이 콘텐츠는 선택한 언어로 제공되지 않습니다.

Chapter 4. Serving and chatting with your new model


You must deploy the model to your machine by serving the model. This deploys the model and makes the model available for interacting and chatting.

4.1. Serving the new model

To interact with your new model, you must activate the model in a machine through serving. The ilab model serve command starts a vLLM server that allows you to chat with the model.

Prerequisites

  • You installed RHEL AI with the bootable container image.
  • You initialized InstructLab.
  • You customized your taxonomy tree, ran synthetic data generation, trained, and evaluated your new model.
  • You need root user access on your machine.

Procedure

  • You can serve the model by running the following command:

    $ ilab model serve --model-path <path-to-best-performed-checkpoint>

    where:

    <path-to-best-performed-checkpoint>

    Specify the full path to the checkpoint you built after training. Your new model is the best performed checkpoint with its file path displayed after training.

    Example command:

    $ ilab model serve --model-path ~/.local/share/instructlab/phased/phase2/checkpoints/hf_format/samples_1945/

    Important

    Ensure you have a slash / at the end of your model path.

    Example output of the ilab model serve command

    $ ilab model serve --model-path ~/.local/share/instructlab/phased/phase2/checkpoints/hf_format/<checkpoint>
    INFO 2024-03-02 02:21:11,352 lab.py:201 Using model /home/example-user/.local/share/instructlab/checkpoints/hf_format/checkpoint_1945 with -1 gpu-layers and 4096 max context size.
    Starting server process
    After application startup complete see http://127.0.0.1:8000/docs for API.
    Press CTRL+C to shut down the server.

4.2. Chatting with the new model

You can chat with your model that has been trained with your data.

Prerequisites

  • You installed RHEL AI with the bootable container image.
  • You initialized InstructLab.
  • You customized your taxonomy tree, ran synthetic data generated, trained and evaluated your new model.
  • You served your checkpoint model.
  • You need root user access on your machine.

Procedure

  1. Since you are serving the model in one terminal window, you must open a new terminal window to chat with the model.
  2. To chat with your new model, run the following command:

    $ ilab model chat --model <path-to-best-performed-checkpoint-file>

    where:

    <path-to-best-performed-checkpoint-file>

    Specify the new model checkpoint file you built after training. Your new model is the best performed checkpoint with its file path displayed after training.

    Example command:

    $ ilab model chat --model ~/.local/share/instructlab/phased/phase2/checkpoints/hf_format/samples_1945

  3. Example output of the InstructLab chatbot

    $ ilab model chat
    ╭────────────────────────────────────────────────────────────────────────────────────────────────────────────────── system ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮
    │ Welcome to InstructLab Chat w/ CHECKPOINT_1945 (type /h for help)                                                                                                                                                                    │
    ╰────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
    >>>                                                                                                                                                                                                                        [S][default]

    Type exit to leave the chatbot.

Red Hat logoGithubRedditYoutubeTwitter

자세한 정보

평가판, 구매 및 판매

커뮤니티

Red Hat 문서 정보

Red Hat을 사용하는 고객은 신뢰할 수 있는 콘텐츠가 포함된 제품과 서비스를 통해 혁신하고 목표를 달성할 수 있습니다.

보다 포괄적 수용을 위한 오픈 소스 용어 교체

Red Hat은 코드, 문서, 웹 속성에서 문제가 있는 언어를 교체하기 위해 최선을 다하고 있습니다. 자세한 내용은 다음을 참조하세요.Red Hat 블로그.

Red Hat 소개

Red Hat은 기업이 핵심 데이터 센터에서 네트워크 에지에 이르기까지 플랫폼과 환경 전반에서 더 쉽게 작업할 수 있도록 강화된 솔루션을 제공합니다.

© 2024 Red Hat, Inc.