
OpenShift Container Platform 4.19

硬件加速器

硬件加速器

Last Updated: 2025-12-09

OpenShift Container Platform 4.19 硬件加速器

硬件加速器

Legal Notice

Copyright © 2025 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

本文档提供了有关安装和配置 Red Hat OpenShift AI 支持的 GPU Operator 的说明，以提供硬件加速
功能，以创建人工智能和机器学习(AI/ML)应用程序。

. .

. .

. .

. .

. .

. .

Table of Contents

第 1 章 关于硬件加速器
1.1. 硬件加速器

第 2 章 NVIDIA GPU 架构
2.1. NVIDIA GPU 先决条件
2.2. NVIDIA GPU 启用
2.3. GPU 共享方法
2.4. OPENSHIFT CONTAINER PLATFORM 的 NVIDIA GPU 功能

第 3 章 AMD GPU OPERATOR
3.1. 关于 AMD GPU OPERATOR
3.2. 安装 AMD GPU OPERATOR
3.3. 测试 AMD GPU OPERATOR

第 4 章 INTEL GAUDI AI ACCELERATORS
4.1. INTEL GAUDI AI ACCELERATORS 先决条件

第 5 章 NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)
5.1. NVIDIA GPUDIRECT RDMA 的先决条件
5.2. 禁用 IRDMA 内核模块
5.3. 创建持久性命名规则
5.4. 配置 NFD OPERATOR
5.5. 配置 SR-IOV OPERATOR
5.6. 配置 NVIDIA NETWORK OPERATOR
5.7. 配置 GPU OPERATOR
5.8. 创建机器配置
5.9. 创建工作负载 POD
5.10. 验证 RDMA 连接

第 6 章 DYNAMIC ACCELERATOR SLICER (DAS) OPERATOR
6.1. 安装 DYNAMIC ACCELERATOR SLICER OPERATOR
6.2. 卸载动态加速器 SLICER OPERATOR
6.3. 使用 DYNAMIC ACCELERATOR SLICER OPERATOR 部署 GPU 工作负载
6.4. 对动态加速器 SLICER OPERATOR 进行故障排除

3
3

5
5
5
8

10

12
12
12
12

14
14

15
15
15
16
18
21
22
26
31
32
43

59
59
70
72
74

Table of Contents

1

OpenShift Container Platform 4.19 硬件加速器

2

第 1 章 关于硬件加速器
专用硬件加速器在新兴人工智能和机器学习(AI/ML)行业中发挥了关键作用。具体来说，硬件加速器对于
培训以及支持这种新技术的大型语言和其他基础模型至关重要。数据科学家、数据工程师、ML 工程师和
开发人员可以利用专门的硬件加速数据密集型转换和模型开发及服务。其中大多数生态系统都是开源的，
有大量贡献合作伙伴和开源基础。

Red Hat OpenShift Container Platform 支持卡和外围硬件，添加组成硬件加速器的处理单元：

图形处理单元(GPU)

Neural processing units (NPUs)

特定于应用程序的集成电路(ASIC)

数据处理单元(DPU)

专用硬件加速器为 AI/ML 开发提供了丰富的优点：

一个平台适用于所有功能

面向开发人员、数据工程师、数据科学家和 DevOps 的协作环境

使用 Operator 扩展功能

Operator 允许将 AI/ML 功能引入到 OpenShift Container Platform

混合云支持

对模型开发、交付和部署的内部支持

支持 AI/ML 工作负载

模型测试、迭代、集成、提升，并作为服务提供给生产环境中

红帽提供了一个优化的平台，可在 Linux (kernel 和 userspace) 和 Kubernetes 层的 Red Hat Enterprise
Linux (RHEL)和 OpenShift Container Platform 平台中启用这些专用硬件加速器。为此，红帽在单个企业
级 AI 应用平台中结合了 Red Hat OpenShift AI 和 Red Hat OpenShift Container Platform 的成熟功能。

硬件 Operator 使用 Kubernetes 集群的操作框架来启用所需的加速器资源。您还可以手动部署提供的设备
插件或守护进程集。此插件在集群中注册 GPU。

某些专用硬件加速器设计为在必须维护安全环境以进行开发和测试的断开连接的环境中工作。

1.1. 硬件加速器

Red Hat OpenShift Container Platform 启用以下硬件加速器：

NVIDIA GPU

AMD Instinct® GPU

第 1 章 关于硬件加速器

3

Intel® Gaudi®

其他资源

Red Hat OpenShift AI 简介

NVIDIA GPU Operator on Red Hat OpenShift Container Platform

AMD Instinct 加速器

Intel Gaudi Al Accelerators

OpenShift Container Platform 4.19 硬件加速器

4

https://docs.redhat.com/en/documentation/red_hat_openshift_ai_self-managed/2-latest/html/introduction_to_red_hat_openshift_ai/index
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/index.html
https://www.amd.com/en/products/accelerators/instinct.html
https://www.intel.com/content/www/us/en/products/details/processors/ai-accelerators/gaudi-overview.html

第 2 章 NVIDIA GPU 架构
NVIDIA 支持在 OpenShift Container Platform 上使用图形处理单元 (GPU) 资源。OpenShift Container
Platform 是一个以安全为中心的、强化的 Kubernetes 平台，由红帽开发并提供支持，用于大规模部署和
管理 Kubernetes 集群。OpenShift Container Platform 包括对 Kubernetes 的增强，以便用户可以轻松地
配置和使用 NVIDIA GPU 资源来加快工作负载。

NVIDIA GPU Operator 利用 OpenShift Container Platform 中的 Operator 框架来管理运行 GPU 加速工
作负载所需的 NVIDIA 软件组件的完整生命周期。

这些组件包括 NVIDIA 驱动程序（为了启用 CUDA）、GPU 的 Kubernetes 设备插件、NVID Container
Toolkit、使用 GPU 特性发现(GFD)、基于 DCGM 的监控等的自动节点标记。

注意

NVIDIA GPU Operator 的支持仅由 NVIDIA 提供。有关从 NVIDIA 获取支持的更多信息，
请参阅 NVIDIA 支持。

2.1. NVIDIA GPU 先决条件

包括至少一个 GPU worker 节点的，可正常工作的 OpenShift 集群。

以 cluster-admin 身份访问 OpenShift 集群，以执行必要的步骤。

已安装 OpenShift CLI (oc)。

已安装节点功能发现 (NFD) Operator 并创建了 nodefeaturediscovery 实例。

2.2. NVIDIA GPU 启用

下图显示了如何为 OpenShift 启用 GPU 架构：

图 2.1. NVIDIA GPU 启用

第 2 章 NVIDIA GPU 架构

5

https://access.redhat.com/solutions/5174941

注意

从 NVIDIA Ampere 系列开始，在 GPU 上支持 MIG。有关支持 MIG 的 GPU 列表，请参阅
NVIDIA MIG 用户指南。

2.2.1. GPU 和裸机

您可以在 NVIDIA 认证的裸机服务器上部署 OpenShift Container Platform，但有一些限制：

control plane 节点可以是 CPU 节点。

Worker 节点必须是 GPU 节点，只要 AI/ML 工作负载在这些 worker 节点上执行。
另外，worker 节点可以托管一个或多个 GPU，但它们必须是相同的类型。例如，一个节点可以有
两个 NVIDIA A100 GPU，但不支持在一个节点中带有一个 A100 GPU 和一个 T4 GPU。
Kubernetes 的 NVIDIA 设备插件不支持在同一节点上混合不同的 GPU 模型。

在使用 OpenShift 时，请注意，需要一个、三个或更多个服务器。不支持带有两个服务器的集
群。单一服务器部署称为单一节点 openShift (SNO)，使用此配置的 OpenShift 环境不具有高可
用性。

您可以选择以下方法之一来访问容器化 GPU：

GPU passthrough（GPU 透传）

多实例 GPU (MIG)

其他资源

Red Hat OpenShift on Bare Metal Stack

2.2.2. GPU 和虚拟化

虽然许多开发人员和企业都在转型到容器化应用程序和无服务器基础架构，但仍然有大量对在虚拟机
(VM)上运行的应用程序进行开发和维护的需求。Red Hat OpenShift Virtualization 提供此功能，使企业
能够将虚拟机合并到集群中的容器化工作流中。

您可以选择以下方法之一将 worker 节点连接到 GPU：

用于访问和使用虚拟机(VM)中的 GPU 硬件的 GPU 透传。

当 GPU 计算的容量没有因为工作负载而饱和时，可以进行 GPU (vGPU) 时间分片。

其他资源

带有 OpenShift Virtualization 的 NVIDIA GPU Operator

2.2.3. GPU 和 vSphere

您可以在可托管不同 GPU 类型的 NVIDIA 认证的 VMware vSphere 服务器上部署 OpenShift Container
Platform。

如果虚拟机使用了 vGPU 实例，必须在 hypervisor 中安装 NVIDIA GPU 驱动程序。对于 VMware
vSphere，此主机驱动程序以 VIB 文件的形式提供。

可分配给 worker 节点虚拟机的最大 vGPU 数量取决于 vSphere 的版本：

OpenShift Container Platform 4.19 硬件加速器

6

https://docs.nvidia.com/datacenter/tesla/mig-user-guide/#supported-gpus
https://docs.nvidia.com/ai-enterprise/deployment-guide-openshift-on-bare-metal/0.1.0/on-bare-metal.html
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/openshift/openshift-virtualization.html

vSphere 7.0：每个虚拟机最多 4 个 vGPU

vSphere 8.0：每个虚拟机最大 8 个 vGPU

注意

vSphere 8.0 引入了对与一个虚拟机关联的多个完整或部分同配置集的支持。

您可以选择以下方法之一将 worker 节点附加到 GPU：

用于访问和使用虚拟机(VM)中的 GPU 硬件的 GPU 透传

当不需要所有 GPU 时，可以使用 GPU (vGPU) 时间分片

与裸机部署类似，需要一个或多个服务器。不支持带有两个服务器的集群。

其他资源

带有 NVIDIA vGPU 的 VMware vSphere 上的 OpenShift Container Platform

2.2.4. GPU 和 Red Hat KVM

您可以在基于 NVIDIA 认证的虚拟机 (KVM) 服务器上使用 OpenShift Container Platform。

与裸机部署类似，需要一个或多个服务器。不支持带有两个服务器的集群。

但是，与裸机部署不同，您可以在服务器中使用不同类型的 GPU。这是因为您可以将这些 GPU 分配给作
为 Kubernetes 节点的不同虚拟机。唯一的限制是，一个 Kubernetes 节点在自己本身上必须具有相同的
GPU 类型。

您可以选择以下方法之一来访问容器化 GPU：

用于访问和使用虚拟机(VM)中的 GPU 硬件的 GPU 透传

当不需要所有 GPU 时，可以使用 GPU (vGPU) 时间分片

要启用 vGPU 功能，必须在主机级别安装特殊驱动程序。这个驱动程序作为 RPM 软件包提供。对于 GPU
透传分配，不需要这个主机驱动程序。

2.2.5. GPU 和 CSP

您可以将 OpenShift Container Platform 部署到主要的云服务供应商 (CSP) 之一：Amazon Web Services
(AWS)、Google Cloud Platform 或 Microsoft Azure。

有两种操作模式：完全管理的部署和自我管理的部署。

在完全管理的部署中，一切都由红帽与 CSP 合作实现自动化。您可以通过 CSP Web 控制台请求
OpenShift 实例，集群由红帽自动创建并完全管理。您不必担心环境中节点故障或错误。红帽完
全负责维护集群的正常运行时间。完全管理的服务在 AWS、Azure 和 Google Cloud 上提供。对
于 AWS，OpenShift 服务名为 (Red Hat OpenShift Service on AWS)。对于 Azure，该服务称为
Azure Red Hat OpenShift。对于 Google Cloud，该服务在 Google Cloud 上称为 OpenShift
Dedicated。

在自我管理的部署中，您需要自行实例化和维护 OpenShift 集群。红帽提供了 OpenShift-install
工具来支持 OpenShift 集群的部署。自我管理的服务可全局提供给所有 CSP。

第 2 章 NVIDIA GPU 架构

7

https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/openshift/nvaie-with-ocp.html#openshift-container-platform-on-vmware-vsphere-with-nvidia-vgpus

重要的是，此计算实例是一个 GPU 加速的计算实例，并且 GPU 类型与 NVIDIA AI Enterprise 支持的
GPU 列表匹配。例如，T4、V100 和 A100 是此列表的一部分。

您可以选择以下方法之一来访问容器化 GPU：

用于访问和使用虚拟机(VM)中的 GPU 硬件的 GPU 透传。

当不需要整个 GPU 时，可以进行 GPU (vGPU) 时间分片。

其他资源

云中的 Red Hat Openshift

2.2.6. GPU 和 Red Hat Device Edge

Red Hat Device Edge 提供对 MicroShift 的访问。MicroShift 提供了单节点部署的简单性和资源约束（边
缘）计算所需的功能和服务。Red Hat Device Edge 满足在资源受限环境中部署的裸机、虚拟、容器化或
Kubernetes 工作负载的需求。

您可以在 Red Hat Device Edge 环境中的容器上启用 NVIDIA GPU。

您可以使用 GPU 透传来访问容器化 GPU。

其他资源

如何在 Red Hat Device Edge 中使用 NVIDIA GPU 加速工作负载

2.3. GPU 共享方法

红帽和 NVIDIA 已开发了 GPU 并发和共享机制，以简化企业级 OpenShift Container Platform 集群上的
GPU 加速计算。

应用程序通常会有不同的计算要求，这可能会使 GPU 使用率不足。为每个工作负载提供正确的计算资源
数量对于降低部署成本和最大化 GPU 使用率至关重要。

用于提高 GPU 使用率的并发机制，范围从编程模型 API 到系统软件和硬件分区，包括虚拟化。以下列表
显示了 GPU 并发机制：

计算统一设备架构 (CUDA) 流

Time-slicing（时间分片）

CUDA 多进程服务 (MPS)

多实例 GPU (MIG)

使用 vGPU 的虚拟化

在将 GPU 并发机制用于不同的 OpenShift Container Platform 场景时，请考虑以下 GPU 共享建议：

裸机

vGPU 不可用。考虑使用支持 MIG 的卡。

虚拟机

vGPU 是最佳选择。

OpenShift Container Platform 4.19 硬件加速器

8

https://docs.nvidia.com/ai-enterprise/deployment-guide-cloud/0.1.0/aws-redhat-openshift.html
https://cloud.redhat.com/blog/how-to-accelerate-workloads-with-nvidia-gpus-on-red-hat-device-edge

裸机中的较旧的 NVIDIA 卡中没有 MIG

考虑使用 time-slicing。

具有多个 GPU 的虚拟机，您需要透传和 vGPU

考虑使用单独的虚拟机。

使用 OpenShift Virtualization 和多个 GPU 的裸机

对于托管的虚拟机，考虑使用透传，对呀容器，考虑使用时间分片。

其他资源

提高 GPU 利用率

2.3.1. CUDA 流

Compute Unified Device Architecture (CUDA) 是由 NVIDIA 开发的并行计算平台和编程模型，用于 GPU
上的常规计算。

流是 GPU 上问题顺序执行的操作序列。CUDA 命令通常在默认流中按顺序执行，任务在前面的任务完成
后才会启动。

跨不同流的异步处理操作允许并行执行任务。在一个流中发布的任务之前、期间或另一个任务签发到另一
个流后运行。这允许 GPU 以任何规定的顺序同时运行多个任务，从而提高性能。

其他资源

异步并发执行

2.3.2. Time-slicing（时间分片）

当您运行多个 CUDA 应用程序时，在超载 GPU 上调度 GPU 时间的交集工作负载。

您可以通过为 GPU 定义一组副本来启用 Kubernetes 上的 GPU 的时间，每个副本都可以独立分发到 pod
来运行工作负载。与多实例 GPU (MIG) 不同，在副本之间不存在内存或故障隔离，但对于某些工作负
载，这优于根本不进行共享。在内部，GPU 时间分片用于从同一底层 GPU 将多个工作负载分配到不同的
副本。

对于时间分片，您可以应用一个集群范围的默认配置。您还可以应用特定于节点的配置。例如，您只能将
时间分片配置应用到具有 Tesla T4 GPU 的节点，而不能将节点改为使用其他 GPU 模型。

您可以通过应用集群范围的默认配置来组合这两种方法，然后标记节点以授予这些节点接收特定于节点的
配置。

2.3.3. CUDA 多进程服务

CUDA 多进程服务 (MPS) 允许单个 GPU 使用多个 CUDA 进程。进程在 GPU 上并行运行，消除了 GPU
计算资源的饱和。MPS 还支持并发执行或重叠内核操作和从不同进程复制的内存，以增强利用率。

其他资源

CUDA MPS

2.3.4. 多实例 GPU

使用多实例 GPU (MIG)，您可以将 GPU 计算单元和内存分成多个 MIG 实例。每个实例都代表了从系统

第 2 章 NVIDIA GPU 架构

9

https://developer.nvidia.com/blog/improving-gpu-utilization-in-kubernetes/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#asynchronous-concurrent-execution
https://docs.nvidia.com/deploy/mps/index.html

使用多实例 GPU (MIG)，您可以将 GPU 计算单元和内存分成多个 MIG 实例。每个实例都代表了从系统
的角度来看的独立 GPU 设备，并可连接到节点上运行的任何应用程序、容器或虚拟机。使用 GPU 的软件
将每个 MIG 实例视为单独的 GPU。

当您有一个不需要整个 GPU 完全功能的应用程序时，MIG 很有用。新的 NVIDIA Ampere 架构的 MIG 功
能允许您将硬件资源分成多个 GPU 实例，每个实例都可作为独立的 CUDA GPU 提供给操作系统。

NVIDIA GPU Operator 版本 1.7.0 及更高版本为 A100 和 A30 Ampere 卡提供 MIG 支持。这些 GPU 实例
旨在支持最多 7 个独立的 CUDA 应用程序，以便它们与专用硬件资源完全隔离。

其他资源

NVIDIA 多实例 GPU 用户指南

2.3.5. 使用 vGPU 的虚拟化

虚拟机 (VM) 可以使用 NVIDIA vGPU 直接访问单个物理 GPU。您可以创建虚拟 GPU，供虚拟机在企业之
间共享，并由其他设备访问。

此功能将 GPU 性能与 vGPU 提供的管理和安全优势相结合。vGPU 提供的其他好处包括虚拟机环境的主
动管理和监控、混合 VDI 和计算工作负载的工作负载平衡以及多个虚拟机之间的资源共享。

其他资源

虚拟 GPU

2.4. OPENSHIFT CONTAINER PLATFORM 的 NVIDIA GPU 功能

NVIDIA Container Toolkit

NVIDIA Container Toolkit 可让您创建并运行 GPU 加速容器。工具包包括容器运行时库和工具，用于
自动配置容器以使用 NVIDIA GPU。

NVIDIA AI Enterprise

NVIDIA AI Enterprise 是端到端的云原生 AI 和数据分析软件套件，由 NVIDIA 认证系统进行优化、认证
和支持。
NVIDIA AI Enterprise 包括对 Red Hat OpenShift Container Platform 的支持。支持以下安装方法：

带有 GPU Passthrough 的裸机或 VMware vSphere 上的 OpenShift Container Platform。

带有 NVIDIA vGPU 的 VMware vSphere 上的 OpenShift Container Platform。

GPU 功能发现

NVIDIA GPU Feature Discovery for Kubernetes 是一个软件组件，可让您为节点上可用的 GPU 自动生
成标签。GPU 功能发现使用节点功能发现(NFD)来执行此标记。
Node Feature Discovery Operator (NFD)通过使用硬件特定信息标记节点来管理 OpenShift Container
Platform 集群中硬件功能和配置的发现。NFD 使用特定于节点的属性标记主机，如 PCI 卡、内核、操
作系统版本等。

您可以通过搜索 "Node Feature Discovery" 在 Operator Hub 中找到 NFD Operator。

带有 OpenShift Virtualization 的 NVIDIA GPU Operator

到目前为止，GPU Operator 只置备了 worker 节点来运行 GPU 加速的容器。现在，GPU Operator 也
可以用来置备 worker 节点来运行 GPU 加速的虚拟机 (VM)。

您可以根据将 GPU 工作负载配置为在这些节点上运行，将 GPU Operator 配置为将不同的软件组件部

OpenShift Container Platform 4.19 硬件加速器

10

https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://www.nvidia.com/en-us/data-center/virtual-solutions/

您可以根据将 GPU 工作负载配置为在这些节点上运行，将 GPU Operator 配置为将不同的软件组件部
署到 worker 节点。

GPU 监控仪表板

您可以安装监控仪表板，在 OpenShift Container Platform Web 控制台的集群 Observe 页面中显示
GPU 用量信息。GPU 使用率信息包括可用 GPU 数、功耗（watts）、温度（Celsius）、利用率（百
分比）以及其他每个 GPU 的指标。

其他资源

NVIDIA 认证系统

NVIDIA AI Enterprise

NVIDIA Container Toolkit

启用 GPU 监控仪表板

OpenShift Container Platform 中的 MIG 支持

OpenShift 中的 NVIDIA GPU 时间分片

在断开连接的或 airgapped 环境中部署 GPU Operator

Node Feature Discovery Operator

第 2 章 NVIDIA GPU 架构

11

https://docs.nvidia.com/ngc/ngc-deploy-on-premises/nvidia-certified-systems/index.html
https://docs.nvidia.com/ai-enterprise/index.html#deployment-guides
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/overview.html#
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/enable-gpu-monitoring-dashboard.html
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/mig-ocp.html
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/time-slicing-gpus-in-openshift.html
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/mirror-gpu-ocp-disconnected.html
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/specialized_hardware_and_driver_enablement/#node-feature-discovery-operator

第 3 章 AMD GPU OPERATOR
AMD Instinct GPU 加速器与 OpenShift Container Platform 集群中的 AMD GPU Operator 相结合，可让
您无缝利用计算功能进行机器学习、生成 AI 和 GPU 加速的应用程序。

本文档提供了启用、配置和测试 AMD GPU Operator 所需的信息。如需更多信息，请参阅 AMD Instinct™
加速器。

3.1. 关于 AMD GPU OPERATOR

AMD GPU Operator 的硬件加速功能为数据科学家和开发人员提供增强的性能和成本效率，使用 Red Hat
OpenShift AI 创建人工智能和机器学习(AI/ML)应用程序。加快 GPU 功能的特定区域可以最小化 CPU 处
理和内存用量，提高整体应用程序速度、内存消耗和带宽限制。

3.2. 安装 AMD GPU OPERATOR

作为集群管理员，您可以使用 OpenShift CLI 和 Web 控制台安装 AMD GPU Operator。这是一个多步骤
的过程，需要安装 Node Feature Discovery Operator、内核模块管理 Operator，然后是 AMD GPU
Operator。使用以下步骤安装 Operator 的 AMD 社区版本。

后续步骤

1. 安装 Node Feature Discovery Operator。

2. 安装内核模块管理 Operator。

3. 安装和配置 AMD GPU Operator。

3.3. 测试 AMD GPU OPERATOR

使用以下步骤测试 ROCmInfo 安装并查看 AMD MI210 GPU 的日志。

流程

1. 创建测试 ROCmInfo 的 YAML 文件：

$ cat << EOF > rocminfo.yaml

apiVersion: v1
kind: Pod
metadata:
 name: rocminfo
spec:
 containers:
 - image: docker.io/rocm/pytorch:latest
 name: rocminfo
 command: ["/bin/sh","-c"]
 args: ["rocminfo"]
 resources:
 limits:
 amd.com/gpu: 1
 requests:

OpenShift Container Platform 4.19 硬件加速器

12

https://www.amd.com/en/products/accelerators/instinct.html
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/specialized_hardware_and_driver_enablement/#installing-the-node-feature-discovery-operator_node-feature-discovery-operator
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/specialized_hardware_and_driver_enablement/#kmm-install_kernel-module-management-operator
https://instinct.docs.amd.com/projects/gpu-operator/en/main/installation/openshift-olm.html#install-amd-gpu-operator

2. 创建 rocminfo pod:

输出示例

3. 使用一个 MI210 GPU 检查 rocmnfo 日志：

输出示例

4. 删除 Pod：

输出示例

 amd.com/gpu: 1
 restartPolicy: Never
EOF

$ oc create -f rocminfo.yaml

apiVersion: v1
pod/rocminfo created

$ oc logs rocminfo | grep -A5 "Agent"

HSA Agents
==========

Agent 1

 Name: Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz
 Uuid: CPU-XX
 Marketing Name: Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz
 Vendor Name: CPU
--
Agent 2

 Name: Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz
 Uuid: CPU-XX
 Marketing Name: Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz
 Vendor Name: CPU
--
Agent 3

 Name: gfx90a
 Uuid: GPU-024b776f768a638b
 Marketing Name: AMD Instinct MI210
 Vendor Name: AMD

$ oc delete -f rocminfo.yaml

pod "rocminfo" deleted

第 3 章 AMD GPU OPERATOR

13

第 4 章 INTEL GAUDI AI ACCELERATORS
您可以为 OpenShift Container Platform generative AI 和机器学习(AI/ML)应用程序使用 Intel Gaudi AI
加速器。Intel Gaudi AI 加速器为优化深度学习工作负载提供了一个具有成本效益、灵活且可扩展的解决
方案。

红帽支持 Intel Gaudi 2 和 Intel Gaudi 3 设备。Intel Gaudi 3 设备在培训速度和能源效率方面提供了显著
改进。

4.1. INTEL GAUDI AI ACCELERATORS 先决条件

您有一个正常工作的 OpenShift Container Platform 集群，至少有一个 GPU worker 节点。

您可以使用 cluster-admin 访问 OpenShift Container Platform 集群，以执行必要的步骤。

已安装 OpenShift CLI (oc)。

已安装 Node Feature Discovery (NFD) Operator，并创建了 NodeFeatureDiscovery 实例。

其他资源

OpenShift 安装 (Intel Gaudi 文档)

Intel Gaudi AI 加速器集成

OpenShift Container Platform 4.19 硬件加速器

14

https://docs.habana.ai/en/latest/Installation_Guide/Additional_Installation/OpenShift_Installation/index.html
https://docs.redhat.com/en/documentation/red_hat_openshift_ai_self-managed/2.20/html/working_with_accelerators/intel-gaudi-ai-accelerator-integration_accelerators#intel-gaudi-ai-accelerator-integration_accelerators

第 5 章 NVIDIA GPUDIRECT REMOTE DIRECT MEMORY
ACCESS (RDMA)

NVIDIA GPUDirect Remote Direct Memory Access (RDMA) 允许一个计算机中的应用程序直接访问另一
个计算机的内存，而无需通过操作系统访问。这提供了一个在进程中绕过内核干预的功能，释放资源并大
大减少了处理网络通信所需的 CPU 开销。这可用于在集群中分发 GPU 加速的工作负载。因为 RDMA 非
常适合高带宽和低延迟应用程序，因此这使其成为大数据和机器学习应用程序的理想选择。

目前，NVIDIA GPUDirect RDMA 有三种配置方法：

共享设备

这个方法允许 NVIDIA GPUDirect RDMA 设备在公开设备的 OpenShift Container Platform worker 节
点上的多个 pod 共享。

主机设备

此方法通过在 pod 上创建额外的主机网络，在 worker 节点上提供直接物理以太网访问。插件允许将网
络设备从主机网络命名空间移到 pod 上的网络命名空间。

SR-IOV 传统设备

Single Root IO 虚拟化(SR-IOV)方法可以在多个 pod 间共享一个单个网络设备，如以太网适配器。
SR-IOV 会将设备（在主机节点上被识别为物理功能(PF)）分段为多个虚拟功能(VF)。VF 和其它网络
设备一样使用。

每种方法都可以在 NVIDIA GPUDirect RDMA over Converged Ethernet (RoCE)或 Infiniband 基础架构中
使用，提供总计 6 种配置方法。

5.1. NVIDIA GPUDIRECT RDMA 的先决条件

NVIDIA GPUDirect RDMA 配置的所有方法都需要安装特定的 Operator。使用以下步骤安装 Operator：

安装 Node Feature Discovery Operator。

安装 SR-IOV Operator。

安装 NVIDIA Network Operator (NVIDIA 文档)。

安装 NVIDIA GPU Operator (NVIDIA 文档)。

5.2. 禁用 IRDMA 内核模块

在一些系统中，包括 DellR750xa，IRDMA 内核模块在卸载和加载 DOCA 驱动程序时为 NVIDIA Network
Operator 造成问题。使用以下步骤禁用该模块。

流程

1. 运行以下命令生成以下机器配置文件：

输出示例

$ cat <<EOF > 99-machine-config-blacklist-irdma.yaml

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:

第 5 章 NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

15

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/specialized_hardware_and_driver_enablement/#installing-the-node-feature-discovery-operator_node-feature-discovery-operator
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/networking_operators/#installing-sriov-operator
https://docs.nvidia.com/networking/display/kubernetes2501/getting-started-openshift.html#network-operator-installation-using-openshift-oc-cli
https://docs.nvidia.com/datacenter/cloud-native/openshift/24.9.2/install-gpu-ocp.html

2. 运行以下命令，在集群中创建机器配置并等待节点重新引导：

输出示例

3. 运行以下命令，在每个节点上验证模块尚未加载的 debug pod:

5.3. 创建持久性命名规则

在某些情况下，设备名称在重启后不会保留。例如，在 R760xa 系统上 Mellanox 设备重启后可能会重命
名。您可以使用 MachineConfig 设置持久性来避免此问题。

流程

1. 将 worker 节点的 MAC 地址名称收集到文件中，并为需要保留的接口提供名称。这个示例使用文
件 70-persistent-net.rules 来存储详情。

2. 将该文件转换为没有换行符的 base64 字符串，并将输出设置为变量 PERSIST ：

 labels:
 machineconfiguration.openshift.io/role: worker
 name: 99-worker-blacklist-irdma
spec:
 kernelArguments:
 - "module_blacklist=irdma"

$ oc create -f 99-machine-config-blacklist-irdma.yaml

machineconfig.machineconfiguration.openshift.io/99-worker-blacklist-irdma created

$ oc debug node/nvd-srv-32.nvidia.eng.rdu2.dc.redhat.com
Starting pod/nvd-srv-32nvidiaengrdu2dcredhatcom-debug-btfj2 ...
To use host binaries, run `chroot /host`
Pod IP: 10.6.135.11
If you don't see a command prompt, try pressing enter.
sh-5.1# chroot /host
sh-5.1# lsmod|grep irdma
sh-5.1#

$ cat <<EOF > 70-persistent-net.rules
SUBSYSTEM=="net",ACTION=="add",ATTR{address}=="b8:3f:d2:3b:51:28",ATTR{type}=="1"
,NAME="ibs2f0"
SUBSYSTEM=="net",ACTION=="add",ATTR{address}=="b8:3f:d2:3b:51:29",ATTR{type}=="1"
,NAME="ens8f0np0"
SUBSYSTEM=="net",ACTION=="add",ATTR{address}=="b8:3f:d2:f0:36:d0",ATTR{type}=="1",
NAME="ibs2f0"
SUBSYSTEM=="net",ACTION=="add",ATTR{address}=="b8:3f:d2:f0:36:d1",ATTR{type}=="1",
NAME="ens8f0np0"
EOF

$ PERSIST=`cat 70-persistent-net.rules| base64 -w 0`

$ echo $PERSIST

OpenShift Container Platform 4.19 硬件加速器

16

3. 运行以下命令，创建机器配置并在自定义资源文件中设置 base64 编码：

4. 运行以下命令在集群中创建机器配置。运行命令后，预期的输出显示
machineconfig.machineconfiguration.openshift.io/99-machine-config-udev-network
created。

5. 使用 get mcp 命令查看机器配置状态：

输出示例

节点将重新引导，并在 update 字段返回到 false 时，您可以通过查看 debug pod 中的设备来验证节点上
的设备。

U1VCU1lTVEVNPT0ibmV0IixBQ1RJT049PSJhZGQiLEFUVFJ7YWRkcmVzc309PSJiODozZjp
kMjozYjo1MToyOCIsQVRUUnt0eXBlfT09IjEiLE5BTUU9ImliczJmMCIKU1VCU1lTVEVNPT0ibm
V0IixBQ1RJT049PSJhZGQiLEFUVFJ7YWRkcmVzc309PSJiODozZjpkMjozYjo1MToyOSIsQV
RUUnt0eXBlfT09IjEiLE5BTUU9ImVuczhmMG5wMCIKU1VCU1lTVEVNPT0ibmV0IixBQ1RJT0
49PSJhZGQiLEFUVFJ7YWRkcmVzc309PSJiODozZjpkMjpmMDozNjpkMCIsQVRUUnt0eXBlfT
09IjEiLE5BTUU9ImliczJmMCIKU1VCU1lTVEVNPT0ibmV0IixBQ1RJT049PSJhZGQiLEFUVFJ
7YWRkcmVzc309PSJiODozZjpkMjpmMDozNjpkMSIsQVRUUnt0eXBlfT09IjEiLE5BTUU9ImVuc
zhmMG5wMCIK

$ cat <<EOF > 99-machine-config-udev-network.yaml

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 99-machine-config-udev-network
spec:
 config:
 ignition:
 version: 3.2.0
 storage:
 files:
 - contents:
 source: data:text/plain;base64,$PERSIST
 filesystem: root
 mode: 420
 path: /etc/udev/rules.d/70-persistent-net.rules

$ oc create -f 99-machine-config-udev-network.yaml

$ oc get mcp

NAME CONFIG UPDATED UPDATING DEGRADED
MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT
DEGRADEDMACHINECOUNT AGE
master rendered-master-9adfe851c2c14d9598eea5ec3df6c187 True False False
1 1 1 0 6h21m
worker rendered-worker-4568f1b174066b4b1a4de794cf538fee False True False
2 0 0 0 6h21m

第 5 章 NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

17

5.4. 配置 NFD OPERATOR

Node Feature Discovery（NFD）Operator通过将节点标记为硬件特定信息来管理 OpenShift Container
Platform 集群中硬件功能和配置的检测。NFD 使用特定于节点的属性标记主机，如 PCI 卡、内核、操作
系统版本等。

先决条件

已安装 NFD Operator。

流程

1. 运行以下命令，验证 Operator 是否已安装并运行 openshift-nfd 命名空间中的 pod：

输出示例

2. 在 NFD 控制器运行时，生成 NodeFeatureDiscovery 实例，并将其添加到集群中。
NFD Operator 的 ClusterServiceVersion 规格提供默认值，包括作为 Operator 有效负载一部分
的 NFD 操作对象镜像。运行以下命令来检索其值：

3. 可选：在默认的 deviceClassWhiteList 字段中添加条目来支持更多网络适配器，如 NVIDIA
BlueField DPUs。

$ oc get pods -n openshift-nfd

NAME READY STATUS RESTARTS AGE
nfd-controller-manager-8698c88cdd-t8gbc 2/2 Running 0 2m

$ NFD_OPERAND_IMAGE=`echo $(oc get csv -n openshift-nfd -o json | jq -r
'.items[0].metadata.annotations["alm-examples"]') | jq -r '.[] | select(.kind ==
"NodeFeatureDiscovery") | .spec.operand.image'`

apiVersion: nfd.openshift.io/v1
kind: NodeFeatureDiscovery
metadata:
 name: nfd-instance
 namespace: openshift-nfd
spec:
 instance: ''
 operand:
 image: '${NFD_OPERAND_IMAGE}'
 servicePort: 12000
 prunerOnDelete: false
 topologyUpdater: false
 workerConfig:
 configData: |
 core:
 sleepInterval: 60s
 sources:
 pci:
 deviceClassWhitelist:
 - "02"
 - "03"
 - "0200"

OpenShift Container Platform 4.19 硬件加速器

18

4. 运行以下命令来创建 'NodeFeatureDiscovery' 实例：

输出示例

5. 运行以下命令，通过查看 openshift-nfd 命名空间中的 pod 来验证实例是否已启动并正在运行：

输出示例

6. 等待短暂的时间，然后验证 NFD 是否已向节点添加标签。NFD 标签使用
feature.node.kubernetes.io 前缀，以便您可以轻松过滤它们。

 - "0207"
 - "12"
 deviceLabelFields:
 - "vendor"

$ oc create -f nfd-instance.yaml

nodefeaturediscovery.nfd.openshift.io/nfd-instance created

$ oc get pods -n openshift-nfd

NAME READY STATUS RESTARTS AGE
nfd-controller-manager-7cb6d656-jcnqb 2/2 Running 0 4m
nfd-gc-7576d64889-s28k9 1/1 Running 0 21s
nfd-master-b7bcf5cfd-qnrmz 1/1 Running 0 21s
nfd-worker-96pfh 1/1 Running 0 21s
nfd-worker-b2gkg 1/1 Running 0 21s
nfd-worker-bd9bk 1/1 Running 0 21s
nfd-worker-cswf4 1/1 Running 0 21s
nfd-worker-kp6gg 1/1 Running 0 21s

$ oc get node -o json | jq '.items[0].metadata.labels | with_entries(select(.key |
startswith("feature.node.kubernetes.io")))'
{
 "feature.node.kubernetes.io/cpu-cpuid.ADX": "true",
 "feature.node.kubernetes.io/cpu-cpuid.AESNI": "true",
 "feature.node.kubernetes.io/cpu-cpuid.AVX": "true",
 "feature.node.kubernetes.io/cpu-cpuid.AVX2": "true",
 "feature.node.kubernetes.io/cpu-cpuid.CETSS": "true",
 "feature.node.kubernetes.io/cpu-cpuid.CLZERO": "true",
 "feature.node.kubernetes.io/cpu-cpuid.CMPXCHG8": "true",
 "feature.node.kubernetes.io/cpu-cpuid.CPBOOST": "true",
 "feature.node.kubernetes.io/cpu-cpuid.EFER_LMSLE_UNS": "true",
 "feature.node.kubernetes.io/cpu-cpuid.FMA3": "true",
 "feature.node.kubernetes.io/cpu-cpuid.FP256": "true",
 "feature.node.kubernetes.io/cpu-cpuid.FSRM": "true",
 "feature.node.kubernetes.io/cpu-cpuid.FXSR": "true",
 "feature.node.kubernetes.io/cpu-cpuid.FXSROPT": "true",
 "feature.node.kubernetes.io/cpu-cpuid.IBPB": "true",
 "feature.node.kubernetes.io/cpu-cpuid.IBRS": "true",
 "feature.node.kubernetes.io/cpu-cpuid.IBRS_PREFERRED": "true",
 "feature.node.kubernetes.io/cpu-cpuid.IBRS_PROVIDES_SMP": "true",
 "feature.node.kubernetes.io/cpu-cpuid.IBS": "true",

第 5 章 NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

19

 "feature.node.kubernetes.io/cpu-cpuid.IBSBRNTRGT": "true",
 "feature.node.kubernetes.io/cpu-cpuid.IBSFETCHSAM": "true",
 "feature.node.kubernetes.io/cpu-cpuid.IBSFFV": "true",
 "feature.node.kubernetes.io/cpu-cpuid.IBSOPCNT": "true",
 "feature.node.kubernetes.io/cpu-cpuid.IBSOPCNTEXT": "true",
 "feature.node.kubernetes.io/cpu-cpuid.IBSOPSAM": "true",
 "feature.node.kubernetes.io/cpu-cpuid.IBSRDWROPCNT": "true",
 "feature.node.kubernetes.io/cpu-cpuid.IBSRIPINVALIDCHK": "true",
 "feature.node.kubernetes.io/cpu-cpuid.IBS_FETCH_CTLX": "true",
 "feature.node.kubernetes.io/cpu-cpuid.IBS_OPFUSE": "true",
 "feature.node.kubernetes.io/cpu-cpuid.IBS_PREVENTHOST": "true",
 "feature.node.kubernetes.io/cpu-cpuid.INT_WBINVD": "true",
 "feature.node.kubernetes.io/cpu-cpuid.INVLPGB": "true",
 "feature.node.kubernetes.io/cpu-cpuid.LAHF": "true",
 "feature.node.kubernetes.io/cpu-cpuid.LBRVIRT": "true",
 "feature.node.kubernetes.io/cpu-cpuid.MCAOVERFLOW": "true",
 "feature.node.kubernetes.io/cpu-cpuid.MCOMMIT": "true",
 "feature.node.kubernetes.io/cpu-cpuid.MOVBE": "true",
 "feature.node.kubernetes.io/cpu-cpuid.MOVU": "true",
 "feature.node.kubernetes.io/cpu-cpuid.MSRIRC": "true",
 "feature.node.kubernetes.io/cpu-cpuid.MSR_PAGEFLUSH": "true",
 "feature.node.kubernetes.io/cpu-cpuid.NRIPS": "true",
 "feature.node.kubernetes.io/cpu-cpuid.OSXSAVE": "true",
 "feature.node.kubernetes.io/cpu-cpuid.PPIN": "true",
 "feature.node.kubernetes.io/cpu-cpuid.PSFD": "true",
 "feature.node.kubernetes.io/cpu-cpuid.RDPRU": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SEV": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SEV_64BIT": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SEV_ALTERNATIVE": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SEV_DEBUGSWAP": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SEV_ES": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SEV_RESTRICTED": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SEV_SNP": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SHA": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SME": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SME_COHERENT": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SPEC_CTRL_SSBD": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SSE4A": "true",
 "feature.node.kubernetes.io/cpu-cpuid.STIBP": "true",
 "feature.node.kubernetes.io/cpu-cpuid.STIBP_ALWAYSON": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SUCCOR": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SVM": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SVMDA": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SVMFBASID": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SVML": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SVMNP": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SVMPF": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SVMPFT": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SYSCALL": "true",
 "feature.node.kubernetes.io/cpu-cpuid.SYSEE": "true",
 "feature.node.kubernetes.io/cpu-cpuid.TLB_FLUSH_NESTED": "true",
 "feature.node.kubernetes.io/cpu-cpuid.TOPEXT": "true",
 "feature.node.kubernetes.io/cpu-cpuid.TSCRATEMSR": "true",
 "feature.node.kubernetes.io/cpu-cpuid.VAES": "true",
 "feature.node.kubernetes.io/cpu-cpuid.VMCBCLEAN": "true",
 "feature.node.kubernetes.io/cpu-cpuid.VMPL": "true",

OpenShift Container Platform 4.19 硬件加速器

20

7. 确认发现了一个网络设备：

5.5. 配置 SR-IOV OPERATOR

单根 I/O 虚拟化(SR-IOV)通过从单一设备在多个 pod 之间提供共享来提高 NVIDIA GPUDirect RDMA 的
性能。

 "feature.node.kubernetes.io/cpu-cpuid.VMSA_REGPROT": "true",
 "feature.node.kubernetes.io/cpu-cpuid.VPCLMULQDQ": "true",
 "feature.node.kubernetes.io/cpu-cpuid.VTE": "true",
 "feature.node.kubernetes.io/cpu-cpuid.WBNOINVD": "true",
 "feature.node.kubernetes.io/cpu-cpuid.X87": "true",
 "feature.node.kubernetes.io/cpu-cpuid.XGETBV1": "true",
 "feature.node.kubernetes.io/cpu-cpuid.XSAVE": "true",
 "feature.node.kubernetes.io/cpu-cpuid.XSAVEC": "true",
 "feature.node.kubernetes.io/cpu-cpuid.XSAVEOPT": "true",
 "feature.node.kubernetes.io/cpu-cpuid.XSAVES": "true",
 "feature.node.kubernetes.io/cpu-hardware_multithreading": "false",
 "feature.node.kubernetes.io/cpu-model.family": "25",
 "feature.node.kubernetes.io/cpu-model.id": "1",
 "feature.node.kubernetes.io/cpu-model.vendor_id": "AMD",
 "feature.node.kubernetes.io/kernel-config.NO_HZ": "true",
 "feature.node.kubernetes.io/kernel-config.NO_HZ_FULL": "true",
 "feature.node.kubernetes.io/kernel-selinux.enabled": "true",
 "feature.node.kubernetes.io/kernel-version.full": "5.14.0-427.35.1.el9_4.x86_64",
 "feature.node.kubernetes.io/kernel-version.major": "5",
 "feature.node.kubernetes.io/kernel-version.minor": "14",
 "feature.node.kubernetes.io/kernel-version.revision": "0",
 "feature.node.kubernetes.io/memory-numa": "true",
 "feature.node.kubernetes.io/network-sriov.capable": "true",
 "feature.node.kubernetes.io/pci-102b.present": "true",
 "feature.node.kubernetes.io/pci-10de.present": "true",
 "feature.node.kubernetes.io/pci-10de.sriov.capable": "true",
 "feature.node.kubernetes.io/pci-15b3.present": "true",
 "feature.node.kubernetes.io/pci-15b3.sriov.capable": "true",
 "feature.node.kubernetes.io/rdma.available": "true",
 "feature.node.kubernetes.io/rdma.capable": "true",
 "feature.node.kubernetes.io/storage-nonrotationaldisk": "true",
 "feature.node.kubernetes.io/system-os_release.ID": "rhcos",
 "feature.node.kubernetes.io/system-os_release.OPENSHIFT_VERSION": "4.17",
 "feature.node.kubernetes.io/system-os_release.OSTREE_VERSION":
"417.94.202409121747-0",
 "feature.node.kubernetes.io/system-os_release.RHEL_VERSION": "9.4",
 "feature.node.kubernetes.io/system-os_release.VERSION_ID": "4.17",
 "feature.node.kubernetes.io/system-os_release.VERSION_ID.major": "4",
 "feature.node.kubernetes.io/system-os_release.VERSION_ID.minor": "17"
}

$ oc describe node | grep -E 'Roles|pci' | grep pci-15b3
 feature.node.kubernetes.io/pci-15b3.present=true
 feature.node.kubernetes.io/pci-15b3.sriov.capable=true
 feature.node.kubernetes.io/pci-15b3.present=true
 feature.node.kubernetes.io/pci-15b3.sriov.capable=true

第 5 章 NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

21

先决条件

已安装 SR-IOV Operator。

流程

1. 运行以下命令，验证 Operator 是否已安装并运行 openshift-sriov-network-operator 命名空间
中的 pod：

输出示例

2. 对于默认的 SriovOperatorConfig CR 以用于 MLNX_OFED 容器，请运行这个命令来更新以下
值：

3. 运行以下命令在集群中创建资源：

输出示例

4. 运行以下命令修补 sriov-operator，以便 MOFED 容器可以使用它：

输出示例

5.6. 配置 NVIDIA NETWORK OPERATOR

NVIDIA network Operator 管理 NVIDIA 网络资源和网络相关组件，如驱动程序和设备插件来启用 NVIDIA
GPUDirect RDMA 工作负载。

$ oc get pods -n openshift-sriov-network-operator

NAME READY STATUS RESTARTS AGE
sriov-network-operator-7cb6c49868-89486 1/1 Running 0 22s

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:
 name: default
 namespace: openshift-sriov-network-operator
spec:
 enableInjector: true
 enableOperatorWebhook: true
 logLevel: 2

$ oc create -f sriov-operator-config.yaml

sriovoperatorconfig.sriovnetwork.openshift.io/default created

$ oc patch sriovoperatorconfig default --type=merge -n openshift-sriov-network-operator --
patch '{ "spec": { "configDaemonNodeSelector": { "network.nvidia.com/operator.mofed.wait":
"false", "node-role.kubernetes.io/worker": "", "feature.node.kubernetes.io/pci-
15b3.sriov.capable": "true" } } }'

sriovoperatorconfig.sriovnetwork.openshift.io/default patched

OpenShift Container Platform 4.19 硬件加速器

22

先决条件

已安装 NVIDIA network Operator。

流程

1. 运行以下命令，验证 network Operator 是否已安装并运行，确认控制器是否在 nvidia-network-
operator 命名空间中运行：

输出示例

2. 在 Operator 运行时，创建 NicClusterPolicy 自定义资源文件。您选择的设备取决于您的系统配
置。在这个示例中，Infiniband 接口 ibs2f0 是硬编码的，用作共享的 NVIDIA GPUDirect RDMA
设备。

$ oc get pods -n nvidia-network-operator

NAME READY STATUS RESTARTS AGE
nvidia-network-operator-controller-manager-6f7d6956cd-fw5wg 1/1 Running 0
5m

apiVersion: mellanox.com/v1alpha1
kind: NicClusterPolicy
metadata:
 name: nic-cluster-policy
spec:
 nicFeatureDiscovery:
 image: nic-feature-discovery
 repository: ghcr.io/mellanox
 version: v0.0.1
 docaTelemetryService:
 image: doca_telemetry
 repository: nvcr.io/nvidia/doca
 version: 1.16.5-doca2.6.0-host
 rdmaSharedDevicePlugin:
 config: |
 {
 "configList": [
 {
 "resourceName": "rdma_shared_device_ib",
 "rdmaHcaMax": 63,
 "selectors": {
 "ifNames": ["ibs2f0"]
 }
 },
 {
 "resourceName": "rdma_shared_device_eth",
 "rdmaHcaMax": 63,
 "selectors": {
 "ifNames": ["ens8f0np0"]
 }
 }
]
 }
 image: k8s-rdma-shared-dev-plugin

第 5 章 NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

23

3. 运行以下命令在集群中创建 NicClusterPolicy 自定义资源：

输出示例

 repository: ghcr.io/mellanox
 version: v1.5.1
 secondaryNetwork:
 ipoib:
 image: ipoib-cni
 repository: ghcr.io/mellanox
 version: v1.2.0
 nvIpam:
 enableWebhook: false
 image: nvidia-k8s-ipam
 repository: ghcr.io/mellanox
 version: v0.2.0
 ofedDriver:
 readinessProbe:
 initialDelaySeconds: 10
 periodSeconds: 30
 forcePrecompiled: false
 terminationGracePeriodSeconds: 300
 livenessProbe:
 initialDelaySeconds: 30
 periodSeconds: 30
 upgradePolicy:
 autoUpgrade: true
 drain:
 deleteEmptyDir: true
 enable: true
 force: true
 timeoutSeconds: 300
 podSelector: ''
 maxParallelUpgrades: 1
 safeLoad: false
 waitForCompletion:
 timeoutSeconds: 0
 startupProbe:
 initialDelaySeconds: 10
 periodSeconds: 20
 image: doca-driver
 repository: nvcr.io/nvidia/mellanox
 version: 24.10-0.7.0.0-0
 env:
 - name: UNLOAD_STORAGE_MODULES
 value: "true"
 - name: RESTORE_DRIVER_ON_POD_TERMINATION
 value: "true"
 - name: CREATE_IFNAMES_UDEV
 value: "true"

$ oc create -f network-sharedrdma-nic-cluster-policy.yaml

nicclusterpolicy.mellanox.com/nic-cluster-policy created

OpenShift Container Platform 4.19 硬件加速器

24

4. 在 DOCA/MOFED 容器中运行以下命令来验证 NicClusterPolicy ：

输出示例

5. rsh 到 mofed 容器，运行以下命令来检查状态：

输出示例

输出示例

6. 创建 IPoIBNetwork 自定义资源文件：

$ oc get pods -n nvidia-network-operator

NAME READY STATUS RESTARTS AGE
doca-telemetry-service-hwj65 1/1 Running 2 160m
kube-ipoib-cni-ds-fsn8g 1/1 Running 2 160m
mofed-rhcos4.16-9b5ddf4c6-ds-ct2h5 2/2 Running 4 160m
nic-feature-discovery-ds-dtksz 1/1 Running 2 160m
nv-ipam-controller-854585f594-c5jpp 1/1 Running 2 160m
nv-ipam-controller-854585f594-xrnp5 1/1 Running 2 160m
nv-ipam-node-xqttl 1/1 Running 2 160m
nvidia-network-operator-controller-manager-5798b564cd-5cq99 1/1 Running 2
5d23h
rdma-shared-dp-ds-p9vvg 1/1 Running 0 85m

$ MOFED_POD=$(oc get pods -n nvidia-network-operator -o name | grep mofed)
$ oc rsh -n nvidia-network-operator -c mofed-container ${MOFED_POD}
sh-5.1# ofed_info -s

OFED-internal-24.07-0.6.1:

sh-5.1# ibdev2netdev -v

0000:0d:00.0 mlx5_0 (MT41692 - 900-9D3B4-00EN-EA0) BlueField-3 E-series SuperNIC
400GbE/NDR single port QSFP112, PCIe Gen5.0 x16 FHHL, Crypto Enabled, 16GB DDR5,
BMC, Tall Bracket fw 32.42.1000 port 1 (ACTIVE) ==>
ibs2f0 (Up)
0000:a0:00.0 mlx5_1 (MT41692 - 900-9D3B4-00EN-EA0) BlueField-3 E-series SuperNIC
400GbE/NDR single port QSFP112, PCIe Gen5.0 x16 FHHL, Crypto Enabled, 16GB DDR5,
BMC, Tall Bracket fw 32.42.1000 port 1 (ACTIVE) ==>
ens8f0np0 (Up)

apiVersion: mellanox.com/v1alpha1
kind: IPoIBNetwork
metadata:
 name: example-ipoibnetwork
spec:
 ipam: |
 {
 "type": "whereabouts",
 "range": "192.168.6.225/28",

第 5 章 NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

25

7. 运行以下命令在集群中创建 IPoIBNetwork 资源：

输出示例

8. 为其他接口创建一个 MacvlanNetwork 自定义资源文件：

9. 运行以下命令在集群中创建资源：

输出示例

5.7. 配置 GPU OPERATOR

GPU Operator 自动管理 NVIDIA 驱动程序、GPU 的设备插件、NVIDIA Container Toolkit 和 GPU 置备所
需的其他组件。

先决条件

已安装 GPU Operator。

流程

1. 运行以下命令，检查 Operator pod 是否正在运行以查看命名空间中的 pod：

 "exclude": [
 "192.168.6.229/30",
 "192.168.6.236/32"
]
 }
 master: ibs2f0
 networkNamespace: default

$ oc create -f ipoib-network.yaml

ipoibnetwork.mellanox.com/example-ipoibnetwork created

apiVersion: mellanox.com/v1alpha1
kind: MacvlanNetwork
metadata:
 name: rdmashared-net
spec:
 networkNamespace: default
 master: ens8f0np0
 mode: bridge
 mtu: 1500
 ipam: '{"type": "whereabouts", "range": "192.168.2.0/24", "gateway": "192.168.2.1"}'

$ oc create -f macvlan-network.yaml

macvlannetwork.mellanox.com/rdmashared-net created

$ oc get pods -n nvidia-gpu-operator

OpenShift Container Platform 4.19 硬件加速器

26

输出示例

2. 创建 GPU 集群策略自定义资源文件，如下例所示：

NAME READY STATUS RESTARTS AGE
gpu-operator-b4cb7d74-zxpwq 1/1 Running 0 32s

apiVersion: nvidia.com/v1
kind: ClusterPolicy
metadata:
 name: gpu-cluster-policy
spec:
 vgpuDeviceManager:
 config:
 default: default
 enabled: true
 migManager:
 config:
 default: all-disabled
 name: default-mig-parted-config
 enabled: true
 operator:
 defaultRuntime: crio
 initContainer: {}
 runtimeClass: nvidia
 use_ocp_driver_toolkit: true
 dcgm:
 enabled: true
 gfd:
 enabled: true
 dcgmExporter:
 config:
 name: ''
 serviceMonitor:
 enabled: true
 enabled: true
 cdi:
 default: false
 enabled: false
 driver:
 licensingConfig:
 nlsEnabled: true
 configMapName: ''
 certConfig:
 name: ''
 rdma:
 enabled: false
 kernelModuleConfig:
 name: ''
 upgradePolicy:
 autoUpgrade: true
 drain:
 deleteEmptyDir: false
 enable: false
 force: false

第 5 章 NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

27

 timeoutSeconds: 300
 maxParallelUpgrades: 1
 maxUnavailable: 25%
 podDeletion:
 deleteEmptyDir: false
 force: false
 timeoutSeconds: 300
 waitForCompletion:
 timeoutSeconds: 0
 repoConfig:
 configMapName: ''
 virtualTopology:
 config: ''
 enabled: true
 useNvidiaDriverCRD: false
 useOpenKernelModules: true
 devicePlugin:
 config:
 name: ''
 default: ''
 mps:
 root: /run/nvidia/mps
 enabled: true
 gdrcopy:
 enabled: true
 kataManager:
 config:
 artifactsDir: /opt/nvidia-gpu-operator/artifacts/runtimeclasses
 mig:
 strategy: single
 sandboxDevicePlugin:
 enabled: true
 validator:
 plugin:
 env:
 - name: WITH_WORKLOAD
 value: 'false'
 nodeStatusExporter:
 enabled: true
 daemonsets:
 rollingUpdate:
 maxUnavailable: '1'
 updateStrategy: RollingUpdate
 sandboxWorkloads:
 defaultWorkload: container
 enabled: false
 gds:
 enabled: true
 image: nvidia-fs
 version: 2.20.5
 repository: nvcr.io/nvidia/cloud-native
 vgpuManager:
 enabled: false
 vfioManager:
 enabled: true

OpenShift Container Platform 4.19 硬件加速器

28

3. 当生成 GPU ClusterPolicy 自定义资源时，运行以下命令在集群中创建资源：

输出示例

4. 运行以下命令验证 Operator 是否已安装并正在运行：

输出示例

5. 可选：验证 pod 正在运行时，远程 shell 到 NVIDIA 驱动程序 daemonset pod，并确认已载入
NVIDIA 模块。具体来说，请确保载入 nvidia_peermem。

输出示例

 toolkit:
 installDir: /usr/local/nvidia
 enabled: true

$ oc create -f gpu-cluster-policy.yaml

clusterpolicy.nvidia.com/gpu-cluster-policy created

$ oc get pods -n nvidia-gpu-operator

NAME READY STATUS RESTARTS AGE
gpu-feature-discovery-d5ngn 1/1 Running 0 3m20s
gpu-feature-discovery-z42rx 1/1 Running 0 3m23s
gpu-operator-6bb4d4b4c5-njh78 1/1 Running 0 4m35s
nvidia-container-toolkit-daemonset-bkh8l 1/1 Running 0 3m20s
nvidia-container-toolkit-daemonset-c4hzm 1/1 Running 0 3m23s
nvidia-cuda-validator-4blvg 0/1 Completed 0 106s
nvidia-cuda-validator-tw8sl 0/1 Completed 0 112s
nvidia-dcgm-exporter-rrw4g 1/1 Running 0 3m20s
nvidia-dcgm-exporter-xc78t 1/1 Running 0 3m23s
nvidia-dcgm-nvxpf 1/1 Running 0 3m20s
nvidia-dcgm-snj4j 1/1 Running 0 3m23s
nvidia-device-plugin-daemonset-fk2xz 1/1 Running 0 3m23s
nvidia-device-plugin-daemonset-wq87j 1/1 Running 0 3m20s
nvidia-driver-daemonset-416.94.202410211619-0-ngrjg 4/4 Running 0 3m58s
nvidia-driver-daemonset-416.94.202410211619-0-tm4x6 4/4 Running 0 3m58s
nvidia-node-status-exporter-jlzxh 1/1 Running 0 3m57s
nvidia-node-status-exporter-zjffs 1/1 Running 0 3m57s
nvidia-operator-validator-l49hx 1/1 Running 0 3m20s
nvidia-operator-validator-n44nn 1/1 Running 0 3m23s

$ oc rsh -n nvidia-gpu-operator $(oc -n nvidia-gpu-operator get pod -o name -l
app.kubernetes.io/component=nvidia-driver)
sh-4.4# lsmod|grep nvidia

nvidia_fs 327680 0
nvidia_peermem 24576 0
nvidia_modeset 1507328 0
video 73728 1 nvidia_modeset
nvidia_uvm 6889472 8

第 5 章 NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

29

6. 可选：运行 nvidia-smi 工具来显示驱动程序和硬件的详情：

sh-4.4# nvidia-smi

+ .输出示例

1. 当您仍然在驱动程序 pod 中时，使用 nvidia-smi 命令将 GPU 时钟设置为最大值：

输出示例

输出示例

nvidia 8810496 43 nvidia_uvm,nvidia_peermem,nvidia_fs,gdrdrv,nvidia_modeset
ib_uverbs 217088 3 nvidia_peermem,rdma_ucm,mlx5_ib
drm 741376 5 drm_kms_helper,drm_shmem_helper,nvidia,mgag200

Wed Nov 6 22:03:53 2024
+---+
| NVIDIA-SMI 550.90.07 Driver Version: 550.90.07 CUDA Version: 12.4 |
|---+------------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===+========================+==============		
========		
0 NVIDIA A40 On	00000000:61:00.0 Off	0
0% 37C P0 88W / 300W	1MiB / 46068MiB	0% Default
		N/A
+---+------------------------+----------------------+		
1 NVIDIA A40 On	00000000:E1:00.0 Off	0
0% 28C P8 29W / 300W	1MiB / 46068MiB	0% Default
		N/A
+---+------------------------+----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===
========|
| No running processes found |
+---+

$ oc rsh -n nvidia-gpu-operator nvidia-driver-daemonset-416.94.202410172137-0-ndhzc
sh-4.4# nvidia-smi -i 0 -lgc $(nvidia-smi -i 0 --query-supported-clocks=graphics --
format=csv,noheader,nounits | sort -h | tail -n 1)

GPU clocks set to "(gpuClkMin 1740, gpuClkMax 1740)" for GPU 00000000:61:00.0
All done.

sh-4.4# nvidia-smi -i 1 -lgc $(nvidia-smi -i 1 --query-supported-clocks=graphics --
format=csv,noheader,nounits | sort -h | tail -n 1)

OpenShift Container Platform 4.19 硬件加速器

30

2. 运行以下命令，从节点描述视角验证资源是否可用：

输出示例

5.8. 创建机器配置

在创建资源 pod 之前，您需要创建 machineconfig.yaml 自定义资源 (CR) 来提供 GPU 和网络资源的访

GPU clocks set to "(gpuClkMin 1740, gpuClkMax 1740)" for GPU 00000000:E1:00.0
All done.

$ oc describe node -l node-role.kubernetes.io/worker=| grep -E 'Capacity:|Allocatable:' -A9

Capacity:
 cpu: 128
 ephemeral-storage: 1561525616Ki
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 263596712Ki
 nvidia.com/gpu: 2
 pods: 250
 rdma/rdma_shared_device_eth: 63
 rdma/rdma_shared_device_ib: 63
Allocatable:
 cpu: 127500m
 ephemeral-storage: 1438028263499
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 262445736Ki
 nvidia.com/gpu: 2
 pods: 250
 rdma/rdma_shared_device_eth: 63
 rdma/rdma_shared_device_ib: 63
--
Capacity:
 cpu: 128
 ephemeral-storage: 1561525616Ki
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 263596672Ki
 nvidia.com/gpu: 2
 pods: 250
 rdma/rdma_shared_device_eth: 63
 rdma/rdma_shared_device_ib: 63
Allocatable:
 cpu: 127500m
 ephemeral-storage: 1438028263499
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 262445696Ki
 nvidia.com/gpu: 2
 pods: 250
 rdma/rdma_shared_device_eth: 63
 rdma/rdma_shared_device_ib: 63

第 5 章 NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

31

在创建资源 pod 之前，您需要创建 machineconfig.yaml 自定义资源 (CR) 来提供 GPU 和网络资源的访
问权限，而无需用户权限。

流程

1. 生成 Machineconfig CR：

5.9. 创建工作负载 POD

使用本节中的步骤为共享和主机设备创建工作负载 pod。

5.9.1. 在 RoCE 上创建共享设备 RDMA

为 NVIDIA Network Operator 在 RDMA 上为共享设备 RDMA 创建工作负载 pod，并测试 pod 配置。

NVIDIA GPUDirect RDMA 设备在公开设备的 OpenShift Container Platform worker 节点上的 pod 共
享。

先决条件

确保 Operator 正在运行。

删除 NicClusterPolicy 自定义资源 (CR) （如果存在）。

流程

1. 生成自定义 pod 资源：

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 02-worker-container-runtime
spec:
 config:
 ignition:
 version: 3.2.0
 storage:
 files:
 - contents:
 source: data:text/plain;charset=utf-
8;base64,W2NyaW8ucnVudGltZV0KZGVmYXVsdF91bGltaXRzID0gWwoibWVtbG9jaz0tMTot
MSIKXQo=
 mode: 420
 overwrite: true
 path: /etc/crio/crio.conf.d/10-custom

$ cat <<EOF > rdma-eth-32-workload.yaml
apiVersion: v1
kind: Pod
metadata:
 name: rdma-eth-32-workload
 namespace: default

OpenShift Container Platform 4.19 硬件加速器

32

2. 使用以下命令在集群中创建 pod：

输出示例

 annotations:
 k8s.v1.cni.cncf.io/networks: rdmashared-net
spec:
 nodeSelector:
 kubernetes.io/hostname: nvd-srv-32.nvidia.eng.rdu2.dc.redhat.com
 containers:
 - image: quay.io/edge-infrastructure/nvidia-tools:0.1.5
 name: rdma-eth-32-workload
 resources:
 limits:
 nvidia.com/gpu: 1
 rdma/rdma_shared_device_eth: 1
 requests:
 nvidia.com/gpu: 1
 rdma/rdma_shared_device_eth: 1

EOF

$ cat <<EOF > rdma-eth-33-workload.yaml
apiVersion: v1
kind: Pod
metadata:
 name: rdma-eth-33-workload
 namespace: default
 annotations:
 k8s.v1.cni.cncf.io/networks: rdmashared-net
spec:
 nodeSelector:
 kubernetes.io/hostname: nvd-srv-33.nvidia.eng.rdu2.dc.redhat.com
 containers:
 - image: quay.io/edge-infrastructure/nvidia-tools:0.1.5
 name: rdma-eth-33-workload
 securityContext:
 capabilities:
 add: ["IPC_LOCK"]
 resources:
 limits:
 nvidia.com/gpu: 1
 rdma/rdma_shared_device_eth: 1
 requests:
 nvidia.com/gpu: 1
 rdma/rdma_shared_device_eth: 1
EOF

$ oc create -f rdma-eth-32-workload.yaml

pod/rdma-eth-32-workload created

$ oc create -f rdma-eth-33-workload.yaml

第 5 章 NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

33

输出示例

3. 使用以下命令验证 pod 是否正在运行：

输出示例

5.9.2. 在 RoCE 上创建主机设备 RDMA

为 NVIDIA Network Operator 为主机设备 Remote Direct Memory Access (RDMA) 创建工作负载 pod，
并测试 pod 配置。

先决条件

确保 Operator 正在运行。

删除 NicClusterPolicy 自定义资源 (CR) （如果存在）。

流程

1. 生成一个新的主机设备 NicClusterPolicy (CR)，如下所示：

pod/rdma-eth-33-workload created

$ oc get pods -n default

NAME READY STATUS RESTARTS AGE
rdma-eth-32-workload 1/1 Running 0 25s
rdma-eth-33-workload 1/1 Running 0 22s

$ cat <<EOF > network-hostdev-nic-cluster-policy.yaml
apiVersion: mellanox.com/v1alpha1
kind: NicClusterPolicy
metadata:
 name: nic-cluster-policy
spec:
 ofedDriver:
 image: doca-driver
 repository: nvcr.io/nvidia/mellanox
 version: 24.10-0.7.0.0-0
 startupProbe:
 initialDelaySeconds: 10
 periodSeconds: 20
 livenessProbe:
 initialDelaySeconds: 30
 periodSeconds: 30
 readinessProbe:
 initialDelaySeconds: 10
 periodSeconds: 30
 env:
 - name: UNLOAD_STORAGE_MODULES
 value: "true"
 - name: RESTORE_DRIVER_ON_POD_TERMINATION
 value: "true"

OpenShift Container Platform 4.19 硬件加速器

34

2. 使用以下命令在集群中创建 NicClusterPolicy CR：

输出示例

3. 在 DOCA/MOFED 容器中使用以下命令验证主机设备 NicClusterPolicy CR:

输出示例

4. 使用以下命令确认资源出现在集群 oc describe node 部分中：

输出示例

 - name: CREATE_IFNAMES_UDEV
 value: "true"
 sriovDevicePlugin:
 image: sriov-network-device-plugin
 repository: ghcr.io/k8snetworkplumbingwg
 version: v3.7.0
 config: |
 {
 "resourceList": [
 {
 "resourcePrefix": "nvidia.com",
 "resourceName": "hostdev",
 "selectors": {
 "vendors": ["15b3"],
 "isRdma": true
 }
 }
]
 }
EOF

$ oc create -f network-hostdev-nic-cluster-policy.yaml

nicclusterpolicy.mellanox.com/nic-cluster-policy created

$ oc get pods -n nvidia-network-operator

NAME READY STATUS RESTARTS AGE
mofed-rhcos4.16-696886fcb4-ds-9sgvd 2/2 Running 0 2m37s
mofed-rhcos4.16-696886fcb4-ds-lkjd4 2/2 Running 0 2m37s
nvidia-network-operator-controller-manager-68d547dbbd-qsdkf 1/1 Running 0
141m
sriov-device-plugin-6v2nz 1/1 Running 0 2m14s
sriov-device-plugin-hc4t8 1/1 Running 0 2m14s

$ oc describe node -l node-role.kubernetes.io/worker=| grep -E 'Capacity:|Allocatable:' -A7

Capacity:
 cpu: 128
 ephemeral-storage: 1561525616Ki
 hugepages-1Gi: 0

第 5 章 NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

35

5. 创建 HostDeviceNetwork CR 文件：

6. 使用以下命令在集群中创建 HostDeviceNetwork 资源：

 hugepages-2Mi: 0
 memory: 263596708Ki
 nvidia.com/hostdev: 2
 pods: 250
Allocatable:
 cpu: 127500m
 ephemeral-storage: 1438028263499
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 262445732Ki
 nvidia.com/hostdev: 2
 pods: 250
--
Capacity:
 cpu: 128
 ephemeral-storage: 1561525616Ki
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 263596704Ki
 nvidia.com/hostdev: 2
 pods: 250
Allocatable:
 cpu: 127500m
 ephemeral-storage: 1438028263499
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 262445728Ki
 nvidia.com/hostdev: 2
 pods: 250

$ cat <<EOF > hostdev-network.yaml
apiVersion: mellanox.com/v1alpha1
kind: HostDeviceNetwork
metadata:
 name: hostdev-net
spec:
 networkNamespace: "default"
 resourceName: "hostdev"
 ipam: |
 {
 "type": "whereabouts",
 "range": "192.168.3.225/28",
 "exclude": [
 "192.168.3.229/30",
 "192.168.3.236/32"
]
 }
EOF

$ oc create -f hostdev-network.yaml

OpenShift Container Platform 4.19 硬件加速器

36

输出示例

7. 使用以下命令确认资源出现在集群 oc describe node 部分中：

输出示例

5.9.3. 在 RoCE 上创建 SR-IOV 旧模式 RDMA

在 RoCE 上配置单根 I/O 虚拟化 (SR-IOV) 旧模式主机设备 RDMA。

流程

hostdevicenetwork.mellanox.com/hostdev-net created

$ oc describe node -l node-role.kubernetes.io/worker=| grep -E 'Capacity:|Allocatable:' -A8

Capacity:
 cpu: 128
 ephemeral-storage: 1561525616Ki
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 263596708Ki
 nvidia.com/gpu: 2
 nvidia.com/hostdev: 2
 pods: 250
Allocatable:
 cpu: 127500m
 ephemeral-storage: 1438028263499
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 262445732Ki
 nvidia.com/gpu: 2
 nvidia.com/hostdev: 2
 pods: 250
--
Capacity:
 cpu: 128
 ephemeral-storage: 1561525616Ki
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 263596680Ki
 nvidia.com/gpu: 2
 nvidia.com/hostdev: 2
 pods: 250
Allocatable:
 cpu: 127500m
 ephemeral-storage: 1438028263499
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 262445704Ki
 nvidia.com/gpu: 2
 nvidia.com/hostdev: 2
 pods: 250

第 5 章 NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

37

1. 生成一个新的主机设备 NicClusterPolicy 自定义资源 (CR)：

2. 使用以下命令在集群中创建策略：

输出示例

3. 在 DOCA/MOFED 容器中使用以下命令验证 pod：

输出示例

4. 为您要在 SR-IOV 传统模式下运行的设备生成虚拟功能 (VF) 的 SriovNetworkNodePolicy CR。
请参见以下示例：

$ cat <<EOF > network-sriovleg-nic-cluster-policy.yaml
apiVersion: mellanox.com/v1alpha1
kind: NicClusterPolicy
metadata:
 name: nic-cluster-policy
spec:
 ofedDriver:
 image: doca-driver
 repository: nvcr.io/nvidia/mellanox
 version: 24.10-0.7.0.0-0
 startupProbe:
 initialDelaySeconds: 10
 periodSeconds: 20
 livenessProbe:
 initialDelaySeconds: 30
 periodSeconds: 30
 readinessProbe:
 initialDelaySeconds: 10
 periodSeconds: 30
 env:
 - name: UNLOAD_STORAGE_MODULES
 value: "true"
 - name: RESTORE_DRIVER_ON_POD_TERMINATION
 value: "true"
 - name: CREATE_IFNAMES_UDEV
 value: "true"
EOF

$ oc create -f network-sriovleg-nic-cluster-policy.yaml

nicclusterpolicy.mellanox.com/nic-cluster-policy created

$ oc get pods -n nvidia-network-operator

NAME READY STATUS RESTARTS AGE
mofed-rhcos4.16-696886fcb4-ds-4mb42 2/2 Running 0 40s
mofed-rhcos4.16-696886fcb4-ds-8knwq 2/2 Running 0 40s
nvidia-network-operator-controller-manager-68d547dbbd-qsdkf 1/1 Running 13 (4d ago)
4d21h

OpenShift Container Platform 4.19 硬件加速器

38

5. 使用以下命令在集群中创建 CR：

注意

确保启用了 SR-IOV 全局启用。如需更多信息，请参阅无法启用 SR-IOV，并在
Red Hat Enterprise Linux 中接收消息 "not enough MMIO resources for SR-IOV
"。

输出示例

6. 每个节点都被禁用调度。节点重新引导以应用配置。您可以使用以下命令查看节点：

输出示例

7. 节点重启后，通过在每个节点中打开 debug pod 来验证 VF 接口是否存在。运行以下命令:

$ cat <<EOF > sriov-network-node-policy.yaml
apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: sriov-legacy-policy
 namespace: openshift-sriov-network-operator
spec:
 deviceType: netdevice
 mtu: 1500
 nicSelector:
 vendor: "15b3"
 pfNames: ["ens8f0np0#0-7"]
 nodeSelector:
 feature.node.kubernetes.io/pci-15b3.present: "true"
 numVfs: 8
 priority: 90
 isRdma: true
 resourceName: sriovlegacy
EOF

$ oc create -f sriov-network-node-policy.yaml

sriovnetworknodepolicy.sriovnetwork.openshift.io/sriov-legacy-policy created

$ oc get nodes

NAME STATUS ROLES AGE
VERSION
edge-19.edge.lab.eng.rdu2.redhat.com Ready control-
plane,master,worker 5d v1.29.8+632b078
nvd-srv-32.nvidia.eng.rdu2.dc.redhat.com Ready worker
4d22h v1.29.8+632b078
nvd-srv-33.nvidia.eng.rdu2.dc.redhat.com NotReady,SchedulingDisabled worker
4d22h v1.29.8+632b078

a$ oc debug node/nvd-srv-33.nvidia.eng.rdu2.dc.redhat.com

第 5 章 NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

39

https://access.redhat.com/solutions/37376

输出示例

8. 如有必要，在第二个节点上重复前面的步骤。

9. 可选：使用以下命令确认资源出现在集群 oc describe node 部分中：

输出示例

Starting pod/nvd-srv-33nvidiaengrdu2dcredhatcom-debug-cqfjz ...
To use host binaries, run `chroot /host`
Pod IP: 10.6.135.12
If you don't see a command prompt, try pressing enter.
sh-5.1# chroot /host
sh-5.1# ip link show | grep ens8
26: ens8f0np0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP
mode DEFAULT group default qlen 1000
42: ens8f0v0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode
DEFAULT group default qlen 1000
43: ens8f0v1: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode
DEFAULT group default qlen 1000
44: ens8f0v2: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode
DEFAULT group default qlen 1000
45: ens8f0v3: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode
DEFAULT group default qlen 1000
46: ens8f0v4: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode
DEFAULT group default qlen 1000
47: ens8f0v5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode
DEFAULT group default qlen 1000
48: ens8f0v6: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode
DEFAULT group default qlen 1000
49: ens8f0v7: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode
DEFAULT group default qlen 1000

$ oc describe node -l node-role.kubernetes.io/worker=| grep -E 'Capacity:|Allocatable:' -A8

Capacity:
 cpu: 128
 ephemeral-storage: 1561525616Ki
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 263596692Ki
 nvidia.com/gpu: 2
 nvidia.com/hostdev: 0
 openshift.io/sriovlegacy: 8
--
Allocatable:
 cpu: 127500m
 ephemeral-storage: 1438028263499
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 262445716Ki
 nvidia.com/gpu: 2
 nvidia.com/hostdev: 0
 openshift.io/sriovlegacy: 8
--

OpenShift Container Platform 4.19 硬件加速器

40

10. SR-IOV 传统模式的 VF 就绪后，生成 SriovNetwork CR 文件。请参见以下示例：

11. 使用以下命令在集群中创建自定义资源：

输出示例

5.9.4. 在 Infiniband 上创建共享设备 RDMA

为 Infiniband 安装为共享设备远程内存访问 (RDMA) 创建工作负载 pod。

Capacity:
 cpu: 128
 ephemeral-storage: 1561525616Ki
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 263596688Ki
 nvidia.com/gpu: 2
 nvidia.com/hostdev: 0
 openshift.io/sriovlegacy: 8
--
Allocatable:
 cpu: 127500m
 ephemeral-storage: 1438028263499
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 262445712Ki
 nvidia.com/gpu: 2
 nvidia.com/hostdev: 0
 openshift.io/sriovlegacy: 8

$ cat <<EOF > sriov-network.yaml
apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: sriov-network
 namespace: openshift-sriov-network-operator
spec:
 vlan: 0
 networkNamespace: "default"
 resourceName: "sriovlegacy"
 ipam: |
 {
 "type": "whereabouts",
 "range": "192.168.3.225/28",
 "exclude": [
 "192.168.3.229/30",
 "192.168.3.236/32"
]
 }
EOF

$ oc create -f sriov-network.yaml

sriovnetwork.sriovnetwork.openshift.io/sriov-network created

第 5 章 NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

41

流程

1. 生成自定义 pod 资源：

2. 使用以下命令在集群中创建 pod：

$ cat <<EOF > rdma-ib-32-workload.yaml
apiVersion: v1
kind: Pod
metadata:
 name: rdma-ib-32-workload
 namespace: default
 annotations:
 k8s.v1.cni.cncf.io/networks: example-ipoibnetwork
spec:
 nodeSelector:
 kubernetes.io/hostname: nvd-srv-32.nvidia.eng.rdu2.dc.redhat.com
 containers:
 - image: quay.io/edge-infrastructure/nvidia-tools:0.1.5
 name: rdma-ib-32-workload
 resources:
 limits:
 nvidia.com/gpu: 1
 rdma/rdma_shared_device_ib: 1
 requests:
 nvidia.com/gpu: 1
 rdma/rdma_shared_device_ib: 1
EOF

$ cat <<EOF > rdma-ib-32-workload.yaml
apiVersion: v1
kind: Pod
metadata:
 name: rdma-ib-33-workload
 namespace: default
 annotations:
 k8s.v1.cni.cncf.io/networks: example-ipoibnetwork
spec:
 nodeSelector:
 kubernetes.io/hostname: nvd-srv-33.nvidia.eng.rdu2.dc.redhat.com
 containers:
 - image: quay.io/edge-infrastructure/nvidia-tools:0.1.5
 name: rdma-ib-33-workload
 securityContext:
 capabilities:
 add: ["IPC_LOCK"]
 resources:
 limits:
 nvidia.com/gpu: 1
 rdma/rdma_shared_device_ib: 1
 requests:
 nvidia.com/gpu: 1
 rdma/rdma_shared_device_ib: 1
EOF

$ oc create -f rdma-ib-32-workload.yaml

OpenShift Container Platform 4.19 硬件加速器

42

输出示例

输出示例

3. 使用以下命令验证 pod 是否正在运行：

输出示例

5.10. 验证 RDMA 连接

确认远程直接内存访问 (RDMA) 连接在系统间正常工作，特别是传统的单根 I/O 虚拟化 (SR-IOV) 以太
网。

流程

1. 使用以下命令连接到每个 rdma-workload-client pod：

输出示例

2. 使用以下命令，检查分配给第一个工作负载 pod 的 IP 地址。在本例中，第一个工作负载 pod 是
RDMA 测试服务器。

输出示例

pod/rdma-ib-32-workload created

$ oc create -f rdma-ib-33-workload.yaml

pod/rdma-ib-33-workload created

$ oc get pods

NAME READY STATUS RESTARTS AGE
rdma-ib-32-workload 1/1 Running 0 10s
rdma-ib-33-workload 1/1 Running 0 3s

$ oc rsh -n default rdma-sriov-32-workload

sh-5.1#

sh-5.1# ip a

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group
default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0@if3970: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1400 qdisc noqueue

第 5 章 NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

43

分配给此 pod 的 RDMA 服务器的 IP 地址是 net1 接口。在本例中，IP 地址为 192.168.4.225。

3. 运行 ibstatus 命令以获取与每个 RDMA 设备 mlx5_x 关联的 link_layer 类型、以太网或
Infiniband。输出中还通过检查 state 字段来显示所有 RDMA 设备的状态，该字段会显示 ACTIVE
或 DOWN。

输出示例

state UP group default
 link/ether 0a:58:0a:80:02:a7 brd ff:ff:ff:ff:ff:ff link-netnsid 0
 inet 10.128.2.167/23 brd 10.128.3.255 scope global eth0
 valid_lft forever preferred_lft forever
 inet6 fe80::858:aff:fe80:2a7/64 scope link
 valid_lft forever preferred_lft forever
3843: net1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP
group default qlen 1000
 link/ether 26:34:fd:53:a6:ec brd ff:ff:ff:ff:ff:ff
 altname enp55s0f0v5
 inet 192.168.4.225/28 brd 192.168.4.239 scope global net1
 valid_lft forever preferred_lft forever
 inet6 fe80::2434:fdff:fe53:a6ec/64 scope link
 valid_lft forever preferred_lft forever
sh-5.1#

sh-5.1# ibstatus

Infiniband device 'mlx5_0' port 1 status:
 default gid: 0000:0000:0000:0000:0000:0000:0000:0000
 base lid: 0x0
 sm lid: 0x0
 state: 4: ACTIVE
 phys state: 5: LinkUp
 rate: 200 Gb/sec (4X HDR)
 link_layer: Ethernet

Infiniband device 'mlx5_1' port 1 status:
 default gid: fe80:0000:0000:0000:e8eb:d303:0072:1415
 base lid: 0xc
 sm lid: 0x1
 state: 4: ACTIVE
 phys state: 5: LinkUp
 rate: 200 Gb/sec (4X HDR)
 link_layer: InfiniBand

Infiniband device 'mlx5_2' port 1 status:
 default gid: 0000:0000:0000:0000:0000:0000:0000:0000
 base lid: 0x0
 sm lid: 0x0
 state: 1: DOWN
 phys state: 3: Disabled
 rate: 200 Gb/sec (4X HDR)
 link_layer: Ethernet

Infiniband device 'mlx5_3' port 1 status:
 default gid: 0000:0000:0000:0000:0000:0000:0000:0000

OpenShift Container Platform 4.19 硬件加速器

44

 base lid: 0x0
 sm lid: 0x0
 state: 1: DOWN
 phys state: 3: Disabled
 rate: 200 Gb/sec (4X HDR)
 link_layer: Ethernet

Infiniband device 'mlx5_4' port 1 status:
 default gid: 0000:0000:0000:0000:0000:0000:0000:0000
 base lid: 0x0
 sm lid: 0x0
 state: 1: DOWN
 phys state: 3: Disabled
 rate: 200 Gb/sec (4X HDR)
 link_layer: Ethernet

Infiniband device 'mlx5_5' port 1 status:
 default gid: 0000:0000:0000:0000:0000:0000:0000:0000
 base lid: 0x0
 sm lid: 0x0
 state: 1: DOWN
 phys state: 3: Disabled
 rate: 200 Gb/sec (4X HDR)
 link_layer: Ethernet

Infiniband device 'mlx5_6' port 1 status:
 default gid: 0000:0000:0000:0000:0000:0000:0000:0000
 base lid: 0x0
 sm lid: 0x0
 state: 1: DOWN
 phys state: 3: Disabled
 rate: 200 Gb/sec (4X HDR)
 link_layer: Ethernet

Infiniband device 'mlx5_7' port 1 status:
 default gid: fe80:0000:0000:0000:2434:fdff:fe53:a6ec
 base lid: 0x0
 sm lid: 0x0
 state: 4: ACTIVE
 phys state: 5: LinkUp
 rate: 200 Gb/sec (4X HDR)
 link_layer: Ethernet

Infiniband device 'mlx5_8' port 1 status:
 default gid: 0000:0000:0000:0000:0000:0000:0000:0000
 base lid: 0x0
 sm lid: 0x0
 state: 1: DOWN
 phys state: 3: Disabled
 rate: 200 Gb/sec (4X HDR)
 link_layer: Ethernet

Infiniband device 'mlx5_9' port 1 status:
 default gid: 0000:0000:0000:0000:0000:0000:0000:0000
 base lid: 0x0
 sm lid: 0x0

第 5 章 NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

45

4. 要获取 worker 节点上每个 RDMA mlx5 设备的 link_layer，请运行 ibstat 命令：

输出示例

 state: 1: DOWN
 phys state: 3: Disabled
 rate: 200 Gb/sec (4X HDR)
 link_layer: Ethernet

sh-5.1#

sh-5.1# ibstat | egrep "Port|Base|Link"

Port 1:
 Physical state: LinkUp
 Base lid: 0
 Port GUID: 0x0000000000000000
 Link layer: Ethernet
 Port 1:
 Physical state: LinkUp
 Base lid: 12
 Port GUID: 0xe8ebd30300721415
 Link layer: InfiniBand
 Port 1:
 Base lid: 0
 Port GUID: 0x0000000000000000
 Link layer: Ethernet
 Port 1:
 Base lid: 0
 Port GUID: 0x0000000000000000
 Link layer: Ethernet
 Port 1:
 Base lid: 0
 Port GUID: 0x0000000000000000
 Link layer: Ethernet
 Port 1:
 Base lid: 0
 Port GUID: 0x0000000000000000
 Link layer: Ethernet
 Port 1:
 Base lid: 0
 Port GUID: 0x0000000000000000
 Link layer: Ethernet
 Port 1:
 Physical state: LinkUp
 Base lid: 0
 Port GUID: 0x2434fdfffe53a6ec
 Link layer: Ethernet
 Port 1:
 Base lid: 0
 Port GUID: 0x0000000000000000
 Link layer: Ethernet
 Port 1:
 Base lid: 0

OpenShift Container Platform 4.19 硬件加速器

46

5. 对于 RDMA 共享设备或主机设备工作负载 pod，名为 mlx5_x 的 RDMA 设备已经已知，通常是
mlx5_0 或 mlx5_1。对于 RDMA 传统 SR-IOV 工作负载 pod，您需要确定哪个 RDMA 设备与哪
些虚拟功能 (VF) 子接口相关联。使用以下命令提供此信息：

输出示例

在这个示例中，RDMA 设备名称 mlx5_7 与 net1 接口相关联。下一个命令中使用此输出来执行
RDMA 带宽测试，该测试还会验证 worker 节点之间的 RDMA 连接。

6. 运行以下 ib_write_bw RDMA 带宽测试命令：

其中：

mlx5_7 RDMA 设备在 -d 交换机中传递。

源 IP 地址为 192.168.4.225 来启动 RDMA 服务器。

--use_cuda=0, --use_cuda_dmabuf 交换表示使用 GPUDirect RDMA。

输出示例

7. 打开另一个终端窗口，并在作为 RDMA 测试客户端 pod 的第二个工作负载 pod 上运行 oc rsh 命
令：

 Port GUID: 0x0000000000000000
 Link layer: Ethernet
sh-5.1#

sh-5.1# rdma link show

link mlx5_0/1 state ACTIVE physical_state LINK_UP
link mlx5_1/1 subnet_prefix fe80:0000:0000:0000 lid 12 sm_lid 1 lmc 0 state ACTIVE
physical_state LINK_UP
link mlx5_2/1 state DOWN physical_state DISABLED
link mlx5_3/1 state DOWN physical_state DISABLED
link mlx5_4/1 state DOWN physical_state DISABLED
link mlx5_5/1 state DOWN physical_state DISABLED
link mlx5_6/1 state DOWN physical_state DISABLED
link mlx5_7/1 state ACTIVE physical_state LINK_UP netdev net1
link mlx5_8/1 state DOWN physical_state DISABLED
link mlx5_9/1 state DOWN physical_state DISABLED

sh-5.1# /root/perftest/ib_write_bw -R -T 41 -s 65536 -F -x 3 -m 4096 --report_gbits -q 16 -D
60 -d mlx5_7 -p 10000 --source_ip 192.168.4.225 --use_cuda=0 --use_cuda_dmabuf

WARNING: BW peak won't be measured in this run.
Perftest doesn't supports CUDA tests with inline messages: inline size set to 0

* Waiting for client to connect... *

$ oc rsh -n default rdma-sriov-33-workload

第 5 章 NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

47

输出示例

8. 使用以下命令，从 net1 接口获取 RDMA 测试客户端 pod IP 地址：

输出示例

9. 使用以下命令，获取与每个 RDMA 设备 mlx5_x 关联的 link_layer 类型：

输出示例

sh-5.1#

sh-5.1# ip a

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group
default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: eth0@if4139: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1400 qdisc noqueue
state UP group default
 link/ether 0a:58:0a:83:01:d5 brd ff:ff:ff:ff:ff:ff link-netnsid 0
 inet 10.131.1.213/23 brd 10.131.1.255 scope global eth0
 valid_lft forever preferred_lft forever
 inet6 fe80::858:aff:fe83:1d5/64 scope link
 valid_lft forever preferred_lft forever
4076: net1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP
group default qlen 1000
 link/ether 56:6c:59:41:ae:4a brd ff:ff:ff:ff:ff:ff
 altname enp55s0f0v0
 inet 192.168.4.226/28 brd 192.168.4.239 scope global net1
 valid_lft forever preferred_lft forever
 inet6 fe80::546c:59ff:fe41:ae4a/64 scope link
 valid_lft forever preferred_lft forever
sh-5.1#

sh-5.1# ibstatus

Infiniband device 'mlx5_0' port 1 status:
 default gid: 0000:0000:0000:0000:0000:0000:0000:0000
 base lid: 0x0
 sm lid: 0x0
 state: 4: ACTIVE
 phys state: 5: LinkUp
 rate: 200 Gb/sec (4X HDR)
 link_layer: Ethernet

Infiniband device 'mlx5_1' port 1 status:
 default gid: fe80:0000:0000:0000:e8eb:d303:0072:09f5
 base lid: 0xd
 sm lid: 0x1
 state: 4: ACTIVE

OpenShift Container Platform 4.19 硬件加速器

48

 phys state: 5: LinkUp
 rate: 200 Gb/sec (4X HDR)
 link_layer: InfiniBand

Infiniband device 'mlx5_2' port 1 status:
 default gid: fe80:0000:0000:0000:546c:59ff:fe41:ae4a
 base lid: 0x0
 sm lid: 0x0
 state: 4: ACTIVE
 phys state: 5: LinkUp
 rate: 200 Gb/sec (4X HDR)
 link_layer: Ethernet

Infiniband device 'mlx5_3' port 1 status:
 default gid: 0000:0000:0000:0000:0000:0000:0000:0000
 base lid: 0x0
 sm lid: 0x0
 state: 1: DOWN
 phys state: 3: Disabled
 rate: 200 Gb/sec (4X HDR)
 link_layer: Ethernet

Infiniband device 'mlx5_4' port 1 status:
 default gid: 0000:0000:0000:0000:0000:0000:0000:0000
 base lid: 0x0
 sm lid: 0x0
 state: 1: DOWN
 phys state: 3: Disabled
 rate: 200 Gb/sec (4X HDR)
 link_layer: Ethernet

Infiniband device 'mlx5_5' port 1 status:
 default gid: 0000:0000:0000:0000:0000:0000:0000:0000
 base lid: 0x0
 sm lid: 0x0
 state: 1: DOWN
 phys state: 3: Disabled
 rate: 200 Gb/sec (4X HDR)
 link_layer: Ethernet

Infiniband device 'mlx5_6' port 1 status:
 default gid: 0000:0000:0000:0000:0000:0000:0000:0000
 base lid: 0x0
 sm lid: 0x0
 state: 1: DOWN
 phys state: 3: Disabled
 rate: 200 Gb/sec (4X HDR)
 link_layer: Ethernet

Infiniband device 'mlx5_7' port 1 status:
 default gid: 0000:0000:0000:0000:0000:0000:0000:0000
 base lid: 0x0
 sm lid: 0x0
 state: 1: DOWN
 phys state: 3: Disabled
 rate: 200 Gb/sec (4X HDR)

第 5 章 NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

49

10. 可选：使用 ibstat 命令获取 Mellanox 卡的固件版本：

输出示例

 link_layer: Ethernet

Infiniband device 'mlx5_8' port 1 status:
 default gid: 0000:0000:0000:0000:0000:0000:0000:0000
 base lid: 0x0
 sm lid: 0x0
 state: 1: DOWN
 phys state: 3: Disabled
 rate: 200 Gb/sec (4X HDR)
 link_layer: Ethernet

Infiniband device 'mlx5_9' port 1 status:
 default gid: 0000:0000:0000:0000:0000:0000:0000:0000
 base lid: 0x0
 sm lid: 0x0
 state: 1: DOWN
 phys state: 3: Disabled
 rate: 200 Gb/sec (4X HDR)
 link_layer: Ethernet

sh-5.1# ibstat

CA 'mlx5_0'
 CA type: MT4123
 Number of ports: 1
 Firmware version: 20.43.1014
 Hardware version: 0
 Node GUID: 0xe8ebd303007209f4
 System image GUID: 0xe8ebd303007209f4
 Port 1:
 State: Active
 Physical state: LinkUp
 Rate: 200
 Base lid: 0
 LMC: 0
 SM lid: 0
 Capability mask: 0x00010000
 Port GUID: 0x0000000000000000
 Link layer: Ethernet
CA 'mlx5_1'
 CA type: MT4123
 Number of ports: 1
 Firmware version: 20.43.1014
 Hardware version: 0
 Node GUID: 0xe8ebd303007209f5
 System image GUID: 0xe8ebd303007209f4
 Port 1:
 State: Active
 Physical state: LinkUp
 Rate: 200
 Base lid: 13

OpenShift Container Platform 4.19 硬件加速器

50

 LMC: 0
 SM lid: 1
 Capability mask: 0xa651e848
 Port GUID: 0xe8ebd303007209f5
 Link layer: InfiniBand
CA 'mlx5_2'
 CA type: MT4124
 Number of ports: 1
 Firmware version: 20.43.1014
 Hardware version: 0
 Node GUID: 0x566c59fffe41ae4a
 System image GUID: 0xe8ebd303007209f4
 Port 1:
 State: Active
 Physical state: LinkUp
 Rate: 200
 Base lid: 0
 LMC: 0
 SM lid: 0
 Capability mask: 0x00010000
 Port GUID: 0x546c59fffe41ae4a
 Link layer: Ethernet
CA 'mlx5_3'
 CA type: MT4124
 Number of ports: 1
 Firmware version: 20.43.1014
 Hardware version: 0
 Node GUID: 0xb2ae4bfffe8f3d02
 System image GUID: 0xe8ebd303007209f4
 Port 1:
 State: Down
 Physical state: Disabled
 Rate: 200
 Base lid: 0
 LMC: 0
 SM lid: 0
 Capability mask: 0x00010000
 Port GUID: 0x0000000000000000
 Link layer: Ethernet
CA 'mlx5_4'
 CA type: MT4124
 Number of ports: 1
 Firmware version: 20.43.1014
 Hardware version: 0
 Node GUID: 0x2a9967fffe8bf272
 System image GUID: 0xe8ebd303007209f4
 Port 1:
 State: Down
 Physical state: Disabled
 Rate: 200
 Base lid: 0
 LMC: 0
 SM lid: 0
 Capability mask: 0x00010000
 Port GUID: 0x0000000000000000
 Link layer: Ethernet

第 5 章 NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

51

CA 'mlx5_5'
 CA type: MT4124
 Number of ports: 1
 Firmware version: 20.43.1014
 Hardware version: 0
 Node GUID: 0x5aff2ffffe2e17e8
 System image GUID: 0xe8ebd303007209f4
 Port 1:
 State: Down
 Physical state: Disabled
 Rate: 200
 Base lid: 0
 LMC: 0
 SM lid: 0
 Capability mask: 0x00010000
 Port GUID: 0x0000000000000000
 Link layer: Ethernet
CA 'mlx5_6'
 CA type: MT4124
 Number of ports: 1
 Firmware version: 20.43.1014
 Hardware version: 0
 Node GUID: 0x121bf1fffe074419
 System image GUID: 0xe8ebd303007209f4
 Port 1:
 State: Down
 Physical state: Disabled
 Rate: 200
 Base lid: 0
 LMC: 0
 SM lid: 0
 Capability mask: 0x00010000
 Port GUID: 0x0000000000000000
 Link layer: Ethernet
CA 'mlx5_7'
 CA type: MT4124
 Number of ports: 1
 Firmware version: 20.43.1014
 Hardware version: 0
 Node GUID: 0xb22b16fffed03dd7
 System image GUID: 0xe8ebd303007209f4
 Port 1:
 State: Down
 Physical state: Disabled
 Rate: 200
 Base lid: 0
 LMC: 0
 SM lid: 0
 Capability mask: 0x00010000
 Port GUID: 0x0000000000000000
 Link layer: Ethernet
CA 'mlx5_8'
 CA type: MT4124
 Number of ports: 1
 Firmware version: 20.43.1014
 Hardware version: 0

OpenShift Container Platform 4.19 硬件加速器

52

11. 要确定哪个 RDMA 设备与客户端工作负载 pod 使用的 Virtual Function 子接口相关联，请运行以
下命令。在本例中，net1 接口使用 RDMA 设备 mlx5_2。

输出示例

12. 运行以下 ib_write_bw RDMA 带宽测试命令：

 Node GUID: 0x523800fffe16d105
 System image GUID: 0xe8ebd303007209f4
 Port 1:
 State: Down
 Physical state: Disabled
 Rate: 200
 Base lid: 0
 LMC: 0
 SM lid: 0
 Capability mask: 0x00010000
 Port GUID: 0x0000000000000000
 Link layer: Ethernet
CA 'mlx5_9'
 CA type: MT4124
 Number of ports: 1
 Firmware version: 20.43.1014
 Hardware version: 0
 Node GUID: 0xd2b4a1fffebdc4a9
 System image GUID: 0xe8ebd303007209f4
 Port 1:
 State: Down
 Physical state: Disabled
 Rate: 200
 Base lid: 0
 LMC: 0
 SM lid: 0
 Capability mask: 0x00010000
 Port GUID: 0x0000000000000000
 Link layer: Ethernet
sh-5.1#

sh-5.1# rdma link show

link mlx5_0/1 state ACTIVE physical_state LINK_UP
link mlx5_1/1 subnet_prefix fe80:0000:0000:0000 lid 13 sm_lid 1 lmc 0 state ACTIVE
physical_state LINK_UP
link mlx5_2/1 state ACTIVE physical_state LINK_UP netdev net1
link mlx5_3/1 state DOWN physical_state DISABLED
link mlx5_4/1 state DOWN physical_state DISABLED
link mlx5_5/1 state DOWN physical_state DISABLED
link mlx5_6/1 state DOWN physical_state DISABLED
link mlx5_7/1 state DOWN physical_state DISABLED
link mlx5_8/1 state DOWN physical_state DISABLED
link mlx5_9/1 state DOWN physical_state DISABLED
sh-5.1#

第 5 章 NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

53

其中：

mlx5_2 RDMA 设备在 -d 交换机中传递。

源 IP 地址 192.168.4.226 以及 RDMA 服务器 192.168.4.225 的目标 IP 地址。

--use_cuda=0, --use_cuda_dmabuf 交换表示使用 GPUDirect RDMA。

输出示例

sh-5.1# /root/perftest/ib_write_bw -R -T 41 -s 65536 -F -x 3 -m 4096 --report_gbits -q 16 -D
60 -d mlx5_2 -p 10000 --source_ip 192.168.4.226 --use_cuda=0 --use_cuda_dmabuf
192.168.4.225

WARNING: BW peak won't be measured in this run.
Perftest doesn't supports CUDA tests with inline messages: inline size set to 0
Requested mtu is higher than active mtu
Changing to active mtu - 3
initializing CUDA
Listing all CUDA devices in system:
CUDA device 0: PCIe address is 61:00

Picking device No. 0
[pid = 8909, dev = 0] device name = [NVIDIA A40]
creating CUDA Ctx
making it the current CUDA Ctx
CUDA device integrated: 0
using DMA-BUF for GPU buffer address at 0x7f8738600000 aligned at 0x7f8738600000
with aligned size 2097152
allocated GPU buffer of a 2097152 address at 0x23a7420 for type CUDA_MEM_DEVICE
Calling ibv_reg_dmabuf_mr(offset=0, size=2097152, addr=0x7f8738600000, fd=40) for
QP #0

 RDMA_Write BW Test
 Dual-port : OFF Device : mlx5_2
 Number of qps : 16 Transport type : IB
 Connection type : RC Using SRQ : OFF
 PCIe relax order: ON Lock-free : OFF
 ibv_wr* API : ON Using DDP : OFF
 TX depth : 128
 CQ Moderation : 1
 CQE Poll Batch : 16
 Mtu : 1024[B]
 Link type : Ethernet
 GID index : 3
 Max inline data : 0[B]
 rdma_cm QPs : ON
 Data ex. method : rdma_cm TOS : 41

 local address: LID 0000 QPN 0x012d PSN 0x3cb6d7
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 local address: LID 0000 QPN 0x012e PSN 0x90e0ac
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 local address: LID 0000 QPN 0x012f PSN 0x153f50
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 local address: LID 0000 QPN 0x0130 PSN 0x5e0128

OpenShift Container Platform 4.19 硬件加速器

54

 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 local address: LID 0000 QPN 0x0131 PSN 0xd89752
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 local address: LID 0000 QPN 0x0132 PSN 0xe5fc16
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 local address: LID 0000 QPN 0x0133 PSN 0x236787
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 local address: LID 0000 QPN 0x0134 PSN 0xd9273e
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 local address: LID 0000 QPN 0x0135 PSN 0x37cfd4
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 local address: LID 0000 QPN 0x0136 PSN 0x3bff8f
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 local address: LID 0000 QPN 0x0137 PSN 0x81f2bd
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 local address: LID 0000 QPN 0x0138 PSN 0x575c43
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 local address: LID 0000 QPN 0x0139 PSN 0x6cf53d
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 local address: LID 0000 QPN 0x013a PSN 0xcaaf6f
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 local address: LID 0000 QPN 0x013b PSN 0x346437
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 local address: LID 0000 QPN 0x013c PSN 0xcc5865
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 remote address: LID 0000 QPN 0x026d PSN 0x359409
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 remote address: LID 0000 QPN 0x026e PSN 0xe387bf
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 remote address: LID 0000 QPN 0x026f PSN 0x5be79d
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 remote address: LID 0000 QPN 0x0270 PSN 0x1b4b28
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 remote address: LID 0000 QPN 0x0271 PSN 0x76a61b
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 remote address: LID 0000 QPN 0x0272 PSN 0x3d50e1
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 remote address: LID 0000 QPN 0x0273 PSN 0x1b572c
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 remote address: LID 0000 QPN 0x0274 PSN 0x4ae1b5
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 remote address: LID 0000 QPN 0x0275 PSN 0x5591b5
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 remote address: LID 0000 QPN 0x0276 PSN 0xfa2593
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 remote address: LID 0000 QPN 0x0277 PSN 0xd9473b
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 remote address: LID 0000 QPN 0x0278 PSN 0x2116b2
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 remote address: LID 0000 QPN 0x0279 PSN 0x9b83b6
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 remote address: LID 0000 QPN 0x027a PSN 0xa0822b
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 remote address: LID 0000 QPN 0x027b PSN 0x6d930d
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 remote address: LID 0000 QPN 0x027c PSN 0xb1a4d

第 5 章 NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

55

一个正的测试会在 Mpps 中看到一个预期的 BW 平均和 MsgRate。

在完成 ib_write_bw 命令后，服务器端输出也会出现在服务器 pod 中。请参见以下示例：

输出示例

 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225

 #bytes #iterations BW peak[Gb/sec] BW average[Gb/sec] MsgRate[Mpps]
 65536 10329004 0.00 180.47 0.344228

deallocating GPU buffer 00007f8738600000
destroying current CUDA Ctx
sh-5.1#

WARNING: BW peak won't be measured in this run.
Perftest doesn't supports CUDA tests with inline messages: inline size set to 0

* Waiting for client to connect... *

Requested mtu is higher than active mtu
Changing to active mtu - 3
initializing CUDA
Listing all CUDA devices in system:
CUDA device 0: PCIe address is 61:00

Picking device No. 0
[pid = 9226, dev = 0] device name = [NVIDIA A40]
creating CUDA Ctx
making it the current CUDA Ctx
CUDA device integrated: 0
using DMA-BUF for GPU buffer address at 0x7f447a600000 aligned at 0x7f447a600000
with aligned size 2097152
allocated GPU buffer of a 2097152 address at 0x2406400 for type CUDA_MEM_DEVICE
Calling ibv_reg_dmabuf_mr(offset=0, size=2097152, addr=0x7f447a600000, fd=40) for
QP #0

 RDMA_Write BW Test
 Dual-port : OFF Device : mlx5_7
 Number of qps : 16 Transport type : IB
 Connection type : RC Using SRQ : OFF
 PCIe relax order: ON Lock-free : OFF
 ibv_wr* API : ON Using DDP : OFF
 CQ Moderation : 1
 CQE Poll Batch : 16
 Mtu : 1024[B]
 Link type : Ethernet
 GID index : 3
 Max inline data : 0[B]
 rdma_cm QPs : ON
 Data ex. method : rdma_cm TOS : 41

 Waiting for client rdma_cm QP to connect
 Please run the same command with the IB/RoCE interface IP

OpenShift Container Platform 4.19 硬件加速器

56

 local address: LID 0000 QPN 0x026d PSN 0x359409
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 local address: LID 0000 QPN 0x026e PSN 0xe387bf
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 local address: LID 0000 QPN 0x026f PSN 0x5be79d
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 local address: LID 0000 QPN 0x0270 PSN 0x1b4b28
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 local address: LID 0000 QPN 0x0271 PSN 0x76a61b
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 local address: LID 0000 QPN 0x0272 PSN 0x3d50e1
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 local address: LID 0000 QPN 0x0273 PSN 0x1b572c
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 local address: LID 0000 QPN 0x0274 PSN 0x4ae1b5
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 local address: LID 0000 QPN 0x0275 PSN 0x5591b5
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 local address: LID 0000 QPN 0x0276 PSN 0xfa2593
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 local address: LID 0000 QPN 0x0277 PSN 0xd9473b
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 local address: LID 0000 QPN 0x0278 PSN 0x2116b2
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 local address: LID 0000 QPN 0x0279 PSN 0x9b83b6
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 local address: LID 0000 QPN 0x027a PSN 0xa0822b
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 local address: LID 0000 QPN 0x027b PSN 0x6d930d
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 local address: LID 0000 QPN 0x027c PSN 0xb1a4d
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:225
 remote address: LID 0000 QPN 0x012d PSN 0x3cb6d7
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 remote address: LID 0000 QPN 0x012e PSN 0x90e0ac
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 remote address: LID 0000 QPN 0x012f PSN 0x153f50
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 remote address: LID 0000 QPN 0x0130 PSN 0x5e0128
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 remote address: LID 0000 QPN 0x0131 PSN 0xd89752
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 remote address: LID 0000 QPN 0x0132 PSN 0xe5fc16
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 remote address: LID 0000 QPN 0x0133 PSN 0x236787
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 remote address: LID 0000 QPN 0x0134 PSN 0xd9273e
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 remote address: LID 0000 QPN 0x0135 PSN 0x37cfd4
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 remote address: LID 0000 QPN 0x0136 PSN 0x3bff8f
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 remote address: LID 0000 QPN 0x0137 PSN 0x81f2bd
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 remote address: LID 0000 QPN 0x0138 PSN 0x575c43
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226

第 5 章 NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)

57

 remote address: LID 0000 QPN 0x0139 PSN 0x6cf53d
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 remote address: LID 0000 QPN 0x013a PSN 0xcaaf6f
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 remote address: LID 0000 QPN 0x013b PSN 0x346437
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226
 remote address: LID 0000 QPN 0x013c PSN 0xcc5865
 GID: 00:00:00:00:00:00:00:00:00:00:255:255:192:168:04:226

 #bytes #iterations BW peak[Gb/sec] BW average[Gb/sec] MsgRate[Mpps]
 65536 10329004 0.00 180.47 0.344228

deallocating GPU buffer 00007f447a600000
destroying current CUDA Ctx

OpenShift Container Platform 4.19 硬件加速器

58

第 6 章 DYNAMIC ACCELERATOR SLICER (DAS) OPERATOR

重要

Dynamic Accelerator Slicer Operator 只是一个技术预览功能。技术预览功能不受红帽产品
服务等级协议（SLA）支持，且功能可能并不完整。红帽不推荐在生产环境中使用它们。
这些技术预览功能可以使用户提早试用新的功能，并有机会在开发阶段提供反馈意见。

有关红帽技术预览功能支持范围的更多信息，请参阅以下链接：

技术预览功能支持范围

Dynamic Accelerator Slicer (DAS) Operator 允许您在 OpenShift Container Platform 中动态分片 GPU
加速器，而不依赖在节点引导时定义的静态分片 GPU。这可让您根据特定工作负载需求动态分片 GPU，
确保有效的资源利用率。

如果您不知道集群中每个节点前需要的所有加速器分区，则动态分片很有用。

DAS Operator 目前包含 NVIDIA Multi-Instance GPU (MIG) 的参考实施，并在以后支持其他供应商（如
NVIDIA MPS 或 GPU）的其它技术。

限制：

使用 Dynamic Accelerator Slicer Operator 时有以下限制：

您需要识别潜在的不兼容性，并确保系统可以与各种 GPU 驱动程序和操作系统无缝配合工作。

Operator 只适用于特定的 MIG 兼容 NVIDIA GPU 和驱动程序，如 H100 和 A100。

Operator 无法只使用节点的 GPU 的子集。

NVIDIA 设备插件无法与 Dynamic Accelerator Slicer Operator 一起使用来管理集群的 GPU 资
源。

注意

DAS Operator 设计为使用启用 MIG 的 GPU。它分配 MIG 片段而不是整个 GPU。安装
DAS Operator 可防止通过 NVIDIA 设备插件（如 nvidia.com/gpu: "1" ）使用标准资源请
求来分配整个 GPU。

6.1. 安装 DYNAMIC ACCELERATOR SLICER OPERATOR

作为集群管理员，您可以使用 OpenShift Container Platform Web 控制台或 OpenShift CLI 安装
Dynamic Accelerator Slicer (DAS) Operator。

6.1.1. 使用 Web 控制台安装 Dynamic Accelerator Slicer Operator

作为集群管理员，您可以使用 OpenShift Container Platform Web 控制台安装 Dynamic Accelerator
Slicer (DAS) Operator。

先决条件

可以使用具有 cluster-admin 权限的账户访问 OpenShift Container Platform 集群。

第 6 章 DYNAMIC ACCELERATOR SLICER (DAS) OPERATOR

59

https://access.redhat.com/support/offerings/techpreview/

已安装所需的先决条件：

cert-manager Operator for Red Hat OpenShift

Node Feature Discovery (NFD) Operator

NVIDIA GPU Operator

NodeFeatureDiscovery CR

流程

1. 为 MIG 支持配置 NVIDIA GPU Operator：

a. 在 OpenShift Container Platform web 控制台中导航至 Operators → Installed Operators。

b. 从安装的 Operator 列表中选择 NVIDIA GPU Operator。

c. 点 ClusterPolicy 选项卡，然后点 Create ClusterPolicy。

d. 在 YAML 编辑器中，将默认内容替换为以下集群策略配置，以禁用默认的 NVIDIA 设备插件
并启用 MIG 支持：

apiVersion: nvidia.com/v1
kind: ClusterPolicy
metadata:
 name: gpu-cluster-policy
spec:
 daemonsets:
 rollingUpdate:
 maxUnavailable: "1"
 updateStrategy: RollingUpdate
 dcgm:
 enabled: true
 dcgmExporter:
 config:
 name: ""
 enabled: true
 serviceMonitor:
 enabled: true
 devicePlugin:
 config:
 default: ""
 name: ""
 enabled: false
 mps:
 root: /run/nvidia/mps
 driver:
 certConfig:
 name: ""
 enabled: true
 kernelModuleConfig:
 name: ""
 licensingConfig:
 configMapName: ""
 nlsEnabled: true
 repoConfig:

OpenShift Container Platform 4.19 硬件加速器

60

 configMapName: ""
 upgradePolicy:
 autoUpgrade: true
 drain:
 deleteEmptyDir: false
 enable: false
 force: false
 timeoutSeconds: 300
 maxParallelUpgrades: 1
 maxUnavailable: 25%
 podDeletion:
 deleteEmptyDir: false
 force: false
 timeoutSeconds: 300
 waitForCompletion:
 timeoutSeconds: 0
 useNvidiaDriverCRD: false
 useOpenKernelModules: false
 virtualTopology:
 config: ""
 gdrcopy:
 enabled: false
 gds:
 enabled: false
 gfd:
 enabled: true
 mig:
 strategy: mixed
 migManager:
 config:
 default: ""
 name: default-mig-parted-config
 enabled: true
 env:
 - name: WITH_REBOOT
 value: 'true'
 - name: MIG_PARTED_MODE_CHANGE_ONLY
 value: 'true'
 nodeStatusExporter:
 enabled: true
 operator:
 defaultRuntime: crio
 initContainer: {}
 runtimeClass: nvidia
 use_ocp_driver_toolkit: true
 sandboxDevicePlugin:
 enabled: true
 sandboxWorkloads:
 defaultWorkload: container
 enabled: false
 toolkit:
 enabled: true
 installDir: /usr/local/nvidia
 validator:
 plugin:
 env:

第 6 章 DYNAMIC ACCELERATOR SLICER (DAS) OPERATOR

61

e. 点 Create 应用集群策略。

f. 进入到 Workloads → Pods，再选择 nvidia-gpu-operator 命名空间来监控集群策略部署。

g. 等待 NVIDIA GPU Operator 集群策略达到 Ready 状态。您可以通过以下方法监控它：

i. 进入到 Operators → Installed Operators → NVIDIA GPU Operator。

ii. 点 ClusterPolicy 选项卡，检查状态是否显示 ready。

h. 选择 nvidia-gpu-operator 命名空间并进入到 Workloads → Pods 来验证 NVIDIA GPU
Operator 命名空间中的所有 pod 是否正在运行。

i. 使用支持 MIG 的 GPU 标签节点以启用 MIG 模式：

i. 进入 Compute → Nodes。

ii. 选择具有 MIG 功能 GPU 的节点。

iii. 点 Actions → Edit Labels。

iv. 添加标签 nvidia.com/mig.config=all-enabled。

v. 点击 Save。

vi. 对具有 MIG 功能 GPU 的每个节点重复此操作。

重要

应用 MIG 标签后，标记的节点将重新引导以启用 MIG 模式。等待节点恢
复在线，然后继续。

j. 通过检查 nvidia.com/mig.config=all-enabled 标签出现在 Labels 部分中，验证 GPU 节点
上的 MIG 模式是否已成功启用。要找到标签，进入到 Compute → Nodes，选择 GPU 节
点，然后点 Details 选项卡。

2. 在 OpenShift Container Platform Web 控制台中，点击 Operators → OperatorHub。

3. 在过滤器框中搜索 Dynamic Accelerator Slicer 或 DAS，以查找 DAS Operator。

4. 选择 Dynamic Accelerator Slicer，再点 Install。

5. 在 Install Operator 页中：

 - name: WITH_WORKLOAD
 value: "false"
 cuda:
 env:
 - name: WITH_WORKLOAD
 value: "false"
 vfioManager:
 enabled: true
 vgpuDeviceManager:
 enabled: true
 vgpuManager:
 enabled: false

OpenShift Container Platform 4.19 硬件加速器

62

1

a. 为安装模式选择 All namespaces on the cluster (default)。

b. 选择 Installed Namespace → Operator recommended Namespace: Project das-
operator。

c. 如果创建新命名空间，请输入 das-operator 作为命名空间名称。

d. 选择一个更新频道。

e. 为批准策略选择 Automatic 或 Manual。

6. 点 Install。

7. 在 OpenShift Container Platform web 控制台中，点击 Operators → Installed Operators。

8. 从列表中选择 DAS Operator。

9. 在 Provided APIs 表列中，点 DASOperator。这会进入 Operator 详情页的 DAS Operator 选
项卡。

10. 点 Create DASOperator。这会进入 Create DASOperator YAML 视图。

11. 在 YAML 编辑器中，粘贴以下示例：

DASOperator CR 示例

DASOperator CR 的名称必须是 cluster。

12. 点 Create。

验证

验证 DAS Operator 是否已成功安装：

1. 导航到 Operators → Installed Operators 页面。

2. 确保 das-operator 命名空间中列出了 Dynamic Accelerator Slicer，Status 为 Succeeded。

验证 DASOperator CR 是否已成功安装：

创建 DASOperator CR 后，Web 控制台会进入 DASOperator 列表视图。当所有组件都运行
时，CR 的 Status 字段将变为 Available。

可选。您可以通过在 OpenShift CLI 中运行以下命令来验证 DASOperator CR 是否已成功安装：

apiVersion: inference.redhat.com/v1alpha1
kind: DASOperator
metadata:
 name: cluster 1
 namespace: das-operator
spec:
 logLevel: Normal
 operatorLogLevel: Normal
 managementState: Managed

第 6 章 DYNAMIC ACCELERATOR SLICER (DAS) OPERATOR

63

输出示例

注意

在安装过程中，Operator 可能会显示 Failed 状态。如果安装后安装成功并显示
Succeeded 信息，您可以忽略 Failed 信息。

您还可以通过检查 pod 来验证安装：

1. 进入到 Workloads → Pods 页，再选择 das-operator 命名空间。

2. 验证所有 DAS Operator 组件 pod 是否正在运行：

DAS-operator pod （主 operator 控制器）

dAS-operator-webhook pod (webhook 服务器)

dAS-scheduler pod (scheduler 插件)

DAS-daemonset pod （仅在具有 MIG 兼容 GPU 的节点上）

注意

das-daemonset pod 只会出现在具有 MIG 兼容的 GPU 硬件的节点上。如果没有看到任何
daemonset pod，请验证集群是否有带有支持的 GPU 硬件的节点，并且 NVIDIA GPU
Operator 是否已正确配置。

故障排除

如果没有安装 Operator，请使用以下步骤：

1. 导航到 Operators → Installed Operators 页面，检查 Operator Subscriptions 和 Install Plans
选项卡中的 Status 项中是否有任何错误。

2. 进入到 Workloads → Pods 页，在 das-operator 命名空间中检查 pod 的日志。

其他资源

cert-manager Operator for Red Hat OpenShift

Node Feature Discovery (NFD) Operator

NVIDIA GPU Operator

NodeFeatureDiscovery CR

6.1.2. 使用 CLI 安装动态加速器 Slicer Operator

$ oc get dasoperator -n das-operator

NAME STATUS AGE
cluster Available 3m

OpenShift Container Platform 4.19 硬件加速器

64

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/security_and_compliance/#cert-manager-operator-install
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/specialized_hardware_and_driver_enablement/#psap-node-feature-discovery-operator
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/index.html
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html/specialized_hardware_and_driver_enablement/psap-node-feature-discovery-operator#creating-nfd-cr-web-console_psap-node-feature-discovery-operator

作为集群管理员，您可以使用 OpenShift CLI 安装 Dynamic Accelerator Slicer (DAS) Operator。

先决条件

可以使用具有 cluster-admin 权限的账户访问 OpenShift Container Platform 集群。

已安装 OpenShift CLI(oc)。

已安装所需的先决条件：

cert-manager Operator for Red Hat OpenShift

Node Feature Discovery (NFD) Operator

NVIDIA GPU Operator

NodeFeatureDiscovery CR

流程

1. 为 MIG 支持配置 NVIDIA GPU Operator：

a. 应用以下集群策略来禁用默认的 NVIDIA 设备插件并启用 MIG 支持。使用以下内容创建名为
gpu-cluster-policy.yaml 的文件：

apiVersion: nvidia.com/v1
kind: ClusterPolicy
metadata:
 name: gpu-cluster-policy
spec:
 daemonsets:
 rollingUpdate:
 maxUnavailable: "1"
 updateStrategy: RollingUpdate
 dcgm:
 enabled: true
 dcgmExporter:
 config:
 name: ""
 enabled: true
 serviceMonitor:
 enabled: true
 devicePlugin:
 config:
 default: ""
 name: ""
 enabled: false
 mps:
 root: /run/nvidia/mps
 driver:
 certConfig:
 name: ""
 enabled: true
 kernelModuleConfig:
 name: ""
 licensingConfig:

第 6 章 DYNAMIC ACCELERATOR SLICER (DAS) OPERATOR

65

 configMapName: ""
 nlsEnabled: true
 repoConfig:
 configMapName: ""
 upgradePolicy:
 autoUpgrade: true
 drain:
 deleteEmptyDir: false
 enable: false
 force: false
 timeoutSeconds: 300
 maxParallelUpgrades: 1
 maxUnavailable: 25%
 podDeletion:
 deleteEmptyDir: false
 force: false
 timeoutSeconds: 300
 waitForCompletion:
 timeoutSeconds: 0
 useNvidiaDriverCRD: false
 useOpenKernelModules: false
 virtualTopology:
 config: ""
 gdrcopy:
 enabled: false
 gds:
 enabled: false
 gfd:
 enabled: true
 mig:
 strategy: mixed
 migManager:
 config:
 default: ""
 name: default-mig-parted-config
 enabled: true
 env:
 - name: WITH_REBOOT
 value: 'true'
 - name: MIG_PARTED_MODE_CHANGE_ONLY
 value: 'true'
 nodeStatusExporter:
 enabled: true
 operator:
 defaultRuntime: crio
 initContainer: {}
 runtimeClass: nvidia
 use_ocp_driver_toolkit: true
 sandboxDevicePlugin:
 enabled: true
 sandboxWorkloads:
 defaultWorkload: container
 enabled: false
 toolkit:
 enabled: true
 installDir: /usr/local/nvidia

OpenShift Container Platform 4.19 硬件加速器

66

b. 运行以下命令来应用集群策略：

c. 运行以下命令，验证 NVIDIA GPU Operator 集群策略是否达到 Ready 状态：

等待 STATUS 列显示 ready。

输出示例

d. 运行以下命令，验证 NVIDIA GPU Operator 命名空间中的所有 pod 是否正在运行：

所有 pod 都应该会显示 Running 或 Completed 状态。

e. 运行以下命令，使用 MIG 功能 GPU 标记节点以启用 MIG 模式：

将 $NODE_NAME 替换为具有 MIG 功能 GPU 的每个节点的名称。

重要

应用 MIG 标签后，标记的节点重新引导以启用 MIG 模式。等待节点恢复在
线，然后继续。

f. 运行以下命令验证节点是否已成功启用 MIG 模式：

2. 为 DAS Operator 创建命名空间：

 validator:
 plugin:
 env:
 - name: WITH_WORKLOAD
 value: "false"
 cuda:
 env:
 - name: WITH_WORKLOAD
 value: "false"
 vfioManager:
 enabled: true
 vgpuDeviceManager:
 enabled: true
 vgpuManager:
 enabled: false

$ oc apply -f gpu-cluster-policy.yaml

$ oc get clusterpolicies.nvidia.com gpu-cluster-policy -w

NAME STATUS AGE
gpu-cluster-policy ready 2025-08-14T08:56:45Z

$ oc get pods -n nvidia-gpu-operator

$ oc label node $NODE_NAME nvidia.com/mig.config=all-enabled --overwrite

$ oc get nodes -l nvidia.com/mig.config=all-enabled

第 6 章 DYNAMIC ACCELERATOR SLICER (DAS) OPERATOR

67

a. 创建定义 das-operator 命名空间的以下 Namespace 自定义资源(CR)，并将 YAML 保存到
das-namespace.yaml 文件中：

b. 运行以下命令创建命名空间：

3. 通过创建以下对象，在您上一步中创建的命名空间中安装 DAS Operator：

a. 创建以下 OperatorGroup CR，并在 das-operatorgroup.yaml 文件中保存 YAML：

b. 运行以下命令来创建 OperatorGroup CR:

c. 创建以下 Subscription CR，并将 YAML 保存到 das-sub.yaml 文件中：

订阅示例

d. 运行以下命令来创建订阅对象：

e. 进入 das-operator 项目：

apiVersion: v1
kind: Namespace
metadata:
 name: das-operator
 labels:
 name: das-operator
 openshift.io/cluster-monitoring: "true"

$ oc create -f das-namespace.yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 generateName: das-operator-
 name: das-operator
 namespace: das-operator

$ oc create -f das-operatorgroup.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: das-operator
 namespace: das-operator
spec:
 channel: "stable"
 installPlanApproval: Automatic
 name: das-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace

$ oc create -f das-sub.yaml

$ oc project das-operator

OpenShift Container Platform 4.19 硬件加速器

68

1

f. 创建以下 DASOperator CR，并在 das-dasoperator.yaml 文件中保存 YAML：

DASOperator CR 示例

DASOperator CR 的名称必须是 cluster。

g. 运行以下命令来创建 dasoperator CR：

验证

运行以下命令验证 Operator 部署是否成功：

输出示例

成功部署会显示状态为 Running 的所有 Pod。部署包括：

das-operator

主 Operator 控制器 pod

das-operator-webhook

用于变异 pod 请求的 Webhook 服务器 pod

das-scheduler

用于 MIG 分片分配的调度程序插件 pod

das-daemonset

仅在具有 MIG 兼容 GPU 的节点上运行的 DaemonSet pod

注意

apiVersion: inference.redhat.com/v1alpha1
kind: DASOperator
metadata:
 name: cluster 1
 namespace: das-operator
spec:
 managementState: Managed
 logLevel: Normal
 operatorLogLevel: Normal

oc create -f das-dasoperator.yaml

$ oc get pods

NAME READY STATUS RESTARTS AGE
das-daemonset-6rsfd 1/1 Running 0 5m16s
das-daemonset-8qzgf 1/1 Running 0 5m16s
das-operator-5946478b47-cjfcp 1/1 Running 0 5m18s
das-operator-5946478b47-npwmn 1/1 Running 0 5m18s
das-operator-webhook-59949d4f85-5n9qt 1/1 Running 0 68s
das-operator-webhook-59949d4f85-nbtdl 1/1 Running 0 68s
das-scheduler-6cc59dbf96-4r85f 1/1 Running 0 68s
das-scheduler-6cc59dbf96-bf6ml 1/1 Running 0 68s

第 6 章 DYNAMIC ACCELERATOR SLICER (DAS) OPERATOR

69

注意

das-daemonset pod 只会出现在具有 MIG 兼容的 GPU 硬件的节点上。如果
没有看到任何 daemonset pod，请验证集群是否有带有支持的 GPU 硬件的节
点，并且 NVIDIA GPU Operator 是否已正确配置。

其他资源

cert-manager Operator for Red Hat OpenShift

Node Feature Discovery (NFD) Operator

NVIDIA GPU Operator

NodeFeatureDiscovery CR

6.2. 卸载动态加速器 SLICER OPERATOR

根据 Operator 的安装方式，使用以下流程之一卸载 Dynamic Accelerator Slicer (DAS) Operator。

6.2.1. 使用 Web 控制台卸载 Dynamic Accelerator Slicer Operator

您可以使用 OpenShift Container Platform Web 控制台卸载 Dynamic Accelerator Slicer (DAS)
Operator。

先决条件

可以使用具有 cluster-admin 权限的账户访问 OpenShift Container Platform 集群。

DAS Operator 已安装在集群中。

流程

1. 在 OpenShift Container Platform web 控制台中导航至 Operators → Installed Operators。

2. 在安装的 Operator 列表中找到 Dynamic Accelerator Slicer。

3. 点 DAS Operator 的 Options 菜单 并选择 Uninstall Operator。

4. 在确认对话框中，点 Uninstall 确认删除。

5. 浏览至 Home → Project。

6. 在搜索框中搜索 das-operator 以查找 DAS Operator 项目。

7. 点 das-operator 项目 旁边的 Options 菜单 ，然后选择 Delete Project。

8. 在确认对话框中，在对话框中键入 das-operator，然后点 Delete 确认删除。

验证

OpenShift Container Platform 4.19 硬件加速器

70

https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/security_and_compliance/#cert-manager-operator-install
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/specialized_hardware_and_driver_enablement/#psap-node-feature-discovery-operator
https://docs.nvidia.com/datacenter/cloud-native/openshift/latest/index.html
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html/specialized_hardware_and_driver_enablement/psap-node-feature-discovery-operator#creating-nfd-cr-cli_psap-node-feature-discovery-operator

1. 导航到 Operators → Installed Operators 页面。

2. 验证 Dynamic Accelerator Slicer (DAS) Operator 是否不再被列出。

3. 可选。运行以下命令，验证 das-operator 命名空间及其资源是否已移除：

该命令应该会返回指示未找到命名空间的错误。

警告

卸载 DAS Operator 会删除所有 GPU 分片分配，并可能导致运行依赖于 GPU 分片的
工作负载失败。在继续卸载前，请确保没有关键工作负载使用 GPU 片段。

6.2.2. 使用 CLI 卸载动态加速器 Slicer Operator

您可以使用 OpenShift CLI 卸载 Dynamic Accelerator Slicer (DAS) Operator。

先决条件

可以使用具有 cluster-admin 权限的账户访问 OpenShift Container Platform 集群。

已安装 OpenShift CLI(oc)。

DAS Operator 已安装在集群中。

流程

1. 运行以下命令，列出已安装的 Operator 以查找 DAS Operator 订阅：

输出示例

2. 运行以下命令来删除订阅：

3. 运行以下命令，列出并删除集群服务版本 (CSV)：

$ oc get namespace das-operator



$ oc get subscriptions -n das-operator

NAME PACKAGE SOURCE CHANNEL
das-operator das-operator redhat-operators stable

$ oc delete subscription das-operator -n das-operator

$ oc get csv -n das-operator

$ oc delete csv <csv-name> -n das-operator

第 6 章 DYNAMIC ACCELERATOR SLICER (DAS) OPERATOR

71

4. 运行以下命令来删除 operator 组：

5. 运行以下命令来删除任何剩余的 AllocationClaim 资源：

6. 运行以下命令来删除 DAS Operator 命名空间：

验证

1. 运行以下命令验证 DAS Operator 资源是否已移除：

该命令应该会返回指示未找到命名空间的错误。

2. 运行以下命令验证没有剩余的 AllocationClaim 自定义资源定义：

该命令应该会返回指示没有找到自定义资源定义的错误。

警告

卸载 DAS Operator 会删除所有 GPU 分片分配，并可能导致运行依赖于 GPU 分片的
工作负载失败。在继续卸载前，请确保没有关键工作负载使用 GPU 片段。

6.3. 使用 DYNAMIC ACCELERATOR SLICER OPERATOR 部署 GPU 工作
负载

您可以部署请求 GPU 片段由 Dynamic Accelerator Slicer (DAS) Operator 管理的工作负载。Operator 动
态分区 GPU 加速器，并将工作负载调度到可用的 GPU 分片。

先决条件

在集群中有 MIG 支持的 GPU 硬件。

安装 NVIDIA GPU Operator，ClusterPolicy 会显示 Ready 状态。

已安装 DAS Operator。

流程

1. 运行以下命令来创建命名空间：

$ oc delete operatorgroup das-operator -n das-operator

$ oc delete allocationclaims --all -n das-operator

$ oc delete namespace das-operator

$ oc get namespace das-operator

$ oc get crd | grep allocationclaim



OpenShift Container Platform 4.19 硬件加速器

72

2. 创建使用 NVIDIA MIG 资源请求 GPU 资源的部署：

3. 运行以下命令来应用部署配置：

4. 运行以下命令验证部署是否已创建并调度 pod：

输出示例

5. 运行以下命令，检查 pod 的状态：

输出示例

oc new-project cuda-workloads

apiVersion: apps/v1
kind: Deployment
metadata:
 name: cuda-vectoradd
spec:
 replicas: 2
 selector:
 matchLabels:
 app: cuda-vectoradd
 template:
 metadata:
 labels:
 app: cuda-vectoradd
 spec:
 restartPolicy: Always
 containers:
 - name: cuda-vectoradd
 image: nvcr.io/nvidia/k8s/cuda-sample:vectoradd-cuda12.5.0-ubi8
 resources:
 limits:
 nvidia.com/mig-1g.5gb: "1"
 command:
 - sh
 - -c
 - |
 env && /cuda-samples/vectorAdd && sleep 3600

$ oc apply -f cuda-vectoradd-deployment.yaml

$ oc get deployment cuda-vectoradd

NAME READY UP-TO-DATE AVAILABLE AGE
cuda-vectoradd 2/2 2 2 2m

$ oc get pods -l app=cuda-vectoradd

NAME READY STATUS RESTARTS AGE
cuda-vectoradd-6b8c7d4f9b-abc12 1/1 Running 0 2m
cuda-vectoradd-6b8c7d4f9b-def34 1/1 Running 0 2m

第 6 章 DYNAMIC ACCELERATOR SLICER (DAS) OPERATOR

73

验证

1. 运行以下命令，检查是否为部署 pod 创建 AllocationClaim 资源：

输出示例

2. 运行以下命令，验证 GPU 片段是否已正确分配 pod 的资源分配：

3. 运行以下命令，检查日志以验证 CUDA 示例应用程序是否已成功运行：

输出示例

4. 运行以下命令，检查环境变量以验证 GPU 设备是否已正确公开给容器：

输出示例

这些环境变量表示 GPU MIG 片段已被正确分配，并出现在容器内的 CUDA 运行时。

6.4. 对动态加速器 SLICER OPERATOR 进行故障排除

如果您在 Dynamic Accelerator Slicer (DAS) Operator 时遇到问题，请使用以下故障排除步骤诊断和解决
问题。

先决条件

已安装 DAS Operator。

您可以使用具有 cluster-admin 角色的用户访问 OpenShift Container Platform 集群。

$ oc get allocationclaims -n das-operator

NAME AGE
13950288-57df-4ab5-82bc-6138f646633e-harpatil000034jma-qh5fm-worker-f-57md9-cuda-
vectoradd-0 2m
ce997b60-a0b8-4ea4-9107-cf59b425d049-harpatil000034jma-qh5fm-worker-f-fl4wg-cuda-
vectoradd-0 2m

$ oc describe pod -l app=cuda-vectoradd

$ oc logs -l app=cuda-vectoradd

[Vector addition of 50000 elements]
Copy input data from the host memory to the CUDA device
CUDA kernel launch with 196 blocks of 256 threads
Copy output data from the CUDA device to the host memory
Test PASSED

$ oc exec deployment/cuda-vectoradd -- env | grep -E "
(NVIDIA_VISIBLE_DEVICES|CUDA_VISIBLE_DEVICES)"

NVIDIA_VISIBLE_DEVICES=MIG-d8ac9850-d92d-5474-b238-0afeabac1652
CUDA_VISIBLE_DEVICES=MIG-d8ac9850-d92d-5474-b238-0afeabac1652

OpenShift Container Platform 4.19 硬件加速器

74

6.4.1. 调试 DAS Operator 组件

流程

1. 运行以下命令，检查所有 DAS Operator 组件的状态：

输出示例

2. 运行以下命令，检查 DAS Operator 控制器的日志：

3. 运行以下命令，检查 webhook 服务器的日志：

4. 运行以下命令，检查调度程序插件的日志：

5. 运行以下命令，检查设备插件 daemonset 的日志：

6.4.2. Monitoring AllocationClaims

流程

1. 运行以下命令检查活跃的 AllocationClaim 资源：

输出示例

$ oc get pods -n das-operator

NAME READY STATUS RESTARTS AGE
das-daemonset-6rsfd 1/1 Running 0 5m16s
das-daemonset-8qzgf 1/1 Running 0 5m16s
das-operator-5946478b47-cjfcp 1/1 Running 0 5m18s
das-operator-5946478b47-npwmn 1/1 Running 0 5m18s
das-operator-webhook-59949d4f85-5n9qt 1/1 Running 0 68s
das-operator-webhook-59949d4f85-nbtdl 1/1 Running 0 68s
das-scheduler-6cc59dbf96-4r85f 1/1 Running 0 68s
das-scheduler-6cc59dbf96-bf6ml 1/1 Running 0 68s

$ oc logs -n das-operator deployment/das-operator

$ oc logs -n das-operator deployment/das-operator-webhook

$ oc logs -n das-operator deployment/das-scheduler

$ oc logs -n das-operator daemonset/das-daemonset

$ oc get allocationclaims -n das-operator

NAME AGE
13950288-57df-4ab5-82bc-6138f646633e-harpatil000034jma-qh5fm-worker-f-57md9-cuda-
vectoradd-0 5m
ce997b60-a0b8-4ea4-9107-cf59b425d049-harpatil000034jma-qh5fm-worker-f-fl4wg-cuda-
vectoradd-0 5m

第 6 章 DYNAMIC ACCELERATOR SLICER (DAS) OPERATOR

75

2. 运行以下命令，查看有关特定 AllocationClaim 的详细信息：

输出示例（截断）

3. 运行以下命令，检查不同状态中的声明：

输出示例

4. 运行以下命令，查看与 AllocationClaim 资源相关的事件：

5. 运行以下命令，检查 NodeAccelerator 资源以验证 GPU 硬件检测：

$ oc get allocationclaims -n das-operator -o yaml

apiVersion: inference.redhat.com/v1alpha1
kind: AllocationClaim
metadata:
 name: 13950288-57df-4ab5-82bc-6138f646633e-harpatil000034jma-qh5fm-worker-f-
57md9-cuda-vectoradd-0
 namespace: das-operator
spec:
 gpuUUID: GPU-9003fd9c-1ad1-c935-d8cd-d1ae69ef17c0
 migPlacement:
 size: 1
 start: 0
 nodename: harpatil000034jma-qh5fm-worker-f-57md9
 podRef:
 kind: Pod
 name: cuda-vectoradd-f4b84b678-l2m69
 namespace: default
 uid: 13950288-57df-4ab5-82bc-6138f646633e
 profile: 1g.5gb
status:
 conditions:
 - lastTransitionTime: "2025-08-06T19:28:48Z"
 message: Allocation is inUse
 reason: inUse
 status: "True"
 type: State
 state: inUse

$ oc get allocationclaims -n das-operator -o jsonpath='{range .items[*]}{.metadata.name}{"\t"}
{.status.state}{"\n"}{end}'

13950288-57df-4ab5-82bc-6138f646633e-harpatil000034jma-qh5fm-worker-f-57md9-cuda-
vectoradd-0 inUse
ce997b60-a0b8-4ea4-9107-cf59b425d049-harpatil000034jma-qh5fm-worker-f-fl4wg-cuda-
vectoradd-0 inUse

$ oc get events -n das-operator --field-selector involvedObject.kind=AllocationClaim

$ oc get nodeaccelerator -n das-operator

OpenShift Container Platform 4.19 硬件加速器

76

输出示例

NodeAccelerator 资源代表 DAS Operator 检测到的 GPU 功能的节点。

其他信息

AllocationClaim 自定义资源跟踪以下信息：

GPU UUID

GPU 设备的唯一标识符。

分片位置

GPU 上的 MIG 片段的位置。

Pod 参考

请求 GPU 片段的 pod。

状态

当前的声明状态 (staged, created, 或 released)。

声明以 staged 状态开始，然后当所有请求都满足后会转变为 created。删除 pod 时，会自动清理关联的
声明。

6.4.3. 验证 GPU 设备可用性

流程

1. 在使用 GPU 硬件的节点上，运行以下命令来验证 CDI 设备是否已创建：

2. 运行以下命令检查 NVIDIA GPU Operator 状态：

输出应显示 ready。

6.4.4. 增加日志详细程度

流程

获取更详细的调试信息：

1. 运行以下命令来编辑 DASOperator 资源来提高日志详细程度：

NAME AGE
harpatil000034jma-qh5fm-worker-f-57md9 96m
harpatil000034jma-qh5fm-worker-f-fl4wg 96m

$ oc debug node/<node-name>

sh-4.4# chroot /host
sh-4.4# ls -l /var/run/cdi/

$ oc get clusterpolicies.nvidia.com -o jsonpath='{.items[0].status.state}'

$ oc edit dasoperator -n das-operator

第 6 章 DYNAMIC ACCELERATOR SLICER (DAS) OPERATOR

77

2. 将 operatorLogLevel 字段设置为 Debug 或 Trace ：

3. 保存更改，并验证 Operator pod 重启并增加详细程度。

6.4.5. 常见问题和解决方案

POD 处于 UNEXPECTEDADMISSIONERROR 状态

由于 kubernetes/kubernetes vmcore8043，如果准入失败，pod 可能会进入
UnexpectedAdmissionError 状态。由更高级别的控制器管理的 Pod 会自动重新创建。
但是，naked pod 必须使用 oc delete pod 手动清理。建议使用控制器，直到上游问题解
决为止。

未满足先决条件

如果 DAS Operator 无法启动或正常工作，请验证是否已安装所有先决条件：

cert-manager

Node Feature Discovery (NFD) Operator

NVIDIA GPU Operator

其他资源

Kubernetes issue #128043

Node Feature Discovery Operator

NVIDIA GPU Operator 故障排除

spec:
 operatorLogLevel: Debug

OpenShift Container Platform 4.19 硬件加速器

78

https://github.com/kubernetes/kubernetes/issues/128043
https://github.com/kubernetes/kubernetes/issues/128043
https://docs.redhat.com/en/documentation/openshift_container_platform/4.19/html-single/specialized_hardware_and_driver_enablement/#psap-node-feature-discovery-operator
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/troubleshooting.html

	Table of Contents
	第 1 章 关于硬件加速器
	1.1. 硬件加速器

	第 2 章 NVIDIA GPU 架构
	2.1. NVIDIA GPU 先决条件
	2.2. NVIDIA GPU 启用
	2.2.1. GPU 和裸机
	2.2.2. GPU 和虚拟化
	2.2.3. GPU 和 vSphere
	2.2.4. GPU 和 Red Hat KVM
	2.2.5. GPU 和 CSP
	2.2.6. GPU 和 Red Hat Device Edge

	2.3. GPU 共享方法
	2.3.1. CUDA 流
	2.3.2. Time-slicing（时间分片）
	2.3.3. CUDA 多进程服务
	2.3.4. 多实例 GPU
	2.3.5. 使用 vGPU 的虚拟化

	2.4. OPENSHIFT CONTAINER PLATFORM 的 NVIDIA GPU 功能

	第 3 章 AMD GPU OPERATOR
	3.1. 关于 AMD GPU OPERATOR
	3.2. 安装 AMD GPU OPERATOR
	3.3. 测试 AMD GPU OPERATOR

	第 4 章 INTEL GAUDI AI ACCELERATORS
	4.1. INTEL GAUDI AI ACCELERATORS 先决条件

	第 5 章 NVIDIA GPUDIRECT REMOTE DIRECT MEMORY ACCESS (RDMA)
	5.1. NVIDIA GPUDIRECT RDMA 的先决条件
	5.2. 禁用 IRDMA 内核模块
	5.3. 创建持久性命名规则
	5.4. 配置 NFD OPERATOR
	5.5. 配置 SR-IOV OPERATOR
	5.6. 配置 NVIDIA NETWORK OPERATOR
	5.7. 配置 GPU OPERATOR
	5.8. 创建机器配置
	5.9. 创建工作负载 POD
	5.9.1. 在 RoCE 上创建共享设备 RDMA
	5.9.2. 在 RoCE 上创建主机设备 RDMA
	5.9.3. 在 RoCE 上创建 SR-IOV 旧模式 RDMA
	5.9.4. 在 Infiniband 上创建共享设备 RDMA

	5.10. 验证 RDMA 连接

	第 6 章 DYNAMIC ACCELERATOR SLICER (DAS) OPERATOR
	6.1. 安装 DYNAMIC ACCELERATOR SLICER OPERATOR
	6.1.1. 使用 Web 控制台安装 Dynamic Accelerator Slicer Operator
	6.1.2. 使用 CLI 安装动态加速器 Slicer Operator

	6.2. 卸载动态加速器 SLICER OPERATOR
	6.2.1. 使用 Web 控制台卸载 Dynamic Accelerator Slicer Operator
	6.2.2. 使用 CLI 卸载动态加速器 Slicer Operator

	6.3. 使用 DYNAMIC ACCELERATOR SLICER OPERATOR 部署 GPU 工作负载
	6.4. 对动态加速器 SLICER OPERATOR 进行故障排除
	6.4.1. 调试 DAS Operator 组件
	6.4.2. Monitoring AllocationClaims
	6.4.3. 验证 GPU 设备可用性
	6.4.4. 增加日志详细程度
	6.4.5. 常见问题和解决方案

