이 콘텐츠는 선택한 언어로 제공되지 않습니다.

Chapter 1. Kafka tuning overview


Fine-tuning the performance of your Kafka deployment involves optimizing various configuration properties according to your specific requirements. This section provides an introduction to common configuration options available for Kafka brokers, producers, and consumers.

While a minimum set of configurations is necessary for Kafka to function, Kafka properties allow for extensive adjustments. Through configuration properties, you can enhance latency, throughput, and overall efficiency, ensuring that your Kafka deployment meets the demands of your applications.

For effective tuning, take a methodical approach. Begin by analyzing relevant metrics to identify potential bottlenecks or areas for improvement. Adjust configuration parameters iteratively, monitoring the impact on performance metrics, and then refine your settings accordingly.

For more information about Apache Kafka configuration properties, see the Apache Kafka documentation.

Note

The guidance provided here offers a starting point for tuning your Kafka deployment. Finding the optimal configuration depends on factors such as workload, infrastructure, and performance objectives.

1.1. Mapping properties and values

How you specify configuration properties depends on the type of deployment. If you deployed Streams for Apache Kafka on OCP, you can use the Kafka resource to add configuration for Kafka brokers through the config property. With Streams for Apache Kafka on RHEL, you add the configuration to a properties file as environment variables.

When you add config properties to custom resources, you use a colon (':') to map the property and value.

Example configuration in a custom resource

num.partitions:1
Copy to Clipboard Toggle word wrap

When you add the properties as environment variables, you use an equal sign ('=') to map the property and value.

Example configuration as an environment variable

num.partitions=1
Copy to Clipboard Toggle word wrap

Note

Some examples in this guide may show resource configuration specifically for Streams for Apache Kafka on OpenShift. However, the properties presented are equally applicable as environment variables when using Streams for Apache Kafka on RHEL.

1.2. Tools that help with tuning

The following tools help with Kafka tuning:

  • Cruise Control generates optimization proposals that you can use to assess and implement a cluster rebalance
  • Strimzi Quotas plugin sets limits on brokers
  • Rack configuration spreads broker partitions across racks and allows consumers to fetch data from the nearest replica
맨 위로 이동
Red Hat logoGithubredditYoutubeTwitter

자세한 정보

평가판, 구매 및 판매

커뮤니티

Red Hat 문서 정보

Red Hat을 사용하는 고객은 신뢰할 수 있는 콘텐츠가 포함된 제품과 서비스를 통해 혁신하고 목표를 달성할 수 있습니다. 최신 업데이트를 확인하세요.

보다 포괄적 수용을 위한 오픈 소스 용어 교체

Red Hat은 코드, 문서, 웹 속성에서 문제가 있는 언어를 교체하기 위해 최선을 다하고 있습니다. 자세한 내용은 다음을 참조하세요.Red Hat 블로그.

Red Hat 소개

Red Hat은 기업이 핵심 데이터 센터에서 네트워크 에지에 이르기까지 플랫폼과 환경 전반에서 더 쉽게 작업할 수 있도록 강화된 솔루션을 제공합니다.

Theme

© 2025 Red Hat