검색

이 콘텐츠는 선택한 언어로 제공되지 않습니다.

Chapter 3. Performing Additional Configuration on Satellite Server

download PDF

3.1. Configuring Satellite Server to consume content from a custom CDN

If you have an internal Content Delivery Network (CDN) or serve content on an accessible web server, you can configure your Satellite Server to consume Red Hat repositories from this CDN server instead of the Red Hat CDN. A CDN server can be any web server that mirrors repositories in the same directory structure as the Red Hat CDN.

You can configure the source of content for each organization. Satellite recognizes automatically which Red Hat repositories from the subscription manifest in your organization are available on your CDN server.

Prerequisites

  • You have a CDN server that provides Red Hat content and is accessible by Satellite Server.
  • If your CDN server uses HTTPS, ensure you have uploaded the SSL certificate into Satellite. For more information, see Importing Custom SSL Certificates in Managing content.
  • You have uploaded a manifest to your organization.

Procedure

  1. In the Satellite web UI, navigate to Content > Subscriptions.
  2. Click Manage Manifest.
  3. Select the CDN Configuration tab.
  4. Select the Custom CDN tab.
  5. In the URL field, enter the URL of your CDN server from which you want Satellite Server to consume Red Hat repositories.
  6. Optional: In the SSL CA Content Credential, select the SSL certificate of the CDN server.
  7. Click Update.
  8. You can now enable Red Hat repositories consumed from your internal CDN server.

CLI procedure

  1. Connect to your Satellite Server using SSH.
  2. Set CDN configuration to your custom CDN server:

    # hammer organization configure-cdn --name="My_Organization" \
    --type=custom_cdn \
    --url https://my-cdn.example.com \
    --ssl-ca-credential-id "My_CDN_CA_Cert_ID"

Additional resources

3.2. Configuring Inter-Satellite Synchronization (ISS)

Configure Inter-Satellite Synchronization on your disconnected Satellite Server to provide content in your disconnected network.

3.2.1. Inter-Satellite Synchronization scenarios

Red Hat Satellite uses Inter-Satellite Synchronization (ISS) to synchronize content between two Satellite Servers including those that are air gapped.

You can use ISS in cases such as:

  • If you want to copy some but not all content from your Satellite Server to other Satellite Servers. For example, you have content views that your IT department consumes from Satellite Server, and you want to copy content from those content views to other Satellite Servers.
  • If you want to copy all Library content from your Satellite Server to other Satellite Servers. For example, you have Products and repositories that your IT department consumes from Satellite Server in the Library, and you want to copy all Products and repositories in that organization to other Satellite Servers.
Note

You cannot use ISS to synchronize content from Satellite Server to Capsule Server. Capsule Server supports synchronization natively. For more information, see Capsule Server Overview in Overview, concepts, and deployment considerations.

There are different ways of using ISS. The way you can use depends on your multi-server setup that can fall to one of the following scenarios.

3.2.1.1. ISS network sync in a disconnected scenario

In a disconnected scenario, there is the following setup:

  • The upstream Satellite Server is connected to the Internet. This server consumes content from the Red Hat Content Delivery Network (CDN) or custom sources.
  • The downstream Satellite Server is completely isolated from all external networks.
  • The downstream Satellite Server can communicate with a connected upstream Satellite Server over an internal network.

Figure 3.1. Satellite ISS disconnected scenario

Satellite ISS disconnected scenario

You can configure your downstream Satellite Server to synchronize content from the upstream Satellite Server over the network.

3.2.1.2. ISS export sync in an air-gapped scenario

In an air-gapped scenario, there is the following setup:

  • The upstream Satellite Server is connected to the Internet. This server consumes content from the Red Hat CDN or custom sources.
  • The downstream Satellite Server is completely isolated from all external networks.
  • The downstream Satellite Server does not have a network connection to a connected upstream Satellite Server.

Figure 3.2. Satellite ISS air-gapped scenario

Satellite ISS air-gapped scenario

The only way for an air-gapped downstream Satellite Server to receive content updates is by exporting payload from the upstream Satellite Server, bringing it physically to the downstream Satellite Server, and importing the payload. For more information, see Synchronizing Content Between Satellite Servers in Managing content.

You can configure your downstream Satellite Server to synchronize content by using exports.

3.2.2. Configuring Satellite Server to synchronize content by using exports

If you deployed your downstream Satellite Server as air gapped, configure your Satellite Server as such to avoid attempts to consume content from a network.

Procedure

  1. In the Satellite web UI, navigate to Content > Subscriptions.
  2. Click Manage Manifest.
  3. Switch to the CDN Configuration tab.
  4. Select the Export Sync tab.
  5. Click Update.

CLI procedure

  1. Log in to your Satellite Server by using SSH.
  2. Set CDN configuration to sync by using exports:

    # hammer organization configure-cdn --name="My_Organization" --type=export_sync

Additional resources

3.2.3. Configuring Satellite Server to synchronize content over a network

Configure a downstream Satellite Server to synchronize repositories from a connected upstream Satellite Server over HTTPS.

Prerequisites

  • A network connection exists between the upstream Satellite Server and the downstream Satellite Server.
  • You imported the subscription manifest on both the upstream and downstream Satellite Server.
  • On the upstream Satellite Server, you enabled the required repositories for the organization. For more information, see Enabling Red Hat Repositories in Managing content.
  • The upstream user is an admin or has the following permissions:

    • view_organizations
    • view_products
    • export_content
    • view_lifecycle_environments
    • view_content_views
  • On the downstream Satellite Server, you have imported the SSL certificate of the upstream Satellite Server using the contents of http://upstream-satellite.example.com/pub/katello-server-ca.crt. For more information, see Importing SSL Certificates in Managing content.
  • The downstream user is an admin or has the permissions to create product repositories and organizations.

Procedure

  1. Navigate to Content > Subscriptions.
  2. Click Manage Manifest.
  3. Navigate to the CDN Configuration tab.
  4. Select the Network Sync tab.
  5. In the URL field, enter the address of the upstream Satellite Server.
  6. In the Username, enter your username for upstream login.
  7. In the Password, enter your password or personal access token for upstream login.
  8. In the Organization label field, enter the label of the upstream organization.
  9. Optional: In the Lifecycle Environment Label field, enter the label of the upstream lifecycle environment. Default is Library.
  10. Optional: In the Content view label field, enter the label of the upstream content view. Default is Default_Organization_View.
  11. From the SSL CA Content Credential menu, select a CA certificate used by the upstream Satellite Server.
  12. Click Update.
  13. In the Satellite web UI, navigate to Content > Products.
  14. Select the product that contains the repositories that you want to synchronize.
  15. From the Select Action menu, select Sync Now to synchronize all repositories within the product.

    You can also create a synchronization plan to ensure updates on a regular basis. For more information, see Creating a Synchronization Plan in Managing content.

CLI procedure

  1. Connect to your downstream Satellite Server using SSH.
  2. View information about the upstream CA certificate:

    # hammer content-credential show \
    --name="My_Upstream_CA_Cert" \
    --organization="My_Downstream_Organization"

    Note the ID of the CA certificate for the next step.

  3. Set CDN configuration to an upstream Satellite Server:

    # hammer organization configure-cdn --name="My_Downstream_Organization" \
    --type=network_sync \
    --url https://upstream-satellite.example.com \
    --username upstream_username --password upstream_password \
    --ssl-ca-credential-id "My_Upstream_CA_Cert_ID" \ --upstream-organization-label="_My_Upstream_Organization" \
    [--upstream-lifecycle-environment-label="My_Lifecycle_Environment"] \
    [--upstream-content-view-label="My_Content_View"]

    The default lifecycle environment label is Library. The default content view label is Default_Organization_View.

3.3. Importing Kickstart repositories

Kickstart repositories are not provided by the Content ISO image. To use Kickstart repositories in your disconnected Satellite, you must download a binary DVD ISO file for the version of Red Hat Enterprise Linux that you want to use and copy the Kickstart files to Satellite.

3.3.1. Importing Kickstart repositories for Red Hat Enterprise Linux 9

Use this procedure to import Kickstart repositories for Red Hat Enterprise Linux 9.

Procedure

  1. Navigate to the Red Hat Customer Portal at access.redhat.com/downloads and log in.
  2. Click Red Hat Enterprise Linux.
  3. Select a product variant and a product version from the list. For example, product variant Red Hat Enterprise Linux for x86_64 and product version 9.0.
  4. Locate the full installation image, for example, Red Hat Enterprise Linux 9.0 Binary DVD, and click Download Now. Note that you cannot provision hosts using the minimal ISO.
  5. When the download completes, copy the ISO image to Satellite Server.
  6. On Satellite Server, create a mount point and temporarily mount the ISO image at that location:

    # mkdir /mnt/iso
    # mount -o loop rhel-binary-dvd.iso /mnt/iso

    Replace rhel-binary-dvd.iso with the name of your ISO image.

  7. Create directories for Red Hat Enterprise Linux 9 AppStream and BaseOS Kickstart repositories:

    # mkdir --parents /var/www/html/pub/satellite-import/content/dist/rhel9/9.0/x86_64/appstream/kickstart
    # mkdir --parents /var/www/html/pub/satellite-import/content/dist/rhel9/9.0/x86_64/baseos/kickstart
  8. Copy the kickstart files from the ISO image:

    # cp -a /mnt/iso/AppStream/* /var/www/html/pub/satellite-import/content/dist/rhel9/9.0/x86_64/appstream/kickstart
    # cp -a /mnt/iso/BaseOS/* /mnt/iso/images/ /var/www/html/pub/satellite-import/content/dist/rhel9/9.0/x86_64/baseos/kickstart

    Note that for BaseOS, you must also copy the contents of the /mnt/iso/images/ directory.

  9. Add the following entries to the listing files:

    To the /var/www/html/pub/satellite-import/content/dist/rhel9/9.0/x86_64/appstream/listing file, append kickstart with a new line.

    To the /var/www/html/pub/satellite-import/content/dist/rhel9/9.0/x86_64/baseos/listing file, append kickstart with a new line.

    To the /var/www/html/pub/satellite-import/content/dist/rhel8/listing file, append the version number with a new line. For example, for the Red Hat Enterprise Linux 9.0 binary ISO, append 9.0.

  10. Copy the .treeinfo files from the ISO image:

    # cp /mnt/iso/.treeinfo /var/www/html/pub/satellite-import/content/dist/rhel9/9.0/x86_64/appstream/kickstart/treeinfo
    # cp /mnt/iso/.treeinfo /var/www/html/pub/satellite-import/content/dist/rhel9/9.0/x86_64/baseos/kickstart/treeinfo
  11. Open the /var/www/html/pub/satellite-import/content/dist/rhel9/9.0/x86_64/baseos/kickstart/treeinfo file for editing.
  12. In the [general] section, make the following changes:

    • Change packagedir = AppStream/Packages to packagedir = Packages
    • Change repository = AppStream to repository = .
    • Change variant = AppStream to variant = BaseOS
    • Change variants = AppStream,BaseOS to variants = BaseOS
  13. In the [tree] section, change variants = AppStream,BaseOS to variants = BaseOS.
  14. In the [variant-BaseOS] section, make the following changes:

    • Change packages = BaseOS/Packages to packages = Packages
    • Change repository = BaseOS to repository = .
  15. Delete the [media] and [variant-AppStream] sections.
  16. Save and close the file.
  17. Verify that the /var/www/html/pub/satellite-import/content/dist/rhel9/9.0/x86_64/baseos/kickstart/treeinfo file has the following format:

    [checksums]
    images/efiboot.img = sha256:c01c18acc6778d6e66c8d0872bac59bfd7219ccf3cfa70a5c605c0fb37f33a83
    images/install.img = sha256:ddd08e5a5d92edee150f91ff4f12f39253eae72ff496465cf1b2766fe4a4df49
    images/pxeboot/initrd.img = sha256:a09a8ec89d485d71ed1bdad83584d6d816e67448221172d9aad97886cd70adca
    images/pxeboot/vmlinuz = sha256:6e523d7c3266e26c695923ab12b2873b16b0c61fb2e48ade608ad8998821584b
    
    [general]
    ; WARNING.0 = This section provides compatibility with pre-productmd treeinfos.
    ; WARNING.1 = Read productmd documentation for details about new format.
    arch = x86_64
    family = Red Hat Enterprise Linux
    name = Red Hat Enterprise Linux 9.0.0
    packagedir = Packages
    platforms = x86_64,xen
    repository = .
    timestamp = 1571146127
    variant = BaseOS
    variants = BaseOS
    version = 9.0.0
    
    [header]
    type = productmd.treeinfo
    version = 1.2
    
    [images-x86_64]
    efiboot.img = images/efiboot.img
    initrd = images/pxeboot/initrd.img
    kernel = images/pxeboot/vmlinuz
    
    [images-xen]
    initrd = images/pxeboot/initrd.img
    kernel = images/pxeboot/vmlinuz
    
    [release]
    name = Red Hat Enterprise Linux
    short = RHEL
    version = 9.0.0
    
    [stage2]
    mainimage = images/install.img
    
    [tree]
    arch = x86_64
    build_timestamp = 1571146127
    platforms = x86_64,xen
    variants = BaseOS
    
    [variant-BaseOS]
    id = BaseOS
    name = BaseOS
    packages = Packages
    repository = .
    type = variant
    uid = BaseOS
  18. Open the /var/www/html/pub/satellite-import/content/dist/rhel9/9.0/x86_64/appstream/kickstart/treeinfo file for editing.
  19. In the [general] section, make the following changes:

    • Change packagedir = AppStream/Packages to packagedir = Packages
    • Change repository = AppStream to repository = .
    • Change variants = AppStream,BaseOS to variants = AppStream
  20. In the [tree] section, change variants = AppStream,BaseOS to variants = AppStream
  21. In the [variant-AppStream] section, make the following changes:

    • Change packages = AppStream/Packages to packages = Packages
    • Change repository = AppStream to repository = .
  22. Delete the following sections from the file: [checksums], [images-x86_64], [images-xen], [media], [stage2], [variant-BaseOS].
  23. Save and close the file.
  24. Verify that the /var/www/html/pub/satellite-import/content/dist/rhel9/9.0/x86_64/appstream/kickstart/treeinfo file has the following format:

    [general]
    ; WARNING.0 = This section provides compatibility with pre-productmd treeinfos.
    ; WARNING.1 = Read productmd documentation for details about new format.
    arch = x86_64
    family = Red Hat Enterprise Linux
    name = Red Hat Enterprise Linux 9.0.0
    packagedir = Packages
    platforms = x86_64,xen
    repository = .
    timestamp = 1571146127
    variant = AppStream
    variants = AppStream
    version = 9.0.0
    
    [header]
    type = productmd.treeinfo
    version = 1.2
    
    [release]
    name = Red Hat Enterprise Linux
    short = RHEL
    version = 9.0.0
    
    [tree]
    arch = x86_64
    build_timestamp = 1571146127
    platforms = x86_64,xen
    variants = AppStream
    
    [variant-AppStream]
    id = AppStream
    name = AppStream
    packages = Packages
    repository = .
    type = variant
    uid = AppStream
  25. If you do not plan to use the mounted binary DVD ISO image, unmount and remove the directory:

    # umount /mnt/iso
    # rmdir /mnt/iso
  26. In the Satellite web UI, enable the Kickstart repositories.

3.3.2. Importing Kickstart repositories for Red Hat Enterprise Linux 8

Use this procedure to import Kickstart repositories for Red Hat Enterprise Linux 8.

Procedure

  1. Navigate to the Red Hat Customer Portal at access.redhat.com/downloads and log in.
  2. Click Red Hat Enterprise Linux.
  3. Select a product variant and a product version from the list. For example, product variant Red Hat Enterprise Linux for x86_64 and product version 8.1.
  4. Locate the full installation image, for example, Red Hat Enterprise Linux 8.1 Binary DVD, and click Download Now.
  5. When the download completes, copy the ISO image to Satellite Server.
  6. On Satellite Server, create a mount point and temporarily mount the ISO image at that location:

    # mkdir /mnt/iso
    # mount -o loop rhel-binary-dvd.iso /mnt/iso

    Replace rhel-binary-dvd.iso with the name of your ISO image.

  7. Create directories for Red Hat Enterprise Linux 8 AppStream and BaseOS Kickstart repositories:

    # mkdir --parents /var/www/html/pub/satellite-import/content/dist/rhel8/8.1/x86_64/appstream/kickstart
    # mkdir --parents /var/www/html/pub/satellite-import/content/dist/rhel8/8.1/x86_64/baseos/kickstart
  8. Copy the kickstart files from the ISO image:

    # cp -a /mnt/iso/AppStream/* /var/www/html/pub/satellite-import/content/dist/rhel8/8.1/x86_64/appstream/kickstart
    # cp -a /mnt/iso/BaseOS/* /mnt/iso/images/ /var/www/html/pub/satellite-import/content/dist/rhel8/8.1/x86_64/baseos/kickstart

    Note that for BaseOS, you must also copy the contents of the /mnt/iso/images/ directory.

  9. Add the following entries to the listing files:

    To the /var/www/html/pub/satellite-import/content/dist/rhel8/8.1/x86_64/appstream/listing file, append kickstart with a new line.

    To the /var/www/html/pub/satellite-import/content/dist/rhel8/8.1/x86_64/baseos/listing file, append kickstart with a new line.

    To the /var/www/html/pub/satellite-import/content/dist/rhel8/listing file, append the version number with a new line. For example, for the Red Hat Enterprise Linux 8.1 binary ISO, append 8.1.

  10. Copy the .treeinfo files from the ISO image:

    # cp /mnt/iso/.treeinfo /var/www/html/pub/satellite-import/content/dist/rhel8/8.1/x86_64/appstream/kickstart/treeinfo
    # cp /mnt/iso/.treeinfo /var/www/html/pub/satellite-import/content/dist/rhel8/8.1/x86_64/baseos/kickstart/treeinfo
  11. Open the /var/www/html/pub/satellite-import/content/dist/rhel8/8.1/x86_64/baseos/kickstart/treeinfo file for editing.
  12. In the [general] section, make the following changes:

    • Change packagedir = AppStream/Packages to packagedir = Packages
    • Change repository = AppStream to repository = .
    • Change variant = AppStream to variant = BaseOS
    • Change variants = AppStream,BaseOS to variants = BaseOS
  13. In the [tree] section, change variants = AppStream,BaseOS to variants = BaseOS.
  14. In the [variant-BaseOS] section, make the following changes:

    • Change packages = BaseOS/Packages to packages = Packages
    • Change repository = BaseOS to repository = .
  15. Delete the [media] and [variant-AppStream] sections.
  16. Save and close the file.
  17. Verify that the /var/www/html/pub/satellite-import/content/dist/rhel8/8.1/x86_64/baseos/kickstart/treeinfo file has the following format:

    [checksums]
    images/efiboot.img = sha256:c01c18acc6778d6e66c8d0872bac59bfd7219ccf3cfa70a5c605c0fb37f33a83
    images/install.img = sha256:ddd08e5a5d92edee150f91ff4f12f39253eae72ff496465cf1b2766fe4a4df49
    images/pxeboot/initrd.img = sha256:a09a8ec89d485d71ed1bdad83584d6d816e67448221172d9aad97886cd70adca
    images/pxeboot/vmlinuz = sha256:6e523d7c3266e26c695923ab12b2873b16b0c61fb2e48ade608ad8998821584b
    
    [general]
    ; WARNING.0 = This section provides compatibility with pre-productmd treeinfos.
    ; WARNING.1 = Read productmd documentation for details about new format.
    arch = x86_64
    family = Red Hat Enterprise Linux
    name = Red Hat Enterprise Linux 8.1.0
    packagedir = Packages
    platforms = x86_64,xen
    repository = .
    timestamp = 1571146127
    variant = BaseOS
    variants = BaseOS
    version = 8.1.0
    
    [header]
    type = productmd.treeinfo
    version = 1.2
    
    [images-x86_64]
    efiboot.img = images/efiboot.img
    initrd = images/pxeboot/initrd.img
    kernel = images/pxeboot/vmlinuz
    
    [images-xen]
    initrd = images/pxeboot/initrd.img
    kernel = images/pxeboot/vmlinuz
    
    [release]
    name = Red Hat Enterprise Linux
    short = RHEL
    version = 8.1.0
    
    [stage2]
    mainimage = images/install.img
    
    [tree]
    arch = x86_64
    build_timestamp = 1571146127
    platforms = x86_64,xen
    variants = BaseOS
    
    [variant-BaseOS]
    id = BaseOS
    name = BaseOS
    packages = Packages
    repository = .
    type = variant
    uid = BaseOS
  18. Open the /var/www/html/pub/satellite-import/content/dist/rhel8/8.1/x86_64/appstream/kickstart/treeinfo file for editing.
  19. In the [general] section, make the following changes:

    • Change packagedir = AppStream/Packages to packagedir = Packages
    • Change repository = AppStream to repository = .
    • Change variants = AppStream,BaseOS to variants = AppStream
  20. In the [tree] section, change variants = AppStream,BaseOS to variants = AppStream
  21. In the [variant-AppStream] section, make the following changes:

    • Change packages = AppStream/Packages to packages = Packages
    • Change repository = AppStream to repository = .
  22. Delete the following sections from the file: [checksums], [images-x86_64], [images-xen], [media], [stage2], [variant-BaseOS].
  23. Save and close the file.
  24. Verify that the /var/www/html/pub/satellite-import/content/dist/rhel8/8.1/x86_64/appstream/kickstart/treeinfo file has the following format:

    [general]
    ; WARNING.0 = This section provides compatibility with pre-productmd treeinfos.
    ; WARNING.1 = Read productmd documentation for details about new format.
    arch = x86_64
    family = Red Hat Enterprise Linux
    name = Red Hat Enterprise Linux 8.1.0
    packagedir = Packages
    platforms = x86_64,xen
    repository = .
    timestamp = 1571146127
    variant = AppStream
    variants = AppStream
    version = 8.1.0
    
    [header]
    type = productmd.treeinfo
    version = 1.2
    
    [release]
    name = Red Hat Enterprise Linux
    short = RHEL
    version = 8.1.0
    
    [tree]
    arch = x86_64
    build_timestamp = 1571146127
    platforms = x86_64,xen
    variants = AppStream
    
    [variant-AppStream]
    id = AppStream
    name = AppStream
    packages = Packages
    repository = .
    type = variant
    uid = AppStream
  25. If you do not plan to use the mounted binary DVD ISO image, unmount and remove the directory:

    # umount /mnt/iso
    # rmdir /mnt/iso
  26. In the Satellite web UI, enable the Kickstart repositories.

3.3.3. Importing Kickstart repositories for Red Hat Enterprise Linux 7

Use this procedure to import Kickstart repositories for Red Hat Enterprise Linux 7.

Procedure

  1. Navigate to the Red Hat Customer Portal at access.redhat.com/downloads and log in.
  2. Click Red Hat Enterprise Linux.
  3. Click Switch to version 7 and below above the Product Variant list.
  4. Select a product variant and a product version from the list. For example, product variant Red Hat Enterprise Linux for x86_64 and product version 7.9.
  5. Locate the full installation image, for example, Red Hat Enterprise Linux 7.9 Binary DVD, and click Download Now.
  6. When the download completes, copy the ISO image to Satellite Server.
  7. On Satellite Server, create a mount point and temporarily mount the ISO image at that location:

    # mkdir /mnt/iso
    # mount -o loop rhel-binary-dvd.iso /mnt/iso

    Replace rhel-binary-dvd.iso with the name of your ISO image.

  8. Create Kickstart directories:

    # mkdir --parents /var/www/html/pub/satellite-import/content/dist/rhel/server/7/7.9/x86_64/kickstart/
  9. Copy the kickstart files from the ISO image:

    # cp -a /mnt/iso/* /var/www/html/pub/satellite-import/content/dist/rhel/server/7/7.9/x86_64/kickstart/
  10. Add the following entries to the listing files:

    To the /var/www/html/pub/satellite-import/content/dist/rhel/server/7/listing file, append the version number with a new line. For example, for the Red Hat Enterprise Linux 7.9 ISO, append 7.9.

    To the /var/www/html/pub/satellite-import/content/dist/rhel/server/7/7.9/listing file, append the architecture with a new line. For example, x86_64.

    To the /var/www/html/pub/satellite-import/content/dist/rhel/server/7/7.9/x86_64/listing file, append kickstart with a new line.

  11. Copy the .treeinfo files from the ISO image:

    # cp /mnt/iso/.treeinfo /var/www/html/pub/satellite-import/content/dist/rhel/server/7/7.9/x86_64/kickstart/treeinfo
  12. If you do not plan to use the mounted binary DVD ISO image, unmount and remove the directory:

    # umount /mnt/iso
    # rmdir /mnt/iso
  13. In the Satellite web UI, enable the Kickstart repositories.

3.4. Enabling and synchronizing the Red Hat Satellite Client 6 repository

The Red Hat Satellite Client 6 repository provides the katello-host-tools and puppet packages for hosts registered to Satellite. You must periodically synchronize the repository from the Red Hat Content Delivery Network (CDN) to your Satellite Server and enable the repository on your hosts.

3.4.1. Synchronizing the Red Hat Satellite Client 6 repository for Red Hat Enterprise Linux 9 and Red Hat Enterprise Linux 8

To use the CLI instead of the Satellite web UI, see the procedure relevant for your Red Hat Enterprise Linux version:

Procedure

  1. In the Satellite web UI, navigate to Content > Sync Status.
  2. Click the arrow next to the Red Hat Enterprise Linux for x86_64 product to view available content.
  3. Select Red Hat Satellite Client 6 for RHEL 9 x86_64 RPMs or Red Hat Satellite Client 6 for RHEL 8 x86_64 RPMs.
  4. Click Synchronize Now.

CLI procedure for Red Hat Enterprise Linux 9

  • Synchronize your Red Hat Satellite Client 6 repository:

    # hammer repository synchronize \
    --name "Red Hat Satellite Client 6 for RHEL 9 x86_64 RPMs" \
    --organization "My_Organization" \
    --product "Red Hat Enterprise Linux for x86_64"

CLI procedure for Red Hat Enterprise Linux 8

  • Synchronize your Red Hat Satellite Client 6 repository:

    # hammer repository synchronize \
    --name "Red Hat Satellite Client 6 for RHEL 8 x86_64 RPMs" \
    --organization "My_Organization" \
    --product "Red Hat Enterprise Linux for x86_64"

Additional resources

  • For details about the hammer repository synchronize command, enter hammer repository synchronize --help.

3.4.2. Synchronizing the Red Hat Satellite Client 6 repository for Red Hat Enterprise Linux 7 and Red Hat Enterprise Linux 6

Note

You require Red Hat Enterprise Linux Extended Lifecycle Support (ELS) Add-on subscription to synchronize the repositories of Red Hat Enterprise Linux 6. For more information, see Red Hat Enterprise Linux Extended Lifecycle Support (ELS) Add-on guide.

To use the CLI instead of the Satellite web UI, see the procedure relevant for your Red Hat Enterprise Linux version:

Procedure

  1. In the Satellite web UI, navigate to Content > Sync Status.
  2. Click the arrow next to the Red Hat Enterprise Linux Server or Red Hat Enterprise Linux Server - Extended Lifecycle Support.
  3. Select Red Hat Satellite Client 6 (for RHEL 7 Server) RPMs x86_64 or Red Hat Satellite Client 6 for RHEL 6 Server - ELS RPMs x86_64 based on your operating system version.
  4. Click Synchronize Now.

CLI procedure for Red Hat Enterprise Linux 7

  • Synchronize your Red Hat Satellite Client 6 repository:

    # hammer repository synchronize \
    --async \
    --name "Red Hat Satellite Client 6 for RHEL 7 Server RPMs x86_64" \
    --organization "My_Organization" \
    --product "Red Hat Enterprise Linux Server"

CLI procedure for Red Hat Enterprise Linux 6

  • Synchronize your Red Hat Satellite Client 6 repository:

    # hammer repository synchronize \
    --async \
    --name "Red Hat Satellite Client 6 for RHEL 6 Server - ELS RPMs x86_64" \
    --organization "My_Organization" \
    --product "Red Hat Enterprise Linux Server - Extended Lifecycle Support"

Additional resources

  • For details about the hammer repository synchronize command, enter hammer repository synchronize --help.

3.4.3. Enabling the Red Hat Satellite Client 6 repository for Red Hat Enterprise Linux 9 and Red Hat Enterprise Linux 8

To use the CLI instead of the Satellite web UI, see the procedure relevant for your Red Hat Enterprise Linux version:

Prerequisites

  • Ensure that you import all content ISO images that you require into Satellite Server.

Procedure

  1. In the Satellite web UI, navigate to Content > Red Hat Repositories.
  2. In the Available Repositories pane, enable the Recommended Repositories to get the list of repositories.
  3. Click Red Hat Satellite Client 6 for RHEL 9 x86_64 (RPMs) or Red Hat Satellite Client 6 for RHEL 8 x86_64 (RPMs) to expand the repository set.
  4. For the x86_64 architecture, click the + icon to enable the repository.

    If the Red Hat Satellite Client 6 items are not visible, it may be because they are not included in the Red Hat subscription manifest obtained from the Customer Portal. To correct that, log in to the Customer Portal, add these repositories, download the Red Hat subscription manifest and import it into Satellite. For more information, see Managing Red Hat Subscriptions in Managing content.

    Enable the Red Hat Satellite Client 6 repository for every supported major version of Red Hat Enterprise Linux running on your hosts. After enabling a Red Hat repository, a Product for this repository is automatically created.

CLI procedure for Red Hat Enterprise Linux 9

  • Enable the Red Hat Satellite Client 6 repository:

    # hammer repository-set enable \
    --basearch="x86_64" \
    --name "Red Hat Satellite Client 6 for RHEL 9 x86_64 (RPMs)" \
    --organization "My_Organization" \
    --product "Red Hat Enterprise Linux for x86_64"

CLI procedure for Red Hat Enterprise Linux 8

  • Enable the Red Hat Satellite Client 6 repository:

    # hammer repository-set enable \
    --basearch="x86_64" \
    --name "Red Hat Satellite Client 6 for RHEL 8 x86_64 (RPMs)" \
    --organization "My_Organization" \
    --product "Red Hat Enterprise Linux for x86_64"

Additional resources

  • For details about the hammer repository-set enable command, enter hammer repository-set enable --help.

3.4.4. Enabling the Red Hat Satellite Client 6 repository for Red Hat Enterprise Linux 7 and Red Hat Enterprise Linux 6

Note

You require Red Hat Enterprise Linux Extended Lifecycle Support (ELS) Add-on subscription to enable the repositories of Red Hat Enterprise Linux 6. For more information, see Red Hat Enterprise Linux Extended Lifecycle Support (ELS) Add-on guide.

To use the CLI instead of the Satellite web UI, see the procedure relevant for your Red Hat Enterprise Linux version:

Prerequisites

  • Ensure that you import all content ISO images that you require into Satellite Server. .Procedure

    1. In the Satellite web UI, navigate to Content > Red Hat Repositories.
    2. In the Available Repositories pane, enable the Recommended Repositories to get the list of repositories.
    3. In the Available Repositories pane, click on Red Hat Satellite Client 6 (for RHEL 7 Server) (RPMs) or Red Hat Satellite Client 6 (for RHEL 6 Server - ELS) (RPMs) to expand the repository set.

      If the Red Hat Satellite Client 6 items are not visible, it may be because they are not included in the Red Hat subscription manifest obtained from the Customer Portal. To correct that, log in to the Customer Portal, add these repositories, download the Red Hat subscription manifest and import it into Satellite. For more information, see Managing Red Hat Subscriptions in Managing content.

    4. For the x86_64 architecture, click the + icon to enable the repository. Enable the Red Hat Satellite Client 6 repository for every supported major version of Red Hat Enterprise Linux running on your hosts. After enabling a Red Hat repository, a Product for this repository is automatically created.

CLI procedure for Red Hat Enterprise Linux 7

  • Enable the Red Hat Satellite Client 6 repository:

    # hammer repository-set enable \
    --basearch="x86_64" \
    --name "Red Hat Satellite Client 6 (for RHEL 7 Server) (RPMs)" \
    --organization "My_Organization" \
    --product "Red Hat Enterprise Linux Server"

CLI procedure for Red Hat Enterprise Linux 6

  • Enable the Red Hat Satellite Client 6 repository:

    # hammer repository-set enable \
    --basearch="x86_64" \
    --name "Red Hat Satellite Client 6 (for RHEL 6 Server - ELS) (RPMs)" \
    --organization "My_Organization" \
    --product "Red Hat Enterprise Linux Server - Extended Lifecycle Support"

Additional resources

  • For details about the hammer repository-set enable command, enter hammer repository-set enable --help.

3.5. Configuring pull-based transport for remote execution

By default, remote execution uses push-based SSH as the transport mechanism for the Script provider. If your infrastructure prohibits outgoing connections from Satellite Server to hosts, you can use remote execution with pull-based transport instead, because the host initiates the connection to Satellite Server. The use of pull-based transport is not limited to those infrastructures.

The pull-based transport comprises pull-mqtt mode on Capsules in combination with a pull client running on hosts.

Note

The pull-mqtt mode works only with the Script provider. Ansible and other providers will continue to use their default transport settings.

Procedure

  1. Enable the pull-based transport on your Satellite Server:

    # satellite-installer --foreman-proxy-plugin-remote-execution-script-mode=pull-mqtt
  2. Configure the firewall to allow the MQTT service on port 1883:

    # firewall-cmd --add-service=mqtt
  3. Make the changes persistent:

    # firewall-cmd --runtime-to-permanent
  4. In pull-mqtt mode, hosts subscribe for job notifications to either your Satellite Server or any Capsule Server through which they are registered. Ensure that Satellite Server sends remote execution jobs to that same Satellite Server or Capsule Server:

    1. In the Satellite web UI, navigate to Administer > Settings.
    2. On the Content tab, set the value of Prefer registered through Capsule for remote execution to Yes.

Next steps

3.6. Enabling power management on hosts

To perform power management tasks on hosts using the intelligent platform management interface (IPMI) or a similar protocol, you must enable the baseboard management controller (BMC) module on Satellite Server.

Prerequisites

Procedure

  • To enable BMC, enter the following command:

    # satellite-installer \
    --foreman-proxy-bmc "true" \
    --foreman-proxy-bmc-default-provider "freeipmi"

3.7. Configuring DNS, DHCP, and TFTP

You can manage DNS, DHCP, and TFTP centrally within the Satellite environment, or you can manage them independently after disabling their maintenance on Satellite. You can also run DNS, DHCP, and TFTP externally, outside of the Satellite environment.

3.7.1. Configuring DNS, DHCP, and TFTP on Satellite Server

To configure the DNS, DHCP, and TFTP services on Satellite Server, use the satellite-installer command with the options appropriate for your environment.

Any changes to the settings require entering the satellite-installer command again. You can enter the command multiple times and each time it updates all configuration files with the changed values.

Prerequisites

  • Ensure that the following information is available to you:

    • DHCP IP address ranges
    • DHCP gateway IP address
    • DHCP nameserver IP address
    • DNS information
    • TFTP server name
  • Use the FQDN instead of the IP address where possible in case of network changes.
  • Contact your network administrator to ensure that you have the correct settings.

Procedure

  • Enter the satellite-installer command with the options appropriate for your environment. The following example shows configuring full provisioning services:

    # satellite-installer \
    --foreman-proxy-dns true \
    --foreman-proxy-dns-managed true \
    --foreman-proxy-dns-zone example.com \
    --foreman-proxy-dns-reverse 2.0.192.in-addr.arpa \
    --foreman-proxy-dhcp true \
    --foreman-proxy-dhcp-managed true \
    --foreman-proxy-dhcp-range "192.0.2.100 192.0.2.150" \
    --foreman-proxy-dhcp-gateway 192.0.2.1 \
    --foreman-proxy-dhcp-nameservers 192.0.2.2 \
    --foreman-proxy-tftp true \
    --foreman-proxy-tftp-managed true \
    --foreman-proxy-tftp-servername 192.0.2.3

You can monitor the progress of the satellite-installer command displayed in your prompt. You can view the logs in /var/log/foreman-installer/satellite.log.

Additional resources

  • For more information about the satellite-installer command, enter satellite-installer --help.

3.7.2. Disabling DNS, DHCP, and TFTP for unmanaged networks

If you want to manage TFTP, DHCP, and DNS services manually, you must prevent Satellite from maintaining these services on the operating system and disable orchestration to avoid DHCP and DNS validation errors. However, Satellite does not remove the back-end services on the operating system.

Procedure

  1. On Satellite Server, enter the following command:

    # satellite-installer --foreman-proxy-dhcp false \
    --foreman-proxy-dns false \
    --foreman-proxy-tftp false
  2. In the Satellite web UI, navigate to Infrastructure > Subnets and select a subnet.
  3. Click the Capsules tab and clear the DHCP Capsule, TFTP Capsule, and Reverse DNS Capsule fields.
  4. In the Satellite web UI, navigate to Infrastructure > Domains and select a domain.
  5. Clear the DNS Capsule field.
  6. Optional: If you use a DHCP service supplied by a third party, configure your DHCP server to pass the following options:

    Option 66: IP address of Satellite or Capsule
    Option 67: /pxelinux.0

    For more information about DHCP options, see RFC 2132.

Note

Satellite does not perform orchestration when a Capsule is not set for a given subnet and domain. When enabling or disabling Capsule associations, orchestration commands for existing hosts can fail if the expected records and configuration files are not present. When associating a Capsule to turn orchestration on, ensure the required DHCP and DNS records as well as the TFTP files are in place for the existing Satellite hosts in order to prevent host deletion failures in the future.

3.7.3. Additional resources

3.8. Configuring Satellite Server for outgoing emails

To send email messages from Satellite Server, you can use either an SMTP server, or the sendmail command.

Prerequisites

  • Some SMTP servers with anti-spam protection or grey-listing features are known to cause problems. To setup outgoing email with such a service either install and configure a vanilla SMTP service on Satellite Server for relay or use the sendmail command instead.

Procedure

  1. In the Satellite web UI, navigate to Administer > Settings.
  2. Click the Email tab and set the configuration options to match your preferred delivery method. The changes have an immediate effect.

    1. The following example shows the configuration options for using an SMTP server:

      Table 3.1. Using an SMTP server as a delivery method
      NameExample value

      Delivery method

      SMTP

      SMTP address

      smtp.example.com

      SMTP authentication

      login

      SMTP HELO/EHLO domain

      example.com

      SMTP password

      password

      SMTP port

      25

      SMTP username

      user@example.com

      The SMTP username and SMTP password specify the login credentials for the SMTP server.

    2. The following example uses gmail.com as an SMTP server:

      Table 3.2. Using gmail.com as an SMTP server
      NameExample value

      Delivery method

      SMTP

      SMTP address

      smtp.gmail.com

      SMTP authentication

      plain

      SMTP HELO/EHLO domain

      smtp.gmail.com

      SMTP enable StartTLS auto

      Yes

      SMTP password

      password

      SMTP port

      587

      SMTP username

      user@gmail.com

    3. The following example uses the sendmail command as a delivery method:

      Table 3.3. Using sendmail as a delivery method
      NameExample value

      Delivery method

      Sendmail

      Sendmail location

      /usr/sbin/sendmail

      Sendmail arguments

      -i

      For security reasons, both Sendmail location and Sendmail argument settings are read-only and can be only set in /etc/foreman/settings.yaml. Both settings currently cannot be set via satellite-installer. For more information see the sendmail 1 man page.

  3. If you decide to send email using an SMTP server which uses TLS authentication, also perform one of the following steps:

    • Mark the CA certificate of the SMTP server as trusted. To do so, execute the following commands on Satellite Server:

      # cp mailca.crt /etc/pki/ca-trust/source/anchors/
      # update-ca-trust enable
      # update-ca-trust

      Where mailca.crt is the CA certificate of the SMTP server.

    • Alternatively, in the Satellite web UI, set the SMTP enable StartTLS auto option to No.
  4. Click Test email to send a test message to the user’s email address to confirm the configuration is working. If a message fails to send, the Satellite web UI displays an error. See the log at /var/log/foreman/production.log for further details.

Additional resources

3.9. Configuring Satellite Server with a custom SSL certificate

By default, Red Hat Satellite uses a self-signed SSL certificate to enable encrypted communications between Satellite Server, external Capsule Servers, and all hosts. If you cannot use a Satellite self-signed certificate, you can configure Satellite Server to use an SSL certificate signed by an external certificate authority (CA).

When you configure Red Hat Satellite with custom SSL certificates, you must fulfill the following requirements:

  • You must use the privacy-enhanced mail (PEM) encoding for the SSL certificates.
  • You must not use the same SSL certificate for both Satellite Server and Capsule Server.
  • The same CA must sign certificates for Satellite Server and Capsule Server.
  • An SSL certificate must not also be a CA certificate.
  • An SSL certificate must include a subject alt name (SAN) entry that matches the common name (CN).
  • An SSL certificate must be allowed for Key Encipherment using a Key Usage extension.
  • An SSL certificate must not have a shortname as the CN.
  • You must not set a passphrase for the private key.

To configure your Satellite Server with a custom certificate, complete the following procedures:

3.9.1. Creating a custom SSL certificate for Satellite Server

Use this procedure to create a custom SSL certificate for Satellite Server. If you already have a custom SSL certificate for Satellite Server, skip this procedure.

Procedure

  1. To store all the source certificate files, create a directory that is accessible only to the root user:

    # mkdir /root/satellite_cert
  2. Create a private key with which to sign the certificate signing request (CSR).

    Note that the private key must be unencrypted. If you use a password-protected private key, remove the private key password.

    If you already have a private key for this Satellite Server, skip this step.

    # openssl genrsa -out /root/satellite_cert/satellite_cert_key.pem 4096
  3. Create the /root/satellite_cert/openssl.cnf configuration file for the CSR and include the following content:

    [ req ]
    req_extensions = v3_req
    distinguished_name = req_distinguished_name
    prompt = no
    
    [ req_distinguished_name ]
    commonName = satellite.example.com
    
    [ v3_req ]
    basicConstraints = CA:FALSE
    keyUsage = digitalSignature, nonRepudiation, keyEncipherment, dataEncipherment
    extendedKeyUsage = serverAuth, clientAuth, codeSigning, emailProtection
    subjectAltName = @alt_names
    
    [ alt_names ]
    DNS.1 = satellite.example.com
  4. Optional: If you want to add Distinguished Name (DN) details to the CSR, add the following information to the [ req_distinguished_name ] section:

    [req_distinguished_name]
    CN = satellite.example.com
    countryName =My_Country_Name 1
    stateOrProvinceName = My_State_Or_Province_Name 2
    localityName = My_Locality_Name 3
    organizationName = My_Organization_Or_Company_Name
    organizationalUnitName = My_Organizational_Unit_Name 4
    1
    Two letter code
    2
    Full name
    3
    Full name (example: New York)
    4
    Division responsible for the certificate (example: IT department)
  5. Generate CSR:

    # openssl req -new \
    -key /root/satellite_cert/satellite_cert_key.pem \ 1
    -config /root/satellite_cert/openssl.cnf \ 2
    -out /root/satellite_cert/satellite_cert_csr.pem 3
    1
    Path to the private key
    2
    Path to the configuration file
    3
    Path to the CSR to generate
  6. Send the certificate signing request to the certificate authority (CA). The same CA must sign certificates for Satellite Server and Capsule Server.

    When you submit the request, specify the lifespan of the certificate. The method for sending the certificate request varies, so consult the CA for the preferred method. In response to the request, you can expect to receive a CA bundle and a signed certificate, in separate files.

3.9.2. Deploying a custom SSL certificate to Satellite Server

Use this procedure to configure your Satellite Server to use a custom SSL certificate signed by a Certificate Authority. The katello-certs-check command validates the input certificate files and returns the commands necessary to deploy a custom SSL certificate to Satellite Server.

Important

Do not store the SSL certificates or .tar bundles in /tmp or /var/tmp directory. The operating system removes files from these directories periodically. As a result, satellite-installer fails to execute while enabling features or upgrading Satellite Server.

Procedure

  1. Validate the custom SSL certificate input files. Note that for the katello-certs-check command to work correctly, Common Name (CN) in the certificate must match the FQDN of Satellite Server.

    # katello-certs-check \
    -c /root/satellite_cert/satellite_cert.pem \      1
    -k /root/satellite_cert/satellite_cert_key.pem \  2
    -b /root/satellite_cert/ca_cert_bundle.pem        3
    1
    Path to Satellite Server certificate file that is signed by a Certificate Authority.
    2
    Path to the private key that was used to sign Satellite Server certificate.
    3
    Path to the Certificate Authority bundle.

    If the command is successful, it returns two satellite-installer commands, one of which you must use to deploy a certificate to Satellite Server.

    Example output of katello-certs-check

    Validation succeeded.
    
    To install the Red Hat Satellite Server with the custom certificates, run:
    
      satellite-installer --scenario satellite \
        --certs-server-cert "/root/satellite_cert/satellite_cert.pem" \
        --certs-server-key "/root/satellite_cert/satellite_cert_key.pem" \
        --certs-server-ca-cert "/root/satellite_cert/ca_cert_bundle.pem"
    
    To update the certificates on a currently running Red Hat Satellite installation, run:
    
      satellite-installer --scenario satellite \
        --certs-server-cert "/root/satellite_cert/satellite_cert.pem" \
        --certs-server-key "/root/satellite_cert/satellite_cert_key.pem" \
        --certs-server-ca-cert "/root/satellite_cert/ca_cert_bundle.pem" \
        --certs-update-server --certs-update-server-ca

    Note that you must not access or modify /root/ssl-build.

  2. From the output of the katello-certs-check command, depending on your requirements, enter the satellite-installer command that installs a new Satellite with custom SSL certificates or updates certificates on a currently running Satellite.

    If you are unsure which command to run, you can verify that Satellite is installed by checking if the file /etc/foreman-installer/scenarios.d/.installed exists. If the file exists, run the second satellite-installer command that updates certificates.

    Important

    satellite-installer needs the certificate archive file after you deploy the certificate. Do not modify or delete it. It is required, for example, when upgrading Satellite Server.

  3. On a computer with network access to Satellite Server, navigate to the following URL: https://satellite.example.com.
  4. In your browser, view the certificate details to verify the deployed certificate.

3.9.3. Deploying a custom SSL certificate to hosts

After you configure Satellite to use a custom SSL certificate, you must deploy the certificate to hosts registered to Satellite.

Procedure

  • Update the SSL certificate on each host:

    # dnf install http://satellite.example.com/pub/katello-ca-consumer-latest.noarch.rpm

3.10. Using external databases with Satellite

As part of the installation process for Red Hat Satellite, the satellite-installer command installs PostgreSQL databases on the same server as Satellite. In certain Satellite deployments, using external databases instead of the default local databases can help with the server load.

Red Hat does not provide support or tools for external database maintenance. This includes backups, upgrades, and database tuning. You must have your own database administrator to support and maintain external databases.

To create and use external databases for Satellite, you must complete the following procedures:

  1. Section 3.10.2, “Preparing a host for external databases”. Prepare a Red Hat Enterprise Linux 8 server to host the external databases.
  2. Section 3.10.3, “Installing PostgreSQL”. Prepare PostgreSQL with databases for Satellite, Candlepin and Pulp with dedicated users owning them.
  3. Section 3.10.4, “Configuring Satellite Server to use external databases”. Edit the parameters of satellite-installer to point to the new databases, and run satellite-installer.

3.10.1. PostgreSQL as an external database considerations

Foreman, Katello, and Candlepin use the PostgreSQL database. If you want to use PostgreSQL as an external database, the following information can help you decide if this option is right for your Satellite configuration. Satellite supports PostgreSQL version 12.

Advantages of external PostgreSQL

  • Increase in free memory and free CPU on Satellite
  • Flexibility to set shared_buffers on the PostgreSQL database to a high number without the risk of interfering with other services on Satellite
  • Flexibility to tune the PostgreSQL server’s system without adversely affecting Satellite operations

Disadvantages of external PostgreSQL

  • Increase in deployment complexity that can make troubleshooting more difficult
  • The external PostgreSQL server is an additional system to patch and maintain
  • If either Satellite or the PostgreSQL database server suffers a hardware or storage failure, Satellite is not operational
  • If there is latency between the Satellite server and database server, performance can suffer

If you suspect that the PostgreSQL database on your Satellite is causing performance problems, use the information in Satellite 6: How to enable postgres query logging to detect slow running queries to determine if you have slow queries. Queries that take longer than one second are typically caused by performance issues with large installations, and moving to an external database might not help. If you have slow queries, contact Red Hat Support.

3.10.2. Preparing a host for external databases

Install a freshly provisioned system with the latest Red Hat Enterprise Linux 8 to host the external databases.

Subscriptions for Red Hat Enterprise Linux do not provide the correct service level agreement for using Satellite with external databases. You must also attach a Satellite subscription to the base operating system that you want to use for the external databases.

Prerequisites

Procedure

  1. Use the instructions in Attaching the Satellite Infrastructure Subscription to attach a Satellite subscription to your server.
  2. Disable all repositories and enable only the following repositories:

    # subscription-manager repos --disable '*'
    # subscription-manager repos \
    --enable=satellite-6.15-for-rhel-8-x86_64-rpms \
    --enable=satellite-maintenance-6.15-for-rhel-8-x86_64-rpms \
    --enable=rhel-8-for-x86_64-baseos-rpms \
    --enable=rhel-8-for-x86_64-appstream-rpms
  3. Enable the following module:

    # dnf module enable satellite:el8
    Note

    Enablement of the module satellite:el8 warns about a conflict with postgresql:10 and ruby:2.5 as these modules are set to the default module versions on Red Hat Enterprise Linux 8. The module satellite:el8 has a dependency for the modules postgresql:12 and ruby:2.7 that will be enabled with the satellite:el8 module. These warnings do not cause installation process failure, hence can be ignored safely. For more information about modules and lifecycle streams on Red Hat Enterprise Linux 8, see Red Hat Enterprise Linux Application Streams Lifecycle.

3.10.3. Installing PostgreSQL

You can install only the same version of PostgreSQL that is installed with the satellite-installer tool during an internal database installation. Satellite supports PostgreSQL version 12.

Procedure

  1. To install PostgreSQL, enter the following command:

    # dnf install postgresql-server postgresql-evr postgresql-contrib
  2. To initialize PostgreSQL, enter the following command:

    # postgresql-setup initdb
  3. Edit the /var/lib/pgsql/data/postgresql.conf file:

    # vi /var/lib/pgsql/data/postgresql.conf

    Note that the default configuration of external PostgreSQL needs to be adjusted to work with Satellite. The base recommended external database configuration adjustments are as follows:

    • checkpoint_completion_target: 0.9
    • max_connections: 500
    • shared_buffers: 512MB
    • work_mem: 4MB
  4. Remove the # and edit to listen to inbound connections:

    listen_addresses = '*'
  5. Edit the /var/lib/pgsql/data/pg_hba.conf file:

    # vi /var/lib/pgsql/data/pg_hba.conf
  6. Add the following line to the file:

      host  all   all   Satellite_ip/32   md5
  7. To start, and enable PostgreSQL service, enter the following commands:

    # systemctl enable --now postgresql
  8. Open the postgresql port on the external PostgreSQL server:

    # firewall-cmd --add-service=postgresql
  9. Make the changes persistent:

    # firewall-cmd --runtime-to-permanent
  10. Switch to the postgres user and start the PostgreSQL client:

    $ su - postgres -c psql
  11. Create three databases and dedicated roles: one for Satellite, one for Candlepin, and one for Pulp:

    CREATE USER "foreman" WITH PASSWORD 'Foreman_Password';
    CREATE USER "candlepin" WITH PASSWORD 'Candlepin_Password';
    CREATE USER "pulp" WITH PASSWORD 'Pulpcore_Password';
    CREATE DATABASE foreman OWNER foreman;
    CREATE DATABASE candlepin OWNER candlepin;
    CREATE DATABASE pulpcore OWNER pulp;
  12. Connect to the Pulp database:

    postgres=# \c pulpcore
    You are now connected to database "pulpcore" as user "postgres".
  13. Create the hstore extension:

    pulpcore=# CREATE EXTENSION IF NOT EXISTS "hstore";
    CREATE EXTENSION
  14. Exit the postgres user:

    # \q
  15. From Satellite Server, test that you can access the database. If the connection succeeds, the commands return 1.

    # PGPASSWORD='Foreman_Password' psql -h postgres.example.com  -p 5432 -U foreman -d foreman -c "SELECT 1 as ping"
    # PGPASSWORD='Candlepin_Password' psql -h postgres.example.com -p 5432 -U candlepin -d candlepin -c "SELECT 1 as ping"
    # PGPASSWORD='Pulpcore_Password' psql -h postgres.example.com -p 5432 -U pulp -d pulpcore -c "SELECT 1 as ping"

3.10.4. Configuring Satellite Server to use external databases

Use the satellite-installer command to configure Satellite to connect to an external PostgreSQL database.

Prerequisites

  • You have installed and configured a PostgreSQL database on a Red Hat Enterprise Linux server.

Procedure

  1. To configure the external databases for Satellite, enter the following command:

    # satellite-installer \
    --foreman-db-database foreman \
    --foreman-db-host postgres.example.com \
    --foreman-db-manage false \
    --foreman-db-password Foreman_Password \
    --foreman-proxy-content-pulpcore-manage-postgresql false \
    --foreman-proxy-content-pulpcore-postgresql-db-name pulpcore \
    --foreman-proxy-content-pulpcore-postgresql-host postgres.example.com \
    --foreman-proxy-content-pulpcore-postgresql-password Pulpcore_Password \
    --foreman-proxy-content-pulpcore-postgresql-user pulp \
    --katello-candlepin-db-host postgres.example.com \
    --katello-candlepin-db-name candlepin \
    --katello-candlepin-db-password Candlepin_Password \
    --katello-candlepin-manage-db false

    To enable the Secure Sockets Layer (SSL) protocol for these external databases, add the following options:

    --foreman-db-root-cert <path_to_CA>
    --foreman-db-sslmode verify-full
    --foreman-proxy-content-pulpcore-postgresql-ssl true
    --foreman-proxy-content-pulpcore-postgresql-ssl-root-ca <path_to_CA>
    --katello-candlepin-db-ssl true
    --katello-candlepin-db-ssl-ca <path_to_CA>
    --katello-candlepin-db-ssl-verify true
Red Hat logoGithubRedditYoutubeTwitter

자세한 정보

평가판, 구매 및 판매

커뮤니티

Red Hat 문서 정보

Red Hat을 사용하는 고객은 신뢰할 수 있는 콘텐츠가 포함된 제품과 서비스를 통해 혁신하고 목표를 달성할 수 있습니다.

보다 포괄적 수용을 위한 오픈 소스 용어 교체

Red Hat은 코드, 문서, 웹 속성에서 문제가 있는 언어를 교체하기 위해 최선을 다하고 있습니다. 자세한 내용은 다음을 참조하세요.Red Hat 블로그.

Red Hat 소개

Red Hat은 기업이 핵심 데이터 센터에서 네트워크 에지에 이르기까지 플랫폼과 환경 전반에서 더 쉽게 작업할 수 있도록 강화된 솔루션을 제공합니다.

© 2024 Red Hat, Inc.