검색

이 콘텐츠는 선택한 언어로 제공되지 않습니다.

Chapter 2. Configuring the Overcloud before Creation

download PDF

The following chapter provides the configuration required before running the openstack overcloud deploy command. This includes preparing nodes for provisioning, configuring an IPv6 address on the Undercloud, and creating a network environment file that defines the IPv6 parameters for the Overcloud.

2.1. Initializing the Stack User

Log into the director host as the stack user and run the following command to initialize your director configuration:

$ source ~/stackrc

This sets up environment variables containing authentication details to access the director’s CLI tools.

2.2. Configuring an IPv6 Address on the Undercloud

The Undercloud requires access to the Overcloud’s Public API, which is on the External network. To accomplish this, the Undercloud host requires an IPv6 address on the interface accessing the External network.

Note

The Provisioning network still requires IPv4 connectivity for every node. The Undercloud and the Overcloud nodes use this network for PXE boot, introspection, and deployment. In addition, the nodes use this network to access DNS and NTP services over IPv4.

Native VLAN or Dedicated Interface

If the Undercloud uses a native VLAN or a dedicated interface attached to the External network, use the ip command to add an IPv6 address to the interface. In this example, the dedicated interface is eth0:

$ sudo ip link set dev eth0 up; sudo ip addr add 2001:db8::1/64 dev eth0

Trunked VLAN Interface

If the Undercloud uses a trunked VLAN on the same interface as the control plane bridge (br-ctlplane) to access the External network, create a new VLAN interface, attach it to the control plane, and add an IPv6 address to the VLAN. For example, our scenario uses 100 for the External network’s VLAN ID:

$ sudo ovs-vsctl add-port br-ctlplane vlan100 tag=100 -- set interface vlan100 type=internal
$ sudo ip l set dev vlan100 up; sudo ip addr add 2001:db8::1/64 dev vlan100

Confirming the IPv6 Address

Confirm the addition of the IPv6 address with the ip command:

$ ip addr

The IPv6 address appears on the chosen interface.

Setting a Persistent IPv6 Address

In addition to the above, you might want to make the IPv6 address permanent. In this case, modify or create the appropriate interface file in /etc/sysconfig/network-scripts/ (In our example, either ifcfg-eth0 or ifcfg-vlan100). Include the following lines:

IPV6INIT=yes
IPV6ADDR=2001:db8::1/64

For more information, see How do I configure a network interface for IPv6? on the Red Hat Customer Portal.

2.3. Setting up your Environment

This section uses a cutdown version of the process from Configuring Basic Overcloud Requirements with the CLI Tools in the Director Installation and Usage.

Use the following workflow to setup your environment:

  • Create a node definition template and register blank nodes in the director.
  • Inspect hardware of all nodes.
  • Manually tag nodes into roles.
  • Create flavors and tag them into roles.

2.3.1. Registering Nodes

A node definition template (instackenv.json) is a JSON format file and contains the hardware and power management details for registering nodes. For example:

{
    "nodes":[
        {
            "mac":[
                "bb:bb:bb:bb:bb:bb"
            ],
            "cpu":"4",
            "memory":"6144",
            "disk":"40",
            "arch":"x86_64",
            "pm_type":"pxe_ipmitool",
            "pm_user":"admin",
            "pm_password":"p@55w0rd!",
            "pm_addr":"192.0.2.205"
        },
        {
            "mac":[
                "cc:cc:cc:cc:cc:cc"
            ],
            "cpu":"4",
            "memory":"6144",
            "disk":"40",
            "arch":"x86_64",
            "pm_type":"pxe_ipmitool",
            "pm_user":"admin",
            "pm_password":"p@55w0rd!",
            "pm_addr":"192.0.2.206"
        },
        {
            "mac":[
                "dd:dd:dd:dd:dd:dd"
            ],
            "cpu":"4",
            "memory":"6144",
            "disk":"40",
            "arch":"x86_64",
            "pm_type":"pxe_ipmitool",
            "pm_user":"admin",
            "pm_password":"p@55w0rd!",
            "pm_addr":"192.0.2.207"
        },
        {
            "mac":[
                "ee:ee:ee:ee:ee:ee"
            ],
            "cpu":"4",
            "memory":"6144",
            "disk":"40",
            "arch":"x86_64",
            "pm_type":"pxe_ipmitool",
            "pm_user":"admin",
            "pm_password":"p@55w0rd!",
            "pm_addr":"192.0.2.208"
        }
        {
            "mac":[
                "ff:ff:ff:ff:ff:ff"
            ],
            "cpu":"4",
            "memory":"6144",
            "disk":"40",
            "arch":"x86_64",
            "pm_type":"pxe_ipmitool",
            "pm_user":"admin",
            "pm_password":"p@55w0rd!",
            "pm_addr":"192.0.2.209"
        }
        {
            "mac":[
                "gg:gg:gg:gg:gg:gg"
            ],
            "cpu":"4",
            "memory":"6144",
            "disk":"40",
            "arch":"x86_64",
            "pm_type":"pxe_ipmitool",
            "pm_user":"admin",
            "pm_password":"p@55w0rd!",
            "pm_addr":"192.0.2.210"
        }
    ]
}
Note

The Provisioning network uses IPv4 addresses. The IPMI addresses must also be IPv4 addresses, and they must either be directly attached or reachable through routing over the Provisioning network.

After creating the template, save the file to the stack user’s home directory (/home/stack/instackenv.json), then import it into the director. Use the following command to accomplish this:

$ openstack overcloud node import ~/instackenv.json

This imports the template and registers each node from the template into the director.

Assign the kernel and ramdisk images to all nodes:

$ openstack overcloud node configure

The nodes are now registered and configured in the director.

2.3.2. Inspecting the Hardware of Nodes

After registering the nodes, inspect the hardware attribute of each node. Run the following command to inspect the hardware attributes of each node:

$ openstack overcloud node introspect --all-manageable
Important

The nodes must be in the manageable state. Make sure this process runs to completion. This process usually takes 15 minutes for bare metal nodes.

2.3.3. Manually Tagging the Nodes

After registering and inspecting the hardware of each node, tag them into specific profiles. These profile tags match your nodes to flavors, and in turn the flavors are assigned to a deployment role.

Retrieve a list of your nodes to identify their UUIDs:

$ ironic node-list

To manually tag a node to a specific profile, add a profile option to the properties/capabilities parameter for each node. For example, to tag three nodes to use a controller profile and one node to use a compute profile, use the following commands:

$ ironic node-update 1a4e30da-b6dc-499d-ba87-0bd8a3819bc0 add properties/capabilities='profile:control,boot_option:local'
$ ironic node-update 6faba1a9-e2d8-4b7c-95a2-c7fbdc12129a add properties/capabilities='profile:control,boot_option:local'
$ ironic node-update 5e3b2f50-fcd9-4404-b0a2-59d79924b38e add properties/capabilities='profile:control,boot_option:local'
$ ironic node-update 484587b2-b3b3-40d5-925b-a26a2fa3036f add properties/capabilities='profile:compute,boot_option:local'
$ ironic node-update d010460b-38f2-4800-9cc4-d69f0d067efe add properties/capabilities='profile:compute,boot_option:local'
$ ironic node-update d930e613-3e14-44b9-8240-4f3559801ea6 add properties/capabilities='profile:compute,boot_option:local'

The addition of the profile:compute and profile:control options tag the nodes into each respective profiles.

Note

As an alternative to manual tagging, use the automatic profile tagging to tag larger numbers of nodes based on benchmarking data.

2.4. Configuring the Network

This section examines the network configuration for the Overcloud. This includes isolating our services to use specific network traffic and configuring the Overcloud with our IPv6 options.

2.4.1. Configuring Composable Network Details

  1. Copy the default network_data file:

    $ cp /usr/share/openstack-tripleo-heat-templates/network_data.yaml /home/stack/.
  2. Edit the local copy of the network_data.yaml file and modify the parameters to suit your IPv6 networking requirements. For example, the External network contains the following default network details:

    - name: External
      vip: true
      name_lower: external
      vlan: 10
      ipv6: true
      ipv6_subnet: '2001:db8:fd00:1000::/64'
      ipv6_allocation_pools: [{'start': '2001:db8:fd00:1000::10', 'end': '2001:db8:fd00:1000:ffff:ffff:ffff:fffe'}]
      gateway_ipv6: '2001:db8:fd00:1000::1'
    • name is the only mandatory value, however you can also use name_lower to normalize names for readability. For example, changing InternalApi to internal_api.
    • vip: true creates a virtual IP address (VIP) on the new network with the remaining parameters setting the defaults for the new network.
    • ipv6 defines whether to enable IPv6.
    • ipv6_subnet and ipv6_allocation_pools, and gateway_ip6 set the default IPv6 subnet and IP range for the network.

Include the custom network_data file with your deployment using the -n option. Without the -n option, the deployment command uses the default network details.

2.4.2. Network Isolation

The overcloud assigns services to the provisioning network by default. However, Red Hat OpenStack Platform director can divide overcloud network traffic into isolated networks. These networks are defined in a file that you include in the deployment command line, by default named network_data.yaml.

When services are listening on networks using IPv6 addresses, you must provide parameter defaults to indicate the service is running on an IPv6 network. The network each service runs on is defined by the file network/service_net_map.yaml, and may be overridden by declaring parameter defaults for individual ServiceNetMap entries. These services require the parameter default to be set in an environment file:

parameter_defaults:
  # Enable IPv6 for Ceph.
  CephIPv6: True
  # Enable IPv6 for Corosync. This is required when Corosync is using an IPv6 IP in the cluster.
  CorosyncIPv6: True
  # Enable IPv6 for MongoDB. This is required when MongoDB is using an IPv6 IP.
  MongoDbIPv6: True
  # Enable various IPv6 features in Nova.
  NovaIPv6: True
  # Enable IPv6 environment for RabbitMQ.
  RabbitIPv6: True
  # Enable IPv6 environment for Memcached.
  MemcachedIPv6: True
  # Enable IPv6 environment for MySQL.
  MysqlIPv6: True
  # Enable IPv6 environment for Manila
  ManilaIPv6: True
  # Enable IPv6 environment for Redis.
  RedisIPv6: True

The environments/network-isolation.j2.yaml file in the director’s core Heat templates is a Jinja2 file that defines all ports and VIPs for each IPv6 network in your composable network file. When rendered, it results in a network-isolation.yaml file in the same location with the full resource registry.

2.4.3. Configuring Interfaces

The Overcloud requires a set of network interface templates. The director contains a set of Jinja2-based Heat templates, which render based on your network_data file:

NIC directoryDescriptionEnvironment file

single-nic-vlans

Single NIC (nic1) with control plane and VLANs attached to default Open vSwitch bridge.

environments/net-single-nic-with-vlans-v6.j2.yaml

single-nic-linux-bridge-vlans

Single NIC (nic1) with control plane and VLANs attached to default Linux bridge.

environments/net-single-nic-linux-bridge-with-vlans-v6.yaml

bond-with-vlans

Control plane attached to nic1. Default Open vSwitch bridge with bonded NIC configuration (nic2 and nic3) and VLANs attached.

environments/net-bond-with-vlans-v6.yaml

multiple-nics

Control plane attached to nic1. Assigns each sequential NIC to each network defined in the network_data file. By default, this is Storage to nic2, Storage Management to nic3, Internal API to nic4, Tenant to nic5 on the br-tenant bridge, and External to nic6 on the default Open vSwitch bridge.

environments/net-multiple-nics-v6.yaml

For this example, we use the sinle-nic-vlans template collection.

2.4.4. Configuring the IPv6 Isolated Network

The default Heat template collection contains a Jinja2-based environment file for the default networking configuration. This file is environments/network-environment.j2.yaml. When rendered with our network_data file, it results in a standard YAML file called network-environment.yaml. Some parts of this file might require overrides, which is why you should create your own custom network-environment.yaml file. For this scenario, create a custom environment file (/home/stack/network-environment.yaml) with the following details:

parameter_defaults:
  DnsServers: ["8.8.8.8","8.8.4.4"]
  ControlPlaneDefaultRoute: 192.0.2.1
  ControlPlaneSubnetCidr: "24"
  EC2MetadataIp: 192.0.2.1

The parameter_defaults section contains the customization for certain services that remain on IPv4.

2.5. Completing Overcloud Configuration

This completes the necessary steps to configure an IPv6-based Overcloud. The next chapter uses the openstack overcloud deploy command to create the Overcloud using the configuration from this chapter.

Red Hat logoGithubRedditYoutubeTwitter

자세한 정보

평가판, 구매 및 판매

커뮤니티

Red Hat 문서 정보

Red Hat을 사용하는 고객은 신뢰할 수 있는 콘텐츠가 포함된 제품과 서비스를 통해 혁신하고 목표를 달성할 수 있습니다.

보다 포괄적 수용을 위한 오픈 소스 용어 교체

Red Hat은 코드, 문서, 웹 속성에서 문제가 있는 언어를 교체하기 위해 최선을 다하고 있습니다. 자세한 내용은 다음을 참조하세요.Red Hat 블로그.

Red Hat 소개

Red Hat은 기업이 핵심 데이터 센터에서 네트워크 에지에 이르기까지 플랫폼과 환경 전반에서 더 쉽게 작업할 수 있도록 강화된 솔루션을 제공합니다.

© 2024 Red Hat, Inc.