
Red Hat build of Quarkus 3.20

Release Notes for Red Hat build of Quarkus
3.20

Last Updated: 2025-10-13

Red Hat build of Quarkus 3.20 Release Notes for Red Hat build of Quarkus
3.20

Legal Notice

Copyright © 2025 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Release notes provide information about new features, notable technical changes, features in
technology preview, bug fixes, known issues, and related advisories.

. .

. .

Table of Contents

PROVIDING FEEDBACK ON RED HAT BUILD OF QUARKUS DOCUMENTATION

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.20
1.1. ABOUT RED HAT BUILD OF QUARKUS
1.2. DIFFERENCES BETWEEN THE QUARKUS COMMUNITY VERSION AND RED HAT BUILD OF QUARKUS
1.3. NEW FEATURES, ENHANCEMENTS, AND TECHNICAL CHANGES

1.3.1. Cloud
1.3.1.1. OpenShift and Kubernetes: Fabric8 Kubernetes Client upgraded to version 7.1

1.3.2. Core
1.3.2.1. Builder and runtime base images upgraded to UBI 9
1.3.2.2. Conditional extension dependencies in dev mode
1.3.2.3. Default locale configuration enhanced

1.3.3. Data
1.3.3.1. Agroal: Database connection management in Dev UI enhanced
1.3.3.2. Datasource: Validation of datasources during startup with ArC

1.3.4. Messaging
1.3.4.1. Messaging Kafka extension introduced with support for Kafka transactions

1.3.5. Observability
1.3.5.1. Dev UI: Extension developers can add log tabs to the Dev UI footer
1.3.5.2. Grafana OTel LGTM dashboards
1.3.5.3. OpenTelemetry: Exclude specific URIs from OpenTelemetry tracing
1.3.5.4. OpenTelemetry: Immediate export of spans and logs with SimpleSpanProcessor
1.3.5.5. OpenTelemetry: Logging support introduced
1.3.5.6. OpenTelemetry: Metrics integration aligned with MicroProfile Telemetry 2.0

1.3.6. Security
1.3.6.1. Authentication: Support for combining authentication mechanisms
1.3.6.2. Authorization: Create custom security annotations by using @PermissionsAllowed
1.3.6.3. Authorization: Define declarative permission checkers by using CDI bean methods
1.3.6.4. OIDC: Authenticate OIDC provider clients by using JWT bearer tokens from the filesystem
1.3.6.5. OIDC: Filter OIDC responses for custom processing
1.3.6.6. OIDC: mTLS-bound access tokens
1.3.6.7. OIDC: OidcProviderClient injection and token revocation
1.3.6.8. OIDC: Programmatically creating OIDC tenants
1.3.6.9. OIDC Client: Dev Services for Keycloak no longer requires the OIDC extension
1.3.6.10. TLS Registry: Policy configuration for expired or not-yet-valid certificates
1.3.6.11. OIDC: Demonstrating Proof of Possession supported
1.3.6.12. TLS Registry: Encrypted PKCS#8 private keys in PEM keystores introduced

1.3.7. Tooling
1.3.7.1. Configure JVM options in extension metadata for applications running in Dev mode

1.3.8. Web
1.3.8.1. Dev UI: HTTP access logs added to Dev UI
1.3.8.2. REST: Java records as REST parameters
1.3.8.3. REST and RESTEasy: @AuthorizationPolicy annotation introduced
1.3.8.4. REST Client: Dynamic per-invocation URLs with @Url annotation
1.3.8.5. REST Client: MicroProfile REST Client updated to version 4.0
1.3.8.6. REST Jackson: Improved JSON processing with reflection-free deserialization
1.3.8.7. WebSockets Next extension introduced

1.4. SUPPORT AND COMPATIBILITY
1.4.1. Product updates and support lifecycle policy
1.4.2. Tested and verified environments
1.4.3. Development support

5

6
6
6
8
8
8
9
9
11
11
11
11

12
12
12
12
12
13
13
13
14
14
14
14
15
15
15
15
16
16
16
17
17
17
18
18
18
18
18
18
19
19
19
19

20
20
21
22
22

Table of Contents

1

1.4.3.1. Development tools
1.5. DEPRECATED COMPONENTS AND FEATURES

1.5.1. Legacy configuration classes deprecated
1.5.2. quarkus.http.cors property deprecated
1.5.3. quarkus.log.*.json property deprecated
1.5.4. SmallRye Fault Tolerance version 6.7.0 deprecates first-generation programmatic API
1.5.5. WebSockets and WebSockets Client extensions deprecated

1.6. TECHNOLOGY PREVIEWS
1.6.1. New Technology Preview features
1.6.2. Continuing Technology Preview features

1.7. CHANGES THAT AFFECT COMPATIBILITY WITH EARLIER VERSIONS
1.7.1. Cloud

1.7.1.1. OpenShift and Kubernetes: Fabric8 Kubernetes Client upgraded to version 7.1
1.7.2. Compatibility

1.7.2.1. Removal of Reactive rename compatibility layer
1.7.3. Core

1.7.3.1. Default locale configuration enhanced
1.7.3.2. SmallRye Fault Tolerance: Fallback and BeforeRetry methods now defined at build time
1.7.3.3. SmallRye Fault Tolerance version 6.7.0 deprecates first-generation programmatic API
1.7.3.4. Scheduler methods now require a started scheduler
1.7.3.5. Management interface now listens on localhost in development and test modes
1.7.3.6. Migration to @ConfigMapping and deprecation of configuration classes
1.7.3.7. Builder and runtime base images upgraded to UBI 9

1.7.4. Data
1.7.4.1. Datasource: Removal of implicit default URL for reactive SQL datasources
1.7.4.2. Datasources without a URL no longer contribute to a health check
1.7.4.3. Datasource usage fails fast if datasource is deactivated or has no URL set
1.7.4.4. Flyway version 11 removes cleanOnValidationError
1.7.4.5. IBM Db2 driver and container image upgraded to version 12
1.7.4.6. Hibernate ORM Bean Validation contributes to DDL by default

1.7.5. Logging
1.7.5.1. quarkus.log.*.json property deprecated

1.7.6. Observability
1.7.6.1. OpenTelemetry: Database incubating values moved
1.7.6.2. SmallRye OpenTracing: Extension and related JDBC tracing configuration removed

1.7.7. Security
1.7.7.1. OIDC Client: Behavior changed if client does not have a URL
1.7.7.2. Security WebAuthn: Reimplementation by using WebAuthn4J

1.7.8. Tooling
1.7.8.1. @WithTestResource flaws fixed: restrictToAnnotatedClass replaced by scope
1.7.8.2. JUnit 5 Mockito: Default mocking strategy changed to inline
1.7.8.3. Quarkus Test Framework JUnit 5 Mockito version alignment

1.7.9. Web
1.7.9.1. HTTP compression now includes application/json and application/xhtml+xml by default
1.7.9.2. REST Client: Stricter configuration to optimize lookups
1.7.9.3. Qute: Default character escaping in JSON templates
1.7.9.4. REST Jackson: ObjectMapperCustomizer behavior changed for default JSON processor instance

1.7.9.5. REST: Empty query parameters now handled as null or empty collection
1.7.9.6. WebSockets and WebSockets Client extensions deprecated

1.8. KNOWN ISSUES
1.8.1. FIPS: Known limitations when testing in FIPS-enabled environments
1.8.2. Kafka Streams extension missing a native library on Microsoft Windows

23
23
23
23
24
24
24
25
25
25
26
26
26
27
27
27
27
28
28
28
29
29
29
30
30
30
31
32
32
33
33
33
34
34
34
34
34
34
38
38
38
38
39
39
39
39

40
40
40
41
41

42

Red Hat build of Quarkus 3.20 Release Notes for Red Hat build of Quarkus 3.20

2

1.8.3. Missing native library for Snappy on Windows
1.8.4. Native image build intermittently fails with unreachable type errors on Mandrel 23.1
1.8.5. OpenTelemetry: Dev mode fails to reload when tracing is disabled and metrics are enabled
1.8.6. Quarkus CLI cannot discover the TLS registry CLI plugin
1.8.7. Quarkus CLI updates only the Red Hat build of Quarkus platform version
1.8.8. RSA cipher initialization triggers NPE in native mode with mandrel-for-jdk-21-rhel8:23.1 and FIPS enabled

1.8.9. WebSockets Next: Connection error metrics not incremented on open event exceptions
1.9. RED HAT BUILD OF QUARKUS 3.20.3

1.9.1. Bug fixes
1.9.2. Security fixes
1.9.3. Advisory

1.10. RED HAT BUILD OF QUARKUS 3.20.2 SP1
1.10.1. Bug fixes
1.10.2. Security fix
1.10.3. Advisory

1.11. RED HAT BUILD OF QUARKUS 3.20.2
1.11.1. Bug fixes
1.11.2. Security fixes
1.11.3. Advisory

1.12. RED HAT BUILD OF QUARKUS 3.20.1
1.12.1. Bug fixes
1.12.2. Security fixes
1.12.3. Advisory

1.13. ADVISORY FOR RED HAT BUILD OF QUARKUS 3.20.0
1.14. ADDITIONAL RESOURCES

43
43
44
45
45

46
47
47
47
47
47
48
48
48
48
48
48
48
48
49
49
49
49
49
49

Table of Contents

3

Red Hat build of Quarkus 3.20 Release Notes for Red Hat build of Quarkus 3.20

4

PROVIDING FEEDBACK ON RED HAT BUILD OF QUARKUS
DOCUMENTATION

To report an error or to improve our documentation, log in to your Red Hat Jira account and submit an
issue. If you do not have a Red Hat Jira account, then you will be prompted to create an account.

Procedure

1. Click the following link to create a ticket.

2. Enter a brief description of the issue in the Summary.

3. Provide a detailed description of the issue or enhancement in the Description. Include a URL to
where the issue occurs in the documentation.

4. Clicking Submit creates and routes the issue to the appropriate documentation team.

PROVIDING FEEDBACK ON RED HAT BUILD OF QUARKUS DOCUMENTATION

5

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12332926&summary=(userfeedback)&issuetype=1&description=[Please+include+the+Document+URL,+the+section+number+and +describe+the+issue]&priority=3&labels=[ddf]&components=12368558&customfield_10010

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF
QUARKUS 3.20

Release notes provide information about new features, notable technical changes, features in
technology preview, bug fixes, known issues, and related advisories for Red Hat build of Quarkus 3.20.

These include the following notable changes:

Improved Jackson JSON processing with reflection-free deserialization

OpenTelemetry logging support

Quarkus REST clients updated to MicroProfile REST Client 4.0

Switch to UBI 9 by default

WebSockets Next API introduced

Information about upgrading and backward compatibility is also provided to help you make the transition
from an earlier release.

1.1. ABOUT RED HAT BUILD OF QUARKUS

Red Hat build of Quarkus is a Kubernetes-native Java stack optimized for containers and Red Hat
OpenShift Container Platform. Quarkus is designed to work with popular Java standards, frameworks,
and libraries such as Eclipse MicroProfile, Eclipse Vert.x, Apache Camel, Apache Kafka, Hibernate ORM
with Jakarta Persistence, and Jakarta REST.

As a developer, you can choose the Java frameworks you want for your Java applications, which you can
run in Java Virtual Machine (JVM) mode or compile and run in native mode. Quarkus provides a
container-first approach to building Java applications. The container-first approach facilitates the
containerization and efficient execution of microservices and functions. For this reason, Quarkus
applications have a smaller memory footprint and faster startup times.

Quarkus also optimizes the application development process with capabilities such as unified
configuration, automatic provisioning of unconfigured services, live coding, and continuous testing that
gives you instant feedback on your code changes.

1.2. DIFFERENCES BETWEEN THE QUARKUS COMMUNITY VERSION
AND RED HAT BUILD OF QUARKUS

As an application developer, you can access two different versions of Quarkus: the Quarkus community
version and the productized version, Red Hat build of Quarkus.

The following table describes the differences between the Quarkus community version and Red Hat
build of Quarkus.

Red Hat build of Quarkus 3.20 Release Notes for Red Hat build of Quarkus 3.20

6

Feature Quarku
s
commu
nity
version

Red Ha
t build
of
Quarku
s
version

Description

Access to the
latest community
features

Yes No With the Quarkus community version, you can access the latest
feature developments.

Red Hat does not release Red Hat build of Quarkus to
correspond with every version that the community releases. The
cadence of Red Hat build of Quarkus feature releases is
approximately every six months.

Enterprise support
from Red Hat

No Yes Red Hat provides enterprise support for Red Hat build of
Quarkus only. To report issues about the Quarkus community
version, see quarkusio/quarkus - Issues.

Access to long-
term support

No Yes The lifecycle for a major release of Red Hat build of Quarkus is
divided into two support phases; full support and maintenance
support.

For information about the product lifecycle, timelines, and
support policies of Red Hat build of Quarkus, log in to the
Red Hat Customer Portal and see the Product lifecycles and
Red Hat build of Quarkus lifecycle and support policies
Knowledge Base articles.

Common
Vulnerabilities and
Exposures (CVE)
fixes and bug fixes
backported to
earlier releases

No Yes With Red Hat build of Quarkus, selected CVE fixes and bug fixes
are regularly backported to supported streams.

For more information about maintenance support, see Red Hat
build of Quarkus lifecycle and support policies.

Tested and
verified with
Red Hat OpenShift
Container
Platform and
Red Hat Enterprise
Linux (RHEL)

No Yes Red Hat build of Quarkus is built, tested, and verified with
Red Hat OpenShift Container Platform and RHEL. Red Hat
provides both production and development support for
supported configurations and tested integrations according to
your subscription agreement. For more information, see Red Hat
build of Quarkus supported configurations.

Built from source
using secure build
systems

No Yes In Red Hat build of Quarkus, the core platform and all supported
extensions are provided by Red Hat using secure software
delivery, which means that they are built from source, scanned
for security issues, and with verified license usage.

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.20

7

https://github.com/quarkusio/quarkus/issues
https://access.redhat.com/product-life-cycles?product=Red Hat build of Quarkus
https://access.redhat.com/product-life-cycles?product=Red Hat build of Quarkus
https://access.redhat.com/product-life-cycles?product=Red Hat build of Quarkus
https://access.redhat.com/articles/4966181

Access to support
for JDK and
Red Hat build of
Quarkus Native
builder distribution

No Yes Red Hat build of Quarkus supports certified OpenJDK builds
and certified native executable builders. See admonition below.
For more information, see Red Hat build of Quarkus supported
configurations.

Feature Quarku
s
commu
nity
version

Red Ha
t build
of
Quarku
s
version

Description

IMPORTANT

To build native Linux executables , Red Hat build of Quarkus supports using the Red Hat
build of Quarkus Native Builder image (quarkus/mandrel-for-jdk-21-rhel8), which is
based on GraalVM Mandrel.

Red Hat build of Quarkus does not support building native executables by using Oracle
GraalVM Community Edition (CE), Mandrel community edition, or any other GraalVM
distributions. For more information, see Compiling your Red Hat build of Quarkus
applications to native executables.

1.3. NEW FEATURES, ENHANCEMENTS, AND TECHNICAL CHANGES

This section overviews the new features, enhancements, and technical changes introduced in Red Hat
build of Quarkus 3.20.

1.3.1. Cloud

1.3.1.1. OpenShift and Kubernetes: Fabric8 Kubernetes Client upgraded to version 7.1

In Red Hat build of Quarkus 3.20, the following extensions upgrade the Fabric8 Kubernetes Client from
version 6.13 to 7.1.

quarkus-openshift

quarkus-openshift-client

quarkus-kubernetes

quarkus-kubernetes-client

This upgrade brings several improvements to performance, compatibility, and testing.

Some key benefits of Fabric8 Kubernetes Client 7.1:

Supports Kubernetes API v1.32 for better compatibility.

Uses Vert.x instead of OkHttp for improved performance.

Adds new tools for easier Custom Resource Definition (CRD) generation.

Red Hat build of Quarkus 3.20 Release Notes for Red Hat build of Quarkus 3.20

8

https://access.redhat.com/articles/4966181
https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/compiling_your_red_hat_build_of_quarkus_applications_to_native_executables/index
https://catalog.redhat.com/search?q=quarkus%2Fmandrel-for-jdk-21-rhel8&partnerName=Red Hat&p=1
https://github.com/graalvm/mandrel
https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/compiling_your_red_hat_build_of_quarkus_applications_to_native_executables/index

Uses Vert.x-based MockWebServer for better testing.

This change introduces breaking changes. For details, see this release note in the "Changes that affect
compatibility with earlier versions" section.

NOTE

Red Hat build of Quarkus 3.20 provides Developer Preview support for the quarkus-
kubernetes extension, and does not currently support the quarkus-kubernetes-client
extension. However, if you use these extensions, the described change might affect your
migration.

This change requires manual intervention. It is not included in the automated update process described
in the Migrating applications to Red Hat build of Quarkus 3.20 guide.

1.3.2. Core

1.3.2.1. Builder and runtime base images upgraded to UBI 9

Starting in Red Hat build of Quarkus 3.20, Red Hat builder and runtime base images use Red Hat
Universal Base Image 9 (UBI 9) by default.

The following images are upgraded:

Table 1.1. Upgraded images

Images UBI 8 version UBI 9 version

Base images
registry.access.redhat.com/
ubi8/ubi:8.10

OpenJDK 17:
registry.access.redhat.com/
ubi8/openjdk-17

OpenJDK 21:
registry.access.redhat.com/
ubi8/openjdk-21

registry.access.redhat.com/
ubi9/ubi:9.5

OpenJDK 17:
registry.access.redhat.com/
ubi9/openjdk-17

OpenJDK 21:
registry.access.redhat.com/
ubi9/openjdk-21

Minimal images
registry.access.redhat.com/
ubi8/ubi-minimal:8.10

registry.access.redhat.com/
ubi9-minimal:9.5

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.20

9

https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/migrating_applications_to_red_hat_build_of_quarkus_3.20/index

Runtimes images
OpenJDK 17:
registry.access.redhat.com/
ubi8/openjdk-17-
runtime:1.21

OpenJDK 21:
registry.access.redhat.com/
ubi8/openjdk-21-
runtime:1.21

OpenJDK 17:
registry.access.redhat.com/
ubi9/openjdk-17-
runtime:1.21

OpenJDK 21:
registry.access.redhat.com/
ubi9/openjdk-21-
runtime:1.21

Builder image
(Mandrel) registry.access.redhat.com/

quarkus/mandrel-for-jdk-21-
rhel8:23.1

No change. Red Hat uses a
Mandrel builder image, which
continues to be based on UBI 8.
However, native executables
produced on UBI8 can be run on
UBI9. For more information, see
the Note below.

Images UBI 8 version UBI 9 version

This upgrade introduces breaking changes. Builder and runtime base images upgraded to UBI 9 .

To upgrade to UBI 9 images manually, the following table outlines your options:

Table 1.2. Options for upgrading to UBI 9 manually

Images Actions

Builder images No action needed. Builder images are upgraded automatically in Red Hat build of
Quarkus. However, you can also specify the builder image manually as follows:

-Dquarkus.native.container-build=true

registry.access.redhat.com/quarkus/mandrel-for-jdk-21-rhel8:23.1

Runtime images Depending on the mode, apply the following settings:

JVM mode:

In your Dockerfile in the src/main/docker/ directory, specify
registry.access.redhat.com/ubi9/openjdk-21-runtime:1.21 as the
base image of your container.

Native mode:

To use UBI minimal, specify registry.access.redhat.com/ubi9-
minimal:9.5.

NOTE

Red Hat build of Quarkus 3.20 Release Notes for Red Hat build of Quarkus 3.20

10

NOTE

In Red Hat build of Quarkus native mode, if you use an in-container build to produce a
native executable, you must use a Mandrel builder image. In Red Hat build of Quarkus
3.20, this Mandrel builder image is still based on UBI 8, however, native executables
produced on UBI 8 can still be run on UBI 9.

When your native executable is created, you copy it into a container image, which in turn
requires a runtime image as a base image. The preferred runtime image is the UBI 9-
based runtime image: registry.access.redhat.com/ubi9-minimal:9.5.

If you encounter issues with UBI 9-based runtime images, you can manually switch back to UBI 8-based
images. For details, see Builder and runtime base images upgraded to UBI 9 .

For more information, see the following resources:

Red Hat Universal Base Image 9

Quarkus Migration guide 3.19

Creating a custom container image

1.3.2.2. Conditional extension dependencies in dev mode

With Red Hat build of Quarkus 3.20, extensions can now declare conditional dependencies that are
activated only in development mode (dev mode) or when specific conditions are met, avoiding
unnecessary dependencies in normal and test modes.

For more information, see the Dev mode-only extension dependencies section of the Quarkus
"Conditional extension dependencies" guide.

1.3.2.3. Default locale configuration enhanced

Red Hat build of Quarkus 3.20 updates locale handling to align with Mandrel version 24.2 and later.

Applications now use a consistent default locale at run time, independent of the build system’s locale.
This change improves portability and predictability of locale-sensitive behavior across environments.

This change introduces breaking changes. For details, see this release note in the "Changes that affect
compatibility with earlier versions" section.

This change requires manual intervention. It is not included in the automated update process described
in the Migrating applications to Red Hat build of Quarkus 3.20 guide.

1.3.3. Data

1.3.3.1. Agroal: Database connection management in Dev UI enhanced

Starting in Red Hat build of Quarkus 3.20, the quarkus-agroal extension adds a dedicated Agroal -
Database connection pool card and page for monitoring database connections to the Dev UI.

If your Quarkus application includes a JDBC driver extension that uses the quarkus-agroal extension, it
is automatically included in your application.

In the Dev UI, you can favorite (star) the Agroal - Database connection pool card. You can also drag

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.20

11

https://catalog.redhat.com/software/containers/ubi9/ubi/615bcf606feffc5384e8452e
https://github.com/quarkusio/quarkus/wiki/Migration-Guide-3.19#ubi-9
https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/compiling_your_red_hat_build_of_quarkus_applications_to_native_executables/index#ref_creating-container_quarkus-building-native-executable
https://quarkus.io/version/3.20/guides/conditional-extension-dependencies#dev-mode-only-extension-dependencies
https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/migrating_applications_to_red_hat_build_of_quarkus_3.20/index

In the Dev UI, you can favorite (star) the Agroal - Database connection pool card. You can also drag
the Database view link from the card to the Dev UI menu. Clicking Database view opens the Agroal -
Database connection pool page, where you can view all active datasources, including connection URLs.

This enhancement streamlines database monitoring and configuration within the Dev UI, improving
debugging and database management.

1.3.3.2. Datasource: Validation of datasources during startup with ArC

In Red Hat build of Quarkus 3.20, the quarkus-datasource extension now validates datasource
configurations during application startup by using the ArC-optimized dependency injection framework.
This enhancement ensures that misconfigurations are detected early, preventing runtime failures and
reducing the risk of traffic being routed to faulty instances.

Key changes in Red Hat build of Quarkus:

If a datasource is injected into application beans, the application verifies its configuration at
startup. Misconfigured datasources, such as those missing required properties, fail early instead
of causing errors at first access.

Datasources marked as inactive (quarkus.datasource.active=false) or missing required
properties are not initialized, ensuring that only valid datasources are available to the
application.

Extensions such as Hibernate ORM now fail at startup if a required datasource is inactive,
preventing applications from attempting to use unavailable resources.

Datasources marked as inactive (quarkus.datasource.active=false) or missing required
properties are excluded from health checks, ensuring that only relevant datasources contribute
to diagnostics.

For more information, see the Activate or deactivate datasources section of the "Configure data
sources" guide.

1.3.4. Messaging

1.3.4.1. Messaging Kafka extension introduced with support for Kafka transactions

Red Hat build of Quarkus 3.20 introduces the quarkus-messaging-kafka extension, which adds
support for Apache Kafka transactions through the SmallRye Reactive Messaging Kafka connector. This
feature enables atomic writes to multiple Kafka topics and partitions, ensuring that either all records
within a transaction are committed or none are, enhancing data consistency in event-driven applications.​

This functionality is available as a Technology Preview feature.

For more information, see the Kafka Transactions section of the Quarkus "Apache Kafka Reference
Guide" guide.

1.3.5. Observability

1.3.5.1. Dev UI: Extension developers can add log tabs to the Dev UI footer

Starting in Red Hat build of Quarkus 3.20, extension developers can create a custom log tab in the Dev
UI footer and stream log data to it. This process is similar to creating a card or page in the Dev UI.

Log tabs provide continuous data for application developers to monitor and troubleshoot their

Red Hat build of Quarkus 3.20 Release Notes for Red Hat build of Quarkus 3.20

12

https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/configure_data_sources/index#datasource-active
https://access.redhat.com/support/offerings/techpreview
https://quarkus.io/version/3.20/guides/kafka#kafka-transactions

Log tabs provide continuous data for application developers to monitor and troubleshoot their
applications without switching tools. Unlike pages, which disconnect from the back end when navigated
away from, log tabs remain persistently connected.

For more information, see the Add a footer tab section of the Quarkus "Dev UI for extension
developers" guide.

1.3.5.2. Grafana OTel LGTM dashboards

Red Hat build of Quarkus 3.20 provides multiple pre-configured Grafana dashboards when using LGTM
Dev Services. These dashboards visualize application metrics, traces, and logs. They leverage
OpenTelemetry for seamless data collection and presentation. Some dashboards display Micrometer
data in multiple ways, including OpenTelemetry output. Each dashboard is tuned for a specific
application setup.

The available dashboards are:

Quarkus Micrometer OpenTelemetry: Used with the Micrometer and OpenTelemetry
extension.

Quarkus Micrometer OTLP Registry: Used with the Micrometer OTLP registry extension.

Quarkus Micrometer Prometheus Registry: Used with the Micrometer Prometheus registry
extension.

Quarkus OpenTelemetry Logging: Displays logs from the OpenTelemetry extension.

Some dashboard panels may take a few minutes to display accurate data due to calculations over a
sliding time window.

1.3.5.3. OpenTelemetry: Exclude specific URIs from OpenTelemetry tracing

Since this update, you can now exclude specific URIs from OpenTelemetry tracing using the
quarkus.otel.traces.suppress-application-uris configuration property. This allows you to define a
comma-separated list of URI patterns that the tracer should ignore.

For example, setting quarkus.otel.traces.suppress-application-uris=trace,ping,people* will turn off
tracing for the /trace and /ping URIs, as well as any URI starting with /people, such as /people/1 or
/people/1/cars.

If you use a custom quarkus.http.root-path, ensure you include it in the configuration.

1.3.5.4. OpenTelemetry: Immediate export of spans and logs with SimpleSpanProcessor

In Red Hat build of Quarkus 3.20, the quarkus-opentelemetry extension adds support for the
SimpleSpanProcessor, which immediately exports spans and logs as they finish. This behavior is
particularly useful in serverless environments and short-lived applications.

To enable this feature, set the following configuration property to true:

This configuration replaces the default BatchSpanProcessor, ensuring spans and logs are sent
immediately instead of being buffered. This change is critical for Lambda functions and other short-
lived processes because it ensures that telemetry data is exported before the application shuts down,

quarkus.otel.simple=true

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.20

13

https://quarkus.io/version/3.20/guides/dev-ui#add-a-footer-tab

preventing data loss caused by batching delays.

1.3.5.5. OpenTelemetry: Logging support introduced

In Red Hat build of Quarkus 3.20, the quarkus-opentelemetry extension now supports OpenTelemetry
(OTel) logging. You can use this capability to provide distributed logging for interactive web
applications.

To enable this feature, set the following configuration property to true:

For more information, see the Quarkus Using OpenTelemetry Logging guide.

1.3.5.6. OpenTelemetry: Metrics integration aligned with MicroProfile Telemetry 2.0

In Red Hat build of Quarkus 3.20, the quarkus-opentelemetry extension offers automatic
instrumentation for JVM and HTTP server request metrics in alignment with the MicroProfile Telemetry
2.0 specification, provided that OpenTelemetry metrics are enabled.

OpenTelemetry metrics are disabled by default. To collect JVM and HTTP server request metrics, you
must enable them by setting quarkus.otel.metrics.enabled=true.

The corresponding configuration properties are enabled by default and can be disabled by setting
quarkus.otel.instrument.jvm-metrics=false or quarkus.otel.instrument.http-server-metrics=false
in your configuration.

The Fault Tolerance with OpenTelemetry Metrics integration feature remains currently unsupported.

NOTE

If you also use the Micrometer extension, you should disable OpenTelemetry
instrumentation to prevent potential conflicts.

Additionally, if you configure the logging exporter by setting
quarkus.otel.metrics.exporter=logging, you might see OpenTelemetry internal tracing-
related metrics in the logs. The logging exporter is intended for debugging purposes
only and is not recommended for production environments.

1.3.6. Security

1.3.6.1. Authentication: Support for combining authentication mechanisms

Red Hat build of Quarkus 3.20 adds support for using multiple authentication mechanisms within a single
request. You can now combine mechanisms such as mutual TLS (mTLS) and OpenID Connect (OIDC)
bearer token authentication in the same authentication flow.

By default, authentication completes when the first SecurityIdentity is produced by one of the
registered authentication mechanisms. To require all mechanisms to validate credentials, enable
inclusive authentication by setting a configuration property.

This capability is beneficial when combining mutual TLS and bearer token authentication, such as in
scenarios that require access token binding to a client certificate.

For more information and examples, see the Combining authentication mechanisms section of the

quarkus.otel.logs.enabled=true

Red Hat build of Quarkus 3.20 Release Notes for Red Hat build of Quarkus 3.20

14

https://quarkus.io/version/3.20/guides/opentelemetry

For more information and examples, see the Combining authentication mechanisms section of the
"Security architecture" guide.

1.3.6.2. Authorization: Create custom security annotations by using @PermissionsAllowed

Red Hat build of Quarkus 3.20 adds support for using @PermissionsAllowed within meta-annotations
so that you can create custom security annotations for more streamlined access control management.

This enhancement simplifies permission-based configuration, reduces repetitive security code, and
improves maintainability. You can now define reusable security annotations that encapsulate
@PermissionsAllowed, making permission handling more efficient and consistent.

For more information and examples, see the Create permission meta-annotations section of the
"Authorization of web endpoints" guide.

1.3.6.3. Authorization: Define declarative permission checkers by using CDI bean methods

Starting in Red Hat build of Quarkus 3.20, you can use the @PermissionChecker annotation to define
declarative permission checkers in CDI bean methods. This enhancement enables flexible and reusable
authorization logic by allowing permission checks to be implemented separately from resource classes,
reducing code duplication and improving maintainability.

These permission checkers work alongside @PermissionsAllowed by matching permission names
based on string equality. They support general-purpose authorization checks by evaluating the
SecurityIdentity, which represents the authenticated user, and the incoming HTTP request parameters.
This approach allows for fine-grained access control. Checkers must be defined in normal-scoped or
singleton CDI beans and return either a boolean or Uni<Boolean>, supporting both synchronous and
reactive authorization checks.

This feature simplifies permission management by centralizing authorization logic, making security
policies easier to enforce across multiple endpoints. Developers can create generalized permission
checkers that validate multiple actions dynamically.

For more information, see the Create permission checkers section of the "Authorization of web
endpoints" guide.

1.3.6.4. OIDC: Authenticate OIDC provider clients by using JWT bearer tokens from the
filesystem

Starting in Red Hat build of Quarkus 3.20, with quarkus-oidc, you can configure OIDC to authenticate
an OIDC provider client by loading a JWT bearer token from a filesystem.

This approach enables secure and automated authentication. It is especially useful in containerized
environments such as OpenShift, where a service account token can be mounted as a file. Red Hat build
of Quarkus automatically loads the token from the file and reloads it when the token expires.

For configuration details and usage examples, see the following resources:

The JWT Bearer section of the "OpenID Connect (OIDC) client and token propagation" guide.

The "Example: How JWT Bearer token can be used to authenticate client" in the OIDC provider
client authentication section of the "OpenID Connect (OIDC) authentication" guide.

1.3.6.5. OIDC: Filter OIDC responses for custom processing

In Red Hat build of Quarkus 3.20, the following Quarkus extensions introduce OpenID Connect (OIDC)

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.20

15

https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/security_architecture/index#combining-authentication-mechanisms
https://content-preview.docs.redhat.com/en/documentation/red_hat_build_of_quarkus/3.20/html-single/authorization_of_web_endpoints/index#permission-meta-annotation
https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/authorization_of_web_endpoints/index#permission-checker
https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/openid_connect_oidc_client_and_token_propagation/index#jwt-bearer
https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/openid_connect_oidc_authentication/index#oidc-provider-client-authentication

In Red Hat build of Quarkus 3.20, the following Quarkus extensions introduce OpenID Connect (OIDC)
response filters.

OpenID Connect (quarkus-oidc)

OpenID Connect Client (quarkus-oidc-client)

Implement OidcResponseFilter to inspect response status, headers, and body, for logging or other
actions.

By default, OIDC response filters apply globally. To target specific endpoints, such as the token
endpoint, use the @OidcEndpoint annotation.

For more information, see the OIDC response filters section of the "OpenID Connect (OIDC)
authentication" guide.

1.3.6.6. OIDC: mTLS-bound access tokens

Mutual TLS (mTLS) token binding enhances security by ensuring that access tokens are
cryptographically bound to the client’s mTLS authentication certificate.

This feature, based on RFC 8705, minimizes the risk of accepting stolen bearer access tokens by
verifying that a thumbprint of the certificate used for authentication matches a certificate thumbprint
contained in the token.

Starting in Red Hat build of Quarkus 3.20, the Quarkus OIDC extension, quarkus-oidc, now supports
certificate-bound access tokens for endpoints secured with both OpenID Connect (OIDC) and mTLS.

To enable this feature, set the following configuration property:

For more information, see the Mutual TLS token binding section of the "OpenID Connect (OIDC)
authentication" guide.

1.3.6.7. OIDC: OidcProviderClient injection and token revocation

Red Hat build of Quarkus 3.20 introduces support for injecting OidcProviderClient, allowing
applications to interact with the OpenID Connect (OIDC) provider’s UserInfo, token introspection, and
revocation endpoints.

It enables developers to access UserInfo, token introspection, and revocation endpoints
programmatically when needed. For example, an access token can be revoked after a user logs out.

For more information, see the Token revocation section of the OpenID Connect (OIDC) authentication
guide.

1.3.6.8. OIDC: Programmatically creating OIDC tenants

Starting in Red Hat build of Quarkus 3.20, with quarkus-oidc you can programmatically define OpenID
Connect (OIDC) tenants by using the OidcTenantConfig builder instead of configuring them in the
application.properties file.

This approach provides greater flexibility than defining OIDC tenants in the configuration.

This approach is particularly useful for features that require static tenants, such as issuer-based and

quarkus.oidc.token.binding.certificate=true

Red Hat build of Quarkus 3.20 Release Notes for Red Hat build of Quarkus 3.20

16

https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/openid_connect_oidc_authentication/index#bearer-token-oidc-response-filters
https://datatracker.ietf.org/doc/html/rfc8705
https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/openid_connect_oidc_authentication/index#mutual-tls-token-binding
https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/openid_connect_oidc_authentication/index#oidc-token-revocation

This approach is particularly useful for features that require static tenants, such as issuer-based and
path-based tenant resolvers.

For more information, see the following resources in the "OpenID Connect (OIDC) authentication"
guide:

Programmatic OIDC start-up under "OIDC Bearer token authentication"

Programmatic OIDC start-up under "OIDC authorization code flow mechanism for protecting
web applications"

Programmatic OIDC start-up for multiple tenants

1.3.6.9. OIDC Client: Dev Services for Keycloak no longer requires the OIDC extension

In Red Hat build of Quarkus 3.20, Dev Services for Keycloak can now start even when the quarkus-oidc
extension is not present. This change enables you to test the quarkus-oidc-client extension in isolation,
without requiring the full OIDC extension.

Additionally, Red Hat build of Quarkus now automatically configures key OIDC Client properties when
Dev Services for Keycloak is enabled, including:

quarkus.oidc-client.auth-server-url

quarkus.oidc-client.client-id

quarkus.oidc-client.credentials.secret

Previously, you had to set these properties manually.

These enhancements are backward compatible. Existing workflows and manual configurations continue
to work as expected.

1.3.6.10. TLS Registry: Policy configuration for expired or not-yet-valid certificates

Red Hat build of Quarkus 3.20 now supports configuring policies for handling expired or not-yet-valid
certificates during TLS handshakes across the certificate chain.

Previously, the trust store allowed such certificates without warnings, adhering to RFC 3280 and related
specifications.

With this update, users can control the behavior by selecting one of the following options:

IGNORE: Retains the previous behavior, allowing expired or not-yet-valid certificates without
warnings.

WARN: Logs a warning when such certificates are detected (new default).

REJECT: Rejects the handshake if such certificates are present.

1.3.6.11. OIDC: Demonstrating Proof of Possession supported

In Red Hat build of Quarkus 3.20, the quarkus-oidc extension now supports Demonstrating Proof of
Possession (DPoP) for access tokens.

This functionality is available as a Technology Preview feature.

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.20

17

https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/openid_connect_oidc_authentication/index#programmatic-oidc-start-up
https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/openid_connect_oidc_authentication/index#programmatic-oidc-start-up-2
https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/openid_connect_oidc_authentication/index#programmatic-startup
https://access.redhat.com/support/offerings/techpreview

For more information, see the following resources:

The Demonstrating Proof of Possession (DPoP) section of the Red Hat build of Quarkus
"OpenID Connect (OIDC) client and token propagation" guide.

The RFC 9449: OAuth 2.0 Demonstrating Proof of Possession (DPoP) standard

1.3.6.12. TLS Registry: Encrypted PKCS#8 private keys in PEM keystores introduced

In Red Hat build of Quarkus 3.20, the quarkus-tls-registry extension introduces support for encrypted
PKCS#8 private keys in PEM keystores.

This functionality is available as a Technology Preview feature.

It enables developers to secure private keys with AES-128-CBC encryption, improving application
security.

To use this feature, set the quarkus.tls.key-store.pem.password property with the keystore password.

For more information, see the Management of security keys and certificates with the TLS Registry
guide.

1.3.7. Tooling

1.3.7.1. Configure JVM options in extension metadata for applications running in Dev mode

With Red Hat build of Quarkus 3.20, extension authors can define JVM options for applications running
in development mode. They can specify these options, such as --enable-preview or --add-opens,
directly in the extension metadata, eliminating the need for them to be configured by application
developers.

Extensions automatically apply these JVM options when running in development mode, ensuring a
consistent environment for all application developers.

Application developers can turn off all extension-provided JVM options or selectively turn off options
for specific extensions with the Quarkus Maven plugin. For more information, see the Extension
provided Dev mode Java options section of the Quarkus "Quarkus and Maven" guide.

1.3.8. Web

1.3.8.1. Dev UI: HTTP access logs added to Dev UI

Starting in Red Hat build of Quarkus 3.20, the Dev UI footer includes an HTTP tab, which you can use to
monitor incoming HTTP access log messages without switching tools or contexts.

For example, if you interact with your application’s HTTP endpoints by using the SmallRye OpenAPI -
Swagger UI page in the Dev UI, you can see the corresponding log messages in the HTTP tab in the
Dev UI footer.

For more information, see the Configuring HTTP access logs section of the Quarkus "HTTP reference"
guide.

1.3.8.2. REST: Java records as REST parameters

Red Hat build of Quarkus 3.20 introduces support for Java records as REST endpoint parameter

Red Hat build of Quarkus 3.20 Release Notes for Red Hat build of Quarkus 3.20

18

https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/openid_connect_oidc_authentication/index#demonstrating-proof-of-possession-dpop
https://datatracker.ietf.org/doc/html/rfc9449
https://access.redhat.com/support/offerings/techpreview
https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/management_of_security_keys_and_certificates_with_the_tls_registry/indextls-registry-reference#configuring-https-for-a-http-server
https://quarkus.io/version/3.20/guides/maven-tooling#extension-provided-dev-mode-java-options
https://quarkus.io/version/3.20/guides/http-reference#configuring-http-access-logs

Red Hat build of Quarkus 3.20 introduces support for Java records as REST endpoint parameter
containers, enabling concise and immutable data structures. Records can encapsulate queries, cookies,
headers, forms, or multipart parameters, simplifying data handling in RESTful services.

Java records already work for JSON serialization and deserialization of REST bodies. However,
@BeanParam does not yet support them because of the limitations of the Jakarta REST specification.

1.3.8.3. REST and RESTEasy: @AuthorizationPolicy annotation introduced

In Red Hat build of Quarkus 3.20, the quarkus-rest and quarkus-resteasy extensions add support for
the new @AuthorizationPolicy annotation. You can use this annotation to bind a named
HttpSecurityPolicy directly to a Jakarta REST endpoint. This feature provides an alternative to path-
matching rules and enables more flexible authorization checks without modifying SecurityIdentity roles.

For more information, see the Custom HttpSecurityPolicy section of the "Authorization of web
endpoints" guide.

1.3.8.4. REST Client: Dynamic per-invocation URLs with @Url annotation

In Red Hat build of Quarkus 3.20, the quarkus-rest-client extension adds support for the @Url
annotation. You can now annotate a parameter in a REST client method to provide a URL at run time
dynamically.

Typically, a REST client requires a base URL that is configured globally. However, some cases require
setting the URL on a per-invocation basis. The @Url annotation supports this use case by enabling
dynamic URL resolution for individual calls.

For more information, see the Dynamic base URLs section of the Quarkus "Using the REST Client"
guide.

1.3.8.5. REST Client: MicroProfile REST Client updated to version 4.0

In Red Hat build of Quarkus 3.20, the quarkus-rest-client extension has been updated to MicroProfile
REST Client 4.0. This update enhances how applications interact with RESTful services by providing a
standardized, declarative API for creating and managing REST clients. It improves flexibility,
performance, and security, while simplifying the integration of external REST services.

1.3.8.6. REST Jackson: Improved JSON processing with reflection-free deserialization

In Red Hat build of Quarkus 3.20, the quarkus-rest-jackson extension enhances its JSON processing
capabilities by introducing reflection-free deserialization.

This enhancement complements reflection-free serialization, which was implemented in an earlier
release.

By default, reflection-free JSON processing is disabled. To enable it, set the following configuration
property to true:

quarkus.rest.jackson.optimization.enable-reflection-free-serializers=true

By eliminating reliance on reflection during deserialization, applications can achieve better performance
and reduced memory consumption, particularly for native applications where reflection can introduce
overhead. If you enable this feature, run tests to assess its effect on your applications.

For more information, see the JSON serialisation section of the Quarkus "Writing REST services with

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.20

19

https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/authorization_of_web_endpoints/index#authorization-using-configuration
https://quarkus.io/version/3.20/guides/rest-client#dynamic-base-urls

For more information, see the JSON serialisation section of the Quarkus "Writing REST services with
Quarkus REST" guide.

1.3.8.7. WebSockets Next extension introduced

Red Hat build of Quarkus 3.20 introduces support for the quarkus-websockets-next extension, which
provides a modern, declarative API for defining WebSocket server and client endpoints.

This extension enables efficient, scalable real-time communication and integrates with Red Hat build of
Quarkus’s reactive architecture and networking layer.

Unlike the deprecated quarkus-websockets extension, WebSockets Next does not implement the
Jakarta WebSocket specification.

Key capabilities introduced by WebSockets Next:

Improved security integration

WebSockets Next supports seamless integration with Quarkus Security and identity providers. Each
WebSocket connection is associated with a SecurityIdentity, enabling early authorization during the
HTTP upgrade process. Developers can secure endpoints using standard security annotations or
permission checkers. For clients that support custom headers, bearer token authentication is fully
supported. JavaScript clients, which cannot set custom authorization headers, can pass the token using
the Sec-WebSocket-Protocol header as a workaround. Additionally, Red Hat build of Quarkus
automatically closes WebSocket connections when an OIDC token expires.

For details, see the Security section of the “WebSockets Next reference” guide.

Structured message handling

The extension supports built-in JSON serialization and deserialization. Common types such as String,
JsonObject, JsonArray, Buffer, and byte[] are sent without conversion. You can provide a custom
codec to customize how messages are serialized or deserialized.

For more information, see the Serialization and deserialization section.

Observability integration

WebSockets Next integrates with both OpenTelemetry and Micrometer to enhance observability. If the
OpenTelemetry extension is present, it automatically captures traces for opened and closed WebSocket
connections and links them to the initial handshake span. When Micrometer support is enabled,
WebSockets Next collects metrics for WebSocket activity.

For configuration details, see the Telemetry section of the WebSockets Next reference guide.

For more information, see the following resources:

Getting started with WebSockets Next

WebSockets Next reference guide

1.4. SUPPORT AND COMPATIBILITY

You can find detailed information about the supported configurations and artifacts that are compatible
with Red Hat build of Quarkus 3.20 and the high-level support lifecycle policy on the Red Hat Customer
Support portal as follows:

Red Hat build of Quarkus 3.20 Release Notes for Red Hat build of Quarkus 3.20

20

https://quarkus.io/version/3.20/guides/rest#json-serialisation
https://quarkus.io/version/3.20/guides/websockets-next-reference#websocket-next-security
https://quarkus.io/version/3.20/guides/websockets-next-reference#serialization
https://quarkus.io/version/3.20/guides/websockets-next-reference#telemetry
https://quarkus.io/version/3.20/guides/websockets-next-tutorial
https://quarkus.io/version/3.20/guides/websockets-next-reference

For a list of supported configurations, OpenJDK versions, and tested integrations, see Red Hat
build of Quarkus Supported configurations.

For a list of the supported Maven artifacts, extensions, and BOMs for Red Hat build of Quarkus,
see Red Hat build of Quarkus Component details .

For general availability, full support, and maintenance support dates for all Red Hat products,
see Red Hat Application Services Product Update and Support Policy .

1.4.1. Product updates and support lifecycle policy

In Red Hat build of Quarkus, a feature release can be either a major release or a minor release:

A major release introduces new features and a support life cycle (full and maintenance) for a
minimum of 3 years.

A minor release introduces new features or changes that do not affect compatibility with earlier
releases (breaking changes). The latest minor version is fully supported, and the previous
version is considered in maintenance for six months, starting when a new minor version is
released.

For more information, see Red Hat Life Cycle and Support Policies .

Red Hat build of Quarkus release version numbers are directly aligned with the Long-Term Support
(LTS) versions of the Quarkus community project . For more information, see the Long-Term Support
(LTS) for Quarkus blog post.

The version numbering of a Red Hat build of Quarkus feature release matches the Quarkus community
version on which it is based.

IMPORTANT

Red Hat does not release a productized version of Quarkus for every version the
community releases. The cadence of the Red Hat build of Quarkus feature releases is
about every six months.

Red Hat build of Quarkus provides full support for a feature release right up until the release of a
subsequent version. When a feature release is superseded by a new version, Red Hat continues to
provide a further six months of maintenance support for the release, as outlined in the following support
lifecycle chart [Fig. 1].

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.20

21

https://access.redhat.com/articles/4966181
https://access.redhat.com/articles/3348731
https://access.redhat.com/support/policy/updates/jboss_notes/#p_quarkus
https://access.redhat.com/support/policy/updates/red_hat_build_of_quarkus_notes
https://quarkus.io/
https://quarkus.io/blog/lts-releases/

Figure 1. Feature release cadence and support lifecycle of Red Hat build of Quarkus

During the full support phase and maintenance support phase of a release, Red Hat also provides
'service-pack (SP)' updates and 'micro' releases to fix bugs and Common Vulnerabilities and Exposures
(CVE).

New features in subsequent feature releases of Red Hat build of Quarkus can introduce enhancements,
innovations, and changes to dependencies in the underlying technologies or platforms. For a detailed
summary of what is new or changed in a successive feature release, see New features, enhancements,
and technical changes.

While most of the features of Red Hat build of Quarkus continue to work as expected after you upgrade
to the latest release, there might be some specific scenarios where you need to change your existing
applications or do some extra configuration to your environment or dependencies. Therefore, before
upgrading Red Hat build of Quarkus to the latest release, always review the Changes that affect
compatibility with earlier versions and Deprecated components and features sections of the release
notes.

For detailed information about the product lifecycle, timelines, and support policies of Red Hat build of
Quarkus, log in to the Red Hat Customer Portal and see the Knowledgebase article, Red Hat build of
Quarkus lifecycle and support policies.

1.4.2. Tested and verified environments

Red Hat build of Quarkus 3.20 is available on the following versions of Red Hat OpenShift Container
Platform: 4.19, 4.12, and Red Hat Enterprise Linux 8.10.

For a list of supported configurations, log in to the Red Hat Customer Portal and see the
Knowledgebase solution Red Hat build of Quarkus Supported configurations .

1.4.3. Development support

Red Hat provides development support for the following Red Hat build of Quarkus features, plugins,
extensions, and dependencies:

Red Hat build of Quarkus 3.20 Release Notes for Red Hat build of Quarkus 3.20

22

https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/release_notes_for_red_hat_build_of_quarkus_3.20/index#ref_rn-new-features-changes-and-technical-enhancements_quarkus-release-notes
https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/release_notes_for_red_hat_build_of_quarkus_3.20/index#ref_changes-that-affect-backward-compatibility_quarkus-release-notes
https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/release_notes_for_red_hat_build_of_quarkus_3.20/index#ref_rn-deprecated-components-and-features_quarkus-release-notes
https://access.redhat.com/product-life-cycles?product=Red Hat build of Quarkus
https://access.redhat.com/articles/4966181
https://access.redhat.com/support/offerings/developer/soc/

Features

Continuous Testing

Dev Services

Dev UI

Local development mode

Remote development mode

Plugins

Maven Protocol Buffers Plugin

1.4.3.1. Development tools

Red Hat provides development support for using Quarkus development tools, including the Quarkus CLI
and the Maven and Gradle plugins, to prototype, develop, test, and deploy Red Hat build of Quarkus
applications.

Red Hat does not support using Quarkus development tools in production environments. For more
information, see the Red Hat Knowledgebase article Development Support Scope of Coverage.

1.5. DEPRECATED COMPONENTS AND FEATURES

The components and features listed in this section are deprecated with Red Hat build of Quarkus 3.20.
They are included and supported in this release. However, no enhancements will be made to these
components and features, and they might be removed in the future.

For a list of the components and features that are deprecated in this release, log in to the Red Hat
Customer Portal and view the Red Hat build of Quarkus Component details page.

1.5.1. Legacy configuration classes deprecated

In Red Hat build of Quarkus 3.20, legacy configuration classes based on @ConfigRoot and
@ConfigItem have been deprecated. This deprecation prepares the migration to the @ConfigMapping
framework, which provides a more consistent and type-safe configuration model.

The compatibility layer for existing configuration classes remains available in this release but is planned
for removal in a future version.

Developers are encouraged to update their code to use @ConfigMapping interfaces to ensure long-
term compatibility.

For more information, see the JIRA issue QDOCS-1150 .

1.5.2. quarkus.http.cors property deprecated

In Red Hat build of Quarkus 3.20, the quarkus.http.cors configuration property has been deprecated.
To enable Cross-Origin Resource Sharing (CORS), use the quarkus.http.cors.enabled property
instead.

Update your configuration as follows:

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.20

23

https://access.redhat.com/support/offerings/developer/
https://access.redhat.com/support/offerings/developer/soc/
https://access.redhat.com/articles/3348731
https://issues.redhat.com/browse/QDOCS-1150

quarkus.http.cors.enabled=true

This change was introduced to improve compatibility with YAML configuration, where the
previous structure required using special syntax such as ~ to assign a value to the root key,
leading to confusing or error-prone setups.

For more information, see the Cross-Origin Resource Sharing (CORS) guide.

1.5.3. quarkus.log.*.json property deprecated

In Red Hat build of Quarkus 3.20, the quarkus.log.*.json configuration property has been deprecated.
To enable JSON formatting for logging, use the quarkus.log.*.json.enabled property instead.

Update your configuration as follows:

quarkus.log.console.json.enabled=true

This change was introduced to improve compatibility with YAML configuration, where the previous
structure required using special syntax such as ~ to assign a value to the root key, leading to confusing or
error-prone setups.

For more information, see the Migration Guide 3.19.

1.5.4. SmallRye Fault Tolerance version 6.7.0 deprecates first-generation
programmatic API

In Red Hat build of Quarkus 3.20, the quarkus-smallrye-fault-tolerance extension includes SmallRye
Fault Tolerance 6.7.0, which introduces no breaking changes but includes the following updates:

The first version of the programmatic API (FaultTolerance, @ApplyFaultTolerance) is
deprecated and planned for removal in SmallRye Fault Tolerance 7.0. The second version
(Guard, TypedGuard, @ApplyGuard) serves as a replacement, but there are notable
differences.

Specification-defined configuration properties remain available, but Red Hat build of Quarkus
now provides native configuration properties you can use instead.

For more information, see the SmallRye Fault Tolerance 6.7.0 release announcement, which includes
links to the migration guides for the programmatic API and details about the new configuration
properties. The Quarkus SmallRye Fault Tolerance guide provides a complete reference for these
configuration properties.

1.5.5. WebSockets and WebSockets Client extensions deprecated

Red Hat build of Quarkus 3.20 deprecates the quarkus-websockets and quarkus-websockets-client
extensions, which implement the Jakarta WebSocket specification.

Red Hat build of Quarkus plans to stop supporting these extensions in a future release.

To ensure compatibility with upcoming versions, migrate to the Quarkus WebSockets Next
extension,quarkus-websockets-next, which offers a modern, more efficient WebSocket API.

For more information, see the following Quarkus resources:

Red Hat build of Quarkus 3.20 Release Notes for Red Hat build of Quarkus 3.20

24

https://quarkus.io/guides/security-cors
https://github.com/quarkusio/quarkus/wiki/Migration-Guide-3.19#other-changes-gear-white_check_mark
https://smallrye.io/blog/fault-tolerance-6-7-0/
https://quarkus.io/version/3.20/guides/smallrye-fault-tolerance

Getting started with WebSockets Next

WebSockets Next reference guide

Quarkus WebSockets Next extension section of the "Release Notes for Red Hat build of
Quarkus 3.20" guide

This change requires manual intervention. It is not included in the automated update process described
in the Migrating applications to Red Hat build of Quarkus 3.20 guide.

1.6. TECHNOLOGY PREVIEWS

This section lists features and extensions that are now available as a Technology Preview in Red Hat
build of Quarkus 3.20.

IMPORTANT

Technology Preview features are not supported with Red Hat production service level
agreements (SLAs), might not be functionally complete, and Red Hat recommends that
you do not use them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about Red Hat Technology Preview features, see Technology
Preview Features Scope.

1.6.1. New Technology Preview features

Red Hat build of Quarkus 3.20 introduces the following Technology Preview features:

Messaging Kafka extension introduced with support for Kafka transactions

OIDC: Demonstrating Proof of Possession supported

TLS Registry: Encrypted PKCS#8 private keys in PEM keystores introduced

1.6.2. Continuing Technology Preview features

Red Hat build of Quarkus 3.20 continues to provide the following Technology Preview features that
were introduced in Red Hat build of Quarkus 3.15:

Cert-manager support and periodic reload of TLS certificates

Generate reflection-free Jackson serializers

Infinispan cache extension introduced

JDK Flight Recorder extension introduced

OpenTelemetry metrics data creation and reporting

MongoDB tracing enhanced

1.7. CHANGES THAT AFFECT COMPATIBILITY WITH EARLIER

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.20

25

https://quarkus.io/version/3.20/guides/websockets-next-tutorial
https://quarkus.io/version/3.20/guides/websockets-next-reference
https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/release_notes_for_red_hat_build_of_quarkus_3.20/index#ref_rn-qdocs-1136-websockets-next_quarkus-release-notes
https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/migrating_applications_to_red_hat_build_of_quarkus_3.20/index
https://access.redhat.com/support/offerings/techpreview/
https://docs.redhat.com/en/documentation/red_hat_build_of_quarkus/3.15/html/release_notes_for_red_hat_build_of_quarkus_3.15/assembly_release-notes-quarkus_quarkus-release-notes#cert-manager-support-and-periodic-reload-of-tls-certificates
https://docs.redhat.com/en/documentation/red_hat_build_of_quarkus/3.15/html/release_notes_for_red_hat_build_of_quarkus_3.15/assembly_release-notes-quarkus_quarkus-release-notes#reflection-free-jackson-serializers_quarkus-release-notes
https://docs.redhat.com/en/documentation/red_hat_build_of_quarkus/3.15/html/release_notes_for_red_hat_build_of_quarkus_3.15/assembly_release-notes-quarkus_quarkus-release-notes#infinispan-cache-extension_quarkus-release-notes
https://docs.redhat.com/en/documentation/red_hat_build_of_quarkus/3.15/html/release_notes_for_red_hat_build_of_quarkus_3.15/assembly_release-notes-quarkus_quarkus-release-notes#jdk-flight-recorder-extension_quarkus-release-notes
https://docs.redhat.com/en/documentation/red_hat_build_of_quarkus/3.15/html/release_notes_for_red_hat_build_of_quarkus_3.15/assembly_release-notes-quarkus_quarkus-release-notes#opentelemetry-metrics-data-creation-and-reporting
https://docs.redhat.com/en/documentation/red_hat_build_of_quarkus/3.15/html/release_notes_for_red_hat_build_of_quarkus_3.15/assembly_release-notes-quarkus_quarkus-release-notes#mongodb-tracing-enhanced

1.7. CHANGES THAT AFFECT COMPATIBILITY WITH EARLIER
VERSIONS

This section describes changes in Red Hat build of Quarkus 3.20 that affect the compatibility of
applications built with earlier product versions.

Review these breaking changes and take the necessary steps to ensure that your applications continue
functioning after updating them to Red Hat build of Quarkus 3.20.

To update your application projects to Red Hat build of Quarkus 3.20, see the Migrating applications to
Red Hat build of Quarkus 3.20 guide.

1.7.1. Cloud

1.7.1.1. OpenShift and Kubernetes: Fabric8 Kubernetes Client upgraded to version 7.1

In Red Hat build of Quarkus 3.20, the following extensions upgrade the Fabric8 Kubernetes Client from
version 6.13 to 7.1.

quarkus-openshift

quarkus-openshift-client

quarkus-kubernetes

quarkus-kubernetes-client

Breaking changes

The upgraded Fabric8 Kubernetes Client includes breaking changes affecting the quarkus-kubernetes-
client and quarkus-openshift-client extensions.

Although the quarkus-openshift and quarkus-kubernetes extensions use Fabric8, their functionality
remains unchanged, so you do not need to make any updates for them.

The io.quarkus:quarkus-test-openshift-client module has been removed as part of this upgrade. If
your tests use this module, migrate to io.quarkus:quarkus-test-kubernetes-client, which offers
equivalent functionality. For more information, see the OpenShift client section of the Quarkus
"Kubernetes Client" guide.

The upgraded Fabric8 Kubernetes Client reorganized some model types and classes, moving some to
different modules. To find their new locations, refer to the official Fabric8 Kubernetes Client: Migration
from 6.x to 7.x guide.

Review your application for any affected dependencies, configurations, or API usages, and update them
as needed. Then, thoroughly test your application to ensure full compatibility with Fabric8 7.1.

NOTE

Red Hat build of Quarkus 3.20 provides Developer Preview support for the quarkus-
kubernetes extension, and does not currently support the quarkus-kubernetes-client
extension. However, if you use these extensions, the described change might affect your
migration.

This change requires manual intervention. It is not included in the automated update process described

Red Hat build of Quarkus 3.20 Release Notes for Red Hat build of Quarkus 3.20

26

https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/migrating_applications_to_red_hat_build_of_quarkus_3.20/index
https://quarkus.io/version/3.20/guides/kubernetes-client#openshift-client
https://github.com/fabric8io/kubernetes-client/blob/main/doc/MIGRATION-v7.md

This change requires manual intervention. It is not included in the automated update process described
in the Migrating applications to Red Hat build of Quarkus 3.20 guide.

1.7.2. Compatibility

1.7.2.1. Removal of Reactive rename compatibility layer

In Red Hat build of Quarkus 3.15, many extensions and configuration properties were renamed as part of
the rebranding of RESTEasy Reactive to Quarkus REST and Reactive Messaging to Quarkus Messaging.
To support this transition, artifact relocations and configuration fallbacks were introduced.

In Red Hat build of Quarkus 3.20, these artifact relocations and configuration fallbacks have been
removed. You must now use the new artifact names and configuration properties.

For more additional background information, see the RESTEasy Reactive extensions renamed to
Quarkus REST section of the "Release Notes for Red Hat build of Quarkus 3.15" guide.

1.7.3. Core

1.7.3.1. Default locale configuration enhanced

Red Hat build of Quarkus 3.20 updates locale handling to align with Mandrel version 24.2 and later.

Breaking changes

In earlier releases, applications inherited the default locale from the build system.

To ensure consistent locale behavior across all applications, Red Hat build of Quarkus applies a
standardized default locale strategy. Use the following table to determine how your application’s
behavior changes based on your locale configuration.

Application properties Locales included in native
executable

Default locale at run time

Neither quarkus.locales nor
quarkus.default-locale is set

en_US en_US

Only quarkus.locales is set Locales listed in
quarkus.locales and en_US

en_US

Only quarkus.default-locale is
set

en_US Value of quarkus.default-
locale

Both quarkus.locales and
quarkus.default-locale are set

Locales listed in
quarkus.locales and en_US

Value of quarkus.default-
locale

The en_US locale is always embedded in the native executable, regardless of the quarkus.locales
configuration.

NOTE

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.20

27

https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/migrating_applications_to_red_hat_build_of_quarkus_3.20/index
https://docs.redhat.com/en/documentation/red_hat_build_of_quarkus/3.15/html-single/release_notes_for_red_hat_build_of_quarkus_3.15/index#ref_rn-qdocs-740-resteasy-reactive-extensions-renamed-to-quarkus-rest_quarkus-release-notes

NOTE

If you set quarkus.default-locale, Red Hat build of Quarkus sets the user.language and
user.country system properties at run time. For JDK 24 and later with GraalVM or
Mandrel, you can also override these properties directly.

Review your application’s locale settings in the configuration properties and, if necessary, update the
settings to avoid unexpected changes in behavior.

This change requires manual intervention. It is not included in the automated update process described
in the Migrating applications to Red Hat build of Quarkus 3.20 guide.

1.7.3.2. SmallRye Fault Tolerance: Fallback and BeforeRetry methods now defined at build
time

In Red Hat build of Quarkus 3.20, the configuration properties for @Fallback.fallbackMethod() and
@BeforeRetry.methodName() are now resolved at build time and cannot be changed at runtime. The
affected configuration properties are:

<class_name>/<method_name>/Fallback/fallbackMethod

<class_name>/Fallback/fallbackMethod

Fallback/fallbackMethod

<class_name>/<method_name>/BeforeRetry/methodName

<class_name>/BeforeRetry/methodName

BeforeRetry/methodName

This change ensures proper reflection configuration and compatibility with native image compilation.

1.7.3.3. SmallRye Fault Tolerance version 6.7.0 deprecates first-generation programmatic
API

In Red Hat build of Quarkus 3.20, the quarkus-smallrye-fault-tolerance extension includes SmallRye
Fault Tolerance 6.7.0, which introduces no breaking changes but includes the following updates:

The first version of the programmatic API (FaultTolerance, @ApplyFaultTolerance) is
deprecated and planned for removal in SmallRye Fault Tolerance 7.0. The second version
(Guard, TypedGuard, @ApplyGuard) serves as a replacement, but there are notable
differences.

Specification-defined configuration properties remain available, but Red Hat build of Quarkus
now provides native configuration properties you can use instead.

For more information, see the SmallRye Fault Tolerance 6.7.0 release announcement, which includes
links to the migration guides for the programmatic API and details about the new configuration
properties. The Quarkus SmallRye Fault Tolerance guide provides a complete reference for these
configuration properties.

1.7.3.4. Scheduler methods now require a started scheduler

Starting in Red Hat build of Quarkus 3.20, the behavior of methods in io.quarkus.scheduler.Scheduler

Red Hat build of Quarkus 3.20 Release Notes for Red Hat build of Quarkus 3.20

28

https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/migrating_applications_to_red_hat_build_of_quarkus_3.20/index
https://smallrye.io/blog/fault-tolerance-6-7-0/
https://quarkus.io/version/3.20/guides/smallrye-fault-tolerance

Starting in Red Hat build of Quarkus 3.20, the behavior of methods in io.quarkus.scheduler.Scheduler
has changed.

When the scheduler is not started, almost all methods now throw an UnsupportedOperationException.

To verify whether the scheduler is running, you can use a new method, Scheduler#isStarted().

This change affects scheduler instances coming from both the quarkus-scheduler and quarkus-quartz
extensions.

1.7.3.5. Management interface now listens on localhost in development and test modes

Starting in Red Hat build of Quarkus 3.20, when you use development and test modes, the management
interface listens on the localhost interface by default instead of on 0.0.0.0. This change aligns with the
behavior of the main interface.

On Windows with Windows Subsystem for Linux (WSL), both the management and main interfaces
continue to listen on 0.0.0.0.

For more information, see the Quarkus Management interface reference guide.

1.7.3.6. Migration to @ConfigMapping and deprecation of configuration classes

In Red Hat build of Quarkus 3.20, configuration has migrated to the @ConfigMapping framework. This
change deprecates the legacy configuration classes in favor of a unified configuration model based on
interfaces and method signatures.

A compatibility layer remains in place for certain commonly used configuration classes, but it is planned
for removal in a future release.

1.7.3.7. Builder and runtime base images upgraded to UBI 9

Starting in Red Hat build of Quarkus 3.20, Red Hat builder and runtime base images are upgraded to
use Red Hat Universal Base Image 9 (UBI 9).

When upgrading from UBI 8 to UBI 9, be aware that changes in system dependencies, native image
builds, or package and GNU C Library (glibc) version updates might affect your application’s behavior or
runtime environment. Review and update your configurations as needed.

If you encounter issues with UBI 9, you can manually switch back to using UBI 8:

Table 1.3. Switching back to UBI 8

Images Actions

Builder images Set the builder image manually as follows:

-Dquarkus.native.container-build=true

registry.access.redhat.com/quarkus/mandrel-for-jdk-21-rhel8:23.1

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.20

29

https://quarkus.io/version/3.20/guides/management-interface-reference#quarkus-vertx-http_quarkus-management-host

Runtime images Depending on the mode, apply the following settings:

JVM mode:

In your Dockerfile in the src/main/docker/ directory, specify
registry.access.redhat.com/ubi8/openjdk-21 as the base image of
your container.

Native mode:

To use UBI minimal, specify registry.access.redhat.com/ubi8/ubi-
minimal:8.10.

Images Actions

For more information, see the following resources:

Red Hat Universal Base Image 9

Quarkus Migration guide 3.19

Creating a custom container image

1.7.4. Data

1.7.4.1. Datasource: Removal of implicit default URL for reactive SQL datasources

In earlier versions of Red Hat build of Quarkus, when Dev Services were disabled or running in
production mode, the quarkus.datasource.reactive.url and quarkus.datasource.<datasource-
name>.reactive.url properties were implicitly set to an undocumented default, targeting localhost with
a database-specific port.

Starting in Red Hat build of Quarkus 3.20, these properties no longer have a default value when Dev
Services are disabled or the application is running in production mode. If the property is not set, the
corresponding datasource is deactivated. If the application attempts to use a deactivated datasource, it
will fail at startup. For details, see the Datasource usage fails fast if datasource is deactivated or has no
URL set release note.

If your application requires an active datasource and you want it to connect to a database on localhost,
you must now set the quarkus.datasource.reactive.url or quarkus.datasource.<datasource-
name>.reactive.url property explicitly. For example:

In earlier versions, this configuration was set implicitly. Starting with this release, you must define the
URL to activate the datasource.

1.7.4.2. Datasources without a URL no longer contribute to a health check

Previously, when Dev Services were disabled or in production mode, Red Hat build of Quarkus
contributed a health check for datasources even if quarkus.datasource.jdbc.url, quarkus.datasource.
<datasource-name>.jdbc.url, quarkus.datasource.reactive.url, or quarkus.datasource.

quarkus.datasource.reactive.url=postgresql://localhost:5432/mydatabase

Red Hat build of Quarkus 3.20 Release Notes for Red Hat build of Quarkus 3.20

30

https://catalog.redhat.com/software/containers/ubi9/ubi/615bcf606feffc5384e8452e
https://github.com/quarkusio/quarkus/wiki/Migration-Guide-3.19#ubi-9
https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/compiling_your_red_hat_build_of_quarkus_applications_to_native_executables/index#ref_creating-container_quarkus-building-native-executable

<datasource-name>.reactive.url properties were not set. This caused unreliable health checks that
always succeeded for JDBC datasources and almost always failed for reactive datasources.

Starting with Red Hat build of Quarkus 3.20, datasources without a URL no longer contribute a health
check. To ensure a health check is available, explicitly set the quarkus.datasource.jdbc.url,
quarkus.datasource.<datasource-name>.jdbc.url, quarkus.datasource.reactive.url, or
quarkus.datasource.<datasource-name>.reactive.url property.

1.7.4.3. Datasource usage fails fast if datasource is deactivated or has no URL set

In Red Hat build of Quarkus 3.20, applications start successfully even if a datasource is deactivated with
quarkus.datasource.active=false or lacks a URL. This behavior often leads to runtime failures when the
datasource is first accessed, especially when Dev Services are disabled or in production mode.

With this update, applications fail to start if Red Hat build of Quarkus detects that a datasource is used
but is either deactivated or missing a URL.

Red Hat build of Quarkus now enforces stricter validation during startup to catch these issues early:

Static CDI Injection: If a datasource is injected statically using @Inject DataSource or @Inject
Pool, the application will fail to start with a clear and actionable error message.

Dynamic Retrieval: Datasources retrieved dynamically, such as by using
Arc.container().instance() or @Inject Instance<DataSource>, will not be detected during
startup. However, retrieving these beans at runtime will throw an explicit exception with
actionable guidance.

The same validation applies to the Flyway and Liquibase extensions for their Flyway and
LiquibaseFactory CDI beans.

NOTE

Red Hat build of Quarkus 3.20 does not currently support the Flyway and Liquibase
extensions. However, if you use these extensions, the described change might affect your
migration.

Impact on Applications

If your application uses a datasource, Flyway, or LiquibaseFactory bean that may be deactivated
or lack a URL, you could encounter a startup failure like the following:

io.quarkus.arc.InactiveBeanException: Bean is not active: SYNTHETIC bean
[class=io.agroal.api.AgroalDataSource, id=sqqLi56D50iCdXmOjyjPSAxbLu0]
Reason: Datasource' <default>' was deactivated automatically because its URL was not set.

To activate the datasource, set configuration property quarkus.datasource.jdbc.url.
For more information, see the Configure data sources guide.

How to resolve if the datasource should be active

Ensure that all required configuration properties are set:

1. Set quarkus.datasource.jdbc.url or the appropriate configuration for the datasource type to
ensure it is properly activated.

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.20

31

https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/configure_data_sources/index

How to resolve if the datasource might be inactive

Adjust your code or configuration to handle inactive datasources gracefully:

1. Deactivate unused extensions: If an extension depends on a datasource that might not be
active, deactivate the extension explicitly by setting its active configuration property to false.
For example:

quarkus.hibernate-search-standalone.active=false

quarkus.hibernate-search-orm.active=false

quarkus.hibernate-orm.active=false

quarkus.flyway.active=false

quarkus.datasource.active=false

2. Inject dynamically: Instead of using static CDI injection, use @Inject
InjectableInstance<DataSource> to check if the datasource bean is active before using it.

if (ds.getHandle().getBean().isActive()) {
DataSource dataSource = ds.get();
// Use the datasource
}

These changes improve application reliability by detecting misconfigured datasources early,
preventing unexpected runtime errors.

1.7.4.4. Flyway version 11 removes cleanOnValidationError

In Red Hat build of Quarkus 3.20, the quarkus-flyway extension upgrades Flyway to version 11, which
removes the cleanOnValidationError configuration parameter. Additionally, calling Flyway.validate()
no longer cleans on validation error.

To mitigate this change, Red Hat build of Quarkus 3.20 introduces the quarkus.flyway.validate-at-
start.clean-on-validation-error configuration property, which provides behavior similar to
cleanOnValidationError, but applies only when the application starts.

Workaround: If you require the previous behavior of cleanOnValidationError in explicit calls to
Flyway.validate(), consider catching validation errors in your application and triggering a database
cleanup explicitly using Flyway.clean().

NOTE

Red Hat build of Quarkus 3.20 does not currently support the Flyway extension. However,
if you use this extension, the described change might affect your migration.

This change requires manual intervention. It is not included in the automated update process described
in the Migrating applications to Red Hat build of Quarkus 3.20 guide.

For more information, see the Quarkus Using Flyway guide.

1.7.4.5. IBM Db2 driver and container image upgraded to version 12

Red Hat build of Quarkus 3.20 Release Notes for Red Hat build of Quarkus 3.20

32

https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/migrating_applications_to_red_hat_build_of_quarkus_3.20/index
https://quarkus.io/version/3.20/guides/flyway

In Red Hat build of Quarkus 3.20, the IBM Db2 driver and container image that Dev Services uses have
been upgraded to version 12.

The automated update described in the Migrating applications to Red Hat build of Quarkus 3.20 guide
upgrades the IBM Db2 driver and container image to version 12.

Breaking changes

This upgrade introduces breaking changes to the license registration process and connectivity
configuration.

Review the new license requirements, configuration steps, and SSL/TLS settings detailed on IBM’s
Features with behavior changes when upgrading to the Db2 Connect 12.1 driver for upgrading to Db2
Connect 12.1.

This change requires manual intervention. It is not included in the automated update process described
in the Migrating applications to Red Hat build of Quarkus 3.20 guide.

1.7.4.6. Hibernate ORM Bean Validation contributes to DDL by default

In Red Hat build of Quarkus 3.20, the default behavior of Hibernate ORM’s Bean Validation integration
has changed. Previously, validation constraints were not considered during Data Definition Language
(DDL) generation. With this release, Hibernate ORM includes applicable validation constraints in DDL by
default, ensuring that database schemas align more closely with application-level constraints.

To revert to the previous behavior where validation constraints do not influence DDL
generation, set the quarkus.hibernate-orm.validation.mode configuration property to
callback:

quarkus.hibernate-orm.validation.mode=callback

The quarkus.hibernate-orm.validation.enabled property has also been deprecated.

To disable Bean Validation integration, use the following setting:

quarkus.hibernate-orm.validation.mode=none

For more information about these changes and guidance on migrating your application, see the
Migration Guide 3.19, or the following resources:

Validation modes and Hibernate Validator integration

Apply validation modes to the Hibernate Reactive session factory config - GitHub PR

1.7.5. Logging

1.7.5.1. quarkus.log.*.json property deprecated

In Red Hat build of Quarkus 3.20, the quarkus.log.*.json configuration property has been deprecated.
To enable JSON formatting for logging, use the quarkus.log.*.json.enabled property instead.

Update your configuration as follows:

quarkus.log.console.json.enabled=true

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.20

33

https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/migrating_applications_to_red_hat_build_of_quarkus_3.20/index
https://www.ibm.com/support/pages/features-behavior-change-while-upgrading-db2connect-121-driver
https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/migrating_applications_to_red_hat_build_of_quarkus_3.20/index
https://github.com/quarkusio/quarkus/wiki/Migration-Guide-3.19#hibernate-orm
https://github.com/quarkusio/quarkus/blob/08128637916b487b3f8fc64a6712f5eba66ca353/docs/src/main/asciidoc/hibernate-orm.adoc?plain=1#L1514-L1590
https://github.com/quarkusio/quarkus/pull/46398

This change was introduced to improve compatibility with YAML configuration, where the previous
structure required using special syntax such as ~ to assign a value to the root key, leading to confusing or
error-prone setups.

For more information, see the Migration Guide 3.19.

1.7.6. Observability

1.7.6.1. OpenTelemetry: Database incubating values moved

In Red Hat build of Quarkus 3.20, the quarkus-opentelemetry extension introduces breaking changes
because some database incubating values, such as those related to Redis, were moved to a different
package.

OpenTelemetry does not maintain a list of changes for database semantic conventions because they
are not yet stable.

This change might require manual intervention, if you use manual instrumentation. It is not included in
the automated update process described in the Migrating applications to Red Hat build of Quarkus 3.20
guide.

1.7.6.2. SmallRye OpenTracing: Extension and related JDBC tracing configuration removed

In Red Hat build of Quarkus 3.20, the previously deprecated quarkus-smallrye-opentracing extension
and related configuration property quarkus.datasource.jdbc.tracing have been removed.

The quarkus-opentelemetry extension is now the preferred tracing solution. To enable JDBC tracing
with OpenTelemetry, use the following configuration property:

To migrate, replace the OpenTracing extension with OpenTelemetry and update your configuration
accordingly.

1.7.7. Security

1.7.7.1. OIDC Client: Behavior changed if client does not have a URL

Starting in Red Hat build of Quarkus 3.20, if you use the quarkus-oidc-client extension but do not
configure the OpenID Connect (OIDC) client to point to a specific URL, Dev Services for Keycloak
automatically starts in dev mode.

To disable this behavior, add the following property to your application.properties file:

1.7.7.2. Security WebAuthn: Reimplementation by using WebAuthn4J

In Red Hat build of Quarkus 3.20, the quarkus-security-webauthn extension has been reimplemented
by using WebAuthn4J to enhance security, align with industry standards, and improve long-term
maintainability.

As a result, this update is not compatible with previous versions of the extension.

quarkus.datasource.jdbc.telemetry=true

quarkus.keycloak.devservices.enabled=false

Red Hat build of Quarkus 3.20 Release Notes for Red Hat build of Quarkus 3.20

34

https://github.com/quarkusio/quarkus/wiki/Migration-Guide-3.19#other-changes-gear-white_check_mark
https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/migrating_applications_to_red_hat_build_of_quarkus_3.20/index

IMPORTANT

This release note is provided for users of the quarkus-security-webauthn extension.
Although Red Hat build of Quarkus 3.20 does not yet support this extension, be aware
that this change may impact your migration.

To transition smoothly to the new implementation, use the following information.

userName changes

All userName references have been replaced with username.

Authenticator class changes

The Authenticator class (from Vert.x) is no longer used and has been replaced functionally with
WebAuthnCredentialRecord. This new class holds similar data, but as a WebAuthn4J subtype,
requires different methods for accessing content:

WebAuthnCredentialRecord.getRequiredPersistedData() returns a
RequiredPersistedData record with all necessary persistence data, simplifying storage
management.

WebAuthnCredentialRecord.fromRequiredPersistedData(RequiredPersistedData), a
static method, reconstructs a WebAuthnCredentialRecord from stored data.

If your application stores Authenticator data in JPA entities or database tables, you must
migrate to the new WebAuthnCredentialRecord format. If you encounter issues, report them
in the project repository.

WebAuthnUserProvider class changes

findWebAuthnCredentialsByUserName() is now findByUsername().

findWebAuthnCredentialsByCredID() is now findByCredentialId().

updateOrStoreWebAuthnCredentials() has been split into the following:

update(String credentialId, long counter)

store(WebAuthnCredentialRecord credentialRecord)

Default endpoint changes

/q/webauthn/login is now /q/webauthn/login-options-challenge.

/q/webauthn/register is now /q/webauthn/register-options-challenge.

/q/webauthn/callback has been split into the following endpoints, which are turned off by
default for security reasons:

/q/webauthn/login
To enable, set the quarkus.webauthn.enable-login-endpoint property.

/q/webauthn/register

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.20

35

To enable, set the quarkus.webauthn.enable-registration-endpoint property.

The new /q/webauthn/register endpoint requires a username query parameter.

/.well-known/webauthn has been added to return the list of allowed related origins.

The user name for login and login-options-challenge is now optional.

The /q/webauthn/login-options-challenge and /q/webauthn/register endpoints have moved
from POST to GET methods and now accept parameters as query parameters instead of JSON
bodies.

WebAuthnSecurity class changes

Two methods have been added:

getLoginOptionsChallenge()

getRegisterOptionsChallenge()

The username parameter for login() and loginOptionsChallenge() is now optional.

The register() method now requires a username parameter due to the removal of the
username cookie.

Configuration changes

quarkus.webauthn.require-resident-key (boolean, default: false) has been replaced by
quarkus.webauthn.resident-key (data enumeration, default: REQUIRED).

quarkus.webauthn.challenge-username-cookie-name setting has been removed along with
its associated cookie.

The following new configuration settings have been added:

quarkus.webauthn.load-metadata (boolean, default: false) controls the loading of Fast
Identity Online (FIDO) metadata.

quarkus.webauthn.user-presence-required (boolean, default: true) specifies whether
user presence is required.

quarkus.webauthn.user-verification now defaults to REQUIRED instead of DISCOURAGED.

quarkus.webauthn.timeout now defaults to 5 minutes instead of 1 minute, in accordance with
the WebAuthn standard.

quarkus.webauthn.pub-key-cred-params is now quarkus.webauthn.public-key-credential-
parameters.

quarkus.webauthn.origin is now quarkus.webauthn.origins (plural) and now supports
multiple origins, in accordance with the WebAuthn standard.

The following new boolean configuration options have been added:

quarkus.webauthn.enable-registration-endpoint (boolean, default: false) enables the
default registration endpoint.

Red Hat build of Quarkus 3.20 Release Notes for Red Hat build of Quarkus 3.20

36

quarkus.webauthn.enable-login-endpoint (boolean, default: false) enables the default
login endpoint.

WebAuthn credential verification changes

WebAuthn credential attestation verification might behave differently for
quarkus.security.webauthn.attestation settings other than NONE (the default).

quarkus-test-security-webauthn test module changes

The WebAuthnHardware constructor now requires a URL parameter to represent the endpoint
location. You can get this URL from your test classes by using @TestHTTPResource URL url.

WebAuthnEndpointHelper.invokeRegistration() is now obtainRegistrationChallenge().

WebAuthnEndpointHelper.invokeLogin() is now obtainLoginChallenge() and accepts an
optional username parameter.

WebAuthnEndpointHelper.invokeCallback() has been split into the following:

WebAuthnEndpointHelper.invokeRegistration(), which requires a username parameter.

WebAuthnEndpointHelper.invokeLogin(), which accepts an optional username
parameter.

JavaScript library changes

registerOnly() is now registerClientSteps().

loginOnly() is now loginClientSteps().

login() and loginClientSteps() now accept an optional user parameter.

The constructor parameter registerPath is now registerOptionsChallengePath (default:
/q/webauthn/register-options-challenge).

The constructor parameter loginPath is now loginOptionsChallengePath (default:
/q/webauthn/login-options-challenge).

The constructor parameter callbackPath has been split into the following:

registerPath (default: /q/webauthn/register)

loginPath (default: /q/webauthn/login)

The constructor now accepts a csrf option of type JsonObject with two keys:

header, which specifies the header name used to include the Cross-Site Request Forgery
Prevention (CSRF) token.

value, which specifies the CSRF token value.
This update improves the security of custom endpoints protected by the quarkus-rest-csrf
extension. For more information, see the Quarkus Cross-Site Request Forgery Prevention
guide.

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.20

37

https://quarkus.io/version/3.20/guides/security-csrf-prevention

The status of this feature is downgraded from preview to experimental to allow for further stabilization.

For more information, see the Quarkus Using Security with WebAuthn guide.

This change requires manual intervention. It is not included in the automated update process described
in the Migrating applications to Red Hat build of Quarkus 3.20 guide.

1.7.8. Tooling

1.7.8.1. @WithTestResource flaws fixed: restrictToAnnotatedClass replaced by scope

Earlier, Red Hat build of Quarkus 3.15 shipped with a version of @WithTestResource that was flawed
and was thus not announced.

In Red Hat build of Quarkus 3.20, the flaws have been fixed, resulting in a breaking change. In this
release, the earlier restrictToAnnotatedClass field has been replaced by scope.

1.7.8.2. JUnit 5 Mockito: Default mocking strategy changed to inline

In earlier releases, the quarkus-junit5-mockito dependency was configured to create mock objects by
using the subclass mocking strategy.

Starting in Red Hat build of Quarkus 3.20, the dependency is now configured to use an inline mocking
strategy by default.

1.7.8.3. Quarkus Test Framework JUnit 5 Mockito version alignment

In Red Hat build of Quarkus 3.20.0, the quarkus-junit5-mockito dependency was temporarily non-
functional due to an intentional mismatch in its dependency versions. The version of Mockito in use
required JUnit 5.11 or later, but the platform included JUnit 5.10.

To resolve the issue, Red Hat build of Quarkus 3.20.1 upgrades JUnit to version 5.12.1. This update aligns
the versions of JUnit and Mockito and restores compatibility for the quarkus-junit5-mockito
dependency.

The impact of this update is expected to be minimal. Testing in the community and Camel Quarkus has
not revealed any regressions. For more information, see the related issue:
https://github.com/quarkusio/quarkus/issues/46858.

NOTE

The quarkus-junit5-mockito extension is not supported or tested with the Red Hat build
of Quarkus. It is mentioned here for awareness in case users have included it in their
application dependencies.

Workaround

If you experience compatibility issues with JUnit 5.12.1, you can override the JUnit version in your Maven
project to use the version from the Red Hat build of Quarkus 3.20.0.

To ensure consistent alignment across all JUnit artifacts, import the JUnit BOM version used in 3.20.0
as shown:

<dependencyManagement>

Red Hat build of Quarkus 3.20 Release Notes for Red Hat build of Quarkus 3.20

38

https://quarkus.io/version/3.20/guides/security-webauthn
https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/migrating_applications_to_red_hat_build_of_quarkus_3.20/index
https://github.com/quarkusio/quarkus/issues/46858

NOTE

The junit-bom is not a supported test library of Red Hat build of Quarkus 3.20.0. If you
choose to use the BOM to align JUnit dependencies, use the upstream version from the
JUnit project.

1.7.9. Web

1.7.9.1. HTTP compression now includes application/json and application/xhtml+xml by default

If HTTP compression is enabled, the quarkus.http.compress-media-types configuration property
defines the list of media types to compress. In Red Hat build of Quarkus 3.20, the default value of this
property has changed. Newly compressed media types now include application/json and
application/xhtml+xml.

1.7.9.2. REST Client: Stricter configuration to optimize lookups

In Red Hat build of Quarkus 3.20, the REST Client Configuration became more strict to reduce the
number of lookups and combinations required to retrieve the configuration:

The MicroProfile Rest Client config style [Simple Class Name]/mp-rest does not work
anymore. The specification does not specify this style. The FQCN/mp-rest style continues to
function as expected and as specified by the MicroProfile Rest Client.

Only REST Clients discovered by Red Hat build of Quarkus are loaded by the
RestClientsConfig and RestClientsBuildTimeConfig.

The RestClientsConfig#clients and RestClientsBuildTimeConfig#client maps always use the
Fully Qualified Collection Name (FQCN) of the REST Client interface. Before, it would use all
the keys found, even if related to the same REST Client duplicating entries.

Removed legacy configuration names quarkus.rest.client.max-redirects and
quarkus.rest.client.multipart-post-encoder-mode.

1.7.9.3. Qute: Default character escaping in JSON templates

Starting in Red Hat build of Quarkus 3.20, the quarkus-qute extension automatically escapes double
quotes ("), backslashes (\), and control characters (U+0000 through U+001F) in JSON templates if a
corresponding template variant is set. The extension automatically assigns a variant to templates
located in the src/main/resources/templates directory.

By default, java.net.URLConnection#getFileNameMap() determines the content type of a template

 <dependencies>
 <dependency>
 <groupId>org.junit</groupId>
 <artifactId>junit-bom</artifactId>
 <version>5.10.5</version>
 <scope>import</scope>
 <type>pom</type>
 </dependency>
 </dependencies>
</dependencyManagement>

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.20

39

By default, java.net.URLConnection#getFileNameMap() determines the content type of a template
file. You can define additional suffix-to-content-type mappings by using the quarkus.qute.content-
types configuration.

To render the unescaped value, use the raw or safe properties, which are implemented as extension
methods of java.lang.Object, or wrap the string value in the io.quarkus.qute.RawString class.

For more information, see the Character escapes section of the Quarkus "Qute reference" guide.

1.7.9.4. REST Jackson: ObjectMapperCustomizer behavior changed for default JSON
processor instance

In Red Hat build of Quarkus 3.20, with the quarkus-rest-jackson extension, only
ObjectMapperCustomizer beans without qualifiers are applied to the default ObjectMapper instance
of the Jackson JSON processor.

In earlier versions, all customizer beans, including those with custom qualifiers, were applied to the
default ObjectMapper instance.

This change requires manual intervention. It is not included in the automated update process described
in the Migrating applications to Red Hat build of Quarkus 3.20 guide.

For more information, see the following resources:

The Improved Jackson JSON processing with reflection-free deserialization section of the
Release Notes for Red Hat build of Quarkus 3.20.

The Configuring JSON support section of the Quarkus "Writing JSON REST Services" guide.

1.7.9.5. REST: Empty query parameters now handled as null or empty collection

In earlier releases, with the quarkus-rest extension, query parameters with empty values, such as ?foo=,
were deserialized as follows:

@RestQuery String foo produced an empty string ("").

@RestQuery List<String> foo produced a collection containing a single empty string.

In Red Hat build of Quarkus 3.20, this behavior has changed:

@RestQuery String foo is now deserialized as null.

@RestQuery List<String> foo is now deserialized as an empty collection.

Update your code accordingly.

This change requires manual intervention. It is not included in the automated update process described
in the Migrating applications to Red Hat build of Quarkus 3.20 guide.

1.7.9.6. WebSockets and WebSockets Client extensions deprecated

Red Hat build of Quarkus 3.20 deprecates the quarkus-websockets and quarkus-websockets-client
extensions, which implement the Jakarta WebSocket specification.

Red Hat build of Quarkus plans to stop supporting these extensions in a future release.

Red Hat build of Quarkus 3.20 Release Notes for Red Hat build of Quarkus 3.20

40

https://quarkus.io/version/3.20/guides/qute-reference#character-escapes
https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/migrating_applications_to_red_hat_build_of_quarkus_3.20/index
https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/release_notes_for_red_hat_build_of_quarkus_3.20/index#ref_rn-qdocs-1070-generate-jackson-deserializers_quarkus-release-notes
https://quarkus.io/version/3.20/guides/rest-json#json
https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/migrating_applications_to_red_hat_build_of_quarkus_3.20/index

To ensure compatibility with upcoming versions, migrate to the Quarkus WebSockets Next
extension,quarkus-websockets-next, which offers a modern, more efficient WebSocket API.

For more information, see the following Quarkus resources:

Getting started with WebSockets Next

WebSockets Next reference guide

Quarkus WebSockets Next extension section of the "Release Notes for Red Hat build of
Quarkus 3.20" guide

This change requires manual intervention. It is not included in the automated update process described
in the Migrating applications to Red Hat build of Quarkus 3.20 guide.

1.8. KNOWN ISSUES

Review the following known issues for insights into Red Hat build of Quarkus 3.20 limitations and
workarounds.

1.8.1. FIPS: Known limitations when testing in FIPS-enabled environments

In Red Hat build of Quarkus 3.20, testing has been conducted to evaluate how Quarkus applications
behave in environments with FIPS (Federal Information Processing Standards) mode enabled.

While testing generally completes successfully, some technology integrations and native image
configurations currently present limitations that prevent validation or compilation.

Testing in FIPS-enabled environments has shown successful results for several key components,
including OpenID Connect (OIDC), supported databases, caching, messaging with Kafka in non-native
modes, and OpenTelemetry. However, some technology integrations and native configurations cannot
currently be verified in these environments.

These findings do not indicate official support by Red Hat build of Quarkus or its components for FIPS.

Scenarios that cannot be verified

The following technology integrations or configurations are currently not verifiable in FIPS-enabled
environments:

MariaDB 11.x

Infinispan client extension in both JVM and native mode with Mandrel 23.0 and 23.1

Apache Kafka using SCRAM and OAUTHBEARER SASL mechanisms in native mode

JDBC MSSQL driver in native mode

DB2

Reactive MSSQL client in native mode

Native image compilation using Red Hat Mandrel 23.1 builder image

Notable related issues

The following public Jira tickets provide additional details on the limitations encountered:

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.20

41

https://quarkus.io/version/3.20/guides/websockets-next-tutorial
https://quarkus.io/version/3.20/guides/websockets-next-reference
https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/release_notes_for_red_hat_build_of_quarkus_3.20/index#ref_rn-qdocs-1136-websockets-next_quarkus-release-notes
https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/migrating_applications_to_red_hat_build_of_quarkus_3.20/index

QUARKUS-5984: MariaDB 11.x fails to connect in FIPS-enabled environments due to
compatibility issues.

QUARKUS-2036: Infinispan client extension lacks support for FIPS-enabled environments.

QUARKUS-2984: Native builds using JDBC MSSQL and Reactive MSSQL clients fail on RHEL 8
with FIPS enabled.

QUARKUS-5232: SASL SCRAM mechanism is unusable in native mode within FIPS-enabled
environments.

QUARKUS-5233: SASL OAUTHBEARER mechanism is unusable in native mode within FIPS-
enabled environments.

MANDREL-254: Mandrel 23.1 builder image requires rework to support FIPS-enabled
environments.

QUARKUS-4387: Quarkus Reactive MySQL client is not supported in FIPS-enabled
environment.

QUARKUS-4612: Infinispan client extension fails on FIPS with native Mandrel 23.0 and 23.1.

Workaround

No workaround is currently available.

This release note is intended to preemptively disclose known challenges while broader compatibility
testing continues.

1.8.2. Kafka Streams extension missing a native library on Microsoft Windows

Applications that use the quarkus-kafka-streams extension on Microsoft fail at runtime due to a
missing native library, librocksdbjni-win64.dll.

During startup, this issue throws the following error:

java.lang.RuntimeException: librocksdbjni-win64.dll was not found inside JAR

This error prevents the initialization of the RocksDB component, which is required for Kafka Streams
applications.

No workaround is available at this time.

Example error

13:07:08,118 INFO [app] ERROR: Failed to start application (with profile [prod])
13:07:08,118 INFO [app] java.lang.RuntimeException: Failed to start quarkus
13:07:08,118 INFO [app] at io.quarkus.runner.ApplicationImpl.doStart(Unknown Source)
13:07:08,118 INFO [app] at io.quarkus.runtime.Application.start(Application.java:101)
13:07:08,118 INFO [app] at
io.quarkus.runtime.ApplicationLifecycleManager.run(ApplicationLifecycleManager.java:111)
13:07:08,118 INFO [app] at io.quarkus.runtime.Quarkus.run(Quarkus.java:71)
13:07:08,118 INFO [app] at io.quarkus.runtime.Quarkus.run(Quarkus.java:44)
13:07:08,118 INFO [app] at io.quarkus.runtime.Quarkus.run(Quarkus.java:124)
13:07:08,118 INFO [app] at io.quarkus.runner.GeneratedMain.main(Unknown Source)
13:07:08,118 INFO [app] Caused by: java.lang.ExceptionInInitializerError

Red Hat build of Quarkus 3.20 Release Notes for Red Hat build of Quarkus 3.20

42

https://issues.redhat.com/browse/QUARKUS-5984
https://issues.redhat.com/browse/QUARKUS-2036
https://issues.redhat.com/browse/QUARKUS-2984
https://issues.redhat.com/browse/QUARKUS-5232
https://issues.redhat.com/browse/QUARKUS-5233
https://issues.redhat.com/browse/MANDREL-254
https://issues.redhat.com/browse/QUARKUS-4387
https://issues.redhat.com/browse/QUARKUS-4612

13:07:08,118 INFO [app] at
io.quarkus.kafka.streams.runtime.KafkaStreamsRecorder.loadRocksDb(KafkaStreamsRecorder.java:14
)
13:07:08,118 INFO [app] at
io.quarkus.deployment.steps.KafkaStreamsProcessor$loadRocksDb1611413226.deploy_0(Unknown
Source)
13:07:08,118 INFO [app] at
io.quarkus.deployment.steps.KafkaStreamsProcessor$loadRocksDb1611413226.deploy(Unknown
Source)
13:07:08,118 INFO [app] ... 11 more
13:07:08,118 INFO [app] Caused by: java.lang.RuntimeException: librocksdbjni-win64.dll was not
found inside JAR.
13:07:08,118 INFO [app] at
org.rocksdb.NativeLibraryLoader.loadLibraryFromJarToTemp(NativeLibraryLoader.java:118)
13:07:08,118 INFO [app] at
org.rocksdb.NativeLibraryLoader.loadLibraryFromJar(NativeLibraryLoader.java:102)
13:07:08,118 INFO [app] at
org.rocksdb.NativeLibraryLoader.loadLibrary(NativeLibraryLoader.java:82)
13:07:08,118 INFO [app] at org.rocksdb.RocksDB.loadLibrary(RocksDB.java:70)
13:07:08,118 INFO [app] at org.rocksdb.RocksDB.<clinit>(RocksDB.java:39)
13:07:08,118 INFO [app] ... 14 more

For more information, see QUARKUS-3434.

1.8.3. Missing native library for Snappy on Windows

In Red Hat build of Quarkus 3.20, running an application that uses the Snappy compression library on
Windows produces an error due to a missing native library.

When attempting to compress data with Snappy in Windows environments, users might encounter an
error message similar to the following example.

Example error message

Workaround: No workaround is available at this time. This issue is planned to be resolved in a future
release.

For more information, see QUARKUS-5983.

1.8.4. Native image build intermittently fails with unreachable type errors on
Mandrel 23.1

In Red Hat build of Quarkus 3.20, building a native image with the Mandrel 23.1 runtime might fail
intermittently due to heap snapshot verification errors.

The build process fails with an error indicating that a type was not marked as reachable:

...
org.eclipse.microprofile.reactive.messaging.Message$5@1e8dc267 from channel 'test' was not sent
to Kafka topic 'test' - nacking message: org.apache.kafka.common.KafkaException:
org.xerial.snappy.SnappyError: [FAILED_TO_LOAD_NATIVE_LIBRARY] no native library is found for
os.name=Windows and os.arch=x86_64
...

AnalysisType<... reachable: false>

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.20

43

https://issues.redhat.com/browse/QUARKUS-3434
https://issues.redhat.com/browse/QUARKUS-5983

These errors are not consistent and can occur across different applications. They have not been reliably
reproduced in a controlled environment.

Example error 1

Example error 2

Example error 3

Workaround: Retry the native image build. Because the issue is intermittent, the build is likely to succeed
on subsequent attempts.

This issue is planned to be resolved in a future release.

For more information, see MANDREL-332.

1.8.5. OpenTelemetry: Dev mode fails to reload when tracing is disabled and metrics
are enabled

In Red Hat build of Quarkus 3.20, an application that uses the quarkus-opentelemetry extension does
not restart in Dev mode if the following properties are set in the application.properties file:

quarkus.otel.traces.enabled=false

quarkus.otel.metrics.enabled=true

During the reload attempt, Quarkus throws an UnsatisfiedResolutionException:

Example error message

jakarta.enterprise.inject.UnsatisfiedResolutionException: No bean found for required type [class
io.quarkus.opentelemetry.runtime.tracing.DelayedAttributes] and qualifiers
[[@jakarta.enterprise.inject.Any()]]

com.oracle.graal.pointsto.util.AnalysisError: The heap snapshot verifier discovered a type not marked
as reachable:
AnalysisType<VMOption$Origin[] -> HotSpotType<[Lcom/sun/management/VMOption$Origin;,
resolved>, allocated: false, inHeap: false, reachable: false>
 at
com.oracle.graal.pointsto.heap.HeapSnapshotVerifier$ScanningObserver.ensureTypeScanned(HeapS
napshotVerifier.java:332)
 ...

AnalysisType<MemoryType[] -> HotSpotType<[Ljava/lang/management/MemoryType;, resolved>,
allocated: false, inHeap: false, reachable: false>
AnalysisType<HotSpotDiagnosticMXBean$ThreadDumpFormat[] ->
HotSpotType<[Lcom/sun/management/HotSpotDiagnosticMXBean$ThreadDumpFormat;, resolved>,
allocated: false, inHeap: false, reachable: false>

AnalysisType<MemoryType[] -> HotSpotType<[Ljava/lang/management/MemoryType;, resolved>,
allocated: false, inHeap: false, reachable: false>

Red Hat build of Quarkus 3.20 Release Notes for Red Hat build of Quarkus 3.20

44

https://issues.redhat.com/browse/MANDREL-332

Workaround

No workaround is available at this time. This issue is planned to be resolved in a future release.

1.8.6. Quarkus CLI cannot discover the TLS registry CLI plugin

Red Hat build of Quarkus 3.15 introduced the quarkus-tls-registry-cli plugin, which enables TLS registry
support for the Quarkus CLI.

However, development tools do not currently discover Quarkus CLI plugins that are hosted on
maven.repository.redhat.com. As a result, the Quarkus CLI cannot resolve the TLS registry CLI plugin
by default.

When this issue occurs, the CLI returns an error similar to the following output:

Workaround: To enable the Quarkus CLI to resolve the plugin, configure JBang to use the Red Hat
Maven repository at https://maven.repository.redhat.com/ga/.

You can use one of the following methods:

Create a jbang.properties file with the following content:

To apply this configuration locally, place the file in the root directory of your project. To apply
the configuration globally, place the file in the ~/.jbang directory.

If JBang is already installed, configure the repository globally by running the following
command:

For more information, see QUARKUS-5183.

1.8.7. Quarkus CLI updates only the Red Hat build of Quarkus platform version

In Red Hat build of Quarkus 3.20, running the update command updates only the BOMs included in the
Red Hat build of Quarkus platform, com.redhat.quarkus.platform. These can include BOMs such as
quarkus-camel-bom and quarkus-cxf-bom if part of the release, quarkus-qpid-jms-bom, and
quarkus-operator-sdk-bom.

However, the command does not update BOM versions tied to the upstream community release. If your
project includes both Red Hat build of Quarkus and upstream BOMs, this issue can lead to potentially
incompatible combinations of Quarkus and upstream BOMs.

Example update command

[jbang] [ERROR] Could not resolve dependencies: The following artifacts could not be resolved:
io.quarkus:quarkus-tls-registry-cli:jar:3.20.3.redhat-00006 (absent): Could not find artifact
io.quarkus:quarkus-tls-registry-cli:jar:3.20.3.redhat-00006 in central
(https://repo1.maven.org/maven2/)

run.repos=central,https://maven.repository.redhat.com/ga/

jbang config set run.repos central,https://maven.repository.redhat.com/ga/

$ mvn com.redhat.quarkus.platform:quarkus-maven-plugin:3.20.3.redhat-00006:update -
Dmaven.repo.local=<path-to-local-repo>

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.20

45

https://maven.repository.redhat.com/ga/
https://issues.redhat.com/browse/QUARKUS-5183

1

Example pom.xml file with issue

Version not updated.

Workaround: Update the version numbers manually.

For more information, see QUARKUS-5185.

1.8.8. RSA cipher initialization triggers NPE in native mode with mandrel-for-jdk-21-
rhel8:23.1 and FIPS enabled

In Red Hat build of Quarkus 3.20, using the quarkus/mandrel-for-jdk-21-rhel8:23.1 Red Hat build of
Quarkus Native Builder image to initialize an RSA cipher in native mode within a FIPS-enabled
environment produces a NullPointerException (NPE) error.

This issue occurs only in native mode with FIPS enabled; it does not affect native mode with FIPS
disabled. It also does not impact JVM mode when using Red Hat build of OpenJDK with FIPS enabled.

NOTE

Native mode is not supported in a FIPS-enabled environment.

Example error message

2024-10-17 10:45:01,931 ERROR [io.qua.ver.htt.run.QuarkusErrorHandler] (executor-thread-1)
HTTP Request to /repro failed, error id: 9b1f5dbb-058b-4c9b-9377-f3acc0a6cba5-1:
java.lang.RuntimeException: java.lang.NullPointerException
 at org.acme.ReproResource.init(ReproResource.java:38)
...

Workaround:

1. If present, remove the following property from the application.properties file:

<properties>
 <quarkus.platform.artifact-id>quarkus-bom</quarkus.platform.artifact-id>
 <quarkus.platform.group-id>com.redhat.quarkus.platform</quarkus.platform.group-id>
 <quarkus.platform.version>3.20.3.redhat-00003</quarkus.platform.version>
</properties>
<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>${quarkus.platform.group-id}</groupId>
 <artifactId>${quarkus.platform.artifact-id}</artifactId>
 <version>${quarkus.platform.version}</version>
 </dependency>
 <dependency>
 <groupId>io.quarkus.platform</groupId>
 <artifactId>quarkus-amazon-services-bom</artifactId>
 <version>3.2.12.Final</version> 1
 </dependency>
 </dependencies>
</dependencyManagement>

Red Hat build of Quarkus 3.20 Release Notes for Red Hat build of Quarkus 3.20

46

https://issues.redhat.com/browse/QUARKUS-5185

quarkus.security.security-providers=SunPKCS11

2. Add the following property to the application.properties file to initialize the ReproResource
class at runtime:

quarkus.native.additional-build-args=--initialize-at-run-time=org.acme.ReproResource

For more information, see MANDREL-245.

1.8.9. WebSockets Next: Connection error metrics not incremented on open event
exceptions

In Red Hat build of Quarkus 3.20, with the websockets-next extension, when a @WebSocket endpoint
throws an exception in the @OnOpen lifecycle method, the following metrics are not incremented:

quarkus_websockets_server_connections_opened_errors_total{uri=${ENDPOINT}}

quarkus_websockets_client_connections_opened_errors_total{uri=${ENDPOINT}}

This behavior affects both server-side and client-side WebSocket connection metrics.

Workaround: No workaround is available at this time. This issue is planned to be resolved in a future
release.

For more information, see QUARKUS-5977.

1.9. RED HAT BUILD OF QUARKUS 3.20.3

Red Hat build of Quarkus 3.20 provides increased stability and includes fixes to bugs that have a
significant impact on users.

To get the latest fixes for Red Hat build of Quarkus, ensure you are using the latest available version,
which is 3.20.3.

1.9.1. Bug fixes

To view the list of issues resolved in this release, see the Red Hat build of Quarkus 3.20.3 bug fixes .

Among these fixes, note the following change that might affect compatibility: JUnit 5 and Mockito
version alignment in the Quarkus test framework, listed in the "Changes that affect compatibility with
earlier versions" section.

1.9.2. Security fixes

CVE-2025-58056 netty-codec-http: Netty is vulnerable to request smuggling due to incorrect
parsing of chunk extensions

CVE-2025-58057 netty-codec: Netty’s BrotliDecoder is vulnerable to DoS via zip bomb style

1.9.3. Advisory

Before you start using and deploying Red Hat build of Quarkus 3.20.3, review the following advisory
related to the release.

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.20

47

https://issues.redhat.com/browse/MANDREL-245
https://issues.redhat.com/browse/QUARKUS-5977
https://issues.redhat.com/issues/?filter=12480521
https://access.redhat.com/security/cve/CVE-2025-58056
https://access.redhat.com/security/cve/CVE-2025-58057

RHSA-2025:17563

1.10. RED HAT BUILD OF QUARKUS 3.20.2 SP1

Red Hat build of Quarkus 3.20 provides increased stability and includes fixes to bugs that have a
significant impact on users.

To get the latest fixes for Red Hat build of Quarkus, ensure you are using the latest available version,
which is 3.20.3 SP1.

1.10.1. Bug fixes

To view the list of issues resolved in this release, see Red Hat build of Quarkus 3.20.2 SP1 bug fixes .

1.10.2. Security fix

CVE-2025-55163 netty-codec-http2: Netty MadeYouReset HTTP/2 DDoS Vulnerability

1.10.3. Advisory

Before you start using and deploying Red Hat build of Quarkus 3.20.2.SP1, review the following advisory
related to the release.

RHSA-2025:14008

1.11. RED HAT BUILD OF QUARKUS 3.20.2

Red Hat build of Quarkus 3.20 provides increased stability and includes fixes to bugs that have a
significant impact on users.

To get the latest fixes for Red Hat build of Quarkus, ensure you are using the latest available version,
which is 3.20.3.

1.11.1. Bug fixes

To view the list of issues resolved in this release, see the Red Hat build of Quarkus 3.20.2 bug fixes .

Among these fixes, note the following change that might affect compatibility: JUnit 5 and Mockito
version alignment in the Quarkus test framework, listed in the "Changes that affect compatibility with
earlier versions" section.

1.11.2. Security fixes

CVE-2025-49146 quarkus-bom: pgjdbc insecure authentication in channel binding

CVE-2025-49574 quarkus-bom: Quarkus potential data leak

1.11.3. Advisory

Before you start using and deploying Red Hat build of Quarkus 3.20.2, review the following advisory
related to the release.

RHSA-2025:13010

Red Hat build of Quarkus 3.20 Release Notes for Red Hat build of Quarkus 3.20

48

https://access.redhat.com/errata/RHSA-2025:17563
https://issues.redhat.com/issues/?filter=12476527
https://access.redhat.com/security/cve/CVE-2025-55163
https://access.redhat.com/errata/RHSA-2025:14008
https://issues.redhat.com/issues/?filter=12475999
https://access.redhat.com/security/cve/CVE-2025-49146
https://access.redhat.com/security/cve/CVE-2025-49574
https://access.redhat.com/errata/RHSA-2025:13010

1.12. RED HAT BUILD OF QUARKUS 3.20.1

Red Hat build of Quarkus 3.20 provides increased stability and includes fixes to bugs that have a
significant impact on users.

To get the latest fixes for Red Hat build of Quarkus, ensure you are using the latest available version,
which is 3.20.3.

1.12.1. Bug fixes

To view the list of issues resolved in this release, see the Red Hat build of Quarkus 3.20.1 bug fixes .

Among these fixes, note the following change that might affect compatibility: JUnit 5 and Mockito
version alignment in the Quarkus test framework, listed in the "Changes that affect compatibility with
earlier versions" section.

1.12.2. Security fixes

CVE-2025-24970 io.netty/netty-handler: SslHandler doesn’t correctly validate packets which
can lead to native crash when using native SSLEngine

1.12.3. Advisory

Before you start using and deploying Red Hat build of Quarkus 3.20.1, review the following advisory
related to the release.

RHSA-2025:8258

1.13. ADVISORY FOR RED HAT BUILD OF QUARKUS 3.20.0

Before you start using and deploying Red Hat build of Quarkus 3.20.0, review the following advisory
related to the release.

RHEA-2025:4162

1.14. ADDITIONAL RESOURCES

Migrating applications to Red Hat build of Quarkus 3.20 guide.

Getting Started with Red Hat build of Quarkus

Revised on 2025-10-13 09:43:09 UTC

CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.20

49

https://issues.redhat.com/issues/?filter=12466018
https://access.redhat.com/security/cve/CVE-2025-24970
https://access.redhat.com/errata/RHSA-2025:8258
https://access.redhat.com/errata/RHEA-2025:4162
https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/migrating_applications_to_red_hat_build_of_quarkus_3.20/index
https://docs.redhat.com//en/documentation/red_hat_build_of_quarkus/3.20/html-single/getting_started_with_red_hat_build_of_quarkus/index

	Table of Contents
	PROVIDING FEEDBACK ON RED HAT BUILD OF QUARKUS DOCUMENTATION
	CHAPTER 1. RELEASE NOTES FOR RED HAT BUILD OF QUARKUS 3.20
	1.1. ABOUT RED HAT BUILD OF QUARKUS
	1.2. DIFFERENCES BETWEEN THE QUARKUS COMMUNITY VERSION AND RED HAT BUILD OF QUARKUS
	1.3. NEW FEATURES, ENHANCEMENTS, AND TECHNICAL CHANGES
	1.3.1. Cloud
	1.3.1.1. OpenShift and Kubernetes: Fabric8 Kubernetes Client upgraded to version 7.1

	1.3.2. Core
	1.3.2.1. Builder and runtime base images upgraded to UBI 9
	1.3.2.2. Conditional extension dependencies in dev mode
	1.3.2.3. Default locale configuration enhanced

	1.3.3. Data
	1.3.3.1. Agroal: Database connection management in Dev UI enhanced
	1.3.3.2. Datasource: Validation of datasources during startup with ArC

	1.3.4. Messaging
	1.3.4.1. Messaging Kafka extension introduced with support for Kafka transactions

	1.3.5. Observability
	1.3.5.1. Dev UI: Extension developers can add log tabs to the Dev UI footer
	1.3.5.2. Grafana OTel LGTM dashboards
	1.3.5.3. OpenTelemetry: Exclude specific URIs from OpenTelemetry tracing
	1.3.5.4. OpenTelemetry: Immediate export of spans and logs with SimpleSpanProcessor
	1.3.5.5. OpenTelemetry: Logging support introduced
	1.3.5.6. OpenTelemetry: Metrics integration aligned with MicroProfile Telemetry 2.0

	1.3.6. Security
	1.3.6.1. Authentication: Support for combining authentication mechanisms
	1.3.6.2. Authorization: Create custom security annotations by using @PermissionsAllowed
	1.3.6.3. Authorization: Define declarative permission checkers by using CDI bean methods
	1.3.6.4. OIDC: Authenticate OIDC provider clients by using JWT bearer tokens from the filesystem
	1.3.6.5. OIDC: Filter OIDC responses for custom processing
	1.3.6.6. OIDC: mTLS-bound access tokens
	1.3.6.7. OIDC: OidcProviderClient injection and token revocation
	1.3.6.8. OIDC: Programmatically creating OIDC tenants
	1.3.6.9. OIDC Client: Dev Services for Keycloak no longer requires the OIDC extension
	1.3.6.10. TLS Registry: Policy configuration for expired or not-yet-valid certificates
	1.3.6.11. OIDC: Demonstrating Proof of Possession supported
	1.3.6.12. TLS Registry: Encrypted PKCS#8 private keys in PEM keystores introduced

	1.3.7. Tooling
	1.3.7.1. Configure JVM options in extension metadata for applications running in Dev mode

	1.3.8. Web
	1.3.8.1. Dev UI: HTTP access logs added to Dev UI
	1.3.8.2. REST: Java records as REST parameters
	1.3.8.3. REST and RESTEasy: @AuthorizationPolicy annotation introduced
	1.3.8.4. REST Client: Dynamic per-invocation URLs with @Url annotation
	1.3.8.5. REST Client: MicroProfile REST Client updated to version 4.0
	1.3.8.6. REST Jackson: Improved JSON processing with reflection-free deserialization
	1.3.8.7. WebSockets Next extension introduced

	1.4. SUPPORT AND COMPATIBILITY
	1.4.1. Product updates and support lifecycle policy
	1.4.2. Tested and verified environments
	1.4.3. Development support
	1.4.3.1. Development tools

	1.5. DEPRECATED COMPONENTS AND FEATURES
	1.5.1. Legacy configuration classes deprecated
	1.5.2. quarkus.http.cors property deprecated
	1.5.3. quarkus.log.*.json property deprecated
	1.5.4. SmallRye Fault Tolerance version 6.7.0 deprecates first-generation programmatic API
	1.5.5. WebSockets and WebSockets Client extensions deprecated

	1.6. TECHNOLOGY PREVIEWS
	1.6.1. New Technology Preview features
	1.6.2. Continuing Technology Preview features

	1.7. CHANGES THAT AFFECT COMPATIBILITY WITH EARLIER VERSIONS
	1.7.1. Cloud
	1.7.1.1. OpenShift and Kubernetes: Fabric8 Kubernetes Client upgraded to version 7.1

	1.7.2. Compatibility
	1.7.2.1. Removal of Reactive rename compatibility layer

	1.7.3. Core
	1.7.3.1. Default locale configuration enhanced
	1.7.3.2. SmallRye Fault Tolerance: Fallback and BeforeRetry methods now defined at build time
	1.7.3.3. SmallRye Fault Tolerance version 6.7.0 deprecates first-generation programmatic API
	1.7.3.4. Scheduler methods now require a started scheduler
	1.7.3.5. Management interface now listens on localhost in development and test modes
	1.7.3.6. Migration to @ConfigMapping and deprecation of configuration classes
	1.7.3.7. Builder and runtime base images upgraded to UBI 9

	1.7.4. Data
	1.7.4.1. Datasource: Removal of implicit default URL for reactive SQL datasources
	1.7.4.2. Datasources without a URL no longer contribute to a health check
	1.7.4.3. Datasource usage fails fast if datasource is deactivated or has no URL set
	1.7.4.4. Flyway version 11 removes cleanOnValidationError
	1.7.4.5. IBM Db2 driver and container image upgraded to version 12
	1.7.4.6. Hibernate ORM Bean Validation contributes to DDL by default

	1.7.5. Logging
	1.7.5.1. quarkus.log.*.json property deprecated

	1.7.6. Observability
	1.7.6.1. OpenTelemetry: Database incubating values moved
	1.7.6.2. SmallRye OpenTracing: Extension and related JDBC tracing configuration removed

	1.7.7. Security
	1.7.7.1. OIDC Client: Behavior changed if client does not have a URL
	1.7.7.2. Security WebAuthn: Reimplementation by using WebAuthn4J

	1.7.8. Tooling
	1.7.8.1. @WithTestResource flaws fixed: restrictToAnnotatedClass replaced by scope
	1.7.8.2. JUnit 5 Mockito: Default mocking strategy changed to inline
	1.7.8.3. Quarkus Test Framework JUnit 5 Mockito version alignment

	1.7.9. Web
	1.7.9.1. HTTP compression now includes application/json and application/xhtml+xml by default
	1.7.9.2. REST Client: Stricter configuration to optimize lookups
	1.7.9.3. Qute: Default character escaping in JSON templates
	1.7.9.4. REST Jackson: ObjectMapperCustomizer behavior changed for default JSON processor instance
	1.7.9.5. REST: Empty query parameters now handled as null or empty collection
	1.7.9.6. WebSockets and WebSockets Client extensions deprecated

	1.8. KNOWN ISSUES
	1.8.1. FIPS: Known limitations when testing in FIPS-enabled environments
	1.8.2. Kafka Streams extension missing a native library on Microsoft Windows
	1.8.3. Missing native library for Snappy on Windows
	1.8.4. Native image build intermittently fails with unreachable type errors on Mandrel 23.1
	1.8.5. OpenTelemetry: Dev mode fails to reload when tracing is disabled and metrics are enabled
	1.8.6. Quarkus CLI cannot discover the TLS registry CLI plugin
	1.8.7. Quarkus CLI updates only the Red Hat build of Quarkus platform version
	1.8.8. RSA cipher initialization triggers NPE in native mode with mandrel-for-jdk-21-rhel8:23.1 and FIPS enabled
	1.8.9. WebSockets Next: Connection error metrics not incremented on open event exceptions

	1.9. RED HAT BUILD OF QUARKUS 3.20.3
	1.9.1. Bug fixes
	1.9.2. Security fixes
	1.9.3. Advisory

	1.10. RED HAT BUILD OF QUARKUS 3.20.2 SP1
	1.10.1. Bug fixes
	1.10.2. Security fix
	1.10.3. Advisory

	1.11. RED HAT BUILD OF QUARKUS 3.20.2
	1.11.1. Bug fixes
	1.11.2. Security fixes
	1.11.3. Advisory

	1.12. RED HAT BUILD OF QUARKUS 3.20.1
	1.12.1. Bug fixes
	1.12.2. Security fixes
	1.12.3. Advisory

	1.13. ADVISORY FOR RED HAT BUILD OF QUARKUS 3.20.0
	1.14. ADDITIONAL RESOURCES

