaml-file-name.yaml>

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/pipelines-
1.19/03_triggers/02_template.yaml

第1章 OPENSHIFT PIPELINES を使用したアプリケーションの CI/CD ソリューションの作成

13

5. 以下のサンプルの Trigger YAML ファイルの内容をコピーし、保存します。

6. Trigger リソースを作成します。

または、Trigger リソースを pipelines-tutorial Git リポジトリーから直接作成できます。

7. 以下のサンプル EventListener YAML ファイルの内容をコピーし、これを保存します。

または、トリガーカスタムリソースを定義していない場合は、トリガーの名前を参照する代わ
りに、バインディングおよびテンプレート仕様を EventListener YAML ファイルに追加しま
す。

8. 以下のコマンドを実行して EventListener リソースを作成します。

セキュアな HTTPS 接続を使用して EventListener リソースを作成するには、以下を実行
します。

apiVersion: triggers.tekton.dev/v1beta1
kind: Trigger
metadata:
 name: vote-trigger
spec:
 serviceAccountName: pipeline
 bindings:
 - ref: vote-app
 template:
 ref: vote-app

$ oc create -f <trigger-yaml-file-name.yaml>

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/pipelines-
1.19/03_triggers/03_trigger.yaml

apiVersion: triggers.tekton.dev/v1beta1
kind: EventListener
metadata:
 name: vote-app
spec:
 serviceAccountName: pipeline
 triggers:
 - triggerRef: vote-trigger

apiVersion: triggers.tekton.dev/v1beta1
kind: EventListener
metadata:
 name: vote-app
spec:
 serviceAccountName: pipeline
 triggers:
 - bindings:
 - ref: vote-app
 template:
 ref: vote-app

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

14

1 2

3

4

a. ラベルを追加して、Eventlistener リソースへのセキュアな HTTPS 接続を有効にしま
す。

b. EventListener リソースを作成します。

または、EvenListener リソースを pipelines-tutorial Git リポジトリーから直接作成で
きます。

c. re-encrypt TLS 終端でルートを作成します。

または、re-encrypt TLS 終端 YAML ファイルを作成して、セキュアなルートを作成で
きます。

セキュアなルートの re-encrypt TLS 終端 YAML の例

オブジェクトの名前で、63 文字に制限されます。

termination フィールドは reencrypt に設定されます。これは、必要な唯一の tls
フィールドです。

再暗号化に必要です。destinationCACertificate は CA 証明書を指定してエンド
ポイントの証明書を検証し、ルーターから宛先 Pod への接続のセキュリティーを
保護します。サービスがサービス署名証明書を使用する場合、または管理者がデ
フォルトの CA 証明書をルーターに指定し、サービスにその CA により署名され
た証明書がある場合は、このフィールドを省略できます。

$ oc label namespace <ns-name> operator.tekton.dev/enable-annotation=enabled

$ oc create -f <eventlistener-yaml-file-name.yaml>

$ oc create -f https://raw.githubusercontent.com/openshift/pipelines-tutorial/pipelines-
1.19/03_triggers/04_event_listener.yaml

$ oc create route reencrypt --service=<svc-name> --cert=tls.crt --key=tls.key --ca-
cert=ca.crt --hostname=<hostname>

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: route-passthrough-secured 1
spec:
 host: <hostname>
 to:
 kind: Service
 name: frontend 2
 tls:
 termination: reencrypt 3
 key: [as in edge termination]
 certificate: [as in edge termination]
 caCertificate: [as in edge termination]
 destinationCACertificate: |- 4
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----

第1章 OPENSHIFT PIPELINES を使用したアプリケーションの CI/CD ソリューションの作成

15

他のオプションは、oc create route reencrypt --help を参照してください。

非セキュアな HTTP 接続を使用して EventListener リソースを作成するには、以下を実行
します。

a. EventListener リソースを作成します。

b. EventListener サービスを OpenShift Container Platform ルートとして公開し、これを
アクセス可能にします。

1.8. 複数の NAMESPACE を提供するようにイベントリスナーを設定する

注記

基本的な CI/CD パイプラインを作成する必要がある場合は、このセクションをスキップ
できます。ただし、デプロイメント戦略に複数の namespace が含まれる場合は、複数の
namespace を提供するようにイベントリスナーを設定できます。

EvenListener オブジェクトの再利用性を高めるために、クラスター管理者は、複数の namespace に
サービスを提供するマルチテナントイベントリスナーとして、これらのオブジェクトを設定およびデプ
ロイできます。

手順

1. イベントリスナーのクラスター全体のフェッチ権限を設定します。

a. ClusterRoleBinding オブジェクトおよび EventListener オブジェクトで使用するサービス
アカウント名を設定します。たとえば、el-sa です。

ServiceAccount.yaml の例

b. ClusterRole.yaml ファイルの rules セクションで、クラスター全体で機能するように、す
べてのイベントリスナーデプロイメントに適切な権限を設定します。

ClusterRole.yaml の例

$ oc expose svc el-vote-app

apiVersion: v1
kind: ServiceAccount
metadata:
 name: el-sa

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: el-sel-clusterrole
rules:
- apiGroups: ["triggers.tekton.dev"]
 resources: ["eventlisteners", "clustertriggerbindings", "clusterinterceptors",
"triggerbindings", "triggertemplates", "triggers"]
 verbs: ["get", "list", "watch"]

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

16

c. 適切なサービスアカウント名とクラスターロール名を使用して、クラスターロールバイン
ディングを設定します。

ClusterRoleBinding.yaml の例

2. イベントリスナーのspecパラメーターに、サービスアカウント名 (el-sa など) を追加しま
す。namespaceSelectorパラメーターに、イベントリスナーがサービスを提供する
namespace の名前を入力します。

EventListener.yaml の例

3. 必要な権限を持つサービスアカウントを作成します (例: foo-trigger-sa)。トリガーをロールバ
インドするために使用します。

ServiceAccount.yaml の例

- apiGroups: [""]
 resources: ["configmaps", "secrets"]
 verbs: ["get", "list", "watch"]
- apiGroups: [""]
 resources: ["serviceaccounts"]
 verbs: ["impersonate"]
...

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: el-mul-clusterrolebinding
subjects:
- kind: ServiceAccount
 name: el-sa
 namespace: default
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: el-sel-clusterrole
...

apiVersion: triggers.tekton.dev/v1beta1
kind: EventListener
metadata:
 name: namespace-selector-listener
spec:
 taskRunTemplate:
 serviceAccountName: el-sa
 namespaceSelector:
 matchNames:
 - default
 - foo
...

apiVersion: v1
kind: ServiceAccount
metadata:

第1章 OPENSHIFT PIPELINES を使用したアプリケーションの CI/CD ソリューションの作成

17

RoleBinding.yaml の例

4. 適切なトリガーテンプレート、トリガーバインディング、およびサービスアカウント名を使用
してトリガーを作成します。

Trigger.yaml の例

1.9. WEBHOOK の作成

Webhook は、設定されたイベントがリポジトリーで発生するたびにイベントリスナーが受信する
HTTP POST メッセージです。その後、イベントペイロードはトリガーバインディングにマップされ、

 name: foo-trigger-sa
 namespace: foo
...

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: triggercr-rolebinding
 namespace: foo
subjects:
- kind: ServiceAccount
 name: foo-trigger-sa
 namespace: foo
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: tekton-triggers-eventlistener-roles
...

apiVersion: triggers.tekton.dev/v1beta1
kind: Trigger
metadata:
 name: trigger
 namespace: foo
spec:
 taskRunTemplate:
 serviceAccountName: foo-trigger-sa
 interceptors:
 - ref:
 name: "github"
 params:
 - name: "secretRef"
 value:
 secretName: github-secret
 secretKey: secretToken
 - name: "eventTypes"
 value: ["push"]
 bindings:
 - ref: vote-app
 template:
 ref: vote-app
...

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

18

トリガーテンプレートによって処理されます。トリガーテンプレートは最終的に 1 つ以上のパイプライ
ン実行を開始し、Kubernetes リソースの作成およびデプロイメントを実行します。

このセクションでは、フォークされた Git リポジトリー pipelines-vote-ui および pipelines-vote-api
で Webhook URL を設定します。この URL は、一般に公開されている EventListener サービスルート
を参照します。

注記

Webhook を追加するには、リポジトリーへの管理者権限が必要です。リポジトリーへの
管理者アクセスがない場合は、Webhook を追加できるようにシステム管理者に問い合わ
せてください。

手順

1. Webhook URL を取得します。

セキュアな HTTPS 接続の場合:

$ echo "URL: $(oc get route el-vote-app --template='https://{{.spec.host}}')"

HTTP (非セキュアな) 接続の場合:

$ echo "URL: $(oc get route el-vote-app --template='http://{{.spec.host}}')"

出力で取得した URL をメモします。

2. フロントエンドリポジトリーで Webhook を手動で設定します。

a. フロントエンド Git リポジトリー pipelines-vote-ui をブラウザーで開きます。

b. Settings → Webhooks → Add Webhook をクリックします。

c. Webhooks/Add Webhook ページで以下を実行します。

i. 手順 1 の Webhook URL を Payload URL フィールドに入力します。

ii. Content type は application/json を選択します。

iii. シークレットを Secret フィールドに指定します。

iv. Just the push event が選択されていることを確認します。

v. Active を選択します。

vi. Add Webhook をクリックします。

3. バックエンドリポジトリー pipelines-vote-api に対して手順 2 を繰り返します。

1.10. パイプライン実行のトリガー

push イベントが Git リポジトリーで実行されるたびに、設定された Webhook は、公開される
EventListener サービスルートにイベントペイロードを送信します。アプリケーションの
EventListener サービスはペイロードを処理し、これを関連する TriggerBinding および

第1章 OPENSHIFT PIPELINES を使用したアプリケーションの CI/CD ソリューションの作成

19

TriggerTemplate リソースのペアに渡します。TriggerBinding リソースはパラメーターを抽出
し、TriggerTemplate リソースはこれらのパラメーターを使用して、リソースの作成方法を指定しま
す。これにより、アプリケーションが再ビルドされ、再デプロイされる可能性があります。

このセクションでは、空のコミットをフロントエンドの pipelines-vote-ui リポジトリーにプッシュ
し、パイプライン実行をトリガーします。

手順

1. ターミナルから、フォークした Git リポジトリー pipelines-vote-ui のクローンを作成します。

2. 空のコミットをプッシュします。

3. パイプライン実行がトリガーされたかどうかを確認します。

$ tkn pipelinerun list

新規のパイプライン実行が開始されたことに注意してください。

1.11. ユーザー定義プロジェクトでの TRIGGERS のイベントリスナーのモニ
タリングの有効化

クラスター管理者は、イベントリスナーごとにサービスモニターを作成し、ユーザー定義のプロジェク
トで Triggers サービスのイベントリスナーメトリクスを収集し、OpenShift Container Platform Web
コンソールでそれらを表示することができます。HTTP リクエストを受信すると、Triggers サービスの
イベントリスナーは 3 つのメトリクス
(eventlistener_http_duration_seconds、eventlistener_event_count、および
eventlistener_triggered_resources) を返します。

前提条件

OpenShift Container Platform Web コンソールにログインしている。

Red Hat OpenShift Pipelines Operator がインストールされている。

ユーザー定義プロジェクトのモニタリングを有効にしている。

手順

1. イベントリスナーごとに、サービスモニターを作成します。たとえば、test namespace の
github-listener イベントリスナーのメトリクスを表示するには、以下のサービスモニターを作
成します。

$ git clone git@github.com:<your GitHub ID>/pipelines-vote-ui.git -b pipelines-1.19

$ git commit -m "empty-commit" --allow-empty && git push origin pipelines-1.19

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
 labels:
 app.kubernetes.io/managed-by: EventListener
 app.kubernetes.io/part-of: Triggers

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

20

2. リクエストをイベントリスナーに送信して、サービスモニターをテストします。たとえば、空
のコミットをプッシュします。

3. OpenShift Container Platform Web コンソールで、Administrator → Observe → Metrics の順
に移動します。

4. メトリクスを表示するには、名前で検索します。たとえば、github-listener イベントリスナー
の eventlistener_http_resources メトリクスの詳細を表示するに
は、eventlistener_http_resources のキーワードを使用して検索します。

関連情報

ユーザー定義プロジェクトのモニタリングの有効化

1.12. GITHUB INTERCEPTOR でのプルリクエスト機能の設定

GitHub Interceptor を使用すると、GitHub Webhook を検証およびフィルタリングするロジックを作成
できます。たとえば、Webhook の発信元を検証し、指定された基準に基づいて着信イベントをフィル
ター処理できます。GitHub Interceptor を使用してイベントデータをフィルタリングする場合は、
Interceptor がフィールドで受け入れることができるイベントタイプを指定できます。Red Hat
OpenShift Pipelines では、GitHub Interceptor の以下の機能を使用できます。

変更されたファイルに基づいてプルリクエストイベントをフィルタリングする

設定された GitHub 所有者に基づいてプルリクエストを検証する

1.12.1. GitHub Interceptor を使用したプルリクエストのフィルタリング

プッシュおよびプルイベント用に変更されたファイルに基づいて、GitHub イベントをフィルター処理
できます。これは、Git リポジトリー内の関連する変更のみに対してパイプラインを実行するのに役立
ちます。GitHub Interceptor は、変更されたすべてのファイルのコンマ区切りリストを追加し、CEL

 eventlistener: github-listener
 annotations:
 networkoperator.openshift.io/ignore-errors: ""
 name: el-monitor
 namespace: test
spec:
 endpoints:
 - interval: 10s
 port: http-metrics
 jobLabel: name
 namespaceSelector:
 matchNames:
 - test
 selector:
 matchLabels:
 app.kubernetes.io/managed-by: EventListener
 app.kubernetes.io/part-of: Triggers
 eventlistener: github-listener
...

$ git commit -m "empty-commit" --allow-empty && git push origin main

第1章 OPENSHIFT PIPELINES を使用したアプリケーションの CI/CD ソリューションの作成

21

https://docs.openshift.com/container-platform/latest/observability/monitoring/enabling-monitoring-for-user-defined-projects.html

Interceptor を使用して、変更されたファイルに基づいて着信イベントをフィルタリングします。変更
されたファイルのリストは、最上位の extensions フィールドのイベントペイロードの changed_files
がプロパティーに追加されます。

前提条件

Red Hat OpenShift Pipelines Operator がインストールされている。

手順

1. 以下のいずれかの手順を実行します。

パブリック GitHub リポジトリーの場合は、以下に示す YAML 設定ファイルで
addChangedFiles パラメーターの値を true に設定します。

プライベート GitHub リポジトリーの場合は、addChangedFiles パラメーターの値を true
に設定し、以下に示す YAML 設定ファイルでアクセストークンの詳細、secretName、お
よび secretKey を指定します。

apiVersion: triggers.tekton.dev/v1beta1
kind: EventListener
metadata:
 name: github-add-changed-files-pr-listener
spec:
 triggers:
 - name: github-listener
 interceptors:
 - ref:
 name: "github"
 kind: ClusterInterceptor
 apiVersion: triggers.tekton.dev
 params:
 - name: "secretRef"
 value:
 secretName: github-secret
 secretKey: secretToken
 - name: "eventTypes"
 value: ["pull_request", "push"]
 - name: "addChangedFiles"
 value:
 enabled: true
 - ref:
 name: cel
 params:
 - name: filter
 value: extensions.changed_files.matches('controllers/')
...

apiVersion: triggers.tekton.dev/v1beta1
kind: EventListener
metadata:
 name: github-add-changed-files-pr-listener
spec:
 triggers:
 - name: github-listener

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

22

2. 設定ファイルを作成します。

1.12.2. GitHub Interceptors を使用したプルリクエストの検証

GitHub Interceptor を使用して、リポジトリー用に設定された GitHub 所有者に基づいてプルリクエス
トの処理を検証できます。この検証は、PipelineRun または TaskRun オブジェクトの不要な実行を防
ぐのに役立ちます。GitHub Interceptor は、ユーザー名が所有者としてリストされている場合、または
設定可能なコメントがリポジトリーの所有者によって発行された場合にのみ、プルリクエストを処理し
ます。たとえば、所有者としてプルリクエストで /ok-to-test にコメントすると、PipelineRun または
TaskRun がトリガーされます。

注記

所有者は、リポジトリーのルートにある OWNERS ファイルで設定されます。

前提条件

Red Hat OpenShift Pipelines Operator がインストールされている。

手順

1. シークレットの文字列値を作成します。

2. その値で GitHub webhook を設定します。

3. シークレット値を含む secretRef という名前の Kubernetes シークレットを作成します。

4. Kubernetes シークレットを GitHub Interceptor への参照として渡します。

5. owners ファイルを作成し、承認者のリストを approvers セクションに追加します。

 interceptors:
 - ref:
 name: "github"
 kind: ClusterInterceptor
 apiVersion: triggers.tekton.dev
 params:
 - name: "secretRef"
 value:
 secretName: github-secret
 secretKey: secretToken
 - name: "eventTypes"
 value: ["pull_request", "push"]
 - name: "addChangedFiles"
 value:
 enabled: true
 personalAccessToken:
 secretName: github-pat
 secretKey: token
 - ref:
 name: cel
 params:
 - name: filter
 value: extensions.changed_files.matches('controllers/')
...

第1章 OPENSHIFT PIPELINES を使用したアプリケーションの CI/CD ソリューションの作成

23

6. 以下のいずれかの手順を実行します。

パブリック GitHub リポジトリーの場合は、以下に示す YAML 設定ファイルで
githubOwners パラメーターの値を true に設定します。

プライベート GitHub リポジトリーの場合は、githubOwners パラメーターの値を true に
設定し、以下に示す YAML 設定ファイルでアクセストークンの詳細、secretName、およ
び secretKey を指定します。

apiVersion: triggers.tekton.dev/v1beta1
kind: EventListener
metadata:
 name: github-owners-listener
spec:
 triggers:
 - name: github-listener
 interceptors:
 - ref:
 name: "github"
 kind: ClusterInterceptor
 apiVersion: triggers.tekton.dev
 params:
 - name: "secretRef"
 value:
 secretName: github-secret
 secretKey: secretToken
 - name: "eventTypes"
 value: ["pull_request", "issue_comment"]
 - name: "githubOwners"
 value:
 enabled: true
 checkType: none
...

apiVersion: triggers.tekton.dev/v1beta1
kind: EventListener
metadata:
 name: github-owners-listener
spec:
 triggers:
 - name: github-listener
 interceptors:
 - ref:
 name: "github"
 kind: ClusterInterceptor
 apiVersion: triggers.tekton.dev
 params:
 - name: "secretRef"
 value:
 secretName: github-secret
 secretKey: secretToken
 - name: "eventTypes"
 value: ["pull_request", "issue_comment"]
 - name: "githubOwners"
 value:
 enabled: true

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

24

注記

checkType パラメーターは、認証が必要な GitHub 所有者を指定するために
使用されます。その値を orgMembers、repoMembers、または all に設定
できます。

7. 設定ファイルを作成します。

1.13. 関連情報

Pipelines as Code をアプリケーションのソースコードとともに同じリポジトリーに含めるに
は、About Pipelines as Code を参照してください。

Developer パースペクティブでのパイプラインの詳細は、Web コンソールでの OpenShift パイ
プラインの操作 セクションを参照してください。

Security Context Constraints (SCC) の詳細は、セキュリティーコンテキスト制約の管理 セク
ションを参照してください。

再利用可能なタスクの追加の例は、OpenShift Catalog リポジトリーを参照してください。さら
に、Tekton プロジェクトで Tekton Catalog を参照することもできます。

再利用可能なタスクとパイプライン用に Tekton Hub のカスタムインスタンスをインストール
してデプロイするには、Red Hat OpenShift Pipelines での Tekton Hub の使用 を参照してくだ
さい。

re-encrypt TLS 終端の詳細は、再暗号化終端 を参照してください。

セキュリティー保護されたルートの詳細は、セキュリティー保護されたルート セクションを参
照してください。

 personalAccessToken:
 secretName: github-token
 secretKey: secretToken
 checkType: all
...

第1章 OPENSHIFT PIPELINES を使用したアプリケーションの CI/CD ソリューションの作成

25

https://docs.redhat.com/en/documentation/red_hat_openshift_pipelines/1.19/html-single/pipelines_as_code/#about-pipelines-as-code
https://docs.openshift.com/container-platform/latest/authentication/managing-security-context-constraints.html
https://github.com/openshift/pipelines-catalog
https://docs.redhat.com/en/documentation/red_hat_openshift_pipelines/1.19/html-single/custom_tekton_hub_instance/#using-tekton-hub-with-openshift-pipelines
https://docs.openshift.com/container-platform/3.11/architecture/networking/routes.html#re-encryption-termination
https://docs.openshift.com/container-platform/latest/networking/routes/secured-routes.html

第2章 WEB コンソールでの RED HAT OPENSHIFT PIPELINES の
使用

Administrator または Developer パースペクティブを使用して、OpenShift Container Platform Web コ
ンソールの Pipelines ページから Pipeline、PipelineRun、Repository オブジェクトを作成および変更
できます。Web コンソールの Developer パースペクティブの +Add ページを使用して、ソフトウェア
デリバリープロセスの CI/CD パイプラインを作成することもできます。

2.1. DEVELOPER パースペクティブで RED HAT OPENSHIFT PIPELINES
を使用する

Developer パースペクティブでは、+Add ページからパイプラインを作成するための以下のオプション
にアクセスできます。

Add → Pipeline → Pipeline builder オプションを使用して、アプリケーションのカスタマイズ
されたパイプラインを作成します。

+Add → From Git オプションを使用して、アプリケーション作成時にパイプラインテンプレー
トおよびリソースを使用してパイプラインを作成します。

アプリケーションのパイプラインの作成後に、Pipelines ビューでデプロイされたパイプラインを表示
し、これらと視覚的に対話できます。Topology ビューを使用して、From Git オプションを使用して作
成されたパイプラインと対話することもできます。パイプライン ビルダーを使用して作成されたパイプ
ラインを トポロジー ビューで表示するには、カスタムラベルを適用する必要があります。

前提条件

OpenShift Container Platform クラスターにアクセスでき、開発者 パースペクティブ に切り替
えている。

クラスターに OpenShift Pipelines Operator がインストールされ ています。

クラスター管理者か、create および edit パーミッションを持つユーザーである。

プロジェクトを作成している。

2.1.1. Pipeline Builder を使用した Pipeline の構築

コンソールの Developer パースペクティブで、+Add → Pipeline → Pipeline Builder オプションを使用
して以下を実行できます。

Pipeline ビルダー または YAML ビュー のいずれかを使用してパイプラインを設定します。

既存のタスクを使用してパイプラインフローを構築します。OpenShift Pipelines Operator をイ
ンストールする際に、再利用可能なパイプラインタスクがクラスターリゾルバーで使用できる
クラスターに追加されます。

パイプライン実行に必要なリソースタイプを指定し、必要な場合は追加のパラメーターをパイ
プラインに追加します。

パイプラインの各タスクのこれらのパイプラインリソースを入力および出力リソースとして参
照します。

必要な場合は、タスクのパイプラインに追加されるパラメーターを参照します。タスクのパラ
メーターは、Task の仕様に基づいて事前に設定されます。

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

26

https://docs.openshift.com/container-platform/latest/web_console/web-console-overview.html#about-developer-perspective_web-console-overview
https://docs.redhat.com/en/documentation/red_hat_openshift_pipelines/1.19/html-single/installing_and_configuring/#installing-pipelines

Operator によってインストールされた、再利用可能なスニペットおよびサンプルを使用して、
詳細なパイプラインを作成します。

設定済みのローカル Tekton Hub インスタンスからタスクを検索して追加します。

重要

開発者の観点では、キュレートされた独自のタスクセットを使用して、カスタマイズさ
れたパイプラインを作成できます。タスクを開発者コンソールから直接検索、インス
トール、およびアップグレードするには、クラスター管理者がローカルの Tekton Hub イ
ンスタンスをインストールしてデプロイし、そのハブを OpenShift Container Platform
クラスターにリンクする必要があります。詳細は、関連情報 セクションの OpenShift
Pipeline での Tekton Hub の使用 セクションを参照してください。ローカルの Tekton
Hub インスタンスをデプロイしない場合、デフォルトでは、namespace タスクとパブ
リック Tekton Hub タスクにのみアクセスできます。

手順

1. Developer パースペクティブの +Add ビューで、Pipeline タイルをクリックし、Pipeline
Builder ページを表示します。

2. Pipeline ビルダー ビューまたは YAML ビュー のいずれかを使用して、パイプラインを設定し
ます。

注記

Pipeline ビルダー ビューは、限られた数のフィールドをサポートします
が、YAML ビュー は利用可能なすべてのフィールドをサポートします。オプ
ションで、Operator によってインストールされた、再利用可能なスニペットお
よびサンプルを使用して、詳細な Pipeline を作成することもできます。

図2.1 YAML ビュー

3. Pipeline builder を使用してパイプラインを設定します。

a. Name フィールドにパイプラインの一意の名前を入力します。

b. Tasks セクションで、以下を実行します。

第2章 WEB コンソールでの RED HAT OPENSHIFT PIPELINES の使用

27

i. Add task をクリックします。

ii. クイック検索フィールドを使用してタスクを検索し、表示されたリストから必要なタス
クを選択します。

iii. Add または Install and add をクリックします。この例では、s2i-nodejs タスクを使用
します。

注記

検索のリストには、Tekton Hub タスクおよび、クラスターで利用可能
なタスクがすべて含まれます。また、タスクがすでにインストールされ
ている場合は、タスク追加用の Add が表示され、それ以外の場合は、タ
スクのインストールおよび追加用の Install and add が表示されます。更
新されたバージョンで同じタスクを追加する場合は、Update and add
が表示されます。

連続するタスクをパイプラインに追加するには、以下を実行します。

タスクの右側にあるプラスアイコンをクリックし、Add task をクリックしま
す。

クイック検索フィールドを使用してタスクを検索し、表示されたリストから必
要なタスクを選択します。

Add または Install and add をクリックします。

図2.2 Pipeline Builder

最終タスクを追加するには、以下を実行します。

Add finally task → Add task の順にクリックします。

クイック検索フィールドを使用してタスクを検索し、表示されたリストから必
要なタスクを選択します。

Add または Install and add をクリックします。

c. Resources セクションで、Add Resources をクリックし、パイプライン実行用のリソース
の名前およびタイプを指定します。これらのリソースは、パイプラインのタスクによって
入力および出力として使用されます。この例では、以下のようになります。

i. 入力リソースを追加します。Name フィールドに Source を入力してから、Resource
Type ドロップダウンリストから Git を選択します。

ii. 出力リソースを追加します。Name フィールドに Img を入力してから、Resource

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

28

ii. 出力リソースを追加します。Name フィールドに Img を入力してから、Resource
Type ドロップダウンリストから Image を選択します。

注記

リソースが見つからない場合には、タスクの横に赤のアイコンが表示さ
れます。

d. オプション: タスクの Parameters は、タスクの仕様に基づいて事前に設定されます。必要
な場合は、Parameters セクションの Add Parameters リンクを使用して、パラメーター
を追加します。

e. Workspaces セクションで、Add workspace をクリックし、Name フィールドに一意の
ワークスペース名を入力します。複数のワークスペースをパイプラインに追加できます。

f. Tasks セクションで、s2i-nodejs タスクをクリックし、タスクの詳細情報が含まれるサイ
ドパネルを表示します。タスクのサイドパネルで、s2i-nodejs タスクのリソースおよびパ
ラメーターを指定します。

i. 必要な場合は、Parameters セクションで、$(params.<param-name>) 構文を使用し
て、デフォルトのパラメーターにさらにパラメーターを追加します。

ii. Image セクションで、Resources セクションで指定されているように Img を入力しま
す。

iii. Workspace セクションの source ドロップダウンからワークスペースを選択します。

g. リソース、パラメーター、およびワークスペースを openshift-client タスクに追加しま
す。

4. Create をクリックし、Pipeline Details ページでパイプラインを作成し、表示します。

5. Actions ドロップダウンメニューをクリックしてから Start をクリックし、Start Pipeline ペー
ジを表示します。

6. Workspace セクションは、以前に作成したワークスペースをリスト表示します。それぞれのド
ロップダウンを使用して、ワークスペースのボリュームソースを指定します。Empty
Directory、Config Map、Secret、PersistentVolumeClaim、または VolumeClaimTemplate
のオプションを使用できます。

2.1.2. アプリケーションとともに OpenShift Pipeline を作成する

アプリケーションと共にパイプラインを作成するには、Developer パースペクティブの Add+ ビュー
で、From Git オプションを使用します。使用可能なすべてのパイプラインを表示し、コードのイン
ポートまたはイメージのデプロイ中に、アプリケーションの作成に使用するパイプラインを選択できま
す。

Tekton Hub 統合はデフォルトで有効になっており、クラスターでサポートされている Tekton Hub から
のタスクを確認できます。管理者は Tekton Hub 統合をオプトアウトでき、Tekton Hub タスクは表示さ
れなくなります。生成されたパイプラインに Webhook URL が存在するかどうかを確認することもでき
ます。+Add フローを使用して作成されたパイプラインにデフォルトの Webhook が追加され、
Topology ビューで選択したリソースのサイドパネルに URL が表示されます。

詳細は、Developer パースペクティブを使用したアプリケーションの作成 を参照してください。

第2章 WEB コンソールでの RED HAT OPENSHIFT PIPELINES の使用

29

https://docs.openshift.com/container-platform/latest/applications/creating_applications/odc-creating-applications-using-developer-perspective.html#odc-importing-codebase-from-git-to-create-application_odc-creating-applications-using-developer-perspective

2.1.3. パイプラインを含む GitHub リポジトリーの追加

Developer パースペクティブでは、パイプラインを含む GitHub リポジトリーを OpenShift Container
Platform クラスターに追加できます。これにより、プッシュリクエストやプルリクエストなどの関連す
る Git イベントがトリガーされたときに、クラスター上の GitHub リポジトリーからパイプラインとタ
スクを実行できます。

注記

パブリックおよびプライベートの GitHub リポジトリーの両方を追加できます。

前提条件

クラスター管理者が必要な GitHub アプリケーションを管理者パースペクティブで設定してい
ること。

手順

1. Developer パースペクティブで、GitHub リポジトリーを追加する namespace またはプロジェ
クトを選択します。

2. 左側のナビゲーションペインを使用して Pipelines に移動します。

3. Pipelines ページの右側にある Create → Repository をクリックします。

4. Git Repo URL を入力すると、コンソールが自動的にリポジトリー名を取得します。

5. 設定オプションを表示 をクリックします。デフォルトでは、Setup a webhook というオプショ
ンが 1 つだけ表示されます。GitHub アプリケーションが設定されている場合は、次の 2 つのオ
プションが表示されます。

Use GitHub App: リポジトリーに GitHub アプリケーションをインストールするには、この
オプションを選択します。

Setup a webhook: Webhook を GitHub アプリケーションに追加するには、このオプション
を選択します。

6. Secret セクションで次のいずれかのオプションを使用して Webhook を設定します。

Git アクセストークン を使用して Webhook をセットアップします。

a. 個人用アクセストークンを入力します。

b. Webhook シークレット フィールドに対応する 生成 をクリックして、新しい Webhook
シークレットを生成します。

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

30

注記

個人用アクセストークンを持っておらず、新しいトークンを作成する場
合は、Git access token フィールドの下のリンクをクリックできます。

Git access token secret を使用して Webhook をセットアップします。

ドロップダウンリストから namespace のシークレットを選択します。選択したシーク
レットに応じて、Webhook シークレットが自動的に生成されます。

第2章 WEB コンソールでの RED HAT OPENSHIFT PIPELINES の使用

31

7. Webhook シークレットの詳細を GitHub リポジトリーに追加します。

a. Webhook URL をコピーし、GitHub リポジトリー設定に移動します。

b. Webhooks → Add webhook をクリックします。

c. 開発者コンソールから Webhook URL をコピーし、GitHub リポジトリー設定の Payload
URL フィールドに貼り付けます。

d. Content type を選択します。

e. 開発者コンソールから Webhook secret をコピーし、GitHub リポジトリー設定の Secret
フィールドに貼り付けます。

f. SSL 検証 オプションのいずれかを選択します。

g. この Webhook をトリガーするイベントを選択します。

h. Add webhook をクリックします。

8. 開発者コンソールに戻り、Add をクリックします。

9. 実行する手順の詳細を確認し、Close をクリックします。

10. 作成したリポジトリーの詳細を表示します。

注記

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

32

注記

Import from Git を使用してアプリケーションをインポートし、Git リポジトリーに
.tekton ディレクトリーがある場合は、アプリケーションの pipelines-as-code を設定で
きます。

2.1.4. 開発者パースペクティブを使用したパイプラインの使用

Developer パースペクティブの Pipelines ビューは、以下の詳細と共にプロジェクトのすべてのパイプ
ラインをリスト表示します。

パイプラインが作成された namespace

最後のパイプライン実行

パイプライン実行のタスクのステータス

パイプライン実行のステータス

最後のパイプライン実行の作成時間

手順

1. Developer パースペクティブの Pipelines ビューで、Project ドロップダウンリストからプロ
ジェクトを選択し、そのプロジェクトのパイプラインを表示します。

2. 必要なパイプラインをクリックし、Pipeline Details ページを表示します。
デフォルトでは、Details タブには、すべての serial タスク、parallel タスク、finally タスク、
およびパイプライン when の式がすべて視覚的に表示されます。タスクと finally タスクは、
ページの右下に一覧表示されます。

タスクの詳細を表示するには、一覧表示されている Tasks および Finally タスクをクリックし
ます。さらに、以下を実行できます。

パイプライン詳細 の視覚化の左下隅に表示される標準アイコンを使用して、ズームイン、
ズームアウト、画面サイズの自動調整、およびビューのリセット機能を使用します。

マウスホイールを使用して、パイプラインビジュアライゼーションのズーム係数を変更し
ます。

タスクにカーソルを合わせ、タスクの詳細を表示します。

図2.3 Pipeline の詳細

第2章 WEB コンソールでの RED HAT OPENSHIFT PIPELINES の使用

33

図2.3 Pipeline の詳細

3. オプション: Pipeline details ページで、Metrics タブをクリックして、パイプラインに関する以
下の情報を表示します。

Pipeline 成功比率

Pipeline Run の数

Pipeline Run の期間

Task Run Duration
この情報を使用して、パイプラインのワークフローを改善し、パイプラインのライフサイ
クルの初期段階で問題をなくすことができます。

4. オプション: YAML タブをクリックし、パイプラインの YAML ファイルを編集します。

5. オプション: Pipeline Runs タブをクリックして、パイプラインの完了済み、実行中、または失
敗した実行を確認します。
Pipeline Runs タブでは、パイプライン実行、タスクのステータス、および失敗したパイプライ

ン実行のデバッグ用のリンクの詳細が表示されます。Options メニュー を使用して、実
行中のパイプラインを停止するか、以前のパイプライン実行と同じパラメーターとリソースを
使用してパイプラインを再実行するか、パイプライン実行を削除します。

必要なパイプラインをクリックし、Pipeline Run details ページを表示します。デフォルト
では、Details タブには、すべてのシリアルタスク、並列タスク、finally タスク、およびパ
イプライン実行の式がすべて視覚的に表示されます。実行に成功すると、ページ下部の
Pipeline Run results ペインに表示されます。さらに、クラスターでサポートされている
Tekton Hub からのタスクのみを表示できます。タスクを見ながら、その横にあるリンクを
クリックして、タスクのドキュメントにジャンプできます。

注記

Pipeline Run Details ページの Details セクションには、失敗したパイプラ
イン実行の Log Snippet (ログスニペット) が表示されます。Log Snippet
(ログスニペット) は、一般的なエラーメッセージとログのスニペットを提供
します。Logs セクションへのリンクでは、失敗した実行に関する詳細への
クイックアクセスを提供します。

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

34

Pipeline Run details ページで、Task Runs タブをクリックして、タスクの完了、実行、お
よび失敗した実行を確認します。
Task Runs タブは、タスク実行に関する情報と、そのタスクおよび Pod へのリンクと、タ

スク実行のステータスおよび期間を提供します。Options メニュー を使用してタスク
実行を削除します。

注記

TaskRuns リストページには Manage columns ボタンがあり、これを使用し
て Duration 列を追加することもできます。

必要なタスク実行をクリックして、Task Run details ページを表示します。実行に成功す
ると、ページ下部の Task Run results ペインに表示されます。

注記

Task Run details ページの Details セクションには、失敗したパイプライン
実行の Log Snippet (ログスニペット) が表示されます。Log Snippet (ログ
スニペット) は、一般的なエラーメッセージとログのスニペットを提供しま
す。Logs セクションへのリンクでは、失敗した実行に関する詳細へのク
イックアクセスを提供します。

6. Parameters タブをクリックして、パイプラインに定義されるパラメーターを表示します。必
要に応じて追加のパラメーターを追加するか、編集することもできます。

7. Resources タブをクリックして、パイプラインで定義されたリソースを表示します。必要に応
じて関連情報を追加するか、編集することもできます。

2.1.5. Pipelines ビューからのパイプラインの開始

パイプラインの作成後に、これを開始し、これに含まれるタスクを定義されたシーケンスで実行できる
ようにする必要があります。パイプラインを Pipelines ビュー、Pipeline Details ページ、または
Topology ビューから開始できます。

手順

Pipelines ビューを使用してパイプラインを開始するには、以下を実行します。

1. Developer パースペクティブの Pipelines ビューで、パイプラインに隣接する Options
メニューで、Start を選択します。

2. Start Pipeline ダイアログボックスは、パイプライン定義に基づいて Git Resources および
Image Resources を表示します。

注記

From Git オプションを使用して作成されるパイプラインの場合は、Start
Pipeline ダイアログボックスでは Parameters セクションに APP_NAME フィー
ルドも表示され、ダイアログボックスのすべてのフィールドがパイプラインテン
プレートによって事前に入力されます。

第2章 WEB コンソールでの RED HAT OPENSHIFT PIPELINES の使用

35

a. namespace にリソースがある場合は、Git Resources および Image Resources フィールド
がそれらのリソースで事前に設定されます。必要な場合は、ドロップダウンを使用して必
要なリソースを選択または作成し、Pipeline Run インスタンスをカスタマイズします。

3. オプション: Advanced Options を変更し、認証情報を追加して、指定されたプライベート Git
サーバーまたはイメージレジストリーを認証します。

a. Advanced Options で Show Credentials Options をクリックし、Add Secret を選択しま
す。

b. Create Source Secret セクションで、以下を指定します。

i. シークレットの一意の シークレット名。

ii. Designated provider to be authenticated セクションで、Access to フィールドで認
証されるプロバイダー、およびベース Server URL を指定します。

iii. Authentication Type を選択し、認証情報を指定します。

Authentication Type Image Registry Credentials に、認証する Registry Server
Address を指定し、Username、Password、および Email フィールドに認証情報
を指定します。
追加の Registry Server Address を指定する必要がある場合は、Add Credentials
を選択します。

Authentication Type Basic Authentication に、UserName および Password or
Token フィールドの値を指定します。

Authentication Type SSH Keys に、SSH Private Key フィールドの値を指定しま
す。

注記

Basic 認証および SSH 認証には、以下のようなアノテーションを使
用できます。

tekton.dev/git-0: https://github.com

tekton.dev/git-1: https://gitlab.com.

iv. シークレットを追加するためにチェックマークを選択します。

パイプラインのリソースの数に基づいて、複数のシークレットを追加できます。

4. Start をクリックしてパイプラインを開始します。

5. PipelineRun details ページには、実行されるパイプラインが表示されます。パイプラインが開
始すると、タスクおよび各タスク内のステップが実行します。以下を行うことができます。

PipelineRun 詳細 ページビジュアライゼーションの左下隅にある標準アイコンを使用し
て、ズームイン、ズームアウト、画面サイズの自動調整、およびビューのリセット機能を
使用します。

マウスホイールを使用して、パイプライン実行の視覚化のズーム係数を変更します。特定
のズーム要素では、タスクの背景色が変更され、エラーまたは警告のステータスが示され
ます。

タスクにカーソルを合わせると、各ステップの実行にかかった時間、タスク名、タスクス

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

36

https://github.com
https://gitlab.com

タスクにカーソルを合わせると、各ステップの実行にかかった時間、タスク名、タスクス
テータスなどの詳細が表示されます。

タスクバッジにカーソルを合わせ、完了したタスクとタスクの合計数を確認します。

タスクをクリックし、タスクの各ステップのログを表示します。

Logs タブをクリックして、タスクの実行シーケンスに関連するログを表示します。該当す
るボタンを使用して、ペインをデプロイメントし、ログを個別に、または一括してダウン
ロードすることもできます。

Events タブをクリックして、パイプライン実行で生成されるイベントのストリームを表示
します。
Task Runs、Logs、および Events タブを使用すると、失敗したパイプラインの実行または
タスクの実行のデバッグに役立ちます。

図2.4 パイプライン実行の詳細

2.1.6. Topology ビューからパイプラインを開始する

From Git オプションを使用して作成されるパイプラインの場合は、Topology ビューを使用して、開始
後のパイプラインと対話することができます。

注記

Topology ビューで Pipeline Builder を使用して作成されるパイプラインを表示するに
は、パイプラインのラベルをカスタマイズし、パイプラインをアプリケーションのワー
クロードにリンクします。

手順

1. 左側のナビゲーションパネルで Topology をクリックします。

2. アプリケーションをクリックして、サイドパネルに Pipeline Runs を表示します。

3. Pipeline Runs で、Start Last Run をクリックして、前のパイプラインと同じパラメーターとリ
ソースを使用して新しいパイプラインの実行を開始します。このオプションは、パイプライン
実行が開始されていない場合は無効になります。パイプラインの作成時にパイプラインの実行
を開始することもできます。

第2章 WEB コンソールでの RED HAT OPENSHIFT PIPELINES の使用

37

図2.5 Topology ビューのパイプライン

Topology ページで、アプリケーションの左側にカーソルを合わせると、パイプライン実行のステータ
スが表示されます。パイプラインが追加された後、左下のアイコンは、関連付けられたパイプラインが
あることを示します。

2.1.7. Topology ビューからのパイプラインとの対話

Topology ページのアプリケーションノードのサイドパネルには、パイプライン実行のステータスが表
示され、対話することができます。

パイプラインの実行が自動的に開始されない場合は、サイドパネルにパイプラインを自動的に
開始できないというメッセージが表示されるため、手動で開始する必要があります。

パイプラインが作成されたが、ユーザーがパイプラインを開始していない場合、そのステータ
スは Not started になります。ユーザーが、Not started ステータスアイコンをクリックする
と、Topology ビューに start ダイアログボックスが開きます。

パイプラインにビルドまたはビルド設定がない場合、Buildsセクションは表示されません。パ
イプラインとビルド設定がある場合は、Builds セクション が表示されます。

特定のタスク実行でパイプライン実行が失敗すると、サイドパネルに Log Snippet が表示され
ます。Resources タブの Pipeline Runs セクションに Log Snippet を表示できます。これは、
一般的なエラーメッセージとログのスニペットを提供します。Logs セクションへのリンクで
は、失敗した実行に関する詳細へのクイックアクセスを提供します。

2.1.8. Pipeline の編集

Web コンソールの Developer パースペクティブを使用して、クラスター内のパイプラインを編集でき
ます。

手順

1. Developer パースペクティブの Pipelines ビューで、編集する必要のある Pipeline を選択し、
Pipeline の詳細を表示します。Pipeline Details ページで Actions をクリックし、Edit Pipeline
を選択します。

2. パイプラインビルダー ページで、次のタスクを実行できます。

追加のタスク、パラメーター、またはリソースをパイプラインに追加します。

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

38

追加のタスク、パラメーター、またはリソースをパイプラインに追加します。

変更するタスクをクリックして、サイドパネルにタスクの詳細を表示し、表示名、パラ
メーター、リソースなどの必要なタスクの詳細を変更します。

または、Task を削除するには、Task をクリックし、サイドパネルで Actions をクリック
し、Remove Task を選択します。

3. Save をクリックして変更された Pipeline を保存します。

2.1.9. Pipeline の削除

Web コンソールの Developer パースペクティブを使用して、クラスターの Pipeline を削除できます。

手順

1. Developer パースペクティブの Pipelines ビューで、Pipeline に隣接する Options メ
ニューをクリックし、Delete Pipeline を選択します。

2. Delete Pipeline 確認プロンプトで、Delete をクリックし、削除を確認します。

2.2. 関連情報

OpenShift Pipelines での Tekton Hub の使用

2.3. ADMINISTRATOR パースペクティブでのパイプラインテンプレートの
作成

クラスター管理者は、開発者がクラスターでパイプラインを作成するときに再利用できるパイプライン
テンプレートを作成できます。

前提条件

クラスター管理者権限で OpenShift Container Platform クラスターにアクセスで
き、Administrator パースペクティブに切り替えている。

OpenShift Pipelines Operator がクラスターにインストールされている。

手順

1. Pipelines ページに移動し、既存のパイプラインテンプレートを表示します。

2. アイコンをクリックして Import YAML ページに移動します。

3. パイプラインテンプレートの YAML を追加します。テンプレートには、以下の情報が含まれて
いる必要があります。

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
...

第2章 WEB コンソールでの RED HAT OPENSHIFT PIPELINES の使用

39

https://docs.redhat.com/en/documentation/red_hat_openshift_pipelines/1.19/html-single/custom_tekton_hub_instance/#using-tekton-hub-with-openshift-pipelines

1

2

3

テンプレートは openshift namespace に作成する必要があります。

テンプレートには pipeline.openshift.io/runtime ラベルが含まれている必要があります。
このラベルで許可されるランタイム値
は、nodejs、golang、dotnet、java、php、ruby、perl、python、nginx、および httpd
です。

テンプレートには、pipeline.openshift.io/type: ラベルが含まれている必要があります。
このラベルで許可されるタイプ値は、openshift、knative、および kubernetes です。

4. Create をクリックします。パイプラインを作成すると、Pipeline details ページが表示されま
す。ここでは、Pipeline 情報の表示や編集が可能です。

2.4. WEB コンソールのパイプライン実行に関する統計情報

Web コンソールでパイプラインの実行に関連する統計を表示できます。

統計情報を表示するには、次の手順を完了する必要があります。

Tekton Results をインストールします。Tekton Results のインストールの詳細は、関連情報 セ
クションの OpenShift Pipelines の可観測性のための Tekton Results の使用 を参照してくださ
い。

OpenShift Pipelines コンソールプラグインを有効にします。

統計情報は、すべてのパイプラインをまとめて、または個別のパイプラインごとに利用できます。

重要

OpenShift Pipelines Pipelines コンソールプラグインはテクノロジープレビューのみの機
能です。テクノロジープレビュー機能は、Red Hat 製品のサービスレベルアグリーメン
ト (SLA) の対象外であり、機能的に完全ではないことがあります。Red Hat は、実稼働
環境でこれらを使用することを推奨していません。テクノロジープレビュー機能は、最
新の製品機能をいち早く提供して、開発段階で機能のテストを行い、フィードバックを
提供していただくことを目的としています。

Red Hat のテクノロジープレビュー機能のサポート範囲に関する詳細は、テクノロジー
プレビュー機能のサポート範囲 を参照してください。

関連情報

OpenShift Pipelines の可観測性のために Tekton 結果を使用する

2.4.1. OpenShift Pipelines コンソールプラグインの有効化

統計情報を表示するには、まず OpenShift Pipelines コンソールプラグインを有効にする必要がありま
す。

前提条件

 namespace: openshift 1
 labels:
 pipeline.openshift.io/runtime: <runtime> 2
 pipeline.openshift.io/type: <pipeline-type> 3
...

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

40

https://access.redhat.com/support/offerings/techpreview/
https://docs.redhat.com/en/documentation/red_hat_openshift_pipelines/1.19/html-single/observability_in_openshift_pipelines/#using-tekton-results-for-openshift-pipelines-observability

前提条件

Red Hat OpenShift Pipelines Operator がクラスターにインストールされている。

クラスター管理者のパーミッションで Web コンソールにログインしている。

重要

OpenShift Pipelines コンソールプラグインには、OpenShift Container Platform バー
ジョン 4.15 以降が必要です。

手順

1. Web コンソールの Administrator パースペクティブで、Operators → Installed Operators を
選択します。

2. Operator の表で Red Hat OpenShift Pipelines をクリックします。

3. 画面の右側のペインで、Console plugin の下のステータスラベルを確認します。ラベルは
Enabled または Disabled のいずれかになります。

4. ラベルが Disabled の場合は、このラベルをクリックします。表示されるウィンドウ
で、Enable を選択し、Save をクリックします。

2.4.2. すべてのパイプラインの統計をまとめて表示

システム上のすべてのパイプラインに関連する統合統計情報を表示できます。

前提条件

Red Hat OpenShift Pipelines Operator がクラスターにインストールされている。

OpenShift Pipelines Web コンソールプラグインがインストールされている。

手順

1. Web コンソールの Administrator パースペクティブで、Pipelines → Overview を選択しま
す。
統計の概要が表示されます。この概要には、一定期間におけるパイプライン実行の数とステー
タスを反映するグラフ (同じ期間におけるパイプライン実行の合計、平均、および最大継続時
間、** 同じ期間におけるパイプライン実行の合計数) の情報が含まれます。

パイプラインの表も表示されます。この表には、期間内に実行されたすべてのパイプラインが
リストされ、その期間と成功率が示されます。

2. オプション: 必要に応じて、統計表示の設定を変更します。

Project: 統計を表示するプロジェクトまたは namespace。

Time range: 統計を表示する期間。

Refresh interval: 表示中に Red Hat OpenShift Pipelines がウィンドウのデータを更新する
必要がある頻度。

2.4.3. 特定のパイプラインの統計の表示

第2章 WEB コンソールでの RED HAT OPENSHIFT PIPELINES の使用

41

特定のパイプラインに関連する統計情報を表示できます。

前提条件

Red Hat OpenShift Pipelines Operator がクラスターにインストールされている。

OpenShift Pipelines Web コンソールプラグインがインストールされている。

手順

1. Web コンソールの Administrator パースペクティブで、Pipelines → Pipelines を選択します。

2. Pipeline リストでパイプラインをクリックします。Pipeline details ビューが表示されます。

3. Metrics タブをクリックします。
統計の概要が表示されます。この概要には、一定期間におけるパイプライン実行の数とステー
タスを反映するグラフ (同じ期間におけるパイプライン実行の合計、平均、および最大継続時
間、** 同じ期間におけるパイプライン実行の合計数) の情報が含まれます。

4. オプション: 必要に応じて、統計表示の設定を変更します。

Project: 統計を表示するプロジェクトまたは namespace。

Time range: 統計を表示する期間。

Refresh interval: 表示中に Red Hat OpenShift Pipelines がウィンドウのデータを更新する
必要がある頻度。

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

42

第3章 リゾルバーを使用したリモートパイプライン、タスク、およ
びステップアクションの指定

パイプラインとタスクは、CI/CD プロセスの再利用可能なブロックです。以前に開発したパイプライン
やタスク、または他の人が開発したパイプラインやタスクを、定義をコピーして貼り付けることなく再
利用できます。これらのパイプラインまたはタスクは、クラスター上の他の namespace からパブリッ
クカタログに至るまで、いくつかの種類のソースから利用できます。

パイプライン実行リソースでは、既存のソースからパイプラインを指定できます。パイプラインリソー
スまたはタスク実行リソースでは、既存のソースからタスクを指定できます。

StepAction カスタムリソース (CR) で定義されるステップアクションは、タスク内のステップ 1 つで完
了する再利用可能なアクションです。ステップを指定する場合は、既存のソースから StepAction 定義
を参照できます。

このような場合、Red Hat OpenShift Pipelines の リゾルバー は、実行時に指定されたソースからパイ
プライン、タスク、または StepAction 定義を取得します。

以下のリゾルバーは、Red Hat OpenShift Pipelines のデフォルトのインストールで使用できます。

ハブリゾルバー

Artifact Hub または Tekton Hub で利用可能な Pipelines Catalog からタスク、パイプライン、または
StepAction 定義を取得します。

バンドルリゾルバー

OpenShift コンテナーリポジトリーなどの任意の OCI リポジトリーから入手できる OCI イメージで
ある Tekton バンドルからタスク、パイプライン、または StepAction 定義を取得します。

Git リゾルバー

Git リポジトリーからタスク、パイプライン、または StepAction 定義を取得します。リポジト
リー、ブランチ、パスを指定する必要があります。

HTTP リゾルバー

リモート HTTP または HTTPS の URL からタスク、パイプライン、または StepAction 定義を取得
します。認証の URL を指定する必要があります。

クラスターリゾルバー

特定の namespace の同じ OpenShift Container Platform クラスター上にすでに作成されているタス
ク、パイプライン、または StepAction 定義を取得します。

OpenShift Pipelines のインストールには、パイプラインで使用できる一連の標準タスクが含まれていま
す。これらのタスクは、OpenShift Pipelines インストール namespace (通常は openshift-pipelines
namespace) にあります。クラスターリゾルバーを使用してタスクにアクセスできます。

OpenShift Pipelines は標準の StepAction 定義も提供します。クラスターリゾルバーを使用して、この
定義にアクセスできます。

3.1. TEKTON カタログからのリモートパイプライン、タスク、またはス
テップアクションの指定

ハブリゾルバーを使用して、Artifact Hub のパブリック Tekton カタログまたは Tekton Hub のインスタ
ンスで定義されるリモートパイプライン、タスク、または StepAction 定義を指定できます。

重要

第3章 リゾルバーを使用したリモートパイプライン、タスク、およびステップアクションの指定

43

https://artifacthub.io/

1

2

3

4

5

6

7

重要

Artifact Hub プロジェクトは、Red Hat OpenShift Pipelines ではサポートされていませ
ん。Artifact Hub の設定のみがサポートされます。

3.1.1. ハブリゾルバーの設定

ハブリゾルバーを設定することで、リソースをプルするためのデフォルトのハブとデフォルトのカタロ
グ設定を変更できます。

手順

1. TektonConfig カスタムリソースを編集するには、次のコマンドを入力します。

2. TektonConfig カスタムリソースで、pipeline.hub-resolver-config 仕様を編集します。

リソースをプルするためのデフォルトの Tekton Hub カタログ。

タスクリソースをプルするためのデフォルトの Artifact Hub カタログ。

パイプラインリソースをプルするためのデフォルトの Artifact Hub カタログ。

参照のデフォルトのオブジェクトの種類。

リソースをプルするためのデフォルトのハブ。Artifact Hub の場合は artifact、Tekton
Hub の場合は tekton です。

default-type オプションが tekton に設定されている場合に使用される Tekton Hub API。

オプション: default-type オプションが artifact に設定されている場合に使用される
Artifact Hub API。

重要

$ oc edit TektonConfig config

apiVersion: operator.tekton.dev/v1alpha1
kind: TektonConfig
metadata:
 name: config
spec:
 pipeline:
 hub-resolver-config:
 default-tekton-hub-catalog: Tekton 1
 default-artifact-hub-task-catalog: tekton-catalog-tasks 2
 default-artifact-hub-pipeline-catalog: tekton-catalog-pipelines 3
 defailt-kind: pipeline 4
 default-type: tekton 5
 tekton-hub-api: "https://my-custom-tekton-hub.example.com" 6
 artifact-hub-api: "https://my-custom-artifact-hub.example.com" 7

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

44

重要

default-type オプションを tekton に設定する場合は、tekton-hub-api 値を設定
して Tekton Hub の独自のインスタンスを設定する必要があります。

default-type オプションを artifact に設定すると、リゾルバーはデフォルトで
https://artifacthub.io/ のパブリックハブ API を使用します。artifact-hub-api 値
を設定することで、独自の Artifact Hub API を設定できます。

3.1.2. ハブリゾルバーを使用したリモートパイプライン、タスク、またはステップアク
ションの指定

パイプライン実行を作成するときに、Artifact Hub または Tekton Hub からリモートパイプラインを指
定できます。パイプラインまたはタスク実行を作成するときに、Artifact Hub または Tekton Hub から
リモートタスクを指定できます。タスク内でステップを作成するときに、Artifact Hub または Tekton
Hub からリモート StepAction 定義を参照できます。

手順

Artifact Hub または Tekton Hub からリモートパイプライン、タスク、または StepAction 定義
を指定するには、pipelineRef、taskRef、または step.ref 仕様で次の参照形式を使用します。

表3.1 ハブリゾルバーでサポートされるパラメーター

パラメーター 説明 値の例

catalog リソースを取得するためのカ
タログ。

デフォルト: tekton-catalog-
tasks (task の種類)。tekton-
catalog-pipelines (pipeline
の種類の場合)。

type リソースをプルするカタログ
のタイプ。Artifact Hub の場合
は Artifact、Tekton Hub の場
合は tekton のいずれかです。

デフォルト: artifact

kind task または pipeline のいず
れか。

デフォルト: task

...
 resolver: hub
 params:
 - name: catalog
 value: <catalog>
 - name: type
 value: <catalog_type>
 - name: kind
 value: [pipeline|task]
 - name: name
 value: <resource_name>
 - name: version
 value: <resource_version>
...

第3章 リゾルバーを使用したリモートパイプライン、タスク、およびステップアクションの指定

45

https://artifacthub.io/

name ハブから取得するタスクまた
はパイプラインの名前。

golang-build

version ハブから取得するタスクまた
はパイプラインのバージョ
ン。数値を引用符 (") で囲む必
要があります。

"0.5.0"

パラメーター 説明 値の例

パイプラインまたはタスクに追加のパラメーターが必要な場合は、パイプライン、パイプライ
ン実行、またはタスク実行の仕様の params セクションでこれらのパラメーターの値を指定し
ます。pipelineRef または taskRef 仕様の params セクションには、リゾルバーがサポートす
るパラメーターのみを含める必要があります。

例

次のパイプライン実行の例では、カタログからリモートパイプラインを参照します。

次のパイプラインの例は、カタログからリモートタスクを参照します。

apiVersion: tekton.dev/v1
kind: PipelineRun
metadata:
 name: hub-pipeline-reference-demo
spec:
 pipelineRef:
 resolver: hub
 params:
 - name: catalog
 value: tekton-catalog-pipelines
 - name: type
 value: artifact
 - name: kind
 value: pipeline
 - name: name
 value: example-pipeline
 - name: version
 value: "0.1"
 params:
 - name: sample-pipeline-parameter
 value: test

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: pipeline-with-hub-task-reference-demo
spec:
 tasks:
 - name: "cluster-task-reference-demo"
 taskRef:
 resolver: hub
 params:

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

46

次のタスク実行例では、カタログからリモートタスクを参照します。

次のタスクの例には、カタログから StepAction 定義を参照するステップが含まれています。

 - name: catalog
 value: tekton-catalog-tasks
 - name: type
 value: artifact
 - name: kind
 value: task
 - name: name
 value: example-task
 - name: version
 value: "0.6"
 params:
 - name: sample-task-parameter
 value: test

apiVersion: tekton.dev/v1
kind: TaskRun
metadata:
 name: hub-task-reference-demo
spec:
 taskRef:
 resolver: hub
 params:
 - name: catalog
 value: tekton-catalog-tasks
 - name: type
 value: artifact
 - name: kind
 value: task
 - name: name
 value: example-task
 - name: version
 value: "0.6"
 params:
 - name: sample-task-parameter
 value: test

apiVersion: tekton.dev/v1
kind: Task
metadata:
 name: hub-stepaction-reference-demo
spec:
 steps:
 - name: example-step
 ref:
 - resolver: hub
 - params:
 - name: catalog
 value: tekton-catalog-stepactions
 - name: type
 value: artifact
 - name: kind

第3章 リゾルバーを使用したリモートパイプライン、タスク、およびステップアクションの指定

47

1

2

3.2. TEKTON バンドルからのリモートパイプライン、タスク、またはス
テップアクションの指定

バンドルリゾルバーを使用して、Tekton バンドルからリモートパイプライン、タスク、または
StepAction 定義を指定できます。Tekton バンドルは、OpenShift コンテナーリポジトリーなどの任意
の OCI リポジトリーから利用できる OCI イメージです。

3.2.1. バンドルリゾルバーの設定

バンドルリゾルバーを設定することで、Tekton バンドルからリソースを取得するためのデフォルトの
サービスアカウント名とデフォルトの種類を変更できます。

手順

1. TektonConfig カスタムリソースを編集するには、次のコマンドを入力します。

2. TektonConfig カスタムリソースで、pipeline.bundles-resolver-config 仕様を編集します。

バンドルリクエストに使用するデフォルトのサービスアカウント名。

バンドルイメージのデフォルトレイヤーの種類。

3.2.2. バンドルリゾルバーを使用したリモートパイプライン、タスク、またはステップ
アクションの指定

パイプライン実行を作成するときに、Tekton バンドルからリモートパイプラインを指定できます。パ
イプラインまたはタスク実行を作成するときに、Tekton バンドルからリモートタスクを指定できま
す。タスク内でステップを作成する場合、Tekton バンドルからリモート StepAction 定義を参照できま
す。

手順

 value: StepAction
 - name: name
 value: example-stepaction
 - name: version
 value: "0.6"
 params:
 - name: sample-stepaction-parameter
 value: test

$ oc edit TektonConfig config

apiVersion: operator.tekton.dev/v1alpha1
kind: TektonConfig
metadata:
 name: config
spec:
 pipeline:
 bundles-resolver-config:
 default-service-account: pipelines 1
 default-kind: task 2

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

48

Tekton バンドルからリモートパイプライン、タスク、または StepAction 定義を指定するに
は、pipelineRef、taskRef、または step.ref 仕様で次の参照形式を使用します。

表3.2 バンドルリゾルバーでサポートされているパラメーター

パラメーター 説明 値の例

serviceAccount レジストリー認証情報を作成
するときに使用するサービス
アカウントの名前。

default

bundle 取得するイメージを指すバン
ドル URL。

gcr.io/tekton-
releases/catalog/upstream
/golang-build:0.1

name バンドルから取り出すリソー
スの名前。

golang-build

kind バンドルから取り出すリソー
スの種類。

task

パイプラインまたはタスクに追加のパラメーターが必要な場合は、パイプライン、パイプライ
ン実行、またはタスク実行の仕様の params セクションでこれらのパラメーターの値を指定し
ます。pipelineRef または taskRef 仕様の params セクションには、リゾルバーがサポートす
るパラメーターのみを含める必要があります。

例

次のパイプライン実行の例は、Tekton バンドルからのリモートパイプラインを参照します。

...
 resolver: bundles
 params:
 - name: bundle
 value: <fully_qualified_image_name>
 - name: name
 value: <resource_name>
 - name: kind
 value: [pipeline|task]
...

apiVersion: tekton.dev/v1
kind: PipelineRun
metadata:
 name: bundle-pipeline-reference-demo
spec:
 pipelineRef:
 resolver: bundles
 params:
 - name: bundle
 value: registry.example.com:5000/simple/pipeline:latest
 - name: name
 value: hello-pipeline

第3章 リゾルバーを使用したリモートパイプライン、タスク、およびステップアクションの指定

49

次のパイプラインの例は、Tekton バンドルからのリモートタスクを参照します。

次のタスク実行例では、Tekton バンドルのリモートタスクを参照しています。

次のタスクの例には、Tekton バンドルから StepAction 定義を参照するステップが含まれています。

 - name: kind
 value: pipeline
 params:
 - name: sample-pipeline-parameter
 value: test
 - name: username
 value: "pipelines"

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: pipeline-with-bundle-task-reference-demo
spec:
 tasks:
 - name: "bundle-task-demo"
 taskRef:
 resolver: bundles
 params:
 - name: bundle
 value: registry.example.com:5000/advanced/task:latest
 - name: name
 value: hello-world
 - name: kind
 value: task
 params:
 - name: sample-task-parameter
 value: test

apiVersion: tekton.dev/v1
kind: TaskRun
metadata:
 name: bundle-task-reference-demo
spec:
 taskRef:
 resolver: bundles
 params:
 - name: bundle
 value: registry.example.com:5000/simple/new_task:latest
 - name: name
 value: hello-world
 - name: kind
 value: task
 params:
 - name: sample-task-parameter
 value: test

apiVersion: tekton.dev/v1
kind: Task
metadata:

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

50

1

2

3.3. 匿名 GIT クローンでのリモートパイプライン、タスク、またはステッ
プアクションの指定

Git リゾルバーを使用して、Git リポジトリーからリモートパイプライン、タスク、または StepAction
定義にアクセスできます。リポジトリーには、パイプラインまたはタスクを定義する YAML ファイルが
含まれている必要があります。匿名アクセスの場合、認証情報を必要とせずにリゾルバーを使用してリ
ポジトリーを複製できます。

3.3.1. 匿名 Git クローン作成用の Git リゾルバーの設定

匿名 Git クローン作成を使用する場合は、Git リポジトリーからリモートパイプラインとタスクをプル
するためのデフォルトの Git リビジョン、フェッチタイムアウト、およびデフォルトのリポジトリー
URL を設定できます。

手順

1. TektonConfig カスタムリソースを編集するには、次のコマンドを入力します。

2. TektonConfig カスタムリソースで、pipeline.git-resolver-config 仕様を編集します。

何も指定されていない場合に使用するデフォルトの Git リビジョン。

単一の Git クローン解決にかかる最大時間は、たとえば、1m、2s、700ms です。Red
Hat OpenShift Pipelines は、すべての解決リクエストに対して 1 分のグローバル最大タイ

 name: bundle-stepaction-reference-demo
spec:
 steps:
 - name: example-step
 ref:
 resolver: bundles
 params:
 - name: bundle
 value: registry.example.com:5000/simple/new_task:latest
 - name: name
 value: hello-world-action
 - name: kind
 value: StepAction
 params:
 - name: sample-stepaction-parameter
 value: test

$ oc edit TektonConfig config

apiVersion: operator.tekton.dev/v1alpha1
kind: TektonConfig
metadata:
 name: config
spec:
 pipeline:
 git-resolver-config:
 default-revision: main 1
 fetch-timeout: 1m 2
 default-url: https://github.com/tektoncd/catalog.git 3

第3章 リゾルバーを使用したリモートパイプライン、タスク、およびステップアクションの指定

51

3

Hat OpenShift Pipelines は、すべての解決リクエストに対して 1 分のグローバル最大タイ
ムアウトも適用します。

何も指定されていない場合は、匿名クローン作成用のデフォルトの Git リポジトリー
URL。

3.3.2. 匿名クローン作成に Git リゾルバーを使用したリモートパイプライン、タスク、
またはステップアクションの指定

パイプライン実行を作成するときに、匿名クローンを使用して Git リポジトリーからリモートパイプラ
インを指定できます。パイプラインまたはタスク実行を作成するときに、Git リポジトリーからリモー
トタスクを指定できます。タスク内でステップを作成するときに、Git リポジトリーからリモート
StepAction 定義を参照できます。

手順

Git リポジトリーからリモートパイプライン、タスク、または StepAction 定義を指定するに
は、pipelineRef、taskRef、または step.ref 仕様で次の参照形式を使用します。

表3.3 Git リゾルバーでサポートされているパラメーター

パラメーター 説明 値の例

url 匿名クローン作成を使用する
場合のリポジトリーの URL。

https://github.com/tektonc
d/catalog.git

revision リポジトリー内の Git リビジョ
ン。ブランチ名、タグ名、ま
たはコミット SHA ハッシュを
指定できます。

aeb957601cf41c012be4628
27053a21a420befca
main
v0.38.2

pathInRepo リポジトリー内の YAML ファ
イルのパス名。

task/golang-
build/0.3/golang-
build.yaml

注記

リポジトリーのクローンを作成して匿名で取得するには、url パラメーターを使
用します。url パラメーターと repo パラメーターを同時に指定しないでくださ
い。

パイプラインまたはタスクに追加のパラメーターが必要な場合は、これらのパラメーターを

...
 resolver: git
 params:
 - name: url
 value: <git_repository_url>
 - name: revision
 value: <branch_name>
 - name: pathInRepo
 value: <path_in_repository>
...

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

52

パイプラインまたはタスクに追加のパラメーターが必要な場合は、これらのパラメーターを
params に指定します。

例

次のパイプライン実行の例では、Git リポジトリーからリモートパイプラインを参照します。

次のパイプラインの例では、Git リポジトリーからリモートタスクを参照します。

次のタスク実行例では、Git リポジトリーからリモートタスクを参照します。

apiVersion: tekton.dev/v1beta1
kind: PipelineRun
metadata:
 name: git-pipeline-reference-demo
spec:
 pipelineRef:
 resolver: git
 params:
 - name: url
 value: https://github.com/tektoncd/catalog.git
 - name: revision
 value: main
 - name: pathInRepo
 value: pipeline/simple/0.1/simple.yaml
 params:
 - name: name
 value: "testPipelineRun"
 - name: sample-pipeline-parameter
 value: test

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: pipeline-with-git-task-reference-demo
spec:
 tasks:
 - name: "git-task-reference-demo"
 taskRef:
 resolver: git
 params:
 - name: url
 value: https://github.com/tektoncd/catalog.git
 - name: revision
 value: main
 - name: pathInRepo
 value: task/git-clone/0.6/git-clone.yaml
 params:
 - name: sample-task-parameter
 value: test

apiVersion: tekton.dev/v1beta1
kind: TaskRun
metadata:
 name: git-task-reference-demo

第3章 リゾルバーを使用したリモートパイプライン、タスク、およびステップアクションの指定

53

以下のタスク例には、Git リポジトリーから StepAction 定義を参照するステップが含まれています。

3.4. 認証された GIT API でのリモートパイプライン、タスク、またはステッ
プアクションの指定

Git リゾルバーを使用して、Git リポジトリーからリモートパイプライン、タスク、または StepAction
定義を指定できます。リポジトリーには、パイプラインまたはタスクを定義する YAML ファイルが含ま
れている必要があります。ユーザー認証をサポートする認証済み API を使用すると、リポジトリーに安
全にアクセスできます。

3.4.1. 認証された API の Git リゾルバーの設定

認証されたソースコントロール管理 (SCM) API の場合は、認証された Git 接続の設定を指定する必要が
あります。

go-scm ライブラリーでサポートされている Git リポジトリープロバイダーを使用できます。すべての
go-scm 実装が Git リゾルバーでテストされているわけではありませんが、次のプロバイダーが動作す
ることが確認されています。

github.com および GitHub Enterprise

spec:
 taskRef:
 resolver: git
 params:
 - name: url
 value: https://github.com/tektoncd/catalog.git
 - name: revision
 value: main
 - name: pathInRepo
 value: task/git-clone/0.6/git-clone.yaml
 params:
 - name: sample-task-parameter
 value: test

apiVersion: tekton.dev/v1
kind: Task
metadata:
 name: git-stepaction-reference-demo
spec:
 steps:
 - name: example-step
 ref:
 resolver: git
 - name: url
 value: https://github.com/openshift-pipelines/tektoncd-catalog.git
 - name: revision
 value: p
 - name: pathInRepo
 value: stepactions/stepaction-git-clone/0.4.1/stepaction-git-clone.yaml
 params:
 - name: sample-stepaction-parameter
 value: test

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

54

1

2

3

4

5

gitlab.com およびセルフホスト Gitlab

Gitea

Bitbucket データセンター

Bitbucket Cloud

注記

認証された SCM API を使用して Git 接続を設定できます。クラスター上のすべ
てのユーザーが 1 つのリポジトリーにアクセスできるようにセキュリティートー
クンを提供できます。さらに、特定のパイプラインまたはタスクに対して異なる
SCM プロバイダーとトークンを指定することもできます。

認証された SCM API を使用するように Git リゾルバーを設定すると、匿名の Git
クローン参照を使用してパイプラインとタスクを取得することもできます。

手順

1. TektonConfig カスタムリソースを編集するには、次のコマンドを入力します。

2. TektonConfig カスタムリソースで、pipeline.git-resolver-config 仕様を編集します。

何も指定されていない場合に使用するデフォルトの Git リビジョン。

単一の Git クローン解決にかかる最大時間は、たとえば、1m、2s、700ms です。Red
Hat OpenShift Pipelines は、すべての解決リクエストに対して 1 分のグローバル最大タイ
ムアウトも適用します。

SCM プロバイダーのタイプ。

認証された SCM API で使用するベース URL。github.com、gitlab.com、または
Bitbucket Cloud を使用している場合、この設定は必要ありません。

SCM プロバイダー API トークンを含むシークレットの名前。

$ oc edit TektonConfig config

apiVersion: operator.tekton.dev/v1alpha1
kind: TektonConfig
metadata:
 name: config
spec:
 pipeline:
 git-resolver-config:
 default-revision: main 1
 fetch-timeout: 1m 2
 scm-type: github 3
 server-url: api.internal-github.com 4
 api-token-secret-name: github-auth-secret 5
 api-token-secret-key: github-auth-key 6
 api-token-secret-namespace: github-auth-namespace 7
 default-org: tektoncd 8

第3章 リゾルバーを使用したリモートパイプライン、タスク、およびステップアクションの指定

55

6

7

8

トークンを含むトークンシークレット内のキー。

トークンシークレットを含む namespace (default でない場合)。

オプション: 認証された API を使用する場合のリポジトリーのデフォルトの組織。この組
織は、リゾルバーパラメーターで組織を指定しない場合に使用されます。

注記

認証された SCM API を使用するには、scm-type、api-token-secret-name、および
api-token-secret-key 設定が必要です。

3.4.2. 複数の Git プロバイダーの設定

複数の Git プロバイダーを設定するか、同じ Git プロバイダーに複数の設定を追加して、異なるタスク
実行とパイプライン実行で使用できます。

一意の識別子鍵の接頭辞を使用して、TektonConfig カスタムリソース (CR) に詳細を追加します。

手順

1. 次のコマンドを実行して、TektonConfig CR を編集します。

2. TektonConfig CR で、pipeline.git-resolver-config 仕様を編集します。

$ oc edit TektonConfig config

apiVersion: operator.tekton.dev/v1alpha1
kind: TektonConfig
metadata:
 name: config
spec:
...
 pipeline:
 git-resolver-config:
 # configuration 1 1
 fetch-timeout: "1m"
 default-url: "https://github.com/tektoncd/catalog.git"
 default-revision: "main"
 scm-type: "github"
 server-url: ""
 api-token-secret-name: ""
 api-token-secret-key: ""
 api-token-secret-namespace: "default"
 default-org: ""
 # configuration 2 2
 test1.fetch-timeout: "5m"
 test1.default-url: ""
 test1.default-revision: "stable"
 test1.scm-type: "github"
 test1.server-url: "api.internal-github.com"
 test1.api-token-secret-name: "test1-secret"
 test1.api-token-secret-key: "token"
 test1.api-token-secret-namespace: "test1"

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

56

1

2

3

configKey 鍵が提供されない場合、またはキーが default 値で提供されている場合に使用
するデフォルトの設定。

configKey 鍵が test1 値で渡される場合に使用される設定。

configKey 鍵が test2 値で渡される場合に使用される設定。

警告

. 記号が付いた configKey 値はサポートされません。. シンボルを含む
configKey 値を渡そうとすると、値を渡した TaskRun または
PipelineRun リソースの実行に失敗します。

3.4.3. 認証された SCM API で Git リゾルバーを使用したリモートパイプライン、タス
ク、またはステップアクションの指定

パイプライン実行を作成するときに、認証された SCM API を使用して Git リポジトリーからリモート
パイプラインを指定できます。パイプラインまたはタスク実行を作成するときに、Git リポジトリーか
らリモートタスクを指定できます。タスク内でステップを作成するときに、Git リポジトリーからリ
モート StepAction 定義を参照できます。

前提条件

認証された SCM API を使用する場合は、Git リゾルバーに対して認証された Git 接続を設定す
る必要があります。

手順

Git リポジトリーからリモートパイプライン、タスク、または StepAction 定義を指定するに
は、pipelineRef、taskRef、または step.ref 仕様で次の参照形式を使用します。

 test1.default-org: "tektoncd"
 # configuration 3 3
 test2.fetch-timeout: "10m"
 test2.default-url: ""
 test2.default-revision: "stable"
 test2.scm-type: "gitlab"
 test2.server-url: "api.internal-gitlab.com"
 test2.api-token-secret-name: "test2-secret"
 test2.api-token-secret-key: "pat"
 test2.api-token-secret-namespace: "test2"
 test2.default-org: "tektoncd-infra"
...



...
 resolver: git
 params:
 - name: org
 value: <git_organization_name>

第3章 リゾルバーを使用したリモートパイプライン、タスク、およびステップアクションの指定

57

表3.4 Git リゾルバーでサポートされているパラメーター

パラメーター 説明 値の例

org 認証された SCM API を使用す
る場合のリポジトリーの組
織。

tektoncd

repo 認証された SCM API を使用す
る場合のリポジトリー名。

test-infra

revision リポジトリー内の Git リビジョ
ン。ブランチ名、タグ名、ま
たはコミット SHA ハッシュを
指定できます。

aeb957601cf41c012be4628
27053a21a420befca
main
v0.38.2

pathInRepo リポジトリー内の YAML ファ
イルのパス名。

task/golang-
build/0.3/golang-
build.yaml

注記

リポジトリーのクローンを作成して匿名で取得するには、url パラメーターを使
用します。認証された SCM API を使用するには、repo パラメーターを使用しま
す。url パラメーターと repo パラメーターを同時に指定しないでください。

パイプラインまたはタスクに追加のパラメーターが必要な場合は、パイプライン、パイプライ
ン実行、またはタスク実行の仕様の params セクションでこれらのパラメーターの値を指定し
ます。pipelineRef または taskRef 仕様の params セクションには、リゾルバーがサポートす
るパラメーターのみを含める必要があります。

例

次のパイプライン実行の例では、Git リポジトリーからリモートパイプラインを参照します。

 - name: repo
 value: <git_repository_name>
 - name: revision
 value: <branch_name>
 - name: pathInRepo
 value: <path_in_repository>
...

apiVersion: tekton.dev/v1
kind: PipelineRun
metadata:
 name: git-pipeline-reference-demo
spec:
 pipelineRef:
 resolver: git
 params:
 - name: org
 value: tektoncd

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

58

次のパイプラインの例では、Git リポジトリーからリモートタスクを参照します。

次のタスク実行例では、Git リポジトリーからリモートタスクを参照します。

 - name: repo
 value: catalog
 - name: revision
 value: main
 - name: pathInRepo
 value: pipeline/simple/0.1/simple.yaml
 params:
 - name: name
 value: "testPipelineRun"
 - name: sample-pipeline-parameter
 value: test

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: pipeline-with-git-task-reference-demo
spec:
 tasks:
 - name: "git-task-reference-demo"
 taskRef:
 resolver: git
 params:
 - name: org
 value: tektoncd
 - name: repo
 value: catalog
 - name: revision
 value: main
 - name: pathInRepo
 value: task/git-clone/0.6/git-clone.yaml
 params:
 - name: sample-task-parameter
 value: test

apiVersion: tekton.dev/v1
kind: TaskRun
metadata:
 name: git-task-reference-demo
spec:
 taskRef:
 resolver: git
 params:
 - name: org
 value: tektoncd
 - name: repo
 value: catalog
 - name: revision
 value: main
 - name: pathInRepo
 value: task/git-clone/0.6/git-clone.yaml

第3章 リゾルバーを使用したリモートパイプライン、タスク、およびステップアクションの指定

59

以下のタスク例には、Git リポジトリーから StepAction 定義を参照するステップが含まれています。

3.4.4. 複数の Git プロバイダーの指定

TaskRun および PipelineRun リソースを作成するときに、一意の configKey パラメーターを渡すこと
で、複数の Git プロバイダーを指定できます。

configKey パラメーターが渡されない場合、デフォルト設定が使用されます。configKey の値を
default に設定して、デフォルト設定を指定することもできます。

警告

. 記号が付いた configKey 値はサポートされません。. シンボルを含む configKey
値を渡そうとすると、値を渡した TaskRun または PipelineRun リソースの実行に
失敗します。

前提条件

Tektonconfig カスタムリソースを使用して複数の Git プロバイダーを設定します。詳細は、
「複数の Git プロバイダーの設定」を参照してください。

手順

Git プロバイダーを指定するには、pipelineRef および taskRef 仕様で以下の参照形式を使用し
ます。

 params:
 - name: sample-task-parameter
 value: test

apiVersion: tekton.dev/v1
kind: Task
metadata:
 name: git-stepaction-reference-demo
spec:
 steps:
 - name: example-step
 ref:
 resolver: git
 - name: org
 value: openshift-pipelines
 - name: repo
 value: tektoncd-catalog
 - name: revision
 value: p
 - name: pathInRepo
 value: stepactions/stepaction-git-clone/0.4.1/stepaction-git-clone.yaml
 params:
 - name: sample-stepaction-parameter
 value: test



Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

60

1 設定キーのいずれかに一致する一意のキー (例: test1）。

3.4.5. Git リゾルバーの設定を上書きする認証済み SCM API を使用した Git リゾルバー
でのリモートパイプラインまたはタスクの指定

特定のパイプライン実行またはタスクの初期設定をオーバーライドして、さまざまなユースケースに応
じて動作をカスタマイズできます。この方法を使用して、TektonConfig カスタムリソース (CR) で設
定されていない認証済みプロバイダーにアクセスできます。

次のタスク実行例では、以前のリゾルバー設定をオーバーライドする Git リポジトリーからのリモート
タスクを参照します。

表3.5 Git リゾルバーをオーバーライドするためのサポート対象のパラメーター

パラメーター 説明 値の例

org リポジトリーの組織。 tektoncd

repo リポジトリー名。 catalog

...
 resolver: git
 params:
 # ...
 - name: configKey
 value: <your_unique_key> 1
...

apiVersion: tekton.dev/v1beta1
kind: TaskRun
metadata:
 name: git-task-reference-demo
spec:
 taskRef:
 resolver: git
 params:
 - name: org
 value: tektoncd
 - name: repo
 value: catalog
 - name: revision
 value: main
 - name: pathInRepo
 value: task/git-clone/0.6/git-clone.yaml
 - name: token
 value: my-secret-token
 - name: tokenKey
 value: token
 - name: scmType
 value: github
 - name: serverURL
 value: https://ghe.mycompany.com

第3章 リゾルバーを使用したリモートパイプライン、タスク、およびステップアクションの指定

61

revision リポジトリー内の Git リビジョ
ン。ブランチ名、タグ名、または
コミット SHA ハッシュを指定で
きます。

main

pathInRepo リポジトリー内の YAML ファイル
のパス名。

task/git-clone/0.6/git-clone.yaml

トークン (token) 認証に使用されるシークレット
名。

my-secret-token

tokenKey トークンのキー名。 トークン (token)

scmType SCM (ソースコントロール管理)
システムのタイプ。

github

serverURL リポジトリーをホストしている
サーバーの URL。

https://ghe.mycompany.com

パラメーター 説明 値の例

3.5. HTTP リゾルバーを使用したリモートパイプライン、タスク、またはス
テップアクションの指定

HTTP リゾルバーを使用して、HTTP または HTTPS URL からリモートパイプライン、タスク、または
StepAction 定義を指定できます。URL は、パイプライン、タスク、またはステップアクションを定義
する YAML ファイルを参照する必要があります。

3.5.1. HTTP リゾルバーの設定

HTTP リゾルバーを使用して、HTTP または HTTPS URL からパイプラインまたはタスクを取得できま
す。TektonConfig カスタムリソース (CR) を編集して、HTTP リゾルバーのデフォルト値を設定できま
す。

手順

1. 次のコマンドを入力して、TektonConfig CR を編集します。

2. TektonConfig CR で、pipeline.http-resolver-config 仕様を編集します。

$ oc edit TektonConfig config

apiVersion: operator.tekton.dev/v1alpha1
kind: TektonConfig
metadata:
 name: config
spec:
 pipeline:
 http-resolver-config:
 fetch-timeout: "1m" 1

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

62

1 HTTP リゾルバーがサーバーからの応答を待機する最大時間。

3.5.2. HTTP Resolver でのリモートパイプライン、タスク、またはステップアクション
の指定

パイプライン実行を作成するときに、HTTP または HTTPS URL からリモートパイプラインを指定でき
ます。パイプラインまたはタスク実行を作成するときに、HTTP または HTTPS URL からリモートタス
クを指定できます。タスク内でステップを作成する場合、HTTP または HTTPS URL からリモート
StepAction 定義を参照できます。

手順

pipelineRef、taskRef、または step.ref 仕様で次の形式を使用して、HTTP または HTTPS
URL からリモートパイプライン、タスク、または StepAction 定義を指定します。

表3.6 HTTP リゾルバーでサポートされているパラメーター

パラメーター 説明 値の例

url 取得する Tekton リソースを指
す HTTP URL。

https://raw.githubusercont
ent.com/openshift-
pipelines/tektoncd-
catalog/p/tasks/task-git-
clone/0.4.1/task-git-
clone.yaml

例

次のパイプライン実行の例は、同じクラスターからのリモートパイプラインを参照します。

...
 resolver: http
 params:
 - name: url
 value: <fully_qualified_http_url>
...

apiVersion: tekton.dev/v1beta1
kind: PipelineRun
metadata:
 name: http-pipeline-reference-demo
spec:
 pipelineRef:
 resolver: http
 params:
 - name: url
 value: https://raw.githubusercontent.com/tektoncd/catalog/main/pipeline/build-push-gke-
deploy/0.1/build-push-gke-deploy.yaml
 params:
 - name: sample-pipeline-parameter
 value: test
 - name: username
 value: "pipelines"

第3章 リゾルバーを使用したリモートパイプライン、タスク、およびステップアクションの指定

63

次のパイプラインの例では、HTTPS URL からリモートタスクを参照するタスクを定義します。

次のタスク実行例では、HTTPS URL からリモートタスクを参照します。

次のタスクの例には、HTTPS URL から StepAction 定義を参照するステップが含まれています。

apiVersion: tekton.dev/v1beta1
kind: Pipeline
metadata:
 name: pipeline-with-http-task-reference-demo
spec:
 tasks:
 - name: "http-task-demo"
 taskRef:
 resolver: http
 params:
 - name: url
 value: https://raw.githubusercontent.com/openshift-pipelines/tektoncd-catalog/p/tasks/task-git-
clone/0.4.1/task-git-clone.yaml
 params:
 - name: sample-task-parameter
 value: test

apiVersion: tekton.dev/v1beta1
kind: TaskRun
metadata:
 name: http-task-reference-demo
spec:
 taskRef:
 resolver: http
 params:
 - name: url
 value: https://raw.githubusercontent.com/openshift-pipelines/tektoncd-catalog/p/tasks/task-git-
clone/0.4.1/task-git-clone.yaml
 params:
 - name: sample-task-parameter
 value: test

apiVersion: tekton.dev/v1
kind: Task
metadata:
 name: http-stepaction-reference-demo
spec:
 steps:
 - name: example-step
 ref:
 resolver: http
 params:
 - name: url
 value: https://raw.githubusercontent.com/openshift-pipelines/tektoncd-
catalog/p/stepactions/stepaction-git-clone/0.4.1/stepaction-git-clone.yaml
 params:
 - name: sample-stepaction-parameter
 value: test

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

64

1

2

3

4

3.6. 同じクラスターからのパイプライン、タスク、またはステップアクショ
ンの指定

クラスターリゾルバーを使用して、Red Hat OpenShift Pipelines が実行されている OpenShift
Container Platform クラスターの namespace で定義されるパイプライン、タスク、または StepAction
定義を指定できます。

特に、クラスターリゾルバーを使用して、OpenShift Pipelines がインストール namespace (通常は
openshift-pipelines namespace) で提供するタスクにアクセスできます。

3.6.1. クラスターリゾルバーの設定

クラスターリゾルバーのデフォルトの種類と namespace を変更したり、クラスターリゾルバーが使用
できる namespace を制限したりできます。

手順

1. TektonConfig カスタムリソースを編集するには、次のコマンドを入力します。

2. TektonConfig カスタムリソースで、pipeline.cluster-resolver-config 仕様を編集します。

パラメーターで指定されていない場合は、フェッチするデフォルトのリソースの種類。

パラメーターで指定されていない場合は、リソースを取得するためのデフォルトの
namespace。

リゾルバーがアクセスを許可される namespace のコンマ区切りのリスト。このキーが定
義されていない場合は、すべての namespace が許可されます。

リゾルバーのアクセスがブロックされる namespace のオプションのコンマ区切りのリス
ト。このキーが定義されていない場合は、すべての namespace が許可されます。

3.6.2. クラスターリゾルバーを使用した同じクラスターからのパイプライン、タスク、
またはステップアクションの指定

パイプライン実行を作成するときに、同じクラスター上に存在するパイプラインを指定できます。パイ
プラインまたはタスク実行を作成するときに、同じクラスター上に存在するタスクを指定できます。タ
スク内でステップを作成する場合は、同じクラスターに存在する StepAction 定義を指定できます。

$ oc edit TektonConfig config

apiVersion: operator.tekton.dev/v1alpha1
kind: TektonConfig
metadata:
 name: config
spec:
 pipeline:
 cluster-resolver-config:
 default-kind: pipeline 1
 default-namespace: namespace1 2
 allowed-namespaces: namespace1, namespace2 3
 blocked-namespaces: namespace3, namespace4 4

第3章 リゾルバーを使用したリモートパイプライン、タスク、およびステップアクションの指定

65

手順

同じクラスターからパイプライン、タスク、または StepAction 定義を指定するに
は、pipelineRef、taskRef、または step.ref 仕様で以下の参照形式を使用します。

表3.7 クラスターリゾルバーでサポートされているパラメーター

パラメーター 説明 値の例

name 取得するリソースの名前。 some-pipeline

namespace リソースを含むクラスター内
の namespace。

other-namespace

kind 取得するリソースの種類。 pipeline

パイプラインまたはタスクに追加のパラメーターが必要な場合は、これらのパラメーターを
params に指定します。

例

次のパイプライン実行の例は、同じクラスターからのパイプラインを参照します。

次のパイプラインの例は、同じクラスターのタスクを参照します。

...
 resolver: cluster
 params:
 - name: name
 value: <name>
 - name: namespace
 value: <namespace>
 - name: kind
 value: [pipeline|task|stepaction]
...

apiVersion: tekton.dev/v1
kind: PipelineRun
metadata:
 name: cluster-pipeline-reference-demo
spec:
 pipelineRef:
 resolver: cluster
 params:
 - name: name
 value: some-pipeline
 - name: namespace
 value: test-namespace
 - name: kind
 value: pipeline
 params:
 - name: sample-pipeline-parameter
 value: test

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

66

次のタスク実行例では、同じクラスターのタスクを参照しています。

次のタスクの例には、同じクラスターから StepAction 定義を参照するステップが含まれています。

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: pipeline-with-cluster-task-reference-demo
spec:
 tasks:
 - name: "cluster-task-reference-demo"
 taskRef:
 resolver: cluster
 params:
 - name: name
 value: some-task
 - name: namespace
 value: test-namespace
 - name: kind
 value: task
 params:
 - name: sample-task-parameter
 value: test

apiVersion: tekton.dev/v1
kind: TaskRun
metadata:
 name: cluster-task-reference-demo
spec:
 taskRef:
 resolver: cluster
 params:
 - name: name
 value: some-task
 - name: namespace
 value: test-namespace
 - name: kind
 value: task
 params:
 - name: sample-task-parameter
 value: test

apiVersion: tekton.dev/v1
kind: Task
metadata:
 name: cluster-stepaction-reference-demo
spec:
 steps:
 - name: example-step
 ref:
 resolver: cluster
 params:
 - name: name
 value: some-step
 - name: namespace

第3章 リゾルバーを使用したリモートパイプライン、タスク、およびステップアクションの指定

67

3.7. OPENSHIFT PIPELINES NAMESPACE で提供されるタスク

OpenShift Pipelines のインストールには、パイプラインで使用できる一連の標準タスクが含まれていま
す。これらのタスクは、OpenShift Pipelines インストール namespace (通常は openshift-pipelines
namespace) にあります。クラスターリゾルバーを使用してタスクにアクセスできます。

バージョン 1.16 まで、OpenShift Pipelines には ClusterTask 機能が含まれていました。バージョン 1.17
以降にはこの機能が含まれなくなりました。パイプラインが ClusterTask 参照を使用する場合、クラス
ターリゾルバーを使用して、OpenShift Pipelines インストール namespace で利用可能なタスクでそれ
らを再作成できます。ただし、既存の ClusterTask 定義と比較して、これらのタスクに特定の変更が加
えられています。

OpenShift Pipelines インストール namespace で利用可能なタスクのいずれかでカスタム実行イメージ
を指定することはできません。これらのタスクは、BUILDER_IMAGE、gitInitImage、KN_IMAGE な
どのパラメーターをサポートしません。カスタム実行イメージを使用する場合は、タスクのコピーを作
成し、そのコピーを編集してイメージを置き換えます。

buildah
buildah タスクは、ソースコードツリーをコンテナーイメージにビルドし、そのイメージをコンテナー
レジストリーにプッシュします。

buildah タスクの使用例

 value: test-namespace
 - name: kind
 value: stepaction
 params:
 - name: sample-stepaction-parameter
 value: test

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: build-and-deploy
spec:
...
 tasks:
...
 - name: build-image
 taskRef:
 resolver: cluster
 params:
 - name: kind
 value: task
 - name: name
 value: buildah
 - name: namespace
 value: openshift-pipelines
 params:
 - name: IMAGE
 value: $(params.IMAGE)
 workspaces:
 - name: source
 workspace: shared-workspace
...

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

68

表3.8 buildah タスクでサポートされているパラメーター

パラメーター 説明 型 デフォルト値

IMAGE Buildah によってビルドされる完全修飾コ
ンテナーイメージ名。

string

DOCKERFILE source ワークスペースを基準とした
Dockerfile (または Containerfile) への
パス。

string ./Dockerfile

CONTEXT コンテキストとして使用するディレクト
リーへのパス。

string .

STORAGE_DRI
VER

Buildah ストレージドライバーを設定し
て、現在のクラスターノード設定を反映
します。

string vfs

FORMAT ビルドするコンテナーの形式。oci また
は docker のいずれかです。

string oci

BUILD_EXTRA_
ARGS

イメージをビルドするときの build コマ
ンドの追加パラメーター。

string

PUSH_EXTRA_
ARGS

イメージをプッシュするときの push コ
マンドの追加パラメーター。

string

SKIP_PUSH コンテナーレジストリーへのイメージの
プッシュをスキップします。

string false

TLS_VERIFY TLS 検証フラグ。通常は true です。 string true

VERBOSE 詳細なロギングをオンにすると、実行さ
れたすべてのコマンドがログに追加され
ます。

string false

表3.9 buildah タスクでサポートされているワークスペース

ワークスペース 説明

source コンテナービルドコンテキスト。通常、Dockerfile または Containerfile ファ
イルが含まれるアプリケーションのソースコードです。

dockerconfig Buildah がコンテナーレジストリーへのアクセスに使用する
.docker/config.json ファイルを提供するためのオプションワークスペース。
ファイルを config.json または .dockerconfigjson という名前のワークスペー
スの root に配置します。

第3章 リゾルバーを使用したリモートパイプライン、タスク、およびステップアクションの指定

69

rhel-entitlement Buildah が Red Hat Enterprise Linux (RHEL) サブスクリプションへのアクセスに
使用するエンタイトルメントキーを提供するためのオプションのワークスペー
ス。マウントされたワークスペースには、entitlement.pem ファイルと
entitlement-key.pem ファイルが含まれている必要があります。

ワークスペース 説明

表3.10 buildah タスクが返す結果

結果 型 説明

IMAGE_URL string ビルドされたイメージの完全修飾名。

IMAGE_DIGEST string ビルドされたイメージのダイジェスト。

buildah ClusterTaskからの変更点

VERBOSE パラメーターが追加されました。

BUILDER_IMAGE パラメーターが削除されました。

git-cli
git-cli タスクは、git コマンドラインユーティリティーを実行します。GIT_SCRIPT パラメーターを使
用して、完全な Git コマンドまたは複数のコマンドを渡すことができます。たとえば、プッシュを完了
するためにコマンドが Git リポジトリーへの認証を必要とする場合は、認証のクレデンシャルを指定す
る必要があります。

git-cli タスクの使用例

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: update-repo
spec:
...
 tasks:
...
 - name: push-to-repo
 taskRef:
 resolver: cluster
 params:
 - name: kind
 value: task
 - name: name
 value: git-cli
 - name: namespace
 value: openshift-pipelines
 params:
 - name: GIT_SCRIPT

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

70

1 この例では、ssh-workspace には、Git リポジトリーへの認可に有効なキーを含む .ssh ディレク
トリーの内容が含まれている必要があります。

表3.11 git-cli タスクでサポートされているパラメーター

パラメーター 説明 型 デフォルト値

CRT_FILENAME ssl-ca-directory ワークスペース内の認
証局 (CA) のバンドルファイル名。

string ca-bundle.crt

HTTP_PROXY HTTP プロキシーサーバー (TLS 以外のリ
クエスト)。

string

HTTPS_PROXY HTTPS プロキシーサーバー (TLS リクエ
スト)。

string

NO_PROXY HTTP/HTTPS リクエストのプロキシーを
オプトアウトします。

string

SUBDIRECTOR
Y

Git リポジトリーが存在する source ワー
クスペースへの相対パス。

string

USER_HOME Pod 内の Git ユーザーのホームディレク
トリーへの絶対パス。

string /home/git

DELETE_EXISTI
NG

Git 操作を完了する前に、source ワーク
スペースの既存のコンテンツをすべて消
去します。

string true

VERBOSE 実行したすべてのコマンドをログに記録
します。

string false

SSL_VERIFY グローバル http.sslVerify 値。リモート
リポジトリーを信頼していない限
り、false を使用しないでください。

string true

GIT_USER_NA
ME

Git 操作を実行するための Git ユーザー
名。

string

 value: "git push"
 - name: GIT_USER_NAME
 value: "Example Developer"
 - name: GIT_USER_EMAIL
 value: "developer@example.com"
 workspaces:
 - name: ssh-directory
 workspace: ssh-workspace 1
 - name: source
 workspace: shared-workspace
...

第3章 リゾルバーを使用したリモートパイプライン、タスク、およびステップアクションの指定

71

GIT_USER_EMA
IL

Git 操作を実行するための Git ユーザーの
メール。

string

GIT_SCRIPT 実行する Git スクリプト。 string git help

パラメーター 説明 型 デフォルト値

表3.12 git-cli タスクでサポートされているワークスペース

ワークスペース 説明

ssh-directory 必要に応じて、秘密鍵、known_hosts、config などのファイルを含む .ssh
ディレクトリー。このワークスペースを指定すると、タスクは Git リポジトリー
への認証にこのワークスペースを使用します。認証情報を安全に保存するため
に、このワークスペースを Secret リソースにバインドします。

basic-auth .gitconfig および .git-credentials ファイルが含まれるワークスペース。この
ワークスペースを指定すると、タスクは Git リポジトリーへの認証にこのワーク
スペースを使用します。可能な場合は、認証に basic-auth ではなく ssh-
directory ワークスペースを使用します。認証情報を安全に保存するために、こ
のワークスペースを Secret リソースにバインドします。

ssl-ca-directory CA 証明書を含むワークスペース。このワークスペースを指定すると、Git は
HTTPS を使用してリモートリポジトリーとやり取りする場合に、これらの証明書
を使用してピアを検証します。

source 取得した Git リポジトリーを含むワークスペース。

input Git リポジトリーに追加する必要があるファイルが含まれるオプションのワーク
スペース。$(workspaces.input.path) を使用して、スクリプトからワークス
ペースにアクセスできます。以下に例を示します。

cp $(workspaces.input.path)/<file_that_i_want> .
git add <file_that_i_want>

表3.13 git-cli タスクが返す結果

結果 型 説明

COMMIT string クローンされた Git リポジトリー内の現在のブラン
チの HEAD にあるコミットの SHA ダイジェスト。

git-cli ClusterTask からの変更点

新しいパラメーターが複数追加されました。

BASE_IMAGE パラメーターが削除されました。

ssl-ca-directory ワークスペースが追加されました。

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

72

USER_HOME および VERBOSE パラメーターのデフォルト値が変更されました。

結果の名前が commit から COMMIT に変更されました。

git-clone
git-clone タスクは、Git を使用してワークスペース上のリモートリポジトリーを初期化し、クローンを
作成します。このタスクは、このソースコードをビルドまたは処理するパイプラインの開始時に使用で
きます。

git-clone タスクの使用例

表3.14 git-clone タスクでサポートされているパラメーター

パラメーター 説明 型 デフォルト値

CRT_FILENAME ssl-ca-directory ワークスペース内の認
証局 (CA) のバンドルファイル名。

string ca-bundle.crt

HTTP_PROXY HTTP プロキシーサーバー (TLS 以外のリ
クエスト)。

string

HTTPS_PROXY HTTPS プロキシーサーバー (TLS リクエ
スト)。

string

NO_PROXY HTTP/HTTPS リクエストのプロキシーを
オプトアウトします。

string

SUBDIRECTOR
Y

タスクが Git リポジトリーを配置する
output ワークスペース内の相対パス。

string

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: build-source
spec:
...
 tasks:
 - name: clone-repo
 taskRef:
 resolver: cluster
 params:
 - name: kind
 value: task
 - name: name
 value: git-clone
 - name: namespace
 value: openshift-pipelines
 params:
 - name: URL
 value: "https://github.com/example/repo.git"
 workspaces:
 - name: output
 workspace: shared-workspace

第3章 リゾルバーを使用したリモートパイプライン、タスク、およびステップアクションの指定

73

USER_HOME Pod 内の Git ユーザーのホームディレク
トリーへの絶対パス。

string /home/git

DELETE_EXISTI
NG

Git 操作を実行する前に、デフォルトの
ワークスペースにコンテンツが存在する
場合は削除します。

string true

VERBOSE 実行したコマンドをログに記録します。 string false

SSL_VERIFY グローバル http.sslVerify 値。リモート
リポジトリーを信頼していない限り、こ
のパラメーターを false に設定しないで
ください。

string true

URL Git リポジトリー URL string

リビジョン チェックアウトするリビジョン (ブランチ
やタグなど)。

string main

REFSPEC リビジョンをチェックアウトする前にタ
スクが取得するリポジトリーの refspec
文字列。

string

SUBMODULES Git サブモジュールを初期化して取得しま
す。

string true

DEPTH 取得するコミットの数。"シャロークロー
ン" は単一のコミットです。

string 1

SPARSE_CHEC
KOUT_DIRECT
ORIES

"スパースチェックアウト" を実行するた
めの、コンマで区切られたディレクト
リーパターンのリスト。

string

パラメーター 説明 型 デフォルト値

表3.15 git-clone タスクでサポートされているワークスペース

ワークスペース 説明

ssh-directory 必要に応じて、秘密鍵、known_hosts、config などのファイルを含む .ssh
ディレクトリー。このワークスペースを指定すると、タスクは Git リポジトリー
への認証にこのワークスペースを使用します。認証情報を安全に保存するため
に、このワークスペースを Secret リソースにバインドします。

basic-auth .gitconfig および .git-credentials ファイルが含まれるワークスペース。この
ワークスペースを指定すると、タスクは Git リポジトリーへの認証にこのワーク
スペースを使用します。可能な場合は、認証に basic-auth ではなく ssh-
directory ワークスペースを使用します。認証情報を安全に保存するために、こ
のワークスペースを Secret リソースにバインドします。

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

74

ssl-ca-directory CA 証明書を含むワークスペース。このワークスペースを指定すると、Git は
HTTPS を使用してリモートリポジトリーとやり取りする場合に、これらの証明書
を使用してピアを検証します。

出力 (output) 取得した Git リポジトリーを含むワークスペース。データはワークスペースの
ルートまたは SUBDIRECTORY パラメーターで定義された相対パスに配置され
ます。

ワークスペース 説明

表3.16 git-clone タスクが返す結果

結果 型 説明

COMMIT string クローンされた Git リポジトリー内の現在のブラン
チの HEAD にあるコミットの SHA ダイジェスト。

URL string クローンされたリポジトリーの URL。

COMMITTER_DATE string クローンされた Git リポジトリー内の現在のブラン
チの HEAD にあるコミットのエポックタイムスタン
プ。

git-clone ClusterTask からの変更点

すべてのパラメーター名が大文字に変更されました。

すべての結果名が大文字に変更されました。

gitInitImage パラメーターが削除されました。

kn
kn タスクは、kn コマンドラインユーティリティーを使用して、サービス、リビジョン、ルートなどの
Knative リソースでの操作を完了します。

kn タスクの使用例

apiVersion: tekton.dev/v1
kind: PipelineRun
metadata:
 name: kn-run
spec:
 pipelineSpec:
 tasks:
 - name: kn-run
 taskRef:
 resolver: cluster
 params:
 - name: kind
 value: task
 - name: name

第3章 リゾルバーを使用したリモートパイプライン、タスク、およびステップアクションの指定

75

表3.17 kn タスクでサポートされているパラメーター

パラメーター 説明 型 デフォルト値

ARGS kn ユーティリティーの引数。 array - help

kn ClusterTask からの変更点

KN_IMAGE パラメーターが削除されました。

kn-apply
kn-apply タスクは、指定されたイメージを Knative サービスにデプロイします。このタスクは、kn
service apply コマンドを使用して、指定された Knative サービスを作成または更新します。

kn-apply タスクの使用例

表3.18 kn-apply タスクでサポートされているパラメーター

パラメーター 説明 型 デフォルト値

サービス Knative サービス名。 string

 value: kn
 - name: namespace
 value: openshift-pipelines
 params:
 - name: ARGS
 value: [version]

apiVersion: tekton.dev/v1
kind: PipelineRun
metadata:
 name: kn-apply-run
spec:
 pipelineSpec:
 tasks:
 - name: kn-apply-run
 taskRef:
 resolver: cluster
 params:
 - name: kind
 value: task
 - name: name
 value: kn-apply
 - name: namespace
 value: openshift-pipelines
 params:
 - name: SERVICE
 value: "hello"
 - name: IMAGE
 value: "gcr.io/knative-samples/helloworld-go:latest"

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

76

IMAGE デプロイするイメージの完全修飾名。 string

パラメーター 説明 型 デフォルト値

kn-apply ClusterTask からの変更点

KN_IMAGE パラメーターが削除されました。

maven
Maven タスクは Maven ビルドを実行します。

Maven タスクの使用例

表3.19 Maven タスクでサポートされているパラメーター

パラメーター 説明 型 デフォルト値

GOALS 実行する Maven の目標。 array - package

MAVEN_MIRRO
R_URL

Maven リポジトリーのミラー URL。 string

SUBDIRECTOR
Y

タスクが Maven ビルドを実行する
source ワークスペース内のサブディレ
クトリー。

string .

表3.20 Maven タスクでサポートされているワークスペース

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: build-and-deploy
spec:
...
 tasks:
...
 - name: build-from-source
 taskRef:
 resolver: cluster
 params:
 - name: kind
 value: task
 - name: name
 value: maven
 - name: namespace
 value: openshift-pipelines
 workspaces:
 - name: source
 workspace: shared-workspace
...

第3章 リゾルバーを使用したリモートパイプライン、タスク、およびステップアクションの指定

77

ワークスペース 説明

source Maven プロジェクトが含まれるワークスペース。

server_secret ユーザー名やパスワードなど、Maven サーバーに接続するためのシークレットが
含まれるワークスペース。

proxy_secret ユーザー名やパスワードなど、プロキシーサーバーに接続するための認証情報が
含まれるワークスペース。

proxy_configmap proxy_port、proxy_host、proxy_protocol、proxy_non_proxy_hosts
などのプロキシー設定値が含まれるワークスペース。

maven_settings カスタム Maven 設定が含まれるワークスペース。

Maven ClusterTask からの変更

CONTEXT_DIR のパラメーター名が SUBDIRECTORY に変更されました。

maven-settings のワークスペース名が maven_settings に変更されました。

openshift-client
openshift-client タスクは、oc コマンドラインインターフェイスを使用してコマンドを実行します。こ
のタスクを使用して、OpenShift Container Platform クラスターを管理できます。

openshift-client タスクの使用例

表3.21 openshift-client タスクでサポートされているパラメーター

apiVersion: tekton.dev/v1
kind: PipelineRun
metadata:
 name: openshift-client-run
spec:
 pipelineSpec:
 tasks:
 - name: openshift-client-run
 taskRef:
 resolver: cluster
 params:
 - name: kind
 value: task
 - name: name
 value: openshift-client
 - name: namespace
 value: openshift-pipelines
 params:
 - name: SCRIPT
 value: "oc version"

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

78

パラメーター 説明 型 デフォルト値

SCRIPT 実行する oc CLI 引数。 string oc help

VERSION 使用する OpenShift Container Platform
バージョン。

string latest

表3.22 openshift-client タスクでサポートされているワークスペース

ワークスペース 説明

manifest_dir oc ユーティリティーを使用して適用するマニフェストファイルが含まれるワー
クスペース。

kubeconfig_dir クラスターにアクセスするための認証情報を含む .kube/config ファイルを提供
できるオプションのワークスペース。このファイルをワークスペースのルートに
配置し、kubeconfig という名前を付けます。

openshift-client ClusterTask からの変更点

ワークスペース名 manifest-dir が manifest_dir に変更されました。

ワークスペース名 kubeconfig-dir が kubeconfig_dir に変更されました。

s2i-dotnet
s2i-dotnet タスクは、OpenShift Container Platform レジストリーから image-registry.openshift-
image-registry.svc:5000/openshift/dotnet として入手できる Source to Image (S2I) dotnet ビルダーイ
メージを使用してソースコードをビルドします。

s2i-dotnet タスクの使用例

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: build-and-deploy
spec:
...
 tasks:
...
 - name: build-s2i
 taskRef:
 resolver: cluster
 params:
 - name: kind
 value: task
 - name: name
 value: s2i-dotnet
 - name: namespace
 value: openshift-pipelines
 workspaces:

第3章 リゾルバーを使用したリモートパイプライン、タスク、およびステップアクションの指定

79

表3.23 s2i-dotnet タスクでサポートされているパラメーター

パラメーター 説明 型 デフォルト値

IMAGE S2I プロセスがビルドするコンテナーイ
メージの完全修飾名。

string

IMAGE_SCRIPT
S_URL

ビルダーイメージのデフォルトのアセン
ブルおよび実行スクリプトを含む URL。

string image:///usr/libe
xec/s2i

ENV_VARS ビルドプロセスで設定する環境変数の値
の配列。KEY=VALUE 形式でリストさ
れます。

array

CONTEXT コンテキストとして使用する source
ワークスペース内のディレクトリーへの
パス。

string .

STORAGE_DRI
VER

Buildah ストレージドライバーを設定し
て、現在のクラスターノード設定を反映
します。

string vfs

FORMAT ビルドするコンテナーの形式。oci また
は docker のいずれかです。

string oci

BUILD_EXTRA_
ARGS

イメージをビルドするときの build コマ
ンドの追加パラメーター。

string

PUSH_EXTRA_
ARGS

イメージをプッシュするときの push コ
マンドの追加パラメーター。

string

SKIP_PUSH コンテナーレジストリーへのイメージの
プッシュをスキップします。

string false

TLS_VERIFY TLS 検証フラグ。通常は true です。 string true

VERBOSE 詳細なロギングをオンにすると、実行さ
れたすべてのコマンドがログに追加され
ます。

string false

VERSION 言語バージョンに対応するイメージスト
リームのタグ。

string latest

表3.24 s2i-dotnet タスクでサポートされているワークスペース

 - name: source
 workspace: shared-workspace
...

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

80

ワークスペース 説明

source S2I ワークフローのビルドコンテキストであるアプリケーションソースコード。

dockerconfig Buildah がコンテナーレジストリーへのアクセスに使用する
.docker/config.json ファイルを提供するためのオプションワークスペース。
ファイルを config.json または .dockerconfigjson という名前のワークスペー
スの root に配置します。

表3.25 s2i-dotnet タスクが返す結果

結果 型 説明

IMAGE_URL string ビルドされたイメージの完全修飾名。

IMAGE_DIGEST string ビルドされたイメージのダイジェスト。

s2i-go
s2i-go タスクは、OpenShift Container Platform レジストリーから image-registry.openshift-image-
registry.svc:5000/openshift/golang として入手できる S2I Golang ビルダーイメージを使用してソース
コードをビルドします。

s2i-go タスクの使用例

表3.26 s2i-go タスクでサポートされているパラメーター

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: build-and-deploy
spec:
...
 tasks:
...
 - name: build-s2i
 taskRef:
 resolver: cluster
 params:
 - name: kind
 value: task
 - name: name
 value: s2i-go
 - name: namespace
 value: openshift-pipelines
 workspaces:
 - name: source
 workspace: shared-workspace
...

第3章 リゾルバーを使用したリモートパイプライン、タスク、およびステップアクションの指定

81

パラメーター 説明 型 デフォルト値

IMAGE S2I プロセスがビルドするコンテナーイ
メージの完全修飾名。

string

IMAGE_SCRIPT
S_URL

ビルダーイメージのデフォルトのアセン
ブルおよび実行スクリプトを含む URL。

string image:///usr/libe
xec/s2i

ENV_VARS ビルドプロセスで設定する環境変数の値
の配列。KEY=VALUE 形式でリストさ
れます。

array

CONTEXT コンテキストとして使用する source
ワークスペース内のディレクトリーへの
パス。

string .

STORAGE_DRI
VER

Buildah ストレージドライバーを設定し
て、現在のクラスターノード設定を反映
します。

string vfs

FORMAT ビルドするコンテナーの形式。oci また
は docker のいずれかです。

string oci

BUILD_EXTRA_
ARGS

イメージをビルドするときの build コマ
ンドの追加パラメーター。

string

PUSH_EXTRA_
ARGS

イメージをプッシュするときの push コ
マンドの追加パラメーター。

string

SKIP_PUSH コンテナーレジストリーへのイメージの
プッシュをスキップします。

string false

TLS_VERIFY TLS 検証フラグ。通常は true です。 string true

VERBOSE 詳細なロギングをオンにすると、実行さ
れたすべてのコマンドがログに追加され
ます。

string false

VERSION 言語バージョンに対応するイメージスト
リームのタグ。

string latest

表3.27 s2i-go タスクでサポートされているワークスペース

ワークスペース 説明

source S2I ワークフローのビルドコンテキストであるアプリケーションソースコード。

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

82

dockerconfig Buildah がコンテナーレジストリーへのアクセスに使用する
.docker/config.json ファイルを提供するためのオプションワークスペース。
ファイルを config.json または .dockerconfigjson という名前のワークスペー
スの root に配置します。

ワークスペース 説明

表3.28 s2i-go タスクが返す結果

結果 型 説明

IMAGE_URL string ビルドされたイメージの完全修飾名。

IMAGE_DIGEST string ビルドされたイメージのダイジェスト。

s2i-java
s2i-java タスクは、OpenShift Container Platform レジストリーから image-registry.openshift-image-
registry.svc:5000/openshift/java として入手できる S2I Java ビルダーイメージを使用してソースコー
ドをビルドします。

表3.29 s2i-java タスクでサポートされているパラメーター

パラメーター 説明 型 デフォルト値

IMAGE S2I プロセスがビルドするコンテナーイ
メージの完全修飾名。

string

IMAGE_SCRIPT
S_URL

ビルダーイメージのデフォルトのアセン
ブルおよび実行スクリプトを含む URL。

string image:///usr/libe
xec/s2i

ENV_VARS ビルドプロセスで設定する環境変数の値
の配列。KEY=VALUE 形式でリストさ
れます。

array

CONTEXT コンテキストとして使用する source
ワークスペース内のディレクトリーへの
パス。

string .

STORAGE_DRI
VER

Buildah ストレージドライバーを設定し
て、現在のクラスターノード設定を反映
します。

string vfs

FORMAT ビルドするコンテナーの形式。oci また
は docker のいずれかです。

string oci

第3章 リゾルバーを使用したリモートパイプライン、タスク、およびステップアクションの指定

83

BUILD_EXTRA_
ARGS

イメージをビルドするときの build コマ
ンドの追加パラメーター。

string

PUSH_EXTRA_
ARGS

イメージをプッシュするときの push コ
マンドの追加パラメーター。

string

SKIP_PUSH コンテナーレジストリーへのイメージの
プッシュをスキップします。

string false

TLS_VERIFY TLS 検証フラグ。通常は true です。 string true

VERBOSE 詳細なロギングをオンにすると、実行さ
れたすべてのコマンドがログに追加され
ます。

string false

VERSION 言語バージョンに対応するイメージスト
リームのタグ。

string latest

パラメーター 説明 型 デフォルト値

表3.30 s2i-java タスクでサポートされているワークスペース

ワークスペース 説明

source S2I ワークフローのビルドコンテキストであるアプリケーションソースコード。

dockerconfig Buildah がコンテナーレジストリーへのアクセスに使用する
.docker/config.json ファイルを提供するためのオプションワークスペース。
ファイルを config.json または .dockerconfigjson という名前のワークスペー
スの root に配置します。

表3.31 s2i-java タスクが返す結果

結果 型 説明

IMAGE_URL string ビルドされたイメージの完全修飾名。

IMAGE_DIGEST string ビルドされたイメージのダイジェスト。

s2i-java ClusterTask からの変更点

新しいパラメーターが複数追加されました。

BUILDER_IMAGE、MAVEN_ARGS_APPEND、MAVEN_CLEAR_REPO、および
MAVEN_MIRROR_URL パラメーターが削除されまし
た。MAVEN_ARGS_APPEND、MAVEN_CLEAR_REPO および MAVEN_MIRROR_URL の値
を環境変数として渡すことができます。

パラメーター名 PATH_CONTEXT が CONTEXT に変更されました。

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

84

パラメーター名 TLS_VERIFY が TLSVERIFY に変更されました。

IMAGE_URL の結果が追加されました。

s2i-nodejs
s2i-nodejs タスクは、OpenShift Container Platform レジストリーから image-registry.openshift-
image-registry.svc:5000/openshift/nodejs として入手できる S2I NodeJS ビルダーイメージを使用し
てソースコードをビルドします。

s2i-nodejs タスクの使用例

表3.32 s2i-nodejs タスクでサポートされているパラメーター

パラメーター 説明 型 デフォルト値

IMAGE S2I プロセスがビルドするコンテナーイ
メージの完全修飾名。

string

IMAGE_SCRIPT
S_URL

ビルダーイメージのデフォルトのアセン
ブルおよび実行スクリプトを含む URL。

string image:///usr/libe
xec/s2i

ENV_VARS ビルドプロセスで設定する環境変数の値
の配列。KEY=VALUE 形式でリストさ
れます。

array

CONTEXT コンテキストとして使用する source
ワークスペース内のディレクトリーへの
パス。

string .

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: build-and-deploy
spec:
...
 tasks:
...
 - name: build-s2i
 taskRef:
 resolver: cluster
 params:
 - name: kind
 value: task
 - name: name
 value: s2i-nodejs
 - name: namespace
 value: openshift-pipelines
 workspaces:
 - name: source
 workspace: shared-workspace
...

第3章 リゾルバーを使用したリモートパイプライン、タスク、およびステップアクションの指定

85

STORAGE_DRI
VER

Buildah ストレージドライバーを設定し
て、現在のクラスターノード設定を反映
します。

string vfs

FORMAT ビルドするコンテナーの形式。oci また
は docker のいずれかです。

string oci

BUILD_EXTRA_
ARGS

イメージをビルドするときの build コマ
ンドの追加パラメーター。

string

PUSH_EXTRA_
ARGS

イメージをプッシュするときの push コ
マンドの追加パラメーター。

string

SKIP_PUSH コンテナーレジストリーへのイメージの
プッシュをスキップします。

string false

TLS_VERIFY TLS 検証フラグ。通常は true です。 string true

VERBOSE 詳細なロギングをオンにすると、実行さ
れたすべてのコマンドがログに追加され
ます。

string false

VERSION 言語バージョンに対応するイメージスト
リームのタグ。

string latest

パラメーター 説明 型 デフォルト値

表3.33 s2i-nodejs タスクでサポートされているワークスペース

ワークスペース 説明

source S2I ワークフローのビルドコンテキストであるアプリケーションソースコード。

dockerconfig Buildah がコンテナーレジストリーへのアクセスに使用する
.docker/config.json ファイルを提供するためのオプションワークスペース。
ファイルを config.json または .dockerconfigjson という名前のワークスペー
スの root に配置します。

表3.34 s2i-nodejs タスクが返す結果

結果 型 説明

IMAGE_URL string ビルドされたイメージの完全修飾名。

IMAGE_DIGEST string ビルドされたイメージのダイジェスト。

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

86

s2i-perl
s2i-perl タスクは、OpenShift Container Platform レジストリーから image-registry.openshift-image-
registry.svc:5000/openshift/perl として入手できる S2I Perl ビルダーイメージを使用してソースコード
をビルドします。

s2i-perl タスクの使用例

表3.35 s2i-perl タスクでサポートされているパラメーター

パラメーター 説明 型 デフォルト値

IMAGE S2I プロセスがビルドするコンテナーイ
メージの完全修飾名。

string

IMAGE_SCRIPT
S_URL

ビルダーイメージのデフォルトのアセン
ブルおよび実行スクリプトを含む URL。

string image:///usr/libe
xec/s2i

ENV_VARS ビルドプロセスで設定する環境変数の値
の配列。KEY=VALUE 形式でリストさ
れます。

array

CONTEXT コンテキストとして使用する source
ワークスペース内のディレクトリーへの
パス。

string .

STORAGE_DRI
VER

Buildah ストレージドライバーを設定し
て、現在のクラスターノード設定を反映
します。

string vfs

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: build-and-deploy
spec:
...
 tasks:
...
 - name: build-s2i
 taskRef:
 resolver: cluster
 params:
 - name: kind
 value: task
 - name: name
 value: s2i-perl
 - name: namespace
 value: openshift-pipelines
 workspaces:
 - name: source
 workspace: shared-workspace
...

第3章 リゾルバーを使用したリモートパイプライン、タスク、およびステップアクションの指定

87

FORMAT ビルドするコンテナーの形式。oci また
は docker のいずれかです。

string oci

BUILD_EXTRA_
ARGS

イメージをビルドするときの build コマ
ンドの追加パラメーター。

string

PUSH_EXTRA_
ARGS

イメージをプッシュするときの push コ
マンドの追加パラメーター。

string

SKIP_PUSH コンテナーレジストリーへのイメージの
プッシュをスキップします。

string false

TLS_VERIFY TLS 検証フラグ。通常は true です。 string true

VERBOSE 詳細なロギングをオンにすると、実行さ
れたすべてのコマンドがログに追加され
ます。

string false

VERSION 言語バージョンに対応するイメージスト
リームのタグ。

string latest

パラメーター 説明 型 デフォルト値

表3.36 s2i-perl タスクでサポートされているワークスペース

ワークスペース 説明

source S2I ワークフローのビルドコンテキストであるアプリケーションソースコード。

dockerconfig Buildah がコンテナーレジストリーへのアクセスに使用する
.docker/config.json ファイルを提供するためのオプションワークスペース。
ファイルを config.json または .dockerconfigjson という名前のワークスペー
スの root に配置します。

表3.37 s2i-perl タスクが返す結果

結果 型 説明

IMAGE_URL string ビルドされたイメージの完全修飾名。

IMAGE_DIGEST string ビルドされたイメージのダイジェスト。

s2i-php
s2i-php タスクは、OpenShift Container Platform レジストリーから image-registry.openshift-image-
registry.svc:5000/openshift/php として入手できる S2I PHP ビルダーイメージを使用してソースコー
ドをビルドします。

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

88

s2i-php タスクの使用例

表3.38 s2i-php タスクでサポートされているパラメーター

パラメーター 説明 型 デフォルト値

IMAGE S2I プロセスがビルドするコンテナーイ
メージの完全修飾名。

string

IMAGE_SCRIPT
S_URL

ビルダーイメージのデフォルトのアセン
ブルおよび実行スクリプトを含む URL。

string image:///usr/libe
xec/s2i

ENV_VARS ビルドプロセスで設定する環境変数の値
の配列。KEY=VALUE 形式でリストさ
れます。

array

CONTEXT コンテキストとして使用する source
ワークスペース内のディレクトリーへの
パス。

string .

STORAGE_DRI
VER

Buildah ストレージドライバーを設定し
て、現在のクラスターノード設定を反映
します。

string vfs

FORMAT ビルドするコンテナーの形式。oci また
は docker のいずれかです。

string oci

BUILD_EXTRA_
ARGS

イメージをビルドするときの build コマ
ンドの追加パラメーター。

string

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: build-and-deploy
spec:
...
 tasks:
...
 - name: build-s2i
 taskRef:
 resolver: cluster
 params:
 - name: kind
 value: task
 - name: name
 value: s2i-php
 - name: namespace
 value: openshift-pipelines
 workspaces:
 - name: source
 workspace: shared-workspace
...

第3章 リゾルバーを使用したリモートパイプライン、タスク、およびステップアクションの指定

89

PUSH_EXTRA_
ARGS

イメージをプッシュするときの push コ
マンドの追加パラメーター。

string

SKIP_PUSH コンテナーレジストリーへのイメージの
プッシュをスキップします。

string false

TLS_VERIFY TLS 検証フラグ。通常は true です。 string true

VERBOSE 詳細なロギングをオンにすると、実行さ
れたすべてのコマンドがログに追加され
ます。

string false

VERSION 言語バージョンに対応するイメージスト
リームのタグ。

string latest

パラメーター 説明 型 デフォルト値

表3.39 s2i-php タスクでサポートされているワークスペース

ワークスペース 説明

source S2I ワークフローのビルドコンテキストであるアプリケーションソースコード。

dockerconfig Buildah がコンテナーレジストリーへのアクセスに使用する
.docker/config.json ファイルを提供するためのオプションワークスペース。
ファイルを config.json または .dockerconfigjson という名前のワークスペー
スの root に配置します。

表3.40 s2i-php タスクが返す結果

結果 型 説明

IMAGE_URL string ビルドされたイメージの完全修飾名。

IMAGE_DIGEST string ビルドされたイメージのダイジェスト。

s2i-python
s2i-python タスクは、OpenShift Container Platform レジストリーから image-registry.openshift-
image-registry.svc:5000/openshift/Python として入手できる S2I Python ビルダーイメージを使用し
てソースコードをビルドします。

s2i-python タスクの使用例

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: build-and-deploy
spec:
...

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

90

表3.41 s2i-python タスクでサポートされているパラメーター

パラメーター 説明 型 デフォルト値

IMAGE S2I プロセスがビルドするコンテナーイ
メージの完全修飾名。

string

IMAGE_SCRIPT
S_URL

ビルダーイメージのデフォルトのアセン
ブルおよび実行スクリプトを含む URL。

string image:///usr/libe
xec/s2i

ENV_VARS ビルドプロセスで設定する環境変数の値
の配列。KEY=VALUE 形式でリストさ
れます。

array

CONTEXT コンテキストとして使用する source
ワークスペース内のディレクトリーへの
パス。

string .

STORAGE_DRI
VER

Buildah ストレージドライバーを設定し
て、現在のクラスターノード設定を反映
します。

string vfs

FORMAT ビルドするコンテナーの形式。oci また
は docker のいずれかです。

string oci

BUILD_EXTRA_
ARGS

イメージをビルドするときの build コマ
ンドの追加パラメーター。

string

PUSH_EXTRA_
ARGS

イメージをプッシュするときの push コ
マンドの追加パラメーター。

string

SKIP_PUSH コンテナーレジストリーへのイメージの
プッシュをスキップします。

string false

TLS_VERIFY TLS 検証フラグ。通常は true です。 string true

 tasks:
...
 - name: build-s2i
 taskRef:
 resolver: cluster
 params:
 - name: kind
 value: task
 - name: name
 value: s2i-python
 - name: namespace
 value: openshift-pipelines
 workspaces:
 - name: source
 workspace: shared-workspace
...

第3章 リゾルバーを使用したリモートパイプライン、タスク、およびステップアクションの指定

91

VERBOSE 詳細なロギングをオンにすると、実行さ
れたすべてのコマンドがログに追加され
ます。

string false

VERSION 言語バージョンに対応するイメージスト
リームのタグ。

string latest

パラメーター 説明 型 デフォルト値

表3.42 s2i-python タスクでサポートされているワークスペース

ワークスペース 説明

source S2I ワークフローのビルドコンテキストであるアプリケーションソースコード。

dockerconfig Buildah がコンテナーレジストリーへのアクセスに使用する
.docker/config.json ファイルを提供するためのオプションワークスペース。
ファイルを config.json または .dockerconfigjson という名前のワークスペー
スの root に配置します。

表3.43 s2i-python タスクが返す結果

結果 型 説明

IMAGE_URL string ビルドされたイメージの完全修飾名。

IMAGE_DIGEST string ビルドされたイメージのダイジェスト。

s2i-ruby
s2i-ruby タスクは、OpenShift Container Platform レジストリーから image-registry.openshift-image-
registry.svc:5000/openshift/ruby として入手できる S2I Ruby ビルダーイメージを使用してソースコー
ドをビルドします。

s2i-ruby タスクの使用例

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: build-and-deploy
spec:
...
 tasks:
...
 - name: build-s2i
 taskRef:
 resolver: cluster
 params:

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

92

表3.44 s2i-ruby タスクでサポートされているパラメーター

パラメーター 説明 型 デフォルト値

IMAGE S2I プロセスがビルドするコンテナーイ
メージの完全修飾名。

string

IMAGE_SCRIPT
S_URL

ビルダーイメージのデフォルトのアセン
ブルおよび実行スクリプトを含む URL。

string image:///usr/libe
xec/s2i

ENV_VARS ビルドプロセスで設定する環境変数の値
の配列。KEY=VALUE 形式でリストさ
れます。

array

CONTEXT コンテキストとして使用する source
ワークスペース内のディレクトリーへの
パス。

string .

STORAGE_DRI
VER

Buildah ストレージドライバーを設定し
て、現在のクラスターノード設定を反映
します。

string vfs

FORMAT ビルドするコンテナーの形式。oci また
は docker のいずれかです。

string oci

BUILD_EXTRA_
ARGS

イメージをビルドするときの build コマ
ンドの追加パラメーター。

string

PUSH_EXTRA_
ARGS

イメージをプッシュするときの push コ
マンドの追加パラメーター。

string

SKIP_PUSH コンテナーレジストリーへのイメージの
プッシュをスキップします。

string false

TLS_VERIFY TLS 検証フラグ。通常は true です。 string true

VERBOSE 詳細なロギングをオンにすると、実行さ
れたすべてのコマンドがログに追加され
ます。

string false

 - name: kind
 value: task
 - name: name
 value: s2i-ruby
 - name: namespace
 value: openshift-pipelines
 workspaces:
 - name: source
 workspace: shared-workspace
...

第3章 リゾルバーを使用したリモートパイプライン、タスク、およびステップアクションの指定

93

VERSION 言語バージョンに対応するイメージスト
リームのタグ。

string latest

パラメーター 説明 型 デフォルト値

表3.45 s2i-ruby タスクでサポートされているワークスペース

ワークスペース 説明

source S2I ワークフローのビルドコンテキストであるアプリケーションソースコード。

dockerconfig Buildah がコンテナーレジストリーへのアクセスに使用する
.docker/config.json ファイルを提供するためのオプションワークスペース。
ファイルを config.json または .dockerconfigjson という名前のワークスペー
スの root に配置します。

表3.46 s2i-ruby タスクが返す結果

結果 型 説明

IMAGE_URL string ビルドされたイメージの完全修飾名。

IMAGE_DIGEST string ビルドされたイメージのダイジェスト。

skopeo-copy
skopeo-copy タスクは skopeo copy コマンドを実行します。

Skopeo は、リモートコンテナーイメージレジストリーを操作するためのコマンドラインツールであ
り、イメージのロードや実行にデーモンやその他のインフラストラクチャーを必要としませ
ん。skopeo copy コマンドは、別のリモートレジストリーにイメージをコピーします (たとえば、内部
レジストリーから実稼働レジストリーにコピーします)。Skopeo は、ユーザーが提供する認証情報を使
用したイメージレジストリーでの認可をサポートします。

skopeo-copy タスクの使用例

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: build-deploy-image
spec:
...
 tasks:
 - name: copy-image
 taskRef:
 resolver: cluster
 params:
 - name: kind
 value: task
 - name: name

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

94

表3.47 skopeo-copy タスクでサポートされているパラメーター

パラメーター 説明 型 デフォルト値

SOURCE_IMAG
E_URL

ソースコンテナーイメージのタグを含む
完全修飾名。

string

DESTINATION_I
MAGE_URL

Skopeo がソースイメージをコピーする宛
先イメージの、タグを含む完全修飾名。

string

SRC_TLS_VERI
FY

ソースレジストリーの TLS 検証フラグ。
通常は true です。

string true

DEST_TLS_VER
IFY

宛先レジストリーの TLS 検証フラグ。通
常は true です。

string true

VERBOSE デバッグ情報をログに出力します。 string false

表3.48 skopeo-copy タスクでサポートされているワークスペース

ワークスペース 説明

images_url 複数のイメージをコピーする場合は、このワークスペースを使用してイメージの
URL を指定します。

表3.49 skopeo-copy タスクが返す結果

結果 型 説明

SOURCE_DIGEST string ソースイメージの SHA256 ダイジェスト。

DESTINATION_DIGE
ST

string 宛先イメージの SHA256 ダイジェスト。

skopeo-copy ClusterTask からの変更点

すべてのパラメーター名が大文字に変更されました。

 value: skopeo-copy
 - name: namespace
 value: openshift-pipelines
 params:
 - name: SOURCE_IMAGE_URL
 value: "docker://internal.registry/myimage:latest"
 - name: DESTINATION_IMAGE_URL
 value: "docker://production.registry/myimage:v1.0"
 workspaces:
 - name: output
 workspace: shared-workspace

第3章 リゾルバーを使用したリモートパイプライン、タスク、およびステップアクションの指定

95

VERBOSE パラメーターが追加されました。

ワークスペース名が images-url から images_url に変更されました。

SOURCE_DIGEST および DESTINATION_DIGEST の結果が追加されました。

tkn
tkn タスクは、tkn を使用して Tekton リソースに対して操作を実行します。

tkn タスクの使用例

表3.50 tkn タスクでサポートされているパラメーター

パラメーター 説明 型 デフォルト値

SCRIPT 実行する tkn CLI スクリプト。 string tkn $@

ARGS 実行する tkn CLI 引数。 array - --help

表3.51 tkn タスクでサポートされているワークスペース

ワークスペース 説明

kubeconfig_dir クラスターにアクセスするための認証情報を含む .kube/config ファイルを提供
できるオプションのワークスペース。このファイルをワークスペースのルートに
配置し、kubeconfig という名前を付けます。

tkn ClusterTask からの変更点

TKN_IMAGE パラメーターが削除されました。

ワークスペース名が kubeconfig から kubeconfig_dir に変更されました。

apiVersion: tekton.dev/v1
kind: PipelineRun
metadata:
 name: tkn-run
spec:
 pipelineSpec:
 tasks:
 - name: tkn-run
 taskRef:
 resolver: cluster
 params:
 - name: kind
 value: task
 - name: name
 value: tkn
 - name: namespace
 value: openshift-pipelines
 params:
 - name: ARGS

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

96

1

3.8. OPENSHIFT PIPELINES NAMESPACE で提供されるコミュニティー
タスク

デフォルトでは、OpenShift Pipelines のインストールには、パイプラインで使用できる一連のコミュニ
ティータスクが含まれています。これらのタスクは、OpenShift Pipelines インストール namespace (通
常は openshift-pipelines namespace) にあります。

argocd-task-sync-and-wait
argocd-task-sync-and-wait コミュニティータスクは、Argo CD アプリケーションをデプロイし、正常
になるまで待機します。

これを行うには、以下の設定が必要です。* argocd-env-configmap config map で設定された Argo CD
サーバーのアドレス。* argocd-env-secret シークレットに設定された認証情報。

アドレス情報を含む config map の例

認証情報を含むシークレットの例

ユーザー名とパスワード、または認証トークンのいずれかを設定します。

argocd-task-sync-and-wait コミュニティータスクの使用例

apiVersion: v1
kind: ConfigMap
metadata:
 name: argocd-env-configmap
data:
 ARGOCD_SERVER: https://argocd.example.com
...

apiVersion: v1
kind: Secret
metadata:
 name: argocd-env-secret
data:
 # Option 1
 ARGOCD_USERNAME: example_username 1
 ARGOCD_PASSWORD: example_password
 # Option 2
 ARGOCD_AUTH_TOKEN: exmaple_token

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: argocd-task-sync-and-wait
spec:
 tasks:
 - name: argocd-task-sync-and-wait
 params:
 - name: application-name
 value: example_app_name
 - name: revision
 value: HEAD

第3章 リゾルバーを使用したリモートパイプライン、タスク、およびステップアクションの指定

97

表3.52 argocd-task-sync-and-wait コミュニティータスクでサポートされているパラメーター

パラメーター 説明 デフォルト値

application-name デプロイするアプリケーションの名前。

revision デプロイするリビジョン。 HEAD

flags --

argocd-version Argo CD のバージョン。 v2.2.2

helm-upgrade-from-repo
helm -upgrade-from-repo コミュニティータスクは、指定された Helm リポジトリーとチャートに基づ
いて、OpenShift Container Platform クラスターに Helm チャートをインストールまたはアップグレー
ドします。

Helm-upgrade-from-repo コミュニティータスクの使用例

 - name: flags
 value: '--'
 - name: argocd-version
 value: v2.2.2
 taskRef:
 kind: Task
 name: argocd-task-sync-and-wait

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: helm-upgrade-from-repo
spec:
 tasks:
 - name: helm-upgrade-from-repo
 params:
 - name: helm_repo
 value: example_helm_repository
 - name: chart_name
 value: example_chart_name
 - name: release_version
 value: v1.0.0
 - name: release_name
 value: helm-release
 - name: release_namespace
 value: ''
 - name: overwrite_values
 value: ''
 - name: helm_image
 value: 'docker.io/lachlanevenson/k8s-
helm@sha256:5c792f29950b388de24e7448d378881f68b3df73a7b30769a6aa861061fd08ae'
 taskRef:
 kind: Task
 name: helm-upgrade-from-repo

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

98

表3.53 Helm-upgrade-from-repo コミュニティータスクでサポートされているパラメーター

パラメーター 説明 デフォルト値

helm_repo Helm リポジトリー。

chart_name デプロイする Helm チャート名。

release_version セマンティックバージョン管理形式の Helm リリー
スバージョン。

v1.0.0

release_name Helm リリース名。 helm-release

release_namespace Helm リリースの namespace。 ""

overwrite_values 上書きする設定パラメーター (コンマ区切り)。例:
autoscaling.enabled=true,replicas=1

""

helm_image 使用する Helm イメージ。 docker.io/lachlaneve
nson/k8s-
helm@sha256:5c792
f29950b388de24e744
8d378881f68b3df73a
7b30769a6aa861061f
d08ae

helm-upgrade-from-source
Helm-upgrade-from-source コミュニティータスクは、指定されたチャートとソースワークスペースに
基づいて、OpenShift Container Platform クラスターに Helm チャートをインストールおよびアップグ
レードします。

Helm-upgrade-from-source コミュニティータスクの使用例

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: helm-upgrade-from-source
spec:
 tasks:
 - name: helm-upgrade-from-source
 params:
 - name: charts_dir
 value: example_directory_path
 - name: release_version
 value: v1.0.0
 - name: release_name
 value: helm-release
 - name: release_namespace
 value: ''
 - name: overwrite_values
 value: ''
 - name: values_file

第3章 リゾルバーを使用したリモートパイプライン、タスク、およびステップアクションの指定

99

表3.54 Helm-upgrade-from-source コミュニティータスクでサポートされているパラメーター

パラメーター 説明 デフォルト値

charts_dir Helm チャートを含むソースワークスペース内のディ
レクトリー。

release_version セマンティックバージョン管理形式の Helm リリー
スバージョン。

v1.0.0

release_name Helm リリース名。 helm-release

release_namespace Helm リリースの namespace。 ""

overwrite_values 上書きする設定パラメーター (コンマ区切り)。例:
autoscaling.enabled=true,replicas=1

""

values_file Helm の設定パラメーターを含むファイル。 values.yaml

helm_image 使用する Helm イメージ。 docker.io/lachlaneve
nson/k8s-
helm@sha256:5c792
f29950b388de24e744
8d378881f68b3df73a
7b30769a6aa861061f
d08ae

upgrade_extra_para
ms

Helm アップグレードコマンドに渡される追加のパラ
メーター。

""

表3.55 Helm-upgrade-from-source コミュニティータスクでサポートされているワークスペース

ワークスペース 説明

source Helm チャートを含むワークスペース。

 value: values.yaml
 - name: helm_image
 value: 'docker.io/lachlanevenson/k8s-
helm@sha256:5c792f29950b388de24e7448d378881f68b3df73a7b30769a6aa861061fd08ae'
 - name: upgrade_extra_params
 value: ''
 taskRef:
 kind: Task
 name: helm-upgrade-from-source
 workspaces:
 - name: source
 workspace: shared-workspace
 #...

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

100

jib-maven
jib-maven コミュニティータスクは、Maven プロジェクト用の Jib ツールを使用して、Java、Kotlin、
Groovy、および Scala ソースをコンテナーイメージにビルドします。

jib-maven コミュニティータスクの使用例

表3.56 jib-maven コミュニティータスクでサポートされているパラメーター

パラメーター 説明 デフォルト値

IMAGE ビルドするイメージの名前。

MAVEN_IMAGE Maven ベースイメージ。 registry.redhat.io/ubi
9/openjdk-
17@sha256:78613bd
f887530100efb6ddf9
2d2a17f6176542740e
d83e509cdc19ee7c07
2d6

DIRECTORY ソースリポジトリーのルートを基準とした、アプリ
ケーションを含むディレクトリー。

.

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: jib-maven
spec:
 tasks:
 - name: jib-maven
 params:
 - name: IMAGE
 value: example_image
 - name: MAVEN_IMAGE
 value: 'registry.redhat.io/ubi9/openjdk-
17@sha256:78613bdf887530100efb6ddf92d2a17f6176542740ed83e509cdc19ee7c072d6'
 - name: DIRECTORY
 value: .
 - name: CACHE
 value: empty-dir-volume
 - name: INSECUREREGISTRY
 value: 'false'
 - name: CACERTFILE
 value: service-ca.crt
 taskRef:
 kind: Task
 name: jib-maven
 workspaces:
 - name: source
 workspace: shared-workspace
 #...

第3章 リゾルバーを使用したリモートパイプライン、タスク、およびステップアクションの指定

101

CACHE Maven アーティファクトとベースイメージレイヤー
をキャッシュするためのボリュームの名前。

empty-dir-volume

INSECUREREGISTR
Y

安全でないレジストリーを許可します。 false

CACERTFILE 安全でないレジストリーサービスの認証局 (CA) バン
ドルファイル名。

service-ca.crt

パラメーター 説明 デフォルト値

表3.57 jib-maven コミュニティータスクでサポートされているワークスペース

ワークスペース 説明

source Maven プロジェクトが含まれるワークスペース。

sslcertdir SSL 証明書が含まれるオプションのワークスペース。

表3.58 jib-maven タスクが返す結果

結果 型 説明

IMAGE_DIGEST string ビルドされたイメージのダイジェスト。

jib-maven コミュニティークラスタータスクからの変更

IMAGE および MAVEN_IMAGE パラメーターのデフォルト値が変更されました。

kubeconfig-creator
kubeconfig-creator コミュニティータスクは、パイプライン内の他のタスクがさまざまなクラスターに
アクセスするために使用できる kubeconfig ファイルを作成します。

kubeconfig-creator コミュニティータスクの使用例

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: kubeconfig-creator
spec:
 tasks:
 - name: kubeconfig-creator
 params:
 - name: name
 value: example_cluster
 - name: url
 value: https://cluster.example.com
 - name: username
 value: example_username
 - name: password

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

102

表3.59 kubeconfig-creator コミュニティータスクでサポートされているパラメーター

パラメーター 説明 デフォルト値

name アクセスするクラスターの名前。

url アクセスするクラスターのアドレス。

username クラスターへの Basic 認証用のユーザー名。

password クラスターへの Basic 認証用のパスワード。 ""

cadata PEM でエンコードされた認証局 (CA) 証明書。 ""

clientKeyData TLS のクライアントキーファイルからの PEM エン
コードされたデータ。

""

clientCertificateData TLS のクライアント証明書ファイルからの PEM エン
コードされたデータ。

""

namespace 未指定のリクエストで使用するデフォルトの
namespace。

""

token クラスターへの認証用のベアラートークン。 ""

insecure TLS 証明書を検証せずにサーバーにアクセスするか
どうかを示します。

false

表3.60 kubeconfig-creator コミュニティータスクでサポートされているワークスペース

 value: example_password
 - name: cadata
 value: ''
 - name: clientKeyData
 value: ''
 - name: clientCertificateData
 value: ''
 - name: namespace
 value: ''
 - name: token
 value: ''
 - name: insecure
 value: 'false'
 taskRef:
 kind: Task
 name: kubeconfig-creator
 workspaces:
 - name: output
 workspace: shared-workspace
 #...

第3章 リゾルバーを使用したリモートパイプライン、タスク、およびステップアクションの指定

103

ワークスペース 説明

output kubeconfig-creator タスクが kubeconfig ファイルを保存するワークスペー
ス。

pull-request
pull-request コミュニティータスクを使用すると、抽象化されたインターフェイスを通じてソースコン
トロール管理 (SCM) システムと対話できます。

このコミュニティータスクは、パブリック SCM インスタンスと、self-hosted またはエンタープライズ
GitHub または GitLab インスタンスの両方で機能します。

ダウンロードモードでは、このタスクは、.MANIFEST ファイルを含む既存のプルリクエストの状態を
pr ワークスペースに入力します。

アップロードモードでは、このタスクは .MANIFEST ファイルを含む pr ワークスペースの内容をプル
リクエストの内容と比較し、内容が異なる場合は、pr ワークスペースと一致するようにプルリクエスト
を更新します。

pull-request コミュニティータスクの使用例

表3.61 pull-request コミュニティータスクでサポートされているパラメーター

パラメーター 説明 デフォルト値

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: pull-request
spec:
spec:
 tasks:
 - name: pull-request
 params:
 - name: mode
 value: upload
 - name: url
 value: https://github.com/example/pull/xxxxx
 - name: provider
 value: github
 - name: secret-key-ref
 value: example_secret
 - name: insecure-skip-tls-verify
 value: 'false'
 taskRef:
 kind: Task
 name: pull-request
 workspaces:
 - name: pr
 workspace: shared-workspace
 #...

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

104

mode download に設定すると、url のプルリクエストの
状態が取得されます。upload に設定すると、URL
のプルリクエストが更新されます。

url プルリクエストの URL。

provider SCM システムのタイプ。サポートされる値は
github または gitlab です。

secret-key-ref base64 でエンコードされた SCM トークンを含む
token と呼ばれるキーを含む、Opaque タイプの
Secret オブジェクトの名前。

insecure-skip-tls-
verify

true に設定すると、証明書の検証は無効になりま
す。

false

パラメーター 説明 デフォルト値

表3.62 pull-request コミュニティータスクでサポートされているワークスペース

ワークスペース 説明

pr プルリクエストの状態が含まれるワークスペース。

trigger-jenkins-job
curl リクエストを使用して Jenkins ジョブをトリガーするには、 trigger-jenkins-job コミュニティータ
スクを使用できます。

trigger-jenkins-job コミュニティータスクの使用例

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: trigger-jenkins-job
spec:
 tasks:
 - name: trigger-jenkins-job
 params:
 - name: JENKINS_HOST_URL
 value: example_host_URL
 - name: JOB_NAME
 value: example_job_name
 - name: JENKINS_SECRETS
 value: jenkins-credentials
 - name: JOB_PARAMS
 value:
 - example_param
 taskRef:
 kind: Task

第3章 リゾルバーを使用したリモートパイプライン、タスク、およびステップアクションの指定

105

表3.63 trigger-jenkins-job コミュニティータスクでサポートされているパラメーター

パラメーター 説明 デフォルト値

JENKINS_HOST_UR
L

Jenkins が実行されているサーバー URL。

JOB_NAME トリガーする必要がある Jenkins ジョブ。

JENKINS_SECRETS 認証情報を含む Jenkins シークレット。 jenkins-credentials

JOB_PARAMS curl リクエストの一部として追加する引数。 ""

表3.64 trigger-jenkins-job コミュニティータスクでサポートされているワークスペース

ワークスペース 説明

source curl リクエストを通じて Jenkins ジョブに送信できるファイルをマウントするた
めに使用できるワークスペース。

3.9. OPENSHIFT PIPELINES で提供されるステップアクション定義

OpenShift Pipelines は、タスクで使用できる標準の StepAction 定義を提供します。これらの定義を参
照するには、クラスターリゾルバーを使用します。

git-clone
git-clone ステップアクションは Git を使用してワークスペースでリモートリポジトリーを初期化し、
クローンします。このステップアクションを使用して、このソースコードをビルドまたは処理するパイ
プラインの開始時にリポジトリーのクローンを作成するタスクを定義できます。

タスクでの git-clone ステップアクションの使用例

 name: trigger-jenkins-job
 workspaces:
 - name: source
 workspace: shared-workspace
 # ...

apiVersion: tekton.dev/v1
kind: Task
metadata:
 name: clone-repo-anon
spec:
...
 steps:
 - name: clone-repo-step
 ref:
 resolver: cluster
 params:
 - name: name
 value: git-clone

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

106

表3.65 git-clone ステップアクションでサポートされているパラメーター

パラメーター 説明 型 デフォルト値

OUTPUT_PATH フェッチされた Git リポジトリーのディ
レクトリー。クローンされたリポジト
リーデータは、ディレクトリーのルート
または SUBDIRECTORY パラメーター
で定義された相対パスに配置されます。

string

SSH_DIRECTO
RY_PATH

必要に応じて、秘密
鍵、known_hosts、config などのファ
イルを含む .ssh ディレクトリー。この
ディレクトリーを指定すると、タスクは
Git リポジトリーへの認証にそれを使用し
ます。認証情報を安全に保存するため
に、このディレクトリーを提供するワー
クスペースを Secret リソースにバイン
ドします。

string

BASIC_AUTH_P
ATH

.gitconfig および .git-credentials ファ
イルを含むディレクトリー。このディレ
クトリーを指定すると、タスクはそのリ
ポジトリーを Git リポジトリーへの認証
に使用します。可能な場合は、認証に
BASIC_AUTH_PATH ではなく
SSH_DIRECTORY_PATH ディレクト
リーを使用します。認証情報を安全に保
存するために、このディレクトリーを提
供するワークスペースを Secret リソー
スにバインドします。

string

SSL_CA_DIREC
TORY_PATH

CA 証明書を含むワークスペース。この
ワークスペースを指定すると、Git は
HTTPS を使用してリモートリポジトリー
とやり取りする場合に、これらの証明書
を使用してピアを検証します。

string

CRT_FILENAME ssl-ca-directory ワークスペース内の認
証局 (CA) のバンドルファイル名。

string ca-bundle.crt

HTTP_PROXY HTTP プロキシーサーバー (TLS 以外のリ
クエスト)。

string

 - name: namespace
 value: openshift-pipelines
 - name: kind
 value: stepaction
 params:
 - name: URL
 value: $(params.url)
 - name: OUTPUT_PATH
 value: $(workspaces.output.path)

第3章 リゾルバーを使用したリモートパイプライン、タスク、およびステップアクションの指定

107

HTTPS_PROXY HTTPS プロキシーサーバー (TLS リクエ
スト)。

string

NO_PROXY HTTP/HTTPS リクエストのプロキシーを
オプトアウトします。

string

SUBDIRECTOR
Y

タスクが Git リポジトリーを配置する
output ワークスペース内の相対パス。

string

USER_HOME Pod 内の Git ユーザーのホームディレク
トリーへの絶対パス。

string /home/git

DELETE_EXISTI
NG

Git 操作を実行する前に、デフォルトの
ワークスペースにコンテンツが存在する
場合は削除します。

string true

VERBOSE 実行したコマンドをログに記録します。 string false

SSL_VERIFY グローバル http.sslVerify 値。リモート
リポジトリーを信頼していない限り、こ
のパラメーターを false に設定しないで
ください。

string true

URL Git リポジトリー URL string

リビジョン チェックアウトするリビジョン (ブランチ
やタグなど)。

string main

REFSPEC リビジョンをチェックアウトする前にタ
スクが取得するリポジトリーの refspec
文字列。

string

SUBMODULES Git サブモジュールを初期化して取得しま
す。

string true

DEPTH 取得するコミットの数。"シャロークロー
ン" は単一のコミットです。

string 1

SPARSE_CHEC
KOUT_DIRECT
ORIES

"スパースチェックアウト" を実行するた
めの、コンマで区切られたディレクト
リーパターンのリスト。

string

パラメーター 説明 型 デフォルト値

表3.66 git-clone ステップのアクションが返す結果

結果 型 説明

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

108

COMMIT string クローンされた Git リポジトリー内の現在のブラン
チの HEAD にあるコミットの SHA ダイジェスト。

URL string クローンされたリポジトリーの URL。

COMMITTER_DATE string クローンされた Git リポジトリー内の現在のブラン
チの HEAD にあるコミットのエポックタイムスタン
プ。

結果 型 説明

cache-upload および cache-fetch

重要

cache-upload および cache-fetch ステップアクションの使用は、テクノロジープレ
ビュー機能です。テクノロジープレビュー機能は、Red Hat 製品のサービスレベルアグ
リーメント (SLA) の対象外であり、機能的に完全ではないことがあります。Red Hat
は、実稼働環境でこれらを使用することを推奨していません。テクノロジープレビュー
機能は、最新の製品機能をいち早く提供して、開発段階で機能のテストを行い、フィー
ドバックを提供していただくことを目的としています。

Red Hat のテクノロジープレビュー機能のサポート範囲に関する詳細は、テクノロジー
プレビュー機能のサポート範囲 を参照してください。

ビルドプロセスが依存関係を保持するキャッシュディレクトリーを保持するには、cache-upload およ
び cache-fetch ステップアクションを使用し、Amazon Simple Storage Service (S3) バケット、Google
Cloud Services (GCS) バケット、または Open Container Initiative (OCI) リポジトリーに保存します。

cache-upload ステップアクションを使用すると、ステップアクションはビルド内の特定のファイルに
基づいてハッシュを計算します。これらのファイルを選択するには、正規表現を指定する必要がありま
す。cache-upload ステップアクションは、ハッシュでインデックス付けされたキャッシュディレクト
リーのコンテンツを含むイメージを保存します。

cache-fetch ステップアクションを使用すると、ステップアクションは同じハッシュを計算します。次
に、このハッシュのキャッシュされたイメージがすでに利用可能かどうかを確認します。イメージが利
用可能な場合、ステップアクションによってキャッシュされたコンテンツがキャッシュディレクトリー
に設定されます。イメージが利用できない場合は、ディレクトリーはそのまま残ります。

cache-fetch ステップアクションを使用した後、ビルドプロセスを実行できます。キャッシュが正常に
取得された場合、ビルドプロセスで以前にダウンロードした依存関係が含まれます。キャッシュが取得
されなかった場合、ビルドプロセスの通常の手順で依存関係をダウンロードします。

cache-fetch の結果は、キャッシュされたイメージが取得されたかどうかを示します。後続の cache-
upload ステップアクションでは、その結果を使用して、現在のハッシュのキャッシュがすでに利用可
能であった場合は、新しいキャッシュイメージのアップロードをスキップできます。

次のサンプルタスクは、リポジトリーからソースを取得し、キャッシュ (使用可能な場合) を取得し、
Maven ビルドを実行し、キャッシュが取得されなかった場合は、ビルドディレクトリーの新しいキャッ
シュイメージをアップロードします。

第3章 リゾルバーを使用したリモートパイプライン、タスク、およびステップアクションの指定

109

https://access.redhat.com/support/offerings/techpreview/

タスク内の cache-fetch および cache-upload ステップアクションの使用例

apiVersion: tekton.dev/v1
kind: Task
metadata:
 name: java-demo-task
spec:
 workspaces:
 - name: source
 params:
 - name: repo_url
 type: string
 default: https://github.com/sample-organization/sample-java-project.git
 - name: revision
 type: string
 default: main
 - name: registry
 type: string
 default: image-registry.openshift-image-registry.svc:5000/sample-project/mvn-cache
 - name: image
 type: string
 default: openjdk:latest
 - name: buildCommand
 type: string
 default: "maven -Dmaven.repo.local=${LOCAL_CACHE_REPO} install"
 - name: cachePatterns
 type: array
 default: ["**pom.xml"]
 - name: force-cache-upload
 type: string
 default: "false"
 steps:
 - name: create-repo
 image: $(params.image)
 script: |
 mkdir -p $(workspaces.source.path)/repo
 chmod 777 $(workspaces.source.path)/repo
 - name: fetch-repo
 ref:
 resolver: cluster
 params:
 - name: name
 value: git-clone
 - name: namespace
 value: openshift-pipelines
 - name: kind
 value: stepaction
 params:
 - name: OUTPUT_PATH
 value: $(workspaces.source.path)/repo
 - name: URL
 value: $(params.repo_url)
 - name: REVISION
 value: $(params.revision)
 - name: cache-fetch
 ref:

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

110

表3.67 cache-fetch ステップアクションでサポートされているパラメーター

パラメーター 説明 型 デフォルト値

 resolver: cluster
 params:
 - name: name
 value: cache-fetch
 - name: namespace
 value: openshift-pipelines
 - name: kind
 value: stepaction
 params:
 - name: PATTERNS
 value: $(params.cachePatterns)
 - name: SOURCE
 value: oci://$(params.registry):{{hash}}
 - name: CACHE_PATH
 value: $(workspaces.source.path)/cache
 - name: WORKING_DIR
 value: $(workspaces.source.path)/repo
 - name: run-build
 image: $(params.image)
 workingDir: $(workspaces.source.path)/repo
 env:
 - name: LOCAL_CACHE_REPO
 value: $(workspaces.source.path)/cache/repo
 script: |
 set -x
 $(params.buildCommand)
 echo "Cache size is $(du -sh $(workspaces.source.path)/cache)"
 - name: cache-upload
 ref:
 resolver: cluster
 params:
 - name: name
 value: cache-upload
 - name: namespace
 value: openshift-pipelines
 - name: kind
 value: stepaction
 params:
 - name: PATTERNS
 value: $(params.cachePatterns)
 - name: TARGET
 value: oci://$(params.registry):{{hash}}
 - name: CACHE_PATH
 value: $(workspaces.source.path)/cache
 - name: WORKING_DIR
 value: $(workspaces.source.path)/repo
 - name: FORCE_CACHE_UPLOAD
 value: $(params.force-cache-upload)

第3章 リゾルバーを使用したリモートパイプライン、タスク、およびステップアクションの指定

111

パターン ハッシュを計算するファイルを選択する
ための正規表現。たとえば、Go プロジェ
クトの場合、キャッシュを計算するため
に go.mod ファイルを使用できます。こ
の場合、このパラメーターの値は
/go.sum になります (はサブディレ
クトリーを表します (階層は問わない))。

array

ソース キャッシュを取得するためのソース
URI。キャッシュハッシュを指定するには
{{hash}} を使用します。サポートされて
いるタイプは、oci (例:
oci://quay.io/example-user/go-
cache:{{hash}}) と s3 (例:
s3://example-bucket/{{hash}}) です。

string

CACHE_PATH キャッシュコンテンツを抽出するための
パス。通常、このパスはワークスペース
内にあります。

string

WORKING_DIR ハッシュを計算するためのファイルが配
置されているパス。

string

INSECURE "true" の場合、キャッシュの取得に安全
でないモードを使用します。

string "false"

GOOGLE_APPL
ICATION_CRED
ENTIALS

Google 認証情報が保存されているパス。
空の場合は無視されます。

string

AWS_CONFIG_
FILE

AWS 設定ファイルへのパス。空の場合は
無視されます。

string

AWS_SHARED_
CREDENTIALS_
FILE

AWS 認証情報ファイルへのパス。空の場
合は無視されます。

string

BLOB_QUERY_
PARAMS

S3、GCS、または Azure を設定するため
の Blob クエリーパラメーター。S3 アク
セラレーション、FIPS、パススタイルの
アドレス指定などの追加機能には、これ
らのオプションパラメーターを使用しま
す。

string

パラメーター 説明 型 デフォルト値

表3.68 cache-fetch ステップアクションが返す結果

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

112

結果 型 説明

fetched string ステップがキャッシュをフェッチした場合は
"true"、ステップがキャッシュをフェッチしていな
い場合は "false"。

表3.69 cache-upload ステップアクションでサポートされているパラメーター

パラメーター 説明 型 デフォルト値

パターン ハッシュを計算するファイルを選択する
ための正規表現。たとえば、Go プロジェ
クトの場合、キャッシュを計算するため
に go.mod ファイルを使用できます。こ
の場合、このパラメーターの値は
/go.sum になります (はサブディレ
クトリーを表します (階層は問わない))。

array

TARGET キャッシュをアップロードするための
ターゲット URI。{{hash}} を使用して
キャッシュハッシュを指定します。サ
ポートされているタイプは、oci (例:
oci://quay.io/example-user/go-
cache:{{hash}}) と s3 (例:
s3://example-bucket/{{hash}}) です。

string

CACHE_PATH ステップがイメージにパックするキャッ
シュコンテンツのパス。通常、このパス
はワークスペース内にあります。

string

WORKING_DIR ハッシュを計算するためのファイルが配
置されているパス。

string

INSECURE "true" の場合、キャッシュのアップロー
ドに安全でないモードを使用します。

string "false"

FETCHED "true" の場合、このハッシュのキャッ
シュはすでに取得されています。

string "false"

FORCE_CACHE
_UPLOAD

"true" の場合、このステップでは、以前
に取得されたキャッシュであってもアッ
プロードされます。

string "false"

GOOGLE_APPL
ICATION_CRED
ENTIALS

Google 認証情報が保存されているパス。
空の場合は無視されます。

string

AWS_CONFIG_
FILE

AWS 設定ファイルへのパス。空の場合は
無視されます。

string

第3章 リゾルバーを使用したリモートパイプライン、タスク、およびステップアクションの指定

113

AWS_SHARED_
CREDENTIALS_
FILE

AWS 認証情報ファイルへのパス。空の場
合は無視されます。

string

BLOB_QUERY_
PARAMS

S3、GCS、または Azure を設定するため
の Blob クエリーパラメーター。S3 アク
セラレーション、FIPS、パススタイルの
アドレス指定などの追加機能には、これ
らのオプションパラメーターを使用しま
す。

string

パラメーター 説明 型 デフォルト値

cache-upload ステップアクションは結果を返しません。

3.10. バージョン付けされていないタスクとバージョン付けされたタスクと
ステップアクションについて

openshift-pipelines namespace には、バージョン付けされたタスクとステップアクションおよび標準
のバージョン付けされていないのタスクとステップアクションが含まれます。たとえば、Red Hat
OpenShift Pipelines Operator バージョン 1.18 をインストールすると、次のアイテムが作成されます。

buildah-1-18-0 バージョン付けされたタスク

buildah バージョン付けされていないタスク

git-clone-1-18-0 バージョン付けされた StepAction 定義

git-clone バージョン付けされていない StepAction 定義

バージョン付けされていないタスクおよびバージョン付けされたタスクおよびステップアクションに
は、params、workspaces、および steps など、同じメタデータ、動作、仕様があります。ただし、
それらを無効にするか、Operator をアップグレードすると、動作が異なります。

バージョン付けされていないタスクまたはバージョン付けされたタスクおよびステップアクションを実
稼働環境で標準として導入する前に、クラスター管理者はその長所と短所を検討する場合があります。

表3.70 バージョン付けされていないタスクとバージョン付けされたタスクとステップアクションの長所
と短所

 メリット デメリット

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

114

バージョン付けされていないタス
クおよびステップアクション 最新の更新およびバグ修

正でパイプラインをデプ
ロイする場合は、バー
ジョン付けされていない
タスクとステップアク
ションを使用します。

Operator をアップグ
レードすると、バージョ
ン付けされていないタス
クおよびステップアク
ションがアップグレード
されます。これは、複数
のバージョン付けされた
タスクおよびステップア
クションよりも少ないリ
ソースを消費します。

バージョン付けされてい
ないタスクおよびステッ
プアクションを使用する
パイプラインをデプロイ
する場合、自動的にアッ
プグレードされたタスク
とステップアクションが
後方互換性を持たない場
合、Operator のアップ
グレード後にパイプライ
ンが破損する可能性があ
ります。

バージョン付けされたタスクおよ
びステップアクション バージョン更新後も変更

されない実稼働環境のパ
イプラインを優先する場
合は、バージョン管理さ
れたタスクとステップア
クションを使用します。

Operator の新しいバー
ジョンをインストールす
ると、現在のマイナー
バージョンとその直前の
マイナーバージョンの
バージョン付きタスクと
ステップアクションが保
持されます。

以前のバージョンを引き
続き使用する場合は、最
新の機能と重要なセキュ
リティー更新が欠落して
いる可能性があります。

アップグレード後、
Operator は、以前の
バージョン付けされたタ
スクとステップアクショ
ンを管理できません。以
前のバージョンを手動で
削除した場合、復元でき
ません。

アップグレード後、
Operator は以前のマイ
ナーリリースより前の
バージョンからバージョ
ン管理されたタスクとス
テップアクションを削除
できます。新しいバー
ジョンをインストール
し、以前のバージョンの
バージョン付きタスクま
たはステップアクション
を削除すると、以前の
バージョンのバージョン
付きタスクを使用するパ
イプラインは動作しなく
なります。

 メリット デメリット

バージョン付けされていないタスクとバージョン付けされたタスクとステップアクションにはさまざま
な命名規則があり、Red Hat OpenShift Pipelines Operator はそれらを異なる方法でアップグレードし
ます。

表3.71 バージョン付けされていないタスクとバージョン付けされたタスクとステップアクションの違い

第3章 リゾルバーを使用したリモートパイプライン、タスク、およびステップアクションの指定

115

 命名法 アップグレード

バージョン付けされていないタス
クおよびステップアクション

バージョン付けされていないタス
クおよびステップアクションに
は、タスクまたはステップアク
ションの名前のみが含まれます。
たとえば、Operator v1.18 でイン
ストールされる Buildah のバー
ジョン付けされていないタスクの
名前は buildah です。

Operator をアップグレードする
と、バージョン付けされていない
タスクとステップアクションが最
新の変更で更新されます。名前は
変更されません。

バージョン付けされたタスクおよ
びステップアクション

バージョン付けされたタスクおよ
びステップアクションには、名前
の後にバージョンが接尾辞として
含まれます。たとえば、Operator
v1.18 でインストールされた
Buildah のバージョン付きタスク
の名前は buildah-1-18-0 です。

Operator をアップグレードする
と、バージョン管理されたタスク
とステップアクションの最新バー
ジョンがインストールされ、直前
のバージョンが保持され、以前の
バージョンが削除されます。最新
バージョンは、アップグレードさ
れた Operator に対応します。た
とえば、Operator 1.18 をインス
トールすると、buildah-1-18-0
タスクがインストールさ
れ、buildah-1-17-0 タスクは保
持され、buildah-1-16-0 などの
以前のバージョンは削除されま
す。

3.11. 関連情報

OpenShift Pipelines での Tekton Hub の使用

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

116

https://docs.redhat.com/en/documentation/red_hat_openshift_pipelines/1.19/html-single/custom_tekton_hub_instance/#using-tekton-hub-with-openshift-pipelines

第4章 OPENSHIFT PIPELINES での手動承認の使用
パイプラインで手動承認タスクを指定できます。パイプラインがこのタスクに到達すると、一時停止
し、OpenShift Container Platform ユーザー 1 つ以上からの承認を待機します。いずれかのユーザーが
タスクを承認せずに拒否した場合、パイプラインは失敗します。この機能は、manual approval gate
controller によって提供されます。

重要

manual approval gate はテクノロジープレビュー機能です。テクノロジープレビュー機
能は、Red Hat 製品のサービスレベルアグリーメント (SLA) の対象外であり、機能的に
完全ではないことがあります。Red Hat は、実稼働環境でこれらを使用することを推奨
していません。テクノロジープレビュー機能は、最新の製品機能をいち早く提供して、
開発段階で機能のテストを行い、フィードバックを提供していただくことを目的として
います。

Red Hat のテクノロジープレビュー機能のサポート範囲に関する詳細は、テクノロジー
プレビュー機能のサポート範囲 を参照してください。

4.1. MANUAL APPROVAL GATE CONTROLLER の有効化

手動承認タスクを使用するには、まず manual approval gate controller を有効にする必要があります。

前提条件

Red Hat OpenShift Pipelines Operator がクラスターにインストールされている。

oc コマンドラインユーティリティーを使用してクラスターにログオンしている。

openshift-pipelines namespace の管理者権限がある。

手順

1. ManualApprovalGate カスタムリソース (CR) の次のマニフェストを含めて、manual-
approval-gate-cr.yaml という名前のファイルを作成します。

2. 以下のコマンドを実行して、ManualApprovalGate CR を適用します。

3. 次のコマンドを入力して、manual approval gate controller が実行されていることを確認しま
す。

出力例

apiVersion: operator.tekton.dev/v1alpha1
kind: ManualApprovalGate
metadata:
 name: manual-approval-gate
spec:
 targetNamespace: openshift-pipelines

$ oc apply -f manual-approval-gate-cr.yaml

$ oc get manualapprovalgates.operator.tekton.dev

第4章 OPENSHIFT PIPELINES での手動承認の使用

117

https://access.redhat.com/support/offerings/techpreview/

READY ステータスが True であることを確認します。True でない場合は、数分待ってからも
う一度コマンドを実行します。コントローラーが準備完了状態になるまでには、しばらく時間
がかかる場合があります。

4.2. 手動承認タスクの指定

パイプラインで手動承認タスクを指定できます。パイプライン実行のタスク実行がこのタスクに到達す
ると、パイプライン実行は停止し、1 つ以上のユーザーからの承認を待機します。

前提条件

manual approver gate controller を有効にしている。

パイプラインの YAML 仕様を作成している。

手順

以下の例のように、パイプラインに ApprovalTask を指定します。

表4.1 手動承認タスクのパラメーター

パラメーター 型 説明

approvers array タスクを承認できる OpenShift
Container Platform ユーザー。

NAME VERSION READY REASON
manual-approval-gate v0.1.0 True

apiVersion: tekton.dev/v1
kind: Pipeline
metadata:
 name: example-manual-approval-pipeline
spec:
 tasks:
...
 - name: example-manual-approval-task
 taskRef:
 apiVersion: openshift-pipelines.org/v1alpha1
 kind: ApprovalTask
 params:
 - name: approvers
 value:
 - user1
 - user2
 - user3
 - name: description
 value: Example manual approval task - please approve or reject
 - name: numberOfApprovalsRequired
 value: '2'
 - name: timeout
 value: '60m'
...

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

118

description string オプション: 承認タスクの説
明。OpenShift Pipelines は、
タスクを承認または拒否でき
るユーザーに説明を表示しま
す。

numberOfApprovalsRequi
red

string タスクに必要なさまざまな
ユーザーからの承認の数。

timeout string オプション: 承認のタイムアウ
ト期間。この期間中にタスク
が指定の数の承認が受信され
なかった場合、パイプライン
の実行は失敗します。デフォ
ルトのタイムアウトは 1 時間で
す。

パラメーター 型 説明

4.3. 手動承認タスクの承認

承認タスクを含むパイプラインを実行し、実行が承認タスクに到達すると、パイプラインの実行は一時
停止し、ユーザーの承認または拒否を待機します。

ユーザーは、Web コンソールまたは opc コマンドラインユーティリティーを使用してタスクを承認ま
たは拒否できます。

タスクに設定されている承認者のいずれかがタスクを拒否した場合、パイプラインの実行は失敗しま
す。

1 つのユーザーがタスクを承認したが、設定された承認数にまだ達していない場合は、同じユーザーが
タスクを拒否するように変更できるようになっており、パイプラインの実行は失敗します。

4.3.1. Web コンソールを使用した手動承認タスクの承認

OpenShift Container Platform Web コンソールを使用して、手動承認タスクを承認または拒否できま
す。

手動承認タスクの承認者としてリストされており、パイプライン実行がこのタスクに到達すると、Web
コンソールに通知が表示されます。承認が必要なタスクのリストを表示し、これらのタスクを承認また
は拒否できます。

前提条件

OpenShift Pipelines コンソールプラグインを有効にしている。

手順

1. 次のいずれかのアクションを完了して、承認できるタスクのリストを表示します。

承認が必要なタスクに関する通知が表示されたら、この通知の Go to Approvals タブ をク
リックします。

Administrator パースペクティブメニューで、Pipelines → Pipelines を選択してから

第4章 OPENSHIFT PIPELINES での手動承認の使用

119

Administrator パースペクティブメニューで、Pipelines → Pipelines を選択してから
Approvals タブをクリックします。

Developer パースペクティブメニューで、Pipelines を選択し、Approvals タブをクリック
します。

PipelineRun details ウィンドウの Details タブで、手動承認タスクを表す四角形をクリッ
クします。リストには、このタスクの承認のみが表示されます。

PipelineRun details ウィンドウで、ApprovalTasks タブをクリックします。リストには、
このパイプライン実行の承認のみが表示されます。

2. 承認タスクのリストで、承認するタスクを表す行で、 アイコンをクリックし、次のいず
れかのオプションを選択します。

タスクを承認するには、Approve を選択します。

タスクを拒否するには、Reject を選択します。

3. Reason フィールドにメッセージを入力します。

4. Submit をクリックします。

関連情報

OpenShift Pipelines コンソールプラグインの有効化

4.3.2. コマンドラインを使用した手動承認タスクの承認

opc コマンドラインユーティリティーを使用して、手動承認タスクを承認または拒否できます。自分が
承認者であるタスクのリストを表示し、承認待ちのタスクを承認または拒否できます。

前提条件

opc コマンドラインユーティリティーをダウンロードしてインストールしている。このユー
ティリティーは、tkn コマンドラインユーティリティーと同じパッケージで使用できます。

oc コマンドラインユーティリティーを使用してクラスターにログオンしている。

手順

1. 次のコマンドを入力して、自分が承認者としてリストされている手動承認タスクのリストを表
示します。

出力例

$ opc approvaltask list

NAME NumberOfApprovalsRequired PendingApprovals Rejected
STATUS
manual-approval-pipeline-01w6e1-task-2 2 0 0 Approved

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

120

2. オプション: 手動承認タスクに関する情報 (名前、namespace、パイプライン実行名、承認者の
リスト、現在のステータスなど) を表示するには、次のコマンドを入力します。

3. 必要に応じて手動承認タスクを承認または拒否します。

手動承認タスクを承認するには、以下のコマンドを入力します。

オプションで、-m パラメーターを使用して承認のメッセージを指定できます。

手動承認タスクを拒否するには、次のコマンドを入力します。

オプションで、-m パラメーターを使用して拒否のメッセージを指定できます。

関連情報

tkn のインストール

manual-approval-pipeline-6ywv82-task-2 2 2 0 Rejected
manual-approval-pipeline-90gyki-task-2 2 2 0 Pending
manual-approval-pipeline-jyrkb3-task-2 2 1 1 Rejected

$ opc approvaltask describe <approval_task_name>

$ opc approvaltask approve <approval_task_name>

$ opc approvaltask approve <approval_task_name> -m <message>

$ opc approvaltask reject <approval_task_name>

$ opc approvaltask reject <approval_task_name> -m <message>

第4章 OPENSHIFT PIPELINES での手動承認の使用

121

https://docs.redhat.com/en/documentation/red_hat_openshift_pipelines/1.19/html-single/pipelines_cli_tkn_reference/#installing-tkn

第5章 パイプラインでの RED HAT エンタイトルメントの使用
Red Hat Enterprise Linux (RHEL) エンタイトルメントをお持ちの場合は、これらのエンタイトルメント
を使用してパイプライン内にコンテナーイメージを構築できます。

Insight Operator は、Simple Common Access (SCA) からこの Operator にエンタイトルメントをイン
ポートした後、エンタイトルメントを自動的に管理します。この Operator は、openshift-config-
managed namespace に etc-pki-entitlement という名前のシークレットを提供します。

次の 2 つの方法のいずれかで、パイプラインで Red Hat エンタイトルメントを使用できます。

シークレットをパイプラインの namespace に手動でコピーします。パイプライン namespace
の数が限られている場合は、この方法が最も複雑性が低くなっています。

Shared Resources Container Storage Interface (CSI) Driver Operator を使用して、namespace
間でシークレットを自動的に共有します。

5.1. 前提条件

oc コマンドラインツールを使用して OpenShift Container Platform クラスターにログインして
いる。

OpenShift Container Platform クラスターで Insights Operator 機能を有効にしている。Shared
Resources CSI Driver Operator を使用して namespace 間でシークレットを共有する場合は、
Shared Resources CSI ドライバーも有効にする必要があります。Insights Operator や Shared
Resources CSI Driver などの機能を有効にする方法は、フィーチャーゲートを使用した機能の有
効化 を参照してください。

注記

Insights Operator を有効にした後、クラスターがこの Operator を使用してすべ
てのノードを更新するまで、しばらく待つ必要があります。次のコマンドを入力
すると、すべてのノードのステータスを監視できます。

Insights Operator がアクティブであることを確認するには、次のコマンドを入力
して、insights-operator Pod が openshift-insights namespace で実行してい
ることを確認します。

Red Hat エンタイトルメントの Insights Operator へのインポートを設定しました。エンタイト
ルメントのインポートに関する詳細は、Insights Operator を使用した Simple Content Access
エンタイトルメントのインポート を参照してください。

注記

Insights Operator がエンタイトルメントを利用可能にし、アクティブであること
を確認するには、以下のコマンドを入力して etc-pki-entitlement シークレット
が openshift-config-managed namespace に存在することを確認します。

$ oc get nodes -w

$ oc get pods -n openshift-insights

$ oc get secret etc-pki-entitlement -n openshift-config-managed

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

122

https://docs.openshift.com/container-platform/latest/nodes/clusters/nodes-cluster-enabling-features.html
https://docs.openshift.com/container-platform/latest/support/remote_health_monitoring/insights-operator-simple-access.html

1

5.2. ETC-PKI-ENTITLEMENT シークレットの手動コピーによる RED HAT
エンタイトルメントの使用

etc-pki-entitlement シークレットを openshift-config-managed namespace からパイプラインの
namespace にコピーできます。次に、Buildah タスクにこのシークレットを使用するようにパイプライ
ンを設定できます。

前提条件

システムに jq パッケージをインストールしている。このパッケージは Red Hat Enterprise
Linux (RHEL) で利用できます。

手順

1. 次のコマンドを実行して、etc-pki-entitlement シークレットを openshift-config-managed
namespace からパイプラインの namespace にコピーします。

<pipeline_namespace> は、パイプラインの namespace に置き換えます。

2. Buildah タスク定義では、openshift-pipelines namespace で提供されている buildah タスクま
たはこのタスクのコピーを使用して、次の例に示すように rhel-entitlement ワークスペースを
定義します。

3. タスク実行または Buildah タスクを実行するパイプライン実行で、次の例のように、etc-pki-
entitlement シークレットを rhel-entitlement ワークスペースに割り当てます。

Red Hat エンタイトルメントを使用するパイプライン実行定義の例 (パイプラインとタスクの
定義を含む)

$ oc get secret etc-pki-entitlement -n openshift-config-managed -o json | \
 jq 'del(.metadata.resourceVersion)' | jq 'del(.metadata.creationTimestamp)' | \
 jq 'del(.metadata.uid)' | jq 'del(.metadata.namespace)' | \
 oc -n <pipeline_namespace> create -f - 1

apiVersion: tekton.dev/v1
kind: PipelineRun
metadata:
 name: buildah-pr-test
spec:
 workspaces:
 - name: shared-workspace
 volumeClaimTemplate:
 spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi
 - name: dockerconfig
 secret:
 secretName: regred
 - name: rhel-entitlement 1
 secret:

第5章 パイプラインでの RED HAT エンタイトルメントの使用

123

1

2

3

パイプライン実行での rhel-entitlement ワークスペースの定義 (ワークスペースに etc-pki-
entitlement シークレットを割り当てます)

パイプライン定義の rhel-entitlement ワークスペースの定義

タスク定義の rhel-entitlement ワークスペースの定義

5.3. 共有リソース CSI ドライバー OPERATOR を使用してシークレットを
共有することによる RED HAT エンタイトルメントの使用

Shared Resources Container Storage Interface (CSI) Driver Operator を使用して、openshift-config-
managed namespace から他の namespace への etc-pki-entitlement シークレットの共有を設定できま
す。次に、Buildah タスクにこのシークレットを使用するようにパイプラインを設定できます。

前提条件

クラスター管理者のパーミッションを持つユーザーとして oc コマンドラインユーティリ
ティーを使用して、OpenShift Container Platform クラスターにログインしている。

OpenShift Container Platform クラスターで Shared Resources CSI Driver Operator を有効にし
ている。

手順

1. 次のコマンドを実行して、etc-pki-entitlement シークレットを共有するための SharedSecret

 secretName: etc-pki-entitlement
 pipelineSpec:
 workspaces:
 - name: shared-workspace
 - name: dockerconfig
 - name: rhel-entitlement 2
 tasks:
...
 - name: buildah
 taskRef:
 resolver: cluster
 params:
 - name: kind
 value: task
 - name: name
 value: buildah
 - name: namespace
 value: openshift-pipelines
 workspaces:
 - name: source
 workspace: shared-workspace
 - name: dockerconfig
 workspace: dockerconfig
 - name: rhel-entitlement 3
 workspace: rhel-entitlement
 params:
 - name: IMAGE
 value: <image_where_you_want_to_push>

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

124

1

1

1. 次のコマンドを実行して、etc-pki-entitlement シークレットを共有するための SharedSecret
カスタムリソース (CR) を作成します。

2. 次のコマンドを実行して、共有シークレットへのアクセスを許可する RBAC ロールを作成しま
す。

<pipeline_namespace> は、パイプラインの namespace に置き換えます。

3. 次のコマンドを実行して、pipeline サービスアカウントにロールを割り当てます。

<pipeline-namespace> をパイプラインの namespace に置き換えます。

注記

OpenShift Pipelines のデフォルトのサービスアカウントを変更した場合、また
はパイプライン実行またはタスク実行でカスタムサービスアカウントを定義した
場合は、pipeline アカウントではなくこのアカウントにロールを割り当てます。

4. Buildah タスク定義では、openshift-pipelines namespace で提供されている buildah タスクま

$ oc apply -f - <<EOF
apiVersion: sharedresource.openshift.io/v1alpha1
kind: SharedSecret
metadata:
 name: shared-rhel-entitlement
spec:
 secretRef:
 name: etc-pki-entitlement
 namespace: openshift-config-managed
EOF

$ oc apply -f - <<EOF
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: shared-resource-rhel-entitlement
 namespace: <pipeline_namespace> 1
rules:
 - apiGroups:
 - sharedresource.openshift.io
 resources:
 - sharedsecrets
 resourceNames:
 - shared-rhel-entitlement
 verbs:
 - use
EOF

$ oc create rolebinding shared-resource-rhel-entitlement --role=shared-shared-resource-rhel-
entitlement \
 --serviceaccount=<pipeline-namespace>:pipeline 1

第5章 パイプラインでの RED HAT エンタイトルメントの使用

125

4. Buildah タスク定義では、openshift-pipelines namespace で提供されている buildah タスクま
たはこのタスクのコピーを使用して、次の例に示すように rhel-entitlement ワークスペースを
定義します。

5. タスク実行または Buildah タスクを実行するパイプライン実行で、次の例のように、共有シー
クレットを rhel-entitlement ワークスペースに割り当てます。

Red Hat エンタイトルメントを使用するパイプライン実行定義の例 (パイプラインとタスクの
定義を含む)

apiVersion: tekton.dev/v1
kind: PipelineRun
metadata:
 name: buildah-pr-test-csi
spec:
 workspaces:
 - name: shared-workspace
 volumeClaimTemplate:
 spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi
 - name: dockerconfig
 secret:
 secretName: regred
 - name: rhel-entitlement 1
 csi:
 readOnly: true
 driver: csi.sharedresource.openshift.io
 volumeAttributes:
 sharedSecret: shared-rhel-entitlement
 pipelineSpec:
 workspaces:
 - name: shared-workspace
 - name: dockerconfig
 - name: rhel-entitlement 2
 tasks:
...
 - name: buildah
 taskRef:
 resolver: cluster
 params:
 - name: kind
 value: task
 - name: name
 value: buildah
 - name: namespace
 value: openshift-pipelines
 workspaces:
 - name: source
 workspace: shared-workspace
 - name: dockerconfig
 workspace: dockerconfig
 - name: rhel-entitlement 3

Red Hat OpenShift Pipelines 1.19 CI/CD パイプラインの作成

126

1

2

3

パイプライン実行における rhel-entitlement ワークスペースの定義。shared-rhel-entitlement
CSI 共有シークレットがワークスペースに割り当てられます。

パイプライン定義の rhel-entitlement ワークスペースの定義

タスク定義の rhel-entitlement ワークスペースの定義

5.4. 関連情報

Simple content access

Insights Operator の使用

Insights Operator を使用した Simple Content Access エンタイトルメントのインポート

Shared Resource CSI Driver Operator

OpenShift Pipelines のデフォルトサービスアカウントの変更

 workspace: rhel-entitlement
 params:
 - name: IMAGE
 value: <image_where_you_want_to_push>

第5章 パイプラインでの RED HAT エンタイトルメントの使用

127

https://access.redhat.com/articles/simple-content-access
https://docs.openshift.com/container-platform/4.14/support/remote_health_monitoring/using-insights-operator.html
https://docs.openshift.com/container-platform/latest/support/remote_health_monitoring/insights-operator-simple-access.html
https://docs.openshift.com/container-platform/4.14/storage/container_storage_interface/ephemeral-storage-shared-resource-csi-driver-operator.html
https://docs.redhat.com/en/documentation/red_hat_openshift_pipelines/1.19/html-single/installing_and_configuring/#op-changing-default-service-account_customizing-configurations-in-the-tektonconfig-cr

	目次
	第1章 OPENSHIFT PIPELINES を使用したアプリケーションの CI/CD ソリューションの作成
	1.1. 前提条件
	1.2. プロジェクトの作成およびパイプラインのサービスアカウントの確認
	1.3. パイプラインタスクの作成
	1.4. パイプラインのアセンブル
	1.5. 制限された環境でパイプラインを実行するためのイメージのミラーリング
	1.6. パイプラインの実行
	1.7. トリガーのパイプラインへの追加
	1.8. 複数の NAMESPACE を提供するようにイベントリスナーを設定する
	1.9. WEBHOOK の作成
	1.10. パイプライン実行のトリガー
	1.11. ユーザー定義プロジェクトでの TRIGGERS のイベントリスナーのモニタリングの有効化
	1.12. GITHUB INTERCEPTOR でのプルリクエスト機能の設定
	1.12.1. GitHub Interceptor を使用したプルリクエストのフィルタリング
	1.12.2. GitHub Interceptors を使用したプルリクエストの検証

	1.13. 関連情報

	第2章 WEB コンソールでの RED HAT OPENSHIFT PIPELINES の使用
	2.1. DEVELOPER パースペクティブで RED HAT OPENSHIFT PIPELINES を使用する
	前提条件
	2.1.1. Pipeline Builder を使用した Pipeline の構築
	2.1.2. アプリケーションとともに OpenShift Pipeline を作成する
	2.1.3. パイプラインを含む GitHub リポジトリーの追加
	2.1.4. 開発者パースペクティブを使用したパイプラインの使用
	2.1.5. Pipelines ビューからのパイプラインの開始
	2.1.6. Topology ビューからパイプラインを開始する
	2.1.7. Topology ビューからのパイプラインとの対話
	2.1.8. Pipeline の編集
	2.1.9. Pipeline の削除

	2.2. 関連情報
	2.3. ADMINISTRATOR パースペクティブでのパイプラインテンプレートの作成
	2.4. WEB コンソールのパイプライン実行に関する統計情報
	2.4.1. OpenShift Pipelines コンソールプラグインの有効化
	2.4.2. すべてのパイプラインの統計をまとめて表示
	2.4.3. 特定のパイプラインの統計の表示

	第3章 リゾルバーを使用したリモートパイプライン、タスク、およびステップアクションの指定
	3.1. TEKTON カタログからのリモートパイプライン、タスク、またはステップアクションの指定
	3.1.1. ハブリゾルバーの設定
	3.1.2. ハブリゾルバーを使用したリモートパイプライン、タスク、またはステップアクションの指定

	3.2. TEKTON バンドルからのリモートパイプライン、タスク、またはステップアクションの指定
	3.2.1. バンドルリゾルバーの設定
	3.2.2. バンドルリゾルバーを使用したリモートパイプライン、タスク、またはステップアクションの指定

	3.3. 匿名 GIT クローンでのリモートパイプライン、タスク、またはステップアクションの指定
	3.3.1. 匿名 Git クローン作成用の Git リゾルバーの設定
	3.3.2. 匿名クローン作成に Git リゾルバーを使用したリモートパイプライン、タスク、またはステップアクションの指定

	3.4. 認証された GIT API でのリモートパイプライン、タスク、またはステップアクションの指定
	3.4.1. 認証された API の Git リゾルバーの設定
	3.4.2. 複数の Git プロバイダーの設定
	3.4.3. 認証された SCM API で Git リゾルバーを使用したリモートパイプライン、タスク、またはステップアクションの指定
	3.4.4. 複数の Git プロバイダーの指定
	3.4.5. Git リゾルバーの設定を上書きする認証済み SCM API を使用した Git リゾルバーでのリモートパイプラインまたはタスクの指定

	3.5. HTTP リゾルバーを使用したリモートパイプライン、タスク、またはステップアクションの指定
	3.5.1. HTTP リゾルバーの設定
	3.5.2. HTTP Resolver でのリモートパイプライン、タスク、またはステップアクションの指定

	3.6. 同じクラスターからのパイプライン、タスク、またはステップアクションの指定
	3.6.1. クラスターリゾルバーの設定
	3.6.2. クラスターリゾルバーを使用した同じクラスターからのパイプライン、タスク、またはステップアクションの指定

	3.7. OPENSHIFT PIPELINES NAMESPACE で提供されるタスク
	buildah
	git-cli
	git-clone
	kn
	kn-apply
	maven
	openshift-client
	s2i-dotnet
	s2i-go
	s2i-java
	s2i-nodejs
	s2i-perl
	s2i-php
	s2i-python
	s2i-ruby
	skopeo-copy
	tkn

	3.8. OPENSHIFT PIPELINES NAMESPACE で提供されるコミュニティータスク
	argocd-task-sync-and-wait
	helm-upgrade-from-repo
	helm-upgrade-from-source
	jib-maven
	kubeconfig-creator
	pull-request
	trigger-jenkins-job

	3.9. OPENSHIFT PIPELINES で提供されるステップアクション定義
	git-clone
	cache-upload および cache-fetch

	3.10. バージョン付けされていないタスクとバージョン付けされたタスクとステップアクションについて
	3.11. 関連情報

	第4章 OPENSHIFT PIPELINES での手動承認の使用
	4.1. MANUAL APPROVAL GATE CONTROLLER の有効化
	4.2. 手動承認タスクの指定
	4.3. 手動承認タスクの承認
	4.3.1. Web コンソールを使用した手動承認タスクの承認
	4.3.2. コマンドラインを使用した手動承認タスクの承認

	第5章 パイプラインでの RED HAT エンタイトルメントの使用
	5.1. 前提条件
	5.2. ETC-PKI-ENTITLEMENT シークレットの手動コピーによる RED HAT エンタイトルメントの使用
	5.3. 共有リソース CSI ドライバー OPERATOR を使用してシークレットを共有することによる RED HAT エンタイトルメントの使用
	5.4. 関連情報

