
OpenShift Container Platform 4.5

Serverless

OpenShift Serverless installation, usage, and release notes

Last Updated: 2021-06-29

OpenShift Container Platform 4.5 Serverless

OpenShift Serverless installation, usage, and release notes

法律通告

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

摘要

This document provides information on how to use OpenShift Serverless in OpenShift Container
Platform.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

目录

第 1 章 OPENSHIFT SERVERLESS RELEASE NOTES
1.1. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.10.1
1.2. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.10.0
1.3. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.9.0
1.4. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.8.0
1.5. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.7.2
1.6. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.7.1
1.7. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.7.0
1.8. ADDITIONAL RESOURCES

第 2 章 OPENSHIFT SERVERLESS SUPPORT
2.1. GETTING SUPPORT
2.2. GATHERING DIAGNOSTIC INFORMATION FOR SUPPORT

第 3 章 GETTING STARTED WITH OPENSHIFT SERVERLESS
3.1. HOW OPENSHIFT SERVERLESS WORKS
3.2. SUPPORTED CONFIGURATIONS
3.3. NEXT STEPS

第 4 章 INSTALLING OPENSHIFT SERVERLESS
4.1. INSTALLING OPENSHIFT SERVERLESS
4.2. INSTALLING KNATIVE SERVING
4.3. INSTALLING KNATIVE EVENTING
4.4. ADVANCED INSTALLATION CONFIGURATION OPTIONS
4.5. UPGRADING OPENSHIFT SERVERLESS
4.6. REMOVING OPENSHIFT SERVERLESS
4.7. INSTALLING THE KNATIVE CLI (KN)

第 5 章 ARCHITECTURE
5.1. KNATIVE SERVING ARCHITECTURE
5.2. KNATIVE EVENTING ARCHITECTURE

第 6 章 CREATING AND MANAGING SERVERLESS APPLICATIONS
6.1. SERVERLESS APPLICATIONS USING KNATIVE SERVICES
6.2. CREATING SERVERLESS APPLICATIONS USING THE OPENSHIFT CONTAINER PLATFORM WEB
CONSOLE
6.3. CREATING SERVERLESS APPLICATIONS USING THE KN CLI
6.4. CREATING SERVERLESS APPLICATIONS USING YAML
6.5. VERIFYING YOUR SERVERLESS APPLICATION DEPLOYMENT
6.6. INTERACTING WITH A SERVERLESS APPLICATION USING HTTP2 AND GRPC

第 7 章 HIGH AVAILABILITY ON OPENSHIFT SERVERLESS
7.1. CONFIGURING HIGH AVAILABILITY REPLICAS ON OPENSHIFT SERVERLESS

第 8 章 TRACING REQUESTS USING JAEGER
8.1. CONFIGURING JAEGER FOR USE WITH OPENSHIFT SERVERLESS

第 9 章 KNATIVE SERVING
9.1. USING KN TO COMPLETE SERVING TASKS
9.2. CONFIGURING KNATIVE SERVING AUTOSCALING
9.3. CLUSTER LOGGING WITH OPENSHIFT SERVERLESS
9.4. SPLITTING TRAFFIC BETWEEN REVISIONS

第 10 章 EVENT WORKFLOWS

4
4
4
5
5
6
7
7
9

10
10
10

12
12
12
12

13
13
16
23
29
31
32
33

36
36
36

38
38

38
39
40
41

42

44
44

47
47

49
49
54
56
61

63

目录

1

. .

. .

. .

. .

10.1. EVENT DELIVERY WORKFLOWS USING BROKERS AND TRIGGERS
10.2. EVENT DELIVERY WORKFLOWS USING CHANNELS

第 11 章 EVENT SOURCES
11.1. GETTING STARTED WITH EVENT SOURCES
11.2. USING THE KNATIVE CLI TO LIST EVENT SOURCES AND EVENT SOURCE TYPES
11.3. USING THE API SERVER SOURCE
11.4. USING A PING SOURCE
11.5. USING SINK BINDING

第 12 章 NETWORKING
12.1. USING SERVICE MESH WITH OPENSHIFT SERVERLESS
12.2. USING JSON WEB TOKEN AUTHENTICATION WITH SERVICE MESH AND OPENSHIFT SERVERLESS

12.3. USING CUSTOM DOMAINS FOR KNATIVE SERVICES WITH SERVICE MESH

第 13 章 USING METERING WITH OPENSHIFT SERVERLESS
13.1. INSTALLING METERING
13.2. DATASOURCES FOR KNATIVE SERVING METERING
13.3. QUERIES FOR KNATIVE SERVING METERING
13.4. METERING REPORTS FOR KNATIVE SERVING

第 14 章 INTEGRATIONS
14.1. USING NVIDIA GPU RESOURCES WITH SERVERLESS APPLICATIONS

63
74

78
78
78
79
91

96

103
103

104
106

110
110
110
111

113

115
115

OpenShift Container Platform 4.5 Serverless

2

目录

3

第 1 章 OPENSHIFT SERVERLESS RELEASE NOTES
For an overview of OpenShift Serverless functionality, see Getting started with OpenShift Serverless.

重要

Knative Eventing is a Technology Preview feature only. Technology Preview features are
not supported with Red Hat production service level agreements (SLAs) and might not
be functionally complete. Red Hat does not recommend using them in production. These
features provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

1.1. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.10.1

This release of OpenShift Serverless addresses Common Vulnerabilities and Exposures (CVEs) and bug
fixes.

1.1.1. Fixed issues

A universal base image (UBI) has been upgraded from ubi8-minimal-container-8.2-349 in 1.10.0
to ubi8-minimal-container-8.3-230 in this release.

1.2. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.10.0

1.2.1. New features

OpenShift Serverless now uses Knative Operator 0.16.0.

OpenShift Serverless now uses Knative Serving 0.16.0.

OpenShift Serverless uses Knative Eventing 0.16.0.

OpenShift Serverless now uses Kourier 0.16.0.

OpenShift Serverless now uses Knative kn CLI 0.16.1.

The annotation knative-eventing-injection=enabled that was previously used to label
namespaces for broker creation is now deprecated. The new annotation is
eventing.knative.dev/injection=enabled. For more information, see the documentation on
Event delivery workflows using brokers and triggers .

Multi-container support is now available on Knative as a Technology Preview feature. You can
enable multi-container support in the config-features config map. For more information, see
the Knative documentation.

1.2.2. Fixed issues

In previous releases, Knative Serving had a fixed, minimum CPU request of 25m for queue-
proxy. If your cluster had any value set that conflicted with this, for example, if you had set a
minimum CPU request for defaultRequest of more than 25m, the Knative service failed to

OpenShift Container Platform 4.5 Serverless

4

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/serverless/#serverless-getting-started
https://access.redhat.com/support/offerings/techpreview/
https://knative.dev/docs/serving/feature-flags/#multi-containers

deploy. This issue is fixed in 1.10.0.

1.3. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.9.0

1.3.1. New features

OpenShift Serverless now uses Knative Operator 0.15.2. The Knative Serving and Knative
Eventing Operators are now merged into a common Operator.

OpenShift Serverless now uses Knative Serving 0.15.2.

OpenShift Serverless now uses Knative kn CLI 0.15.2.

OpenShift Serverless uses Knative Eventing 0.15.2.

OpenShift Serverless now uses Kourier 0.15.0.

OpenShift Serverless now supports some integrated Red Hat OpenShift Service Mesh features,
including enabling sidecars, and JSON Web Token (JWT) authentication. Supported features
are documented in the Networking guide.

1.3.2. Known issues

After deleting the KnativeEventing custom resource (CR), the v0.15.0-upgrade-xr55x and
storage-version-migration-eventing-99c7q pods remain on the cluster and show a
Completed status. You can delete the namespace where the KnativeEventing CR was installed
to completely remove these pods.

1.4. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.8.0

1.4.1. New features

OpenShift Serverless now uses Knative Serving 0.14.1.

OpenShift Serverless now uses Knative Serving Operator 0.14.0.

OpenShift Serverless now uses Knative kn CLI 0.14.0.

OpenShift Serverless uses Knative Eventing 0.14.2.

OpenShift Serverless now uses Knative Eventing Operator 0.14.0.

OpenShift Serverless now uses Kourier 0.14.1.

1.4.2. Known issues

Knative Serving has a fixed, minimum CPU request of 25m for the queue-proxy setting. If your
cluster has any value set that conflicts with this, for example, if you have set a minimum CPU
request for defaultRequest of more than 25m, the Knative service fails to deploy. As a
workaround, you can configure the resourcePercentage annotation individually for your
Knative services.

Example resourcePercentage configuration

第 1 章 OPENSHIFT SERVERLESS RELEASE NOTES

5

1 queue.sidecar.serving.knative.dev/resourcePercentage is the percentage of user
container resources to be used for queue-proxy. This can be between a range of 0.1 - 100.

On OpenShift Container Platform 4.5 and newer versions, deploying a Knative service with
traffic distribution shows an invalid URL for the general service address in the Developer
perspective of the web console.
The correct URL is shown in YAML resources and CLI command outputs.

If you use a ping source with OpenShift Serverless, after you uninstall and delete all other
Knative Eventing components, the pingsource-jobrunner Deployment resource is not deleted.

If you delete a sink before you delete the sink binding connected to it, the SinkBinding object
deletion might hang.
As a workaround, you can edit the SinkBinding object and remove the finalizer that causes the
hanging:

The sink binding behavior has changed in OpenShift Serverless 1.8.0, which breaks backwards
compatibility.
To use sink binding, cluster administrators must now label the namespace configured in the
SinkBinding object with bindings.knative.dev/include:"true".

Resources configured in the SinkBinding object must also be labeled with
bindings.knative.dev/include:"true"; however, this task can be completed by any OpenShift
Serverless user.

1. As a cluster administrator, you can label the namespace by entering the following command:

2. Users must manually add a bindings.knative.dev/include=true label to resources.
For example, to add this label to a CronJob object, add the following lines to the Job
resource YAML definition:

1.5. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.7.2

This release of OpenShift Serverless addresses Common Vulnerabilities and Exposures (CVEs) and bug
fixes.

spec:
 template:
 metadata:
 annotations:
 queue.sidecar.serving.knative.dev/resourcePercentage: "10" 1

 finalizers:
 - sinkbindings.sources.knative.dev

$ oc label namespace <namespace> bindings.knative.dev/include=true

 jobTemplate:
 metadata:
 labels:
 app: heartbeat-cron
 bindings.knative.dev/include: "true"

OpenShift Container Platform 4.5 Serverless

6

1.5.1. Fixed issues

In previous versions of OpenShift Serverless, KnativeServing custom resources showed a
status of Ready, even if Kourier did not deploy. This bug is fixed in OpenShift Serverless 1.7.2.

1.6. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.7.1

1.6.1. New features

OpenShift Serverless now uses Knative Serving 0.13.3.

OpenShift Serverless now uses Knative Serving Operator 0.13.3.

OpenShift Serverless now uses Knative kn CLI 0.13.2.

OpenShift Serverless uses Knative Eventing 0.13.0.

OpenShift Serverless now uses Knative Eventing Operator 0.13.3.

1.6.2. Fixed issues

In OpenShift Serverless 1.7.0, routes were reconciled continuously when this was not required.
This bug is fixed in OpenShift Serverless 1.7.1.

1.7. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.7.0

1.7.1. New features

OpenShift Serverless 1.7.0 is now Generally Available (GA) on OpenShift Container Platform 4.3
and newer versions. In previous versions, OpenShift Serverless was a Technology Preview.

OpenShift Serverless now uses Knative Serving 0.13.2.

OpenShift Serverless now uses Knative Serving Operator 0.13.2.

OpenShift Serverless now uses Knative kn CLI 0.13.2.

Knative kn CLI downloads now support disconnected, or restricted network installations.

Knative kn CLI libraries are now signed by Red Hat.

Knative Eventing is now available as a Technology Preview with OpenShift Serverless.
OpenShift Serverless uses Knative Eventing 0.13.2.

重要

Before upgrading to the latest Serverless release, you must remove the community
Knative Eventing Operator if you have previously installed it. Having the Knative Eventing
Operator installed will prevent you from being able to install the latest Technology
Preview version of Knative Eventing that is included with OpenShift Serverless 1.7.0.

High availability (HA) is now enabled by default for the autoscaler-hpa, controller, activator ,
kourier-control, and kourier-gateway components.

If you have installed a previous version of OpenShift Serverless, after the KnativeServing

第 1 章 OPENSHIFT SERVERLESS RELEASE NOTES

7

If you have installed a previous version of OpenShift Serverless, after the KnativeServing
custom resource (CR) is updated, the deployment will default to a HA configuration with
KnativeServing.spec.high-availability.replicas = 2.

You can disable HA for these components by completing the procedure in the Configuring high
availability components documentation.

OpenShift Serverless now supports the trustedCA setting in the OpenShift Container Platform
cluster-wide proxy, and is now fully compatible with OpenShift Container Platform proxy
settings.

OpenShift Serverless now supports HTTPS by using the wildcard certificate that is registered
for OpenShift Container Platform routes. For more information on HTTP and HTTPS on Knative
Serving, see the documentation on Verifying your serverless application deployment .

1.7.2. Fixed issues

In previous versions, requesting KnativeServing CRs without specifying an API group, for
example, by using the command oc get knativeserving -n knative-serving, occasionally
caused errors. This issue is fixed in OpenShift Serverless 1.7.0.

In previous versions, the Knative Serving controller was not notified when a new service CA
certificate was generated due to service CA certificate rotation. New revisions created after a
service CA certificate rotation were failing with the error:

The OpenShift Serverless Operator now restarts the Knative Serving controller whenever a new
service CA certificate is generated, which ensures that the controller is always configured to use
the current service CA certificate. For more information, see the OpenShift Container Platform
documentation on Securing service traffic using service serving certificate secrets under
Authentication.

1.7.3. Known issues

When upgrading from OpenShift Serverless 1.6.0 to 1.7.0, support for HTTPS requires a change
to the format of routes. Knative services created on OpenShift Serverless 1.6.0 are no longer
reachable at the old format URLs. You must retrieve the new URL for each service after
upgrading OpenShift Serverless. For more information, see the documentation on Upgrading
OpenShift Serverless.

If you are using Knative Eventing on an Azure cluster, it is possible that the imc-dispatcher pod
may not start. This is due to the pod’s default resources settings. As a work-around, you can
remove the resources settings.

If you have 1000 Knative services on a cluster, and then perform a reinstall or upgrade of
Knative Serving, there will be a delay when you create the first new service after the
KnativeServing CR becomes Ready.
The 3scale-kourier-control controller reconciles all previous Knative services before processing
the creation of a new service, which causes the new service to spend approximately 800
seconds in an IngressNotConfigured or Unknown state before the state will update to Ready.

Revision "foo-1" failed with message: Unable to fetch image "image-registry.openshift-image-
registry.svc:5000/eap/eap-app": failed to resolve image to digest: failed to fetch image
information: Get https://image-registry.openshift-image-registry.svc:5000/v2/: x509: certificate
signed by unknown authority.

OpenShift Container Platform 4.5 Serverless

8

1.8. ADDITIONAL RESOURCES

OpenShift Serverless is based on the open source Knative project.

For details about the latest Knative Serving release, see the Knative Serving releases page .

For details about the latest Knative Serving Operator release, see the Knative Serving Operator
releases page.

For details about the latest Knative CLI release, see the Knative CLI releases page.

For details about the latest Knative Eventing release, see the Knative Eventing releases page .

第 1 章 OPENSHIFT SERVERLESS RELEASE NOTES

9

https://github.com/knative/serving/releases
https://github.com/knative/serving-operator/releases
https://github.com/knative/client/releases
https://github.com/knative/eventing/releases

第 2 章 OPENSHIFT SERVERLESS SUPPORT

2.1. GETTING SUPPORT

If you experience difficulty with a procedure described in this documentation, visit the Red Hat
Customer Portal at http://access.redhat.com. Through the customer portal, you can:

Search or browse through the Red Hat Knowledgebase of technical support articles about Red
Hat products

Submit a support case to Red Hat Global Support Services (GSS)

Access other product documentation

If you have a suggestion for improving this guide or have found an error, please submit a Bugzilla report
at http://bugzilla.redhat.com against Product for the Documentation component. Please provide
specific details, such as the section number, guide name, and OpenShift Serverless version so we can
easily locate the content.

2.2. GATHERING DIAGNOSTIC INFORMATION FOR SUPPORT

When opening a support case, it is helpful to provide debugging information about your cluster to Red
Hat Support.

The must-gather tool enables you to collect diagnostic information about your OpenShift Container
Platform cluster, including data related to OpenShift Serverless.

For prompt support, supply diagnostic information for both OpenShift Container Platform and
OpenShift Serverless.

2.2.1. About the must-gather tool

The oc adm must-gather CLI command collects the information from your cluster that is most likely
needed for debugging issues, such as:

Resource definitions

Audit logs

Service logs

You can specify one or more images when you run the command by including the --image argument.
When you specify an image, the tool collects data related to that feature or product.

When you run oc adm must-gather, a new pod is created on the cluster. The data is collected on that
pod and saved in a new directory that starts with must-gather.local. This directory is created in the
current working directory.

2.2.2. About collecting OpenShift Serverless data

You can use the oc adm must-gather CLI command to collect information about your cluster, including
features and objects associated with OpenShift Serverless. To collect OpenShift Serverless data with
must-gather, you must specify the OpenShift Serverless image and the image tag for your installed
version of OpenShift Serverless.

Procedure

OpenShift Container Platform 4.5 Serverless

10

http://access.redhat.com
http://bugzilla.redhat.com

Procedure

Collect data by using the oc adm must-gather command:

Example command

$ oc adm must-gather --image=registry.redhat.io/openshift-serverless-1/svls-must-gather-
rhel8:<image_version_tag>

$ oc adm must-gather --image=registry.redhat.io/openshift-serverless-1/svls-must-gather-
rhel8:1.10.0

第 2 章 OPENSHIFT SERVERLESS SUPPORT

11

第 3 章 GETTING STARTED WITH OPENSHIFT SERVERLESS
OpenShift Serverless simplifies the process of delivering code from development into production by
reducing the need for infrastructure set up or back-end development by developers.

3.1. HOW OPENSHIFT SERVERLESS WORKS

Developers on OpenShift Serverless can use the provided Kubernetes native APIs, as well as familiar
languages and frameworks, to deploy applications and container workloads.

OpenShift Serverless on OpenShift Container Platform enables stateless serverless workloads to all run
on a single multi-cloud container platform with automated operations. Developers can use a single
platform for hosting their microservices, legacy, and serverless applications.

OpenShift Serverless is based on the open source Knative project, which provides portability and
consistency across hybrid and multi-cloud environments by enabling an enterprise-grade serverless
platform.

3.2. SUPPORTED CONFIGURATIONS

The set of supported features, configurations, and integrations for OpenShift Serverless, current and
past versions, are available at the Supported Configurations page .

重要

Knative Eventing is a Technology Preview feature only. Technology Preview features are
not supported with Red Hat production service level agreements (SLAs) and might not
be functionally complete. Red Hat does not recommend using them in production. These
features provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

3.3. NEXT STEPS

Install the OpenShift Serverless Operator on your OpenShift Container Platform cluster to get
started.

View the OpenShift Serverless release notes .

OpenShift Container Platform 4.5 Serverless

12

https://access.redhat.com/articles/4912821
https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/serverless/#installing-openshift-serverless
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/serverless/#serverless-release-notes

第 4 章 INSTALLING OPENSHIFT SERVERLESS

4.1. INSTALLING OPENSHIFT SERVERLESS

This guide walks cluster administrators through installing the OpenShift Serverless Operator to an
OpenShift Container Platform cluster.

注意

OpenShift Serverless is supported for installation in a restricted network environment.
For more information, see Using Operator Lifecycle Manager on restricted networks .

重要

Before upgrading to the latest Serverless release, you must remove the community
Knative Eventing Operator if you have previously installed it. Having the Knative Eventing
Operator installed will prevent you from being able to install the latest version of Knative
Eventing using the OpenShift Serverless Operator.

4.1.1. Defining cluster size requirements for an OpenShift Serverless installation

To install and use OpenShift Serverless, the OpenShift Container Platform cluster must be sized
correctly. The minimum requirement for OpenShift Serverless is a cluster with 10 CPUs and 40GB
memory. The total size requirements to run OpenShift Serverless are dependent on the applications
deployed. By default, each pod requests approximately 400m of CPU, so the minimum requirements are
based on this value. In the size requirement provided, an application can scale up to 10 replicas. Lowering
the actual CPU request of applications can increase the number of possible replicas.

注意

The requirements provided relate only to the pool of worker machines of the OpenShift
Container Platform cluster. Master nodes are not used for general scheduling and are
omitted from the requirements.

注意

The following limitations apply to all OpenShift Serverless deployments:

Maximum number of Knative services: 1000

Maximum number of Knative revisions: 1000

4.1.2. Additional requirements for advanced use cases

For more advanced use cases such as logging or metering on OpenShift Container Platform, you must
deploy more resources. Recommended requirements for such use cases are 24 CPUs and 96GB of
memory.

If you have high availability (HA) enabled on your cluster, this requires between 0.5 - 1.5 cores and
between 200MB - 2GB of memory for each replica of the Knative Serving control plane. HA is enabled
for some Knative Serving components by default. You can disable HA by following the documentation on
Configuring high availability replicas on OpenShift Serverless .

第 4 章 INSTALLING OPENSHIFT SERVERLESS

13

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/operators/#olm-restricted-networks
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/serverless/#serverless-HA

4.1.3. Scaling your cluster using machine sets

You can use the OpenShift Container Platform MachineSet API to manually scale your cluster up to the
desired size. The minimum requirements usually mean that you must scale up one of the default
machine sets by two additional machines. See Manually scaling a machine set .

4.1.4. Installing the OpenShift Serverless Operator

This procedure describes how to install and subscribe to the OpenShift Serverless Operator from the
OperatorHub using the OpenShift Container Platform web console.

Procedure

1. In the OpenShift Container Platform web console, navigate to the Operators → OperatorHub
page.

2. Scroll, or type they keyword Serverless into the Filter by keyword box to find the OpenShift
Serverless Operator.

3. Review the information about the Operator and click Install.

4. On the Install Operator page:

OpenShift Container Platform 4.5 Serverless

14

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/machine_management/#manually-scaling-machineset

a. The Installation Mode is All namespaces on the cluster (default). This mode installs the
Operator in the default openshift-operators namespace to watch and be made available to
all namespaces in the cluster.

b. The Installed Namespace will be openshift-operators.

c. Select the 4.5 channel as the Update Channel. The 4.5 channel will enable installation of
the latest stable release of the OpenShift Serverless Operator.

d. Select Automatic or Manual approval strategy.

5. Click Install to make the Operator available to the selected namespaces on this OpenShift
Container Platform cluster.

6. From the Catalog → Operator Management page, you can monitor the OpenShift Serverless
Operator subscription’s installation and upgrade progress.

a. If you selected a Manual approval strategy, the subscription’s upgrade status will remain
Upgrading until you review and approve its install plan. After approving on the Install Plan
page, the subscription upgrade status moves to Up to date.

b. If you selected an Automatic approval strategy, the upgrade status should resolve to Up to
date without intervention.

Verification

After the Subscription’s upgrade status is Up to date, select Catalog → Installed Operators to verify
that the OpenShift Serverless Operator eventually shows up and its Status ultimately resolves to
InstallSucceeded in the relevant namespace.

第 4 章 INSTALLING OPENSHIFT SERVERLESS

15

If it does not:

1. Switch to the Catalog → Operator Management page and inspect the Operator
Subscriptions and Install Plans tabs for any failure or errors under Status.

2. Check the logs in any pods in the openshift-operators project on the Workloads → Pods page
that are reporting issues to troubleshoot further.

Additional resources

For more information on installing Operators, see the OpenShift Container Platform
documentation on Adding Operators to a cluster .

4.1.5. Next steps

After the OpenShift Serverless Operator is installed, you can install the Knative Serving
component. See the documentation on Installing Knative Serving .

After the OpenShift Serverless Operator is installed, you can install the Knative Eventing
component. See the documentation on Installing Knative Eventing .

4.2. INSTALLING KNATIVE SERVING

After you install the OpenShift Serverless Operator, you can install Knative Serving by following the
procedures described in this guide.

This guide provides information about installing Knative Serving using the default settings. However, you
can configure more advanced settings in the KnativeServing custom resource definition.

For more information about configuration options for the KnativeServing custom resource definition,
see Advanced installation configuration options .

4.2.1. Creating the knative-serving namespace

When you create the knative-serving namespace, a knative-serving project will also be created.

重要

OpenShift Container Platform 4.5 Serverless

16

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/installing_serverless/#installing-knative-serving
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/installing_serverless/#installing-knative-eventing
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/installing_serverless/#serverless-install-config-options

重要

You must complete this procedure before installing Knative Serving.

If the KnativeServing object created during Knative Serving’s installation is not created in the knative-
serving namespace, it will be ignored.

Prerequisites

An OpenShift Container Platform account with cluster administrator access

Installed OpenShift Serverless Operator

4.2.1.1. Creating the knative-serving namespace using the web console

Procedure

1. In the OpenShift Container Platform web console, navigate to Administration → Namespaces.

2. Enter knative-serving as the Name for the project. The other fields are optional.

第 4 章 INSTALLING OPENSHIFT SERVERLESS

17

3. Click Create.

4.2.1.2. Creating the knative-serving namespace using the CLI

Procedure

1. Create the knative-serving namespace by entering:

$ oc create namespace knative-serving

4.2.2. Prerequisites

An OpenShift Container Platform account with cluster administrator access.

Installed OpenShift Serverless Operator.

Created the knative-serving namespace.

4.2.3. Installing Knative Serving using the web console

Procedure

1. In the Administrator perspective of the OpenShift Container Platform web console, navigate
to Operators → Installed Operators.

2. Check that the Project dropdown at the top of the page is set to Project: knative-serving.

3. Click Knative Serving in the list of Provided APIs for the OpenShift Serverless Operator to go
to the Knative Serving tab.

OpenShift Container Platform 4.5 Serverless

18

4. Click the Create Knative Serving button.

5. In the Create Knative Serving page, you can install Knative Serving using the default settings
by clicking Create.
You can also modify settings for the Knative Serving installation by editing the KnativeServing
object using either the form provided, or by editing the YAML.

Using the form is recommended for simpler configurations that do not require full control of
KnativeServing object creation.

Editing the YAML is recommended for more complex configurations that require full control
of KnativeServing object creation. You can access the YAML by clicking the edit YAML
link in the top right of the Create Knative Serving page.
After you complete the form, or have finished modifying the YAML, click Create.

注意

For more information about configuration options for the KnativeServing
custom resource definition, see the documentation on Advanced installation
configuration options.

第 4 章 INSTALLING OPENSHIFT SERVERLESS

19

6. After you have installed Knative Serving, the KnativeServing object is created, and you will be
automically directed to the Knative Serving tab.

You will see knative-serving in the list of resources.

Verification

1. Click on knative-serving in the Knative Serving tab.

2. You will be automatically directed to the Knative Serving Overview page.

OpenShift Container Platform 4.5 Serverless

20

3. Scroll down to look at the list of Conditions.

4. You should see a list of conditions with a status of True, as shown in the example image.

注意

It may take a few seconds for the Knative Serving resources to be created. You
can check their status in the Resources tab.

5. If the conditions have a status of Unknown or False, wait a few moments and then check again
after you have confirmed that the resources have been created.

4.2.4. Installing Knative Serving using YAML

Procedure

第 4 章 INSTALLING OPENSHIFT SERVERLESS

21

1. Create a file named serving.yaml.

2. Copy the following sample YAML into serving.yaml:

3. Apply the serving.yaml file:

$ oc apply -f serving.yaml

Verification

1. To verify the installation is complete, enter the following command:

$ oc get knativeserving.operator.knative.dev/knative-serving -n knative-serving --
template='{{range .status.conditions}}{{printf "%s=%s\n" .type .status}}{{end}}'

The output should be similar to:

DependenciesInstalled=True
DeploymentsAvailable=True
InstallSucceeded=True
Ready=True

注意

It may take a few seconds for the Knative Serving resources to be created.

2. If the conditions have a status of Unknown or False, wait a few moments and then check again
after you have confirmed that the resources have been created.

3. Check that the Knative Serving resources have been created by entering:

$ oc get pods -n knative-serving

The output should look similar to:

NAME READY STATUS RESTARTS AGE
activator-5c596cf8d6-5l86c 1/1 Running 0 9m37s
activator-5c596cf8d6-gkn5k 1/1 Running 0 9m22s
autoscaler-5854f586f6-gj597 1/1 Running 0 9m36s
autoscaler-hpa-78665569b8-qmlmn 1/1 Running 0 9m26s
autoscaler-hpa-78665569b8-tqwvw 1/1 Running 0 9m26s
controller-7fd5655f49-9gxz5 1/1 Running 0 9m32s
controller-7fd5655f49-pncv5 1/1 Running 0 9m14s
kn-cli-downloads-8c65d4cbf-mt4t7 1/1 Running 0 9m42s
webhook-5c7d878c7c-n267j 1/1 Running 0 9m35s

apiVersion: operator.knative.dev/v1alpha1
kind: KnativeServing
metadata:
 name: knative-serving
 namespace: knative-serving

OpenShift Container Platform 4.5 Serverless

22

4.2.5. Next steps

For cloud events functionality on OpenShift Serverless, you can install the Knative Eventing
component. See the documentation on Installing Knative Eventing .

Install the Knative CLI to use kn commands with Knative Serving. For example, kn service
commands. See the documentation on Installing the Knative CLI (kn).

4.3. INSTALLING KNATIVE EVENTING

After you install the OpenShift Serverless Operator, you can install Knative Eventing by following the
procedures described in this guide.

重要

Knative Eventing is a Technology Preview feature only. Technology Preview features are
not supported with Red Hat production service level agreements (SLAs) and might not
be functionally complete. Red Hat does not recommend using them in production. These
features provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

This guide provides information about installing Knative Eventing using the default settings.

4.3.1. Creating the knative-eventing namespace

When you create the knative-eventing namespace, a knative-eventing project will also be created.

重要

You must complete this procedure before installing Knative Eventing.

If the KnativeEventing object created during Knative Eventing’s installation is not created in the
knative-eventing namespace, it will be ignored.

Prerequisites

An OpenShift Container Platform account with cluster administrator access

Installed OpenShift Serverless Operator

4.3.1.1. Creating the knative-eventing namespace using the web console

Procedure

1. In the OpenShift Container Platform web console, navigate to Administration → Namespaces.

2. Click Create Namespace.

第 4 章 INSTALLING OPENSHIFT SERVERLESS

23

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/installing_serverless/#installing-knative-eventing
https://access.redhat.com/support/offerings/techpreview/

3. Enter knative-eventing as the Name for the project. The other fields are optional.

4. Click Create.

4.3.1.2. Creating the knative-eventing namespace using the CLI

Procedure

1. Create the knative-eventing namespace by entering:

$ oc create namespace knative-eventing

4.3.2. Prerequisites

An OpenShift Container Platform account with cluster administrator access

Installed OpenShift Serverless Operator

Created the knative-eventing namespace

OpenShift Container Platform 4.5 Serverless

24

4.3.3. Installing Knative Eventing using the web console

Procedure

1. In the Administrator perspective of the OpenShift Container Platform web console, navigate
to Operators → Installed Operators.

2. Check that the Project dropdown at the top of the page is set to Project: knative-eventing.

3. Click Knative Eventing in the list of Provided APIs for the OpenShift Serverless Operator to
go to the Knative Eventing tab.

4. Click the Create Knative Eventing button.

5. In the Create Knative Eventing page, you can choose to configure the KnativeEventing
object by using either the default form provided, or by editing the YAML.

Using the form is recommended for simpler configurations that do not require full control of
KnativeEventing object creation.
Optional. If you are configuring the KnativeEventing object using the form, make any
changes that you want to implement for your Knative Eventing deployment.

6. Click Create.

Editing the YAML is recommended for more complex configurations that require full control
of KnativeEventing object creation. You can access the YAML by clicking the edit YAML
link in the top right of the Create Knative Eventing page.

第 4 章 INSTALLING OPENSHIFT SERVERLESS

25

Optional. If you are configuring the KnativeEventing object by editing the YAML, make any
changes to the YAML that you want to implement for your Knative Eventing deployment.

7. Click Create.

8. After you have installed Knative Eventing, the KnativeEventing object is created, and you will
be automically directed to the Knative Eventing tab.

You will see knative-eventing in the list of resources.

Verification

1. Click on knative-eventing in the Knative Eventing tab.

2. You will be automatically directed to the Knative Eventing Overview page.

OpenShift Container Platform 4.5 Serverless

26

3. Scroll down to look at the list of Conditions.

4. You should see a list of conditions with a status of True, as shown in the example image.

注意

It may take a few seconds for the Knative Eventing resources to be created. You
can check their status in the Resources tab.

5. If the conditions have a status of Unknown or False, wait a few moments and then check again
after you have confirmed that the resources have been created.

第 4 章 INSTALLING OPENSHIFT SERVERLESS

27

4.3.4. Installing Knative Eventing using YAML

Procedure

1. Create a file named eventing.yaml.

2. Copy the following sample YAML into eventing.yaml:

3. Optional. Make any changes to the YAML that you want to implement for your Knative Eventing
deployment.

4. Apply the eventing.yaml file by entering:

$ oc apply -f eventing.yaml

Verification

1. To verify the installation is complete, enter:

$ oc get knativeeventing.operator.knative.dev/knative-eventing \
 -n knative-eventing \
 --template='{{range .status.conditions}}{{printf "%s=%s\n" .type .status}}{{end}}'

The output should be similar to:

InstallSucceeded=True
Ready=True

注意

It may take a few seconds for the Knative Eventing resources to be created.

2. If the conditions have a status of Unknown or False, wait a few moments and then check again
after you have confirmed that the resources have been created.

3. Check that the Knative Eventing resources have been created by entering:

$ oc get pods -n knative-eventing

The output should look similar to:

NAME READY STATUS RESTARTS AGE
broker-controller-58765d9d49-g9zp6 1/1 Running 0 7m21s
eventing-controller-65fdd66b54-jw7bh 1/1 Running 0 7m31s
eventing-webhook-57fd74b5bd-kvhlz 1/1 Running 0 7m31s
imc-controller-5b75d458fc-ptvm2 1/1 Running 0 7m19s
imc-dispatcher-64f6d5fccb-kkc4c 1/1 Running 0 7m18s

apiVersion: operator.knative.dev/v1alpha1
kind: KnativeEventing
metadata:
 name: knative-eventing
 namespace: knative-eventing

OpenShift Container Platform 4.5 Serverless

28

4.3.5. Next steps

Install the Knative CLI to use kn commands with Knative Eventing. For example, kn source
commands. See the documentation on Installing the Knative CLI (kn).

4.4. ADVANCED INSTALLATION CONFIGURATION OPTIONS

This guide provides information for cluster administrators about advanced installation configuration
options for OpenShift Serverless components.

4.4.1. Knative Serving supported installation configuration options

This guide provides information for cluster administrators about advanced installation configuration
options for Knative Serving.

重要

Do not modify any YAML contained inside the config field. Some of the configuration
values in this field are injected by the OpenShift Serverless Operator, and modifying them
will cause your deployment to become unsupported.

4.4.1.1. Controller custom certificates

If your registry uses a self-signed certificate, you must enable tag-to-digest resolution by creating a
config map or secret. The OpenShift Serverless Operator then automatically configures Knative Serving
controller access to the registry.

To enable tag-to-digest resolution, the Knative Serving controller requires access to the container
registry.

重要

The config map or secret must reside in the same namespace as the Knative Serving
custom resource definition (CRD).

第 4 章 INSTALLING OPENSHIFT SERVERLESS

29

The following example triggers the OpenShift Serverless Operator to:

1. Create and mount a volume containing the certificate in the controller.

2. Set the required environment variable properly.

Example YAML

The following example uses a certificate in a config map named certs in the knative-serving
namespace.

The supported types are ConfigMap and Secret.

If no controller custom certificate is specified, this defaults to the config-service-ca config map.

Example default YAML

4.4.1.2. High availability

High availability (HA) defaults to 2 replicas per controller if no number of replicas is specified.

You can set this to 1 to disable HA, or add more replicas by setting a higher integer.

Example YAML

apiVersion: operator.knative.dev/v1alpha1
kind: KnativeServing
metadata:
 name: knative-serving
 namespace: knative-serving
spec:
 controller-custom-certs:
 name: certs
 type: ConfigMap

apiVersion: operator.knative.dev/v1alpha1
kind: KnativeServing
metadata:
 name: knative-serving
 namespace: knative-serving
spec:
 controller-custom-certs:
 name: config-service-ca
 type: ConfigMap

apiVersion: operator.knative.dev/v1alpha1
kind: KnativeServing
metadata:
 name: knative-serving
 namespace: knative-serving
spec:
 high-availability:
 replicas: 2

OpenShift Container Platform 4.5 Serverless

30

4.4.2. Additional resources

For more information about configuring high availability, see High availability on OpenShift
Serverless.

4.5. UPGRADING OPENSHIFT SERVERLESS

If you have installed a previous version of OpenShift Serverless, follow the instructions in this guide to
upgrade to the latest version.

重要

Before upgrading to the latest Serverless release, you must remove the community
Knative Eventing operator if you have previously installed it. Having the Knative Eventing
operator installed will prevent you from being able to install the latest Technology
Preview version of Knative Eventing.

4.5.1. Upgrading the Subscription Channel

Prerequisites

You have installed a previous version of OpenShift Serverless Operator, and have selected
Automatic updates during the installation process.

注意

If you have selected Manual updates, you will need to complete additional steps
after updating the channel as described in this guide. The Subscription’s upgrade
status will remain Upgrading until you review and approve its Install Plan.
Information about the Install Plan can be found in the OpenShift Container
Platform Operators documentation.

You have logged in to the OpenShift Container Platform web console.

Procedure

1. Select the openshift-operators namespace in the OpenShift Container Platform web console.

2. Navigate to the Operators → Installed Operators page.

3. Select the OpenShift Serverless Operator Operator.

4. Click Subscription → Channel.

5. In the Change Subscription Update Channel window, select 4.5, and then click Save.

6. Wait until all pods have been upgraded in the knative-serving namespace and the
KnativeServing custom resource (CR) reports the latest Knative Serving version.

Verification

To verify that the upgrade has been successful, you can check the status of pods in the knative-serving
namespace, and the version of the KnativeServing CR.

第 4 章 INSTALLING OPENSHIFT SERVERLESS

31

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/serverless/#serverless-HA

1. Check the status of the pods:

The previous command should return a status of True.

2. Check the version of the KnativeServing CR:

The previous command should return the latest version of Knative Serving. You can check the
latest version in the OpenShift Serverless Operator release notes.

4.6. REMOVING OPENSHIFT SERVERLESS

This guide provides details of how to remove the OpenShift Serverless Operator and other OpenShift
Serverless components.

注意

Before you can remove the OpenShift Serverless Operator, you must remove Knative
Serving and Knative Eventing.

4.6.1. Uninstalling Knative Serving

To uninstall Knative Serving, you must remove its custom resource and delete the knative-serving
namespace.

Procedure

1. To remove Knative Serving, enter the following command:

$ oc delete knativeservings.operator.knative.dev knative-serving -n knative-serving

2. After the command has completed and all pods have been removed from the knative-serving
namespace, delete the namespace by entering the following command:

$ oc delete namespace knative-serving

4.6.2. Uninstalling Knative Eventing

To uninstall Knative Eventing, you must remove its custom resource and delete the knative-eventing
namespace.

Procedure

1. To remove Knative Eventing, enter the following command:

$ oc delete knativeeventings.operator.knative.dev knative-eventing -n knative-eventing

2. After the command has completed and all pods have been removed from the knative-eventing

$ oc get knativeserving.operator.knative.dev knative-serving -n knative-serving -
o=jsonpath='{.status.conditions[?(@.type=="Ready")].status}'

$ oc get knativeserving.operator.knative.dev knative-serving -n knative-serving -
o=jsonpath='{.status.version}'

OpenShift Container Platform 4.5 Serverless

32

2. After the command has completed and all pods have been removed from the knative-eventing
namespace, delete the namespace by entering the following command:

$ oc delete namespace knative-eventing

4.6.3. Removing the OpenShift Serverless Operator

You can remove the OpenShift Serverless Operator from the host cluster by following the
documentation on deleting Operators from a cluster .

4.6.4. Deleting OpenShift Serverless CRDs

After uninstalling the OpenShift Serverless, the Operator and API custom resource definitions (CRDs)
remain on the cluster. You can use the following procedure to remove the remaining CRDs.

重要

Removing the Operator and API CRDs also removes all resources that were defined using
them, including Knative services.

Prerequisites

You have uninstalled Knative Serving and Knative Eventing and have removed the OpenShift
Serverless Operator.

Procedure

Delete the remaining OpenShift Serverless CRDs:

4.7. INSTALLING THE KNATIVE CLI (KN)

注意

kn does not have its own login mechanism. To log in to the cluster, you must install the oc
CLI and use oc login.

Installation options for the oc CLI will vary depending on your operating system.

For more information on installing the oc CLI for your operating system and logging in
with oc, see the CLI getting started documentation.

4.7.1. Installing the kn CLI using the OpenShift Container Platform web console

Once the OpenShift Serverless Operator is installed, you will see a link to download the kn CLI for Linux,
macOS and Windows from the Command Line Tools page in the OpenShift Container Platform web
console.

You can access the Command Line Tools page by clicking the icon in the top right corner of the
web console and selecting Command Line Tools in the drop down menu.

Procedure

$ oc get crd -oname | grep 'knative.dev' | xargs oc delete

第 4 章 INSTALLING OPENSHIFT SERVERLESS

33

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/operators/#olm-deleting-operators-from-a-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/cli_tools/#cli-getting-started

1

Procedure

1. Download the kn CLI from the Command Line Tools page.

2. Unpack the archive:

$ tar -xf <file>

3. Move the kn binary to a directory on your PATH.

4. To check your path, run:

$ echo $PATH

注意

If you do not use RHEL or Fedora, ensure that libc is installed in a directory on
your library path. If libc is not available, you might see the following error when
you run CLI commands:

$ kn: No such file or directory

4.7.2. Installing the kn CLI for Linux using an RPM

For Red Hat Enterprise Linux (RHEL), you can install kn as an RPM if you have an active OpenShift
Container Platform subscription on your Red Hat account.

Procedure

Use the following command to install kn:

subscription-manager register
subscription-manager refresh
subscription-manager attach --pool=<pool_id> 1
subscription-manager repos --enable="openshift-serverless-1-for-rhel-8-x86_64-rpms"
yum install openshift-serverless-clients

Pool ID for an active OpenShift Container Platform subscription

4.7.3. Installing the kn CLI for Linux

For Linux distributions, you can download the CLI directly as a tar.gz archive.

Procedure

1. Download the CLI.

2. Unpack the archive:

$ tar -xf <file>

3. Move the kn binary to a directory on your PATH.

OpenShift Container Platform 4.5 Serverless

34

https://mirror.openshift.com/pub/openshift-v4/clients/serverless/latest

4. To check your path, run:

$ echo $PATH

注意

If you do not use RHEL or Fedora, ensure that libc is installed in a directory on
your library path. If libc is not available, you might see the following error when
you run CLI commands:

$ kn: No such file or directory

4.7.4. Installing the kn CLI for macOS

kn for macOS is provided as a tar.gz archive.

Procedure

1. Download the CLI.

2. Unpack and unzip the archive.

3. Move the kn binary to a directory on your PATH.

4. To check your PATH, open a terminal window and run:

$ echo $PATH

4.7.5. Installing the kn CLI for Windows

The CLI for Windows is provided as a zip archive.

Procedure

1. Download the CLI.

2. Unzip the archive with a ZIP program.

3. Move the kn binary to a directory on your PATH.

4. To check your PATH, open the Command Prompt and run the command:

C:\> path

第 4 章 INSTALLING OPENSHIFT SERVERLESS

35

https://mirror.openshift.com/pub/openshift-v4/clients/serverless/latest
https://mirror.openshift.com/pub/openshift-v4/clients/serverless/latest

第 5 章 ARCHITECTURE

5.1. KNATIVE SERVING ARCHITECTURE

Knative Serving on OpenShift Container Platform enables developers to write cloud-native applications
using serverless architecture. Serverless is a cloud computing model where application developers don’t
need to provision servers or manage scaling for their applications. These routine tasks are abstracted
away by the platform, allowing developers to push code to production much faster than in traditional
models.

Knative Serving supports deploying and managing cloud-native applications by providing a set of
objects as Kubernetes custom resource definitions (CRDs) that define and control the behavior of
serverless workloads on an OpenShift Container Platform cluster. For more information about CRDs,
see Extending the Kubernetes API with custom resource definitions .

Developers use these CRDs to create custom resource (CR) instances that can be used as building
blocks to address complex use cases. For example:

Rapidly deploying serverless containers.

Automatically scaling pods.

For more information about CRs, see Managing resources from custom resource definitions .

5.1.1. Knative Serving CRDs

Service

The service.serving.knative.dev CRD automatically manages the life cycle of your workload to
ensure that the application is deployed and reachable through the network. It creates a route, a
configuration, and a new revision for each change to a user created service or CR. Most developer
interactions in Knative are carried out by modifying services.

Revision

The revision.serving.knative.dev CRD is a point-in-time snapshot of the code and configuration
for each modification made to the workload. Revisions are immutable objects and can be retained for
as long as necessary.

Route

The route.serving.knative.dev CRD maps a network endpoint to one or more revisions. You can
manage the traffic in several ways, including fractional traffic and named routes.

Configuration

The configuration.serving.knative.dev CRD maintains the desired state for your deployment. It
provides a clean separation between code and configuration. Modifying a configuration creates a
new revision.

5.2. KNATIVE EVENTING ARCHITECTURE

Knative Eventing on OpenShift Container Platform enables developers to use an event-driven
architecture with serverless applications. An event-driven architecture is based on the concept of
decoupled relationships between event producers that create events, and event sinks, or consumers,
that receive them.

Knative Eventing uses standard HTTP POST requests to send and receive events between event

OpenShift Container Platform 4.5 Serverless

36

https://www.redhat.com/en/topics/cloud-native-apps
https://www.redhat.com/en/topics/cloud-native-apps/what-is-serverless
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/operators/#crd-extending-api-with-crds
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/operators/#crd-managing-resources-from-crds
https://www.redhat.com/en/topics/integration/what-is-event-driven-architecture

Knative Eventing uses standard HTTP POST requests to send and receive events between event
producers and consumers. These events conform to the CloudEvents specifications, which enables
creating, parsing, sending, and receiving events in any programming language.

You can propagate an event from an event source to multiple event sinks by using:

channels and subscriptions, or

brokers and triggers.

Events are buffered if the destination sink is unavailable.

Knative Eventing supports the following scenarios:

Publish an event without creating a consumer

You can send events to a broker as an HTTP POST, and use a sink binding to decouple the
destination configuration from your application that is producing events.

Consume an event without creating a publisher

You can use a trigger to consume events from a broker based on event attributes. Your application
receives events as an HTTP POST.

5.2.1. Event sinks

To enable delivery to multiple types of sinks, Knative Eventing defines the following generic interfaces
that can be implemented by multiple Kubernetes resources:

Addressable objects

Able to receive and acknowledge an event delivered over HTTP to an address defined in the event’s
status.address.url field. The Kubernetes Service object also satisfies the addressable interface.

Callable objects

Able to receive an event delivered over HTTP and transform it, returning 0 or 1 new events in the
HTTP response payload. These returned events may be further processed in the same way that
events from an external event source are processed.

第 5 章 ARCHITECTURE

37

https://cloudevents.io
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/event_sources/#knative-event-sources
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/event_workflows/#serverless-channels
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/event_workflows/#serverless-using-brokers

1

2

3

4

第 6 章 CREATING AND MANAGING SERVERLESS
APPLICATIONS

6.1. SERVERLESS APPLICATIONS USING KNATIVE SERVICES

To deploy a serverless application using OpenShift Serverless, you must create a Knative service. Knative
services are Kubernetes services, defined by a route and a configuration, and contained in a YAML file.

Example Knative service YAML

The name of the application.

The namespace the application will use.

The image of the application.

The environment variable printed out by the sample application.

You can create a serverless application by using one of the following methods:

Create a Knative service from the OpenShift Container Platform web console.

Create a Knative service using the kn CLI.

Create and apply a YAML file.

6.2. CREATING SERVERLESS APPLICATIONS USING THE OPENSHIFT
CONTAINER PLATFORM WEB CONSOLE

You can create a serverless application using either the Developer or Administrator perspective in the
OpenShift Container Platform web console.

6.2.1. Creating serverless applications using the Administrator perspective

Prerequisites

To create serverless applications using the Administrator perspective, ensure that you have completed
the following steps.

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: hello 1
 namespace: default 2
spec:
 template:
 spec:
 containers:
 - image: docker.io/openshift/hello-openshift 3
 env:
 - name: RESPONSE 4
 value: "Hello Serverless!"

OpenShift Container Platform 4.5 Serverless

38

The OpenShift Serverless Operator and Knative Serving are installed.

You have logged in to the web console and are in the Administrator perspective.

Procedure

1. Navigate to the Serverless → Services page.

2. Click Create Service.

3. Manually enter YAML or JSON definitions, or by dragging and dropping a file into the editor.

4. Click Create.

6.2.2. Creating serverless applications using the Developer perspective

For more information about creating applications using the Developer perspective in OpenShift
Container Platform, see the documentation on Creating applications using the Developer perspective .

6.3. CREATING SERVERLESS APPLICATIONS USING THE KN CLI

The following procedure describes how you can create a basic serverless application using the kn CLI.

Prerequisites

OpenShift Serverless Operator and Knative Serving are installed on your cluster.

第 6 章 CREATING AND MANAGING SERVERLESS APPLICATIONS

39

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/applications/#odc-creating-applications-using-developer-perspective

You have installed kn CLI.

Procedure

1. Create the Knative service by entering the following command:

6.4. CREATING SERVERLESS APPLICATIONS USING YAML

To create a serverless application by using YAML, you must create a YAML file that defines a Service,
then apply it by using oc apply.

Procedure

1. Create a YAML file, then copy the following example into the file:

2. Navigate to the directory where the YAML file is contained, and deploy the application by
applying the YAML file:

After the Service is created and the application is deployed, Knative creates an immutable Revision for
this version of the application.

$ kn service create <service_name> --image <image> --env <key=value>

$ kn service create hello --image docker.io/openshift/hello-openshift --env
RESPONSE="Hello Serverless!"

Creating service 'hello' in namespace 'default':

 0.271s The Route is still working to reflect the latest desired specification.
 0.580s Configuration "hello" is waiting for a Revision to become ready.
 3.857s ...
 3.861s Ingress has not yet been reconciled.
 4.270s Ready to serve.

Service 'hello' created with latest revision 'hello-bxshg-1' and URL:
http://hello-default.apps-crc.testing

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: hello
 namespace: default
spec:
 template:
 spec:
 containers:
 - image: docker.io/openshift/hello-openshift
 env:
 - name: RESPONSE
 value: "Hello Serverless!"

$ oc apply -f <filename>

OpenShift Container Platform 4.5 Serverless

40

Knative also performs network programming to create a Route, Ingress, Service, and load balancer for
your application and automatically scales your pods up and down based on traffic, including inactive
pods.

6.5. VERIFYING YOUR SERVERLESS APPLICATION DEPLOYMENT

To verify that your serverless application has been deployed successfully, you must get the application
URL created by Knative, and then send a request to that URL and observe the output.

注意

OpenShift Serverless supports the use of both HTTP and HTTPS URLs; however the
output from oc get ksvc <service_name> always prints URLs using the http:// format.

Procedure

1. Find the application URL by entering:

Example output

2. Make a request to your cluster and observe the output.

Example HTTP request

Example HTTPS request

Example output

3. Optional. If you receive an error relating to a self-signed certificate in the certificate chain, you
can add the --insecure flag to the curl command to ignore the error.

重要

Self-signed certificates must not be used in a production deployment. This
method is only for testing purposes.

Example command

$ oc get ksvc <service_name>

NAME URL LATESTCREATED LATESTREADY
READY REASON
hello http://hello-default.example.com hello-4wsd2 hello-4wsd2 True

$ curl http://hello-default.example.com

$ curl https://hello-default.example.com

Hello Serverless!

$ curl https://hello-default.example.com --insecure

第 6 章 CREATING AND MANAGING SERVERLESS APPLICATIONS

41

Example output

4. Optional. If your OpenShift Container Platform cluster is configured with a certificate that is
signed by a certificate authority (CA) but not yet globally configured for your system, you can
specify this with the curl command. The path to the certificate can be passed to the curl
command by using the --cacert flag.

Example command

Example output

6.6. INTERACTING WITH A SERVERLESS APPLICATION USING HTTP2
AND GRPC

OpenShift Serverless supports only insecure or edge-terminated routes.

Insecure or edge-terminated routes do not support HTTP2 on OpenShift Container Platform. These
routes also do not support gRPC because gRPC is transported by HTTP2.

If you use these protocols in your application, you must call the application using the ingress gateway
directly. To do this you must find the ingress gateway’s public address and the application’s specific
host.

Procedure

1. Find the application host. See the instructions in Verifying your serverless application
deployment.

2. Find the ingress gateway’s public address:

The public address is surfaced in the EXTERNAL-IP field. In this case, it would be
a83e86291bcdd11e993af02b7a65e514-33544245.us-east-1.elb.amazonaws.com.

3. Manually set the host header of your HTTP request to the application’s host, but direct the
request itself against the public address of the ingress gateway.
The following example uses the information obtained from the steps in Verifying your serverless
application deployment:

Hello Serverless!

$ curl https://hello-default.example.com --cacert <file>

Hello Serverless!

$ oc -n knative-serving-ingress get svc kourier

NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S)
AGE
kourier LoadBalancer 172.30.51.103 a83e86291bcdd11e993af02b7a65e514-
33544245.us-east-1.elb.amazonaws.com 80:31380/TCP,443:31390/TCP 67m

OpenShift Container Platform 4.5 Serverless

42

Example command

Example output

You can also make a gRPC request by setting the authority to the application’s host, while
directing the request against the ingress gateway directly:

注意

Ensure that you append the respective port, 80 by default, to both hosts as
shown in the previous example.

$ curl -H "Host: hello-default.example.com" a83e86291bcdd11e993af02b7a65e514-
33544245.us-east-1.elb.amazonaws.com

Hello Serverless!

grpc.Dial(
 "a83e86291bcdd11e993af02b7a65e514-33544245.us-east-1.elb.amazonaws.com:80",
 grpc.WithAuthority("hello-default.example.com:80"),
 grpc.WithInsecure(),
)

第 6 章 CREATING AND MANAGING SERVERLESS APPLICATIONS

43

第 7 章 HIGH AVAILABILITY ON OPENSHIFT SERVERLESS
High availability (HA) is a standard feature of Kubernetes APIs that helps to ensure that APIs stay
operational if a disruption occurs. In an HA deployment, if an active controller crashes or is deleted,
another controller is available to take over processing of the APIs that were being serviced by the
controller that is now unavailable.

HA in OpenShift Serverless is available through leader election, which is enabled by default after the
Knative Serving control plane is installed.

When using a leader election HA pattern, instances of controllers are already scheduled and running
inside the cluster before they are required. These controller instances compete to use a shared
resource, known as the leader election lock. The instance of the controller that has access to the leader
election lock resource at any given time is referred to as the leader.

7.1. CONFIGURING HIGH AVAILABILITY REPLICAS ON OPENSHIFT
SERVERLESS

High availability (HA) functionality is available by default on OpenShift Serverless for the autoscaler-
hpa, controller, activator, kourier-control, and kourier-gateway components. These components are
configured with two replicas by default.

You modify the number of replicas that are created per controller by changing the configuration of the
KnativeServing.spec.highAvailability spec in the KnativeServing custom resource definition (CRD).

Prerequisites

An OpenShift Container Platform account with cluster administrator access.

Installed the OpenShift Serverless Operator and Knative Serving.

Procedure

1. In the OpenShift Container Platform web console Administrator perspective, navigate to
OperatorHub → Installed Operators.

2. Select the knative-serving namespace.

3. Click Knative Serving in the list of Provided APIs for the OpenShift Serverless Operator to go
to the Knative Serving tab.

OpenShift Container Platform 4.5 Serverless

44

4. Click knative-serving, then go to the YAML tab in the knative-serving page.

5. Edit the custom resource definition YAML:

Example YAML

重要

apiVersion: operator.knative.dev/v1alpha1
kind: KnativeServing
metadata:
 name: knative-serving
 namespace: knative-serving
spec:
 high-availability:
 replicas: 3

第 7 章 HIGH AVAILABILITY ON OPENSHIFT SERVERLESS

45

重要

Do not modify any YAML contained inside the config field. Some of the
configuration values in this field are injected by the OpenShift Serverless
Operator, and modifying them will cause your deployment to become
unsupported.

The default replicas value is 2.

Changing the value to 1 will disable HA, or you can increase the number of replicas as
required. The example configuration shown specifies a replica count of 3 for all HA
controllers.

OpenShift Container Platform 4.5 Serverless

46

第 8 章 TRACING REQUESTS USING JAEGER
Using Jaeger with OpenShift Serverless allows you to enable distributed tracing for your serverless
applications on OpenShift Container Platform.

Distributed tracing records the path of a request through the various services that make up an
application.

It is used to tie information about different units of work together, to understand a whole chain of events
in a distributed transaction. The units of work might be executed in different processes or hosts.

Developers can visualize call flows in large architectures with distributed tracing. which is useful for
understanding serialization, parallelism, and sources of latency.

For more information about Jaeger, see Jaeger architecture and Installing Jaeger.

8.1. CONFIGURING JAEGER FOR USE WITH OPENSHIFT SERVERLESS

Prerequisites

To configure Jaeger for use with OpenShift Serverless, you will need:

Cluster administrator permissions on an OpenShift Container Platform cluster.

You have installed the OpenShift Serverless Operator and Knative Serving.

You have installed the Jaeger Operator.

Procedure

1. Create and apply a Jaeger custom resource YAML file that contains the following sample
YAML:

Jaeger custom resource YAML

2. Enable tracing for Knative Serving, by editing the KnativeServing resource and adding a YAML
configuration for tracing.

Tracing YAML example

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: jaeger
 namespace: default

apiVersion: operator.knative.dev/v1alpha1
kind: KnativeServing
metadata:
 name: knative-serving
 namespace: knative-serving
spec:
 config:
 tracing:
 sample-rate: "0.1" 1

第 8 章 TRACING REQUESTS USING JAEGER

47

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/jaeger/#rhbjaeger-architecture
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/jaeger/#rhbjaeger-installation

1

2

3

4

The sample-rate defines sampling probability. Using sample-rate: "0.1" means that 1 in 10
traces will be sampled.

backend must be set to zipkin.

The zipkin-endpoint must point to your jaeger-collector service endpoint. To get this
endpoint, substitute the namespace where the Jaeger custom resource is applied.

Debugging should be set to false. Enabling debug mode by setting debug: "true" allows
all spans to be sent to the server, bypassing sampling.

Verification

Access the Jaeger web console to see tracing data. You can access the Jaeger web console by using
the jaeger route.

1. Get the hostname of the jaeger route:

Example output

2. Open the endpoint address in your browser to view the console.

 backend: zipkin 2
 zipkin-endpoint: http://jaeger-collector.default.svc.cluster.local:9411/api/v2/spans 3
 debug: "false" 4

$ oc get route jaeger

NAME HOST/PORT PATH SERVICES PORT TERMINATION
WILDCARD
jaeger jaeger-default.apps.example.com jaeger-query <all> reencrypt None

OpenShift Container Platform 4.5 Serverless

48

第 9 章 KNATIVE SERVING

9.1. USING KN TO COMPLETE SERVING TASKS

The Knative CLI (kn) extends the functionality of the oc or kubectl tools to enable interaction with
Knative components on OpenShift Container Platform. kn allows developers to deploy and manage
applications without editing YAML files directly.

9.1.1. Basic workflow using kn

The following basic workflow deploys a simple hello service that reads the environment variable
RESPONSE and prints its output.

You can use this guide as a reference to perform create, read, update, and delete (CRUD) operations on
a service.

Procedure

1. Create a service in the default namespace from an image:

2. List the service:

3. Check if the service is working by using the curl service endpoint command:

4. Update the service:

$ kn service create hello --image docker.io/openshift/hello-openshift --env
RESPONSE="Hello Serverless!"

Creating service 'hello' in namespace 'default':

 0.085s The Route is still working to reflect the latest desired specification.
 0.101s Configuration "hello" is waiting for a Revision to become ready.
 11.590s ...
 11.650s Ingress has not yet been reconciled.
 11.726s Ready to serve.

Service 'hello' created with latest revision 'hello-gsdks-1' and URL:
http://hello-default.apps-crc.testing

$ kn service list

NAME URL LATEST AGE CONDITIONS READY
REASON
hello http://hello-default.apps-crc.testing hello-gsdks-1 8m35s 3 OK / 3 True

$ curl http://hello-default.apps-crc.testing

Hello Serverless!

$ kn service update hello --env RESPONSE="Hello OpenShift!"

第 9 章 KNATIVE SERVING

49

The service’s environment variable RESPONSE is now set to "Hello OpenShift!".

5. Describe the service.

6. Delete the service:

7. Verify that the hello service is deleted by attempting to list it:

9.1.2. Autoscaling workflow using kn

You can access autoscaling capabilities by using kn to modify Knative services without editing YAML
files directly.

Use the service create and service update commands with the appropriate flags to configure the
autoscaling behavior.

Updating Service 'hello' in namespace 'default':

 10.136s Traffic is not yet migrated to the latest revision.
 10.175s Ingress has not yet been reconciled.
 10.348s Ready to serve.

Service 'hello' updated with latest revision 'hello-dghll-2' and URL:
http://hello-default.apps-crc.testing

$ kn service describe hello

Name: hello
Namespace: default
Age: 13m
URL: http://hello-default.apps-crc.testing

Revisions:
 100% @latest (hello-dghll-2) [2] (1m)
 Image: docker.io/openshift/hello-openshift (pinned to 5ea96b)

Conditions:
 OK TYPE AGE REASON
 ++ Ready 1m
 ++ ConfigurationsReady 1m
 ++ RoutesReady 1m

$ kn service delete hello

Service 'hello' successfully deleted in namespace 'default'.

$ kn service list hello

No services found.

OpenShift Container Platform 4.5 Serverless

50

Flag Description

--concurrency-limit
int

Hard limit of concurrent requests to be processed by a single replica.

--concurrency-target
int

Recommendation for when to scale up based on the concurrent number of
incoming requests. Defaults to --concurrency-limit.

--max-scale int Maximum number of replicas.

--min-scale int Minimum number of replicas.

9.1.3. Traffic splitting using kn

kn helps you control which revisions get routed traffic on your Knative service.

Knative service allows for traffic mapping, which is the mapping of revisions of the service to an
allocated portion of traffic. It offers the option to create unique URLs for particular revisions and has the
ability to assign traffic to the latest revision.

With every update to the configuration of the service, a new revision is created with the service route
pointing all the traffic to the latest ready revision by default.

You can change this behavior by defining which revision gets a portion of the traffic.

Procedure

Use the kn service update command with the --traffic flag to update the traffic.

注意

--traffic RevisionName=Percent uses the following syntax:

The --traffic flag requires two values separated by separated by an equals sign
(=).

The RevisionName string refers to the name of the revision.

Percent integer denotes the traffic portion assigned to the revision.

Use identifier @latest for the RevisionName to refer to the latest ready revision
of the service. You can use this identifier only once with the --traffic flag.

If the service update command updates the configuration values for the service
along with traffic flags, the @latest reference will point to the created revision to
which the updates are applied.

--traffic flag can be specified multiple times and is valid only if the sum of the
Percent values in all flags totals 100.

注意

第 9 章 KNATIVE SERVING

51

注意

For example, to route 10% of traffic to your new revision before putting all traffic on, use
the following command:

$ kn service update svc --traffic @latest=10 --traffic svc-vwxyz=90

9.1.3.1. Assigning tag revisions

A tag in a traffic block of service creates a custom URL, which points to a referenced revision. A user can
define a unique tag for an available revision of a service which creates a custom URL by using the format
http(s)://TAG-SERVICE.DOMAIN.

A given tag must be unique to its traffic block of the service. kn supports assigning and unassigning
custom tags for revisions of services as part of the kn service update command.

注意

If you have assigned a tag to a particular revision, a user can reference the revision by its
tag in the --traffic flag as --traffic Tag=Percent.

Procedure

Use the following command:

$ kn service update svc --tag @latest=candidate --tag svc-vwxyz=current

注意

--tag RevisionName=Tag uses the following syntax:

--tag flag requires two values separated by a =.

RevisionName string refers to name of the Revision.

Tag string denotes the custom tag to be given for this Revision.

Use the identifier @latest for the RevisionName to refer to the latest ready
revision of the service. You can use this identifier only once with the --tag flag.

If the service update command is updating the configuration values for the
Service (along with tag flags), @latest reference will be pointed to the created
Revision after applying the update.

--tag flag can be specified multiple times.

--tag flag may assign different tags to the same revision.

9.1.3.2. Unassigning tag revisions

Tags assigned to revisions in a traffic block can be unassigned. Unassigning tags removes the custom
URLs.

注意

OpenShift Container Platform 4.5 Serverless

52

注意

If a revision is untagged and it is assigned 0% of the traffic, it is removed from the traffic
block entirely.

Procedure

A user can unassign the tags for revisions using the kn service update command:

$ kn service update svc --untag candidate

注意

--untag Tag uses the following syntax:

The --untag flag requires one value.

The tag string denotes the unique tag in the traffic block of the service which
needs to be unassigned. This also removes the respective custom URL.

The --untag flag can be specified multiple times.

9.1.3.3. Traffic flag operation precedence

All traffic-related flags can be specified using a single kn service update command. kn defines the
precedence of these flags. The order of the flags specified when using the command is not taken into
account.

The precedence of the flags as they are evaluated by kn are:

1. --untag: All the referenced revisions with this flag are removed from the traffic block.

2. --tag: Revisions are tagged as specified in the traffic block.

3. --traffic: The referenced revisions are assigned a portion of the traffic split.

9.1.3.4. Traffic splitting flags

kn supports traffic operations on the traffic block of a service as part of the kn service update
command.

The following table displays a summary of traffic splitting flags, value formats, and the operation the flag
performs. The "Repetition" column denotes whether repeating the particular value of flag is allowed in a
kn service update command.

Flag Value(s) Operation Repetition

--traffic RevisionName=
Percent

Gives Percent traffic to
RevisionName

Yes

--traffic Tag=Percent Gives Percent traffic to the Revision
having Tag

Yes

第 9 章 KNATIVE SERVING

53

--traffic @latest=Percen
t

Gives Percent traffic to the latest ready
Revision

No

--tag RevisionName=
Tag

Gives Tag to RevisionName Yes

--tag @latest=Tag Gives Tag to the latest ready Revision No

--untag Tag Removes Tag from Revision Yes

Flag Value(s) Operation Repetition

9.2. CONFIGURING KNATIVE SERVING AUTOSCALING

OpenShift Serverless provides capabilities for automatic pod scaling, including scaling inactive pods to
zero, by enabling the Knative Serving autoscaling system in an OpenShift Container Platform cluster.

To enable autoscaling for Knative Serving, you must configure concurrency and scale bounds in the
revision template.

注意

Any limits or targets set in the revision template are measured against a single instance of
your application. For example, setting the target annotation to 50 will configure the
autoscaler to scale the application so that each instance of it will handle 50 requests at a
time.

9.2.1. Configuring concurrent requests for Knative Serving autoscaling

You can specify the number of concurrent requests that should be handled by each instance of an
application (revision container) by adding the target annotation or the containerConcurrency spec in
the revision template.

target annotation used in a revision template

containerConcurrency spec used in a revision template

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: myapp
spec:
 template:
 metadata:
 annotations:
 autoscaling.knative.dev/target: 50
 spec:
 containers:
 - image: myimage

OpenShift Container Platform 4.5 Serverless

54

Adding a value for both target and containerConcurrency will target the target number of concurrent
requests, but impose a hard limit of the containerConcurrency number of requests.

For example, if the target value is 50 and the containerConcurrency value is 100, the targeted number
of requests will be 50, but the hard limit will be 100.

If the containerConcurrency value is less than the target value, the target value will be tuned down,
since there is no need to target more requests than the number that can actually be handled.

注意

containerConcurrency should only be used if there is a clear need to limit how many
requests reach the application at a given time. Using containerConcurrency is only
advised if the application needs to have an enforced constraint of concurrency.

9.2.1.1. Configuring concurrent requests using the target annotation

The default target for the number of concurrent requests is 100, but you can override this value by
adding or modifying the autoscaling.knative.dev/target annotation value in the revision template.

Here is an example of how this annotation is used in the revision template to set the target to 50.

9.2.1.2. Configuring concurrent requests using the containerConcurrency field

containerConcurrency sets a hard limit on the number of concurrent requests handled.

0

allows unlimited concurrent requests.

1

guarantees that only one request is handled at a time by a given instance of the revision container.

2 or more

will limit request concurrency to that value.

注意

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: myapp
spec:
 template:
 metadata:
 annotations:
 spec:
 containerConcurrency: 100
 containers:
 - image: myimage

autoscaling.knative.dev/target: 50

containerConcurrency: 0 | 1 | 2-N

第 9 章 KNATIVE SERVING

55

注意

If there is no target annotation, autoscaling is configured as if target is equal to the value
of containerConcurrency.

9.2.2. Configuring scale bounds Knative Serving autoscaling

The minScale and maxScale annotations can be used to configure the minimum and maximum number
of pods that can serve applications. These annotations can be used to prevent cold starts or to help
control computing costs.

minScale

If the minScale annotation is not set, pods will scale to zero (or to 1 if enable-scale-to-zero is false
per the ConfigMap).

maxScale

If the maxScale annotation is not set, there will be no upper limit for the number of pods created.

The minScale and maxScale annotations can be configured as follows in the revision template:

Using these annotations in the revision template will propagate this configuration to PodAutoscaler
objects.

注意

These annotations apply for the full lifetime of a revision. Even when a revision is not
referenced by any route, the minimal pod count specified by the minScale annotation will
still be provided. Keep in mind that non-routeable revisions may be garbage collected,
which enables Knative to reclaim the resources.

9.3. CLUSTER LOGGING WITH OPENSHIFT SERVERLESS

9.3.1. About deploying cluster logging

OpenShift Container Platform cluster administrators can deploy cluster logging using the OpenShift
Container Platform web console or CLI to install the Elasticsearch Operator and Cluster Logging
Operator. When the operators are installed, you create a ClusterLogging custom resource (CR) to
schedule cluster logging pods and other resources necessary to support cluster logging. The operators
are responsible for deploying, upgrading, and maintaining cluster logging.

The ClusterLogging CR defines a complete cluster logging environment that includes all the
components of the logging stack to collect, store and visualize logs. The Cluster Logging Operator
watches the Cluster Logging CR and adjusts the logging deployment accordingly.

Administrators and application developers can view the logs of the projects for which they have view
access.

spec:
 template:
 metadata:
 annotations:
 autoscaling.knative.dev/minScale: "2"
 autoscaling.knative.dev/maxScale: "10"

OpenShift Container Platform 4.5 Serverless

56

9.3.2. About deploying and configuring cluster logging

OpenShift Container Platform cluster logging is designed to be used with the default configuration,
which is tuned for small to medium sized OpenShift Container Platform clusters.

The installation instructions that follow include a sample ClusterLogging custom resource (CR), which
you can use to create a cluster logging instance and configure your cluster logging environment.

If you want to use the default cluster logging install, you can use the sample CR directly.

If you want to customize your deployment, make changes to the sample CR as needed. The following
describes the configurations you can make when installing your cluster logging instance or modify after
installation. See the Configuring sections for more information on working with each component,
including modifications you can make outside of the ClusterLogging custom resource.

9.3.2.1. Configuring and Tuning Cluster Logging

You can configure your cluster logging environment by modifying the ClusterLogging custom resource
deployed in the openshift-logging project.

You can modify any of the following components upon install or after install:

Memory and CPU

You can adjust both the CPU and memory limits for each component by modifying the resources
block with valid memory and CPU values:

spec:
 logStore:
 elasticsearch:
 resources:
 limits:
 cpu:
 memory: 16Gi
 requests:
 cpu: 500m
 memory: 16Gi
 type: "elasticsearch"
 collection:
 logs:
 fluentd:
 resources:
 limits:
 cpu:
 memory:
 requests:
 cpu:
 memory:
 type: "fluentd"
 visualization:
 kibana:
 resources:
 limits:
 cpu:
 memory:
 requests:
 cpu:

第 9 章 KNATIVE SERVING

57

 memory:
 type: kibana
 curation:
 curator:
 resources:
 limits:
 memory: 200Mi
 requests:
 cpu: 200m
 memory: 200Mi
 type: "curator"

Elasticsearch storage

You can configure a persistent storage class and size for the Elasticsearch cluster using the
storageClass name and size parameters. The Cluster Logging Operator creates a persistent
volume claim (PVC) for each data node in the Elasticsearch cluster based on these parameters.

 spec:
 logStore:
 type: "elasticsearch"
 elasticsearch:
 nodeCount: 3
 storage:
 storageClassName: "gp2"
 size: "200G"

This example specifies each data node in the cluster will be bound to a PVC that requests "200G" of
"gp2" storage. Each primary shard will be backed by a single replica.

注意

Omitting the storage block results in a deployment that includes ephemeral storage only.

 spec:
 logStore:
 type: "elasticsearch"
 elasticsearch:
 nodeCount: 3
 storage: {}

Elasticsearch replication policy

You can set the policy that defines how Elasticsearch shards are replicated across data nodes in the
cluster:

FullRedundancy. The shards for each index are fully replicated to every data node.

MultipleRedundancy. The shards for each index are spread over half of the data nodes.

SingleRedundancy. A single copy of each shard. Logs are always available and recoverable
as long as at least two data nodes exist.

ZeroRedundancy. No copies of any shards. Logs may be unavailable (or lost) in the event a
node is down or fails.

OpenShift Container Platform 4.5 Serverless

58

Curator schedule

You specify the schedule for Curator in the cron format.

 spec:
 curation:
 type: "curator"
 resources:
 curator:
 schedule: "30 3 * * *"

9.3.2.2. Sample modified ClusterLogging custom resource

The following is an example of a ClusterLogging custom resource modified using the options previously
described.

Sample modified ClusterLogging custom resource

apiVersion: "logging.openshift.io/v1"
kind: "ClusterLogging"
metadata:
 name: "instance"
 namespace: "openshift-logging"
spec:
 managementState: "Managed"
 logStore:
 type: "elasticsearch"
 retentionPolicy:
 application:
 maxAge: 1d
 infra:
 maxAge: 7d
 audit:
 maxAge: 7d
 elasticsearch:
 nodeCount: 3
 resources:
 limits:
 memory: 32Gi
 requests:
 cpu: 3
 memory: 32Gi
 storage: {}
 redundancyPolicy: "SingleRedundancy"
 visualization:
 type: "kibana"
 kibana:
 resources:
 limits:
 memory: 1Gi
 requests:
 cpu: 500m
 memory: 1Gi
 replicas: 1
 curation:

第 9 章 KNATIVE SERVING

59

https://en.wikipedia.org/wiki/Cron

 type: "curator"
 curator:
 resources:
 limits:
 memory: 200Mi
 requests:
 cpu: 200m
 memory: 200Mi
 schedule: "*/5 * * * *"
 collection:
 logs:
 type: "fluentd"
 fluentd:
 resources:
 limits:
 memory: 1Gi
 requests:
 cpu: 200m
 memory: 1Gi

9.3.3. Using cluster logging to find logs for Knative Serving components

Procedure

1. To open the Kibana UI, the visualization tool for Elasticsearch, use the following command to
get the Kibana route:

$ oc -n openshift-logging get route kibana

2. Use the route’s URL to navigate to the Kibana dashboard and log in.

3. Ensure the index is set to .all. If the index is not set to .all, only the OpenShift system logs will be
listed.

4. You can filter the logs by using the knative-serving namespace. Enter
kubernetes.namespace_name:knative-serving in the search box to filter results.

注意

Knative Serving uses structured logging by default. You can enable the parsing of
these logs by customizing the cluster logging Fluentd settings. This makes the
logs more searchable and enables filtering on the log level to quickly identify
issues.

9.3.4. Using cluster logging to find logs for services deployed with Knative Serving

With OpenShift Cluster Logging, the logs that your applications write to the console are collected in
Elasticsearch. The following procedure outlines how to apply these capabilities to applications deployed
by using Knative Serving.

Procedure

1. Use the following command to find the URL to Kibana:

OpenShift Container Platform 4.5 Serverless

60

$ oc -n cluster-logging get route kibana`

2. Enter the URL in your browser to open the Kibana UI.

3. Ensure the index is set to .all. If the index is not set to .all, only the OpenShift system logs will be
listed.

4. Filter the logs by using the Kubernetes namespace your service is deployed in. Add a filter to
identify the service itself: kubernetes.namespace_name:default AND
kubernetes.labels.serving_knative_dev\/service:{SERVICE_NAME}.

注意

You can also filter by using /configuration or /revision.

5. You can narrow your search by using kubernetes.container_name:<user-container> to only
display the logs generated by your application. Otherwise, you will see logs from the queue-
proxy.

注意

Use JSON-based structured logging in your application to allow for the quick
filtering of these logs in production environments.

9.4. SPLITTING TRAFFIC BETWEEN REVISIONS

9.4.1. Splitting traffic between revisions using the Developer perspective

After you create a serverless application, the serverless application is displayed in the Topology view of
the Developer perspective. The application revision is represented by the node and the serverless
resource service is indicated by a quadrilateral around the node.

Any new change in the code or the service configuration triggers a revision, a snapshot of the code at a
given time. For a service, you can manage the traffic between the revisions of the service by splitting
and routing it to the different revisions as required.

Procedure

To split traffic between multiple revisions of an application in the Topology view:

1. Click the serverless resource service, indicated by the quadrilateral, to see its overview in the
side panel.

2. Click the Resources tab, to see a list of Revisions and Routes for the service.

图 9.1. Serverless application

第 9 章 KNATIVE SERVING

61

图 9.1. Serverless application

3. Click the service, indicated by the S icon at the top of the side panel, to see an overview of the
service details.

4. Click the YAML tab and modify the service configuration in the YAML editor, and click Save.
For example, change the timeoutseconds from 300 to 301 . This change in the configuration
triggers a new revision. In the Topology view, the latest revision is displayed and the Resources
tab for the service now displays the two revisions.

5. In the Resources tab, click the Set Traffic Distribution button to see the traffic distribution
dialog box:

a. Add the split traffic percentage portion for the two revisions in the Splits field.

b. Add tags to create custom URLs for the two revisions.

c. Click Save to see two nodes representing the two revisions in the Topology view.

图 9.2. Serverless application revisions

OpenShift Container Platform 4.5 Serverless

62

第 10 章 EVENT WORKFLOWS

10.1. EVENT DELIVERY WORKFLOWS USING BROKERS AND TRIGGERS

Brokers can be used in combination with triggers to deliver events from an event source to an event
sink.

Events can be sent from an event source to a broker as an HTTP POST request.

After events have entered the broker, they can be filtered by CloudEvent attributes using triggers, and
sent as an HTTP POST request to an event sink.

10.1.1. Creating a broker

OpenShift Serverless provides a default Knative broker that can be created by using the Knative CLI.
You can also create the default broker by adding the eventing.knative.dev/injection=enabled label to
a namespace if you are a cluster administrator, or by adding the eventing.knative.dev/injection:
enabled annotation to a trigger if you are a developer.

重要

Although both developers and cluster administrators can add a broker by injection, only
cluster administrators can permanently delete brokers that were created using this
method.

10.1.1.1. Creating a broker using the Knative CLI

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

You have installed the kn CLI.

Procedure

Create the default broker:

$ kn broker create default

第 10 章 EVENT WORKFLOWS

63

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/serverless/#serverless-using-brokers-triggers
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/serverless/#knative-event-sources
https://github.com/cloudevents/spec/blob/v1.0/spec.md#context-attributes

Verification

1. Use the kn command to list all existing brokers:

Example output

2. Optional: If you are using the OpenShift Container Platform web console, you can navigate to
the Topology view in the Developer perspective, and observe that the broker exists:

10.1.1.2. Creating a broker by annotating a trigger

You can create a broker by adding the eventing.knative.dev/injection: enabled annotation to a
Trigger object.

重要

If you create a broker by using the eventing.knative.dev/injection: enabled annotation,
you cannot delete this broker without cluster administrator permissions. If you delete the
broker without having a cluster administrator remove this annotation first, the broker is
created again after deletion.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

Procedure

1. Create a Trigger object as a .yaml file that has the eventing.knative.dev/injection: enabled
annotation:

$ kn broker list

NAME URL AGE CONDITIONS READY
REASON
default http://broker-ingress.knative-eventing.svc.cluster.local/test/default 45s 5 OK / 5
True

apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:

OpenShift Container Platform 4.5 Serverless

64

1 Specify details about the event sink, or subscriber, that the trigger sends events to.

2. Apply the .yaml file:

Verification

You can verify that the broker has been created successfully by using the oc CLI, or by observing it in
the Topology view in the web console.

1. Use the oc command to get the broker:

Example output

2. Navigate to the Topology view in the web console, and observe that the broker exists:

10.1.1.3. Creating a broker by labeling a namespace

If you have cluster administrator permissions, you can create the default broker automatically by
labeling a namespace.

注意

 annotations:
 eventing.knative.dev/injection: enabled
 name: <trigger-name>
spec:
 broker: default
 subscriber: 1
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: <service-name>

$ oc apply -f <filename>

$ oc -n <namespace> get broker default

NAME READY REASON URL AGE
default True http://broker-ingress.knative-eventing.svc.cluster.local/test/default
3m56s

第 10 章 EVENT WORKFLOWS

65

注意

Brokers created using this method will not be removed if you remove the label. You must
manually delete them.

Prerequisites

The OpenShift Serverless Operator and Knative Eventing are installed on your OpenShift
Container Platform cluster.

You have cluster administrator permissions for OpenShift Container Platform.

Procedure

Label a namespace with eventing.knative.dev/injection=enabled:

Verification

You can verify that the broker has been created successfully by using the oc CLI, or by observing it in
the Topology view in the web console.

1. Use the oc command to get the broker:

Example command

Example output

2. Navigate to the Topology view in the web console, and observe that the broker exists:

10.1.2. Managing brokers

$ oc label namespace <namespace> eventing.knative.dev/injection=enabled

$ oc -n <namespace> get broker <broker_name>

$ oc -n default get broker default

NAME READY REASON URL AGE
default True http://broker-ingress.knative-eventing.svc.cluster.local/test/default
3m56s

OpenShift Container Platform 4.5 Serverless

66

The kn CLI provides commands that can be used to list, describe, update, and delete brokers. Cluster
administrators can also permanently delete a broker that was created using injection.

10.1.2.1. Listing existing brokers using the Knative CLI

Prerequisites

The OpenShift Serverless Operator, Knative Serving and Knative Eventing are installed on your
OpenShift Container Platform cluster.

You have installed the kn CLI.

Procedure

List all existing brokers:

Example output

10.1.2.2. Describing an existing broker using the Knative CLI

Prerequisites

The OpenShift Serverless Operator, Knative Serving and Knative Eventing are installed on your
OpenShift Container Platform cluster.

You have installed the kn CLI.

Procedure

Describe an existing broker:

Example command using default broker

Example output

$ kn broker list

NAME URL AGE CONDITIONS READY
REASON
default http://broker-ingress.knative-eventing.svc.cluster.local/test/default 45s 5 OK / 5
True

$ kn broker describe <broker_name>

$ kn broker describe default

Name: default
Namespace: default
Annotations: eventing.knative.dev/broker.class=MTChannelBasedBroker,
eventing.knative.dev/creato ...
Age: 22s

第 10 章 EVENT WORKFLOWS

67

10.1.2.3. Deleting a broker that was created by injection

Brokers created by injection, by using a namespace label or trigger annotation, are not deleted
permanently if a developer removes the label or annotation. A user with cluster administrator
permissions must manually delete these brokers.

Procedure

1. Remove the eventing.knative.dev/injection=enabled label from the namespace:

Removing the annotation prevents Knative from recreating the broker after you delete it.

2. Delete the broker from the selected namespace:

Verification

Use the oc command to get the broker:

Example command

Example output

10.1.3. Filtering events using triggers

Using triggers enables you to filter events from the broker for delivery to event sinks.

Prerequisites

Before you can use triggers, you will need:

Knative Eventing and kn installed.

Address:
 URL: http://broker-ingress.knative-eventing.svc.cluster.local/default/default

Conditions:
 OK TYPE AGE REASON
 ++ Ready 22s
 ++ Addressable 22s
 ++ FilterReady 22s
 ++ IngressReady 22s
 ++ TriggerChannelReady 22s

$ oc label namespace <namespace> eventing.knative.dev/injection-

$ oc -n <namespace> delete broker <broker_name>

$ oc -n <namespace> get broker <broker_name>

$ oc -n default get broker default

No resources found.
Error from server (NotFound): brokers.eventing.knative.dev "default" not found

OpenShift Container Platform 4.5 Serverless

68

An available broker, either the default broker or one that you have created.
You can create the default broker either by following the instructions on Using brokers with
Knative Eventing, or by using the --inject-broker flag while creating a trigger. Use of this flag is
described later in this section.

An available event consumer, such as a Knative service.

10.1.3.1. Creating a trigger using the Developer perspective

After you have created a broker, you can create a trigger in the web console Developer perspective.

Prerequisites

The OpenShift Serverless Operator, Knative Serving, and Knative Eventing are installed on your
OpenShift Container Platform cluster.

You have logged in to the web console.

You are in the Developer perspective.

You have created a project or have access to a project with the appropriate roles and
permissions to create applications and other workloads in OpenShift Container Platform.

You have created a broker and a Knative service or other event sink to connect to the trigger.

Procedure

1. In the Developer perspective, navigate to the Topology page.

2. Hover over the broker that you want to create a trigger for, and drag the arrow. The Add
Trigger option is displayed.

第 10 章 EVENT WORKFLOWS

69

3. Click Add Trigger.

4. Select your sink as a Subscriber from the drop-down list.

5. Click Add.

Verification

After the subscription has been created, it is represented as a line that connects the broker to
the service in the Topology view:

10.1.3.2. Deleting a trigger using the Developer perspective

You can delete triggers in the web console Developer perspective.

Prerequisites

To delete a trigger using the Developer perspective, ensure that you have logged in to the web
console.

Procedure

1. In the Developer perspective, navigate to the Topology page.

2. Click on the trigger that you want to delete.

3. In the Actions context menu, select Delete Trigger.

OpenShift Container Platform 4.5 Serverless

70

10.1.3.3. Creating a trigger using kn

You can create a trigger by using the kn trigger create command.

Procedure

Create a trigger:

Alternatively, you can create a trigger and simultaneously create the default broker using broker
injection:

By default, triggers forward all events sent to a broker to sinks that are subscribed to that
broker. Using the --filter attribute for triggers allows you to filter events from a broker, so that
subscribers will only receive a subset of events based on your defined criteria.

10.1.3.4. Listing triggers using kn

The kn trigger list command prints a list of available triggers.

Procedure

1. To print a list of available triggers, enter the following command:

$ kn trigger create <trigger_name> --broker <broker_name> --filter <key=value> --sink
<sink_name>

$ kn trigger create <trigger_name> --inject-broker --filter <key=value> --sink <sink_name>

第 10 章 EVENT WORKFLOWS

71

Example output:

2. Optional: Print a list of triggers in JSON format:

10.1.3.4.1. Describing a trigger using kn

You can use the kn trigger describe command to print information about a trigger.

Procedure

To print information about a trigger, enter the following command:

Example output

10.1.3.4.2. Filtering events using triggers

In the following trigger example, only events with attribute type: dev.knative.samples.helloworld will
reach the event consumer.

$ kn trigger list

NAME BROKER SINK AGE CONDITIONS READY REASON
email default ksvc:edisplay 4s 5 OK / 5 True
ping default ksvc:edisplay 32s 5 OK / 5 True

$ kn trigger list -o json

$ kn trigger describe <trigger_name>

Name: ping
Namespace: default
Labels: eventing.knative.dev/broker=default
Annotations: eventing.knative.dev/creator=kube:admin,
eventing.knative.dev/lastModifier=kube:admin
Age: 2m
Broker: default
Filter:
 type: dev.knative.event

Sink:
 Name: edisplay
 Namespace: default
 Resource: Service (serving.knative.dev/v1)

Conditions:
 OK TYPE AGE REASON
 ++ Ready 2m
 ++ BrokerReady 2m
 ++ DependencyReady 2m
 ++ Subscribed 2m
 ++ SubscriberResolved 2m

OpenShift Container Platform 4.5 Serverless

72

$ kn trigger create <trigger_name> --broker <broker_name> --filter
type=dev.knative.samples.helloworld --sink ksvc:<service_name>

You can also filter events using multiple attributes. The following example shows how to filter events
using the type, source, and extension attributes.

$ kn trigger create <trigger_name> --broker <broker_name> --sink ksvc:<service_name> \
--filter type=dev.knative.samples.helloworld \
--filter source=dev.knative.samples/helloworldsource \
--filter myextension=my-extension-value

10.1.3.4.3. Updating a trigger using kn

You can use the kn trigger update command with certain flags to quickly update attributes of a trigger.

Procedure

Update a trigger:

You can update a trigger to filter exact event attributes that match incoming events. For
example, using the type attribute:

You can remove a filter attribute from a trigger. For example, you can remove the filter
attribute with key type:

You can use the --sink parameter to change the event sink of a trigger:

10.1.3.4.4. Deleting a trigger using kn

Procedure

Delete a trigger:

Verification

1. List existing triggers:

2. Verify that the trigger no longer exists:

$ kn trigger update <trigger_name> --filter <key=value> --sink <sink_name> [flags]

$ kn trigger update mytrigger --filter type=knative.dev.event

$ kn trigger update mytrigger --filter type-

$ kn trigger update <trigger_name> --sink ksvc:my-event-sink

$ kn trigger delete <trigger_name>

$ kn trigger list

第 10 章 EVENT WORKFLOWS

73

Example output

10.2. EVENT DELIVERY WORKFLOWS USING CHANNELS

Events can be sent from a source to a sink by using channels and subscriptions for event delivery.

Channels are custom resources that define a single event-forwarding and persistence layer.

After events have been sent to a channel, these events can be sent to multiple Knative services, or other
sinks, by using a subscription.

The default configuration for channel instances is defined in the default-ch-webhook config map.
Developers can create their own channels directly by instantiating a supported Channel object.

10.2.1. Supported channel types

Currently, OpenShift Serverless only supports InMemoryChannel kind channels for development use,
as part of the Knative Eventing Technology Preview.

The following are limitations of InMemoryChannel channels:

No event persistence is available. If a pod goes down, events on that pod are lost.

InMemoryChannel channels do not implement event ordering, so two events that are received
in the channel at the same time can be delivered to a subscriber in any order.

If a subscriber rejects an event, there are no re-delivery attempts. Instead, the rejected event is
sent to a deadLetterSink object if this exists, or is dropped.

10.2.1.1. Using the default development channel configuration

When you install Knative Eventing, the following default-ch-webhook config map is created
automatically in the knative-eventing namespace:

No triggers found.

apiVersion: v1
kind: ConfigMap
metadata:
 name: default-ch-webhook

OpenShift Container Platform 4.5 Serverless

74

This config map can specify either a cluster-wide default channel implementation, or a namespace-
specific default channel implementation. Configuring a namespace-specific default overrides any
cluster-wide settings.

After you create a Channel object, a mutating admission webhook adds a set of spec.channelTemplate
properties for the Channel object based on the default channel implementation.

Example Channel object with spec.channelTemplate properties

The channel controller then creates the backing channel instance based on the spec.channelTemplate
configuration.

注意

The spec.channelTemplate properties cannot be changed after creation, because they
are set by the default channel mechanism rather than by the user.

When this mechanism is used, two objects are created: a generic channel, and an InMemoryChannel
channel.

The generic channel acts as a proxy that copies its subscriptions to the InMemoryChannel channel, and
sets its status to reflect the status of the backing InMemoryChannel channel.

Because the channel in this example is created in the default namespace, the channel uses the cluster
default, which is InMemoryChannel.

10.2.2. Creating a development channel

Procedure

You can create a channel using the cluster default configuration by completing the following procedure.

1. Create a Channel object.

a. Create a YAML file and copy the following sample code into it:

 namespace: knative-eventing
data:
 default-ch-config: |
 clusterDefault:
 apiVersion: messaging.knative.dev/v1
 kind: InMemoryChannel
 namespaceDefaults:
 some-namespace:
 apiVersion: messaging.knative.dev/v1
 kind: InMemoryChannel

apiVersion: messaging.knative.dev/v1
kind: Channel
metadata:
 name: example-channel
 namespace: default
spec:
 channelTemplate:
 apiVersion: messaging.knative.dev/v1
 kind: InMemoryChannel

第 10 章 EVENT WORKFLOWS

75

1

2

3

4

a. Create a YAML file and copy the following sample code into it:

b. Apply the YAML file by entering:

10.2.3. Creating a subscription

You can create a Subscription object to connect a channel to a sink. In the following procedure, the
example sink is a Knative service named error-handler.

Procedure

1. Create a YAML file and copy the following sample code into it:

Name of the subscription.

Configuration settings for the channel that the subscription connects to.

Configuration settings for event delivery. This tells the subscription what happens to
events that cannot be delivered to the subscriber. When this is configured, events that
failed to be consumed are sent to the deadLetterSink. The event is dropped, no re-
delivery of the event is attempted, and an error is logged in the system. The
deadLetterSink value must be a Destination.

Configuration settings for the subscriber. This is the event sink that events are delivered to
from the channel.

apiVersion: messaging.knative.dev/v1
kind: Channel
metadata:
 name: example-channel
 namespace: default

$ oc apply -f <filename>

apiVersion: messaging.knative.dev/v1beta1
kind: Subscription
metadata:
 name: my-subscription 1
 namespace: default
spec:
 channel: 2
 apiVersion: messaging.knative.dev/v1beta1
 kind: Channel
 name: example-channel
 delivery: 3
 deadLetterSink:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: error-handler
 subscriber: 4
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: event-display

OpenShift Container Platform 4.5 Serverless

76

https://pkg.go.dev/knative.dev/pkg/apis/duck/v1?tab=doc#Destination

2. Apply the YAML file:

$ oc apply -f <FILENAME>

第 10 章 EVENT WORKFLOWS

77

第 11 章 EVENT SOURCES

11.1. GETTING STARTED WITH EVENT SOURCES

An event source is an object that links an event producer with an event sink, or consumer. A sink can be a
Knative service, channel, or broker that receives events from an event source.

11.1.1. Creating event sources

Currently, OpenShift Serverless supports the following event source types:

API server source

Connects a sink to the Kubernetes API server by creating an APIServerSource object.

Ping source

Periodically sends ping events with a constant payload. A ping source can be used as a timer, and is
created as a PingSource object.

Sink binding is also supported, which allows you to connect core Kubernetes resources such as
Deployment, Job, or StatefulSet with a sink.

You can create and manage Knative event sources using the Developer perspective in the OpenShift
Container Platform web console, the kn CLI, or by applying YAML files.

Create an API server source.

Create a ping source.

Create a sink binding.

11.1.2. Additional resources

For more information about eventing workflows using OpenShift Serverless, see Knative
Eventing architecture.

11.2. USING THE KNATIVE CLI TO LIST EVENT SOURCES AND EVENT
SOURCE TYPES

You can use the kn CLI to list and manage available event sources or event source types for use with
Knative Eventing.

Currently, kn supports management of the following event source types:

API server source

Connects a sink to the Kubernetes API server by creating an APIServerSource object.

Ping source

Periodically sends ping events with a constant payload. A ping source can be used as a timer, and is
created as a PingSource object.

11.2.1. Listing available event source types using the Knative CLI

You can list the available event source types in the terminal by using the following command:

OpenShift Container Platform 4.5 Serverless

78

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/serverless/#serverless-sinkbinding
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/serverless/#serverless-apiserversource
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/serverless/#serverless-pingsource
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/serverless/#serverless-sinkbinding
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/serverless/#serverless-event-architecture

The default output for this command will look like:

It is also possible to list available event source types in YAML format:

11.2.2. Listing available event sources using the Knative CLI

You can list the available event sources in the terminal by entering the following command:

Example output

You can list event sources of a specific type only, by using the --type flag.

Example output

11.2.3. Next steps

See the documentation on Using the API server source.

See the documentation on Using a ping source .

11.3. USING THE API SERVER SOURCE

An API server source is an event source that can be used to connect an event sink, such as a Knative
service, to the Kubernetes API server. An API server source watches for Kubernetes events and
forwards them to the Knative Eventing broker.

11.3.1. Prerequisites

You must have a current installation of OpenShift Serverless, including Knative Serving and

$ kn source list-types

TYPE NAME DESCRIPTION
ApiServerSource apiserversources.sources.knative.dev Watch and send Kubernetes API
events to a sink
PingSource pingsources.sources.knative.dev Periodically send ping events to a sink
SinkBinding sinkbindings.sources.knative.dev Binding for connecting a PodSpecable to
a sink

$ kn source list-types -o yaml

$ kn source list

NAME TYPE RESOURCE SINK READY
a1 ApiServerSource apiserversources.sources.knative.dev ksvc:eshow2 True
b1 SinkBinding sinkbindings.sources.knative.dev ksvc:eshow3 False
p1 PingSource pingsources.sources.knative.dev ksvc:eshow1 True

$ kn source list --type PingSource

NAME TYPE RESOURCE SINK READY
p1 PingSource pingsources.sources.knative.dev ksvc:eshow1 True

第 11 章 EVENT SOURCES

79

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/event_sources/#serverless-apiserversource
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/event_sources/#serverless-pingsource

You must have a current installation of OpenShift Serverless, including Knative Serving and
Eventing, in your OpenShift Container Platform cluster. This can be installed by a cluster
administrator.

Event sources need a service to use as an event sink. The sink is the service or application that
events are sent to from the event source.

You must create or update a service account, role and role binding for the event source.

注意

Some of the following procedures require you to create YAML files.

If you change the names of the YAML files from those used in the examples, you must
ensure that you also update the corresponding CLI commands.

11.3.2. Creating a service account, role, and binding for event sources

Procedure

1. Create a service account, role, and role binding for the event source by creating a file named
authentication.yaml and copying the following sample code into it:

apiVersion: v1
kind: ServiceAccount
metadata:
 name: events-sa
 namespace: default 1

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: event-watcher
 namespace: default 2
rules:
 - apiGroups:
 - ""
 resources:
 - events
 verbs:
 - get
 - list
 - watch

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: k8s-ra-event-watcher
 namespace: default 3
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: event-watcher

OpenShift Container Platform 4.5 Serverless

80

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/serverless/#serverless-install-web-console_installing-openshift-serverless

1 2 3 4 Change this namespace to the namespace that you have selected for installing the
event source.

注意

If you want to re-use an existing service account with the appropriate
permissions, you must modify the authentication.yaml for that service account.

2. Create the service account, role binding, and cluster binding by entering the following
command:

11.3.3. Creating an ApiServerSource event source using the Developer perspective

Procedure

1. Navigate to the Add page and select Event Source.

2. In the Event Sources page, select ApiServerSource in the Type section.

3. Configure the ApiServerSource settings:

a. Enter v1 as the APIVERSION, and Event as the KIND.

subjects:
 - kind: ServiceAccount
 name: events-sa
 namespace: default 4

$ oc apply --filename authentication.yaml

第 11 章 EVENT SOURCES

81

b. Select the Service Account Name for the service account that you created.

c. Select the targeted Knative service from the dropdown menu in Sink → Knative Service.

4. Click Create.

Verification

1. After you have created the ApiServerSource, you will see it connected to the service it is sinked
to in the Topology view.

11.3.4. Deleting the ApiServerSource

Procedure

1. Navigate to the Topology view.

2. Right-click the ApiServerSource and select Delete ApiServerSource.

OpenShift Container Platform 4.5 Serverless

82

11.3.5. Using the API server source with the Knative CLI

This section describes the steps required to create an ApiServerSource object using kn commands.

Prerequisites

Knative Serving and Eventing are installed on your cluster.

You have created the default broker in the same namespace that the API server source will be
installed in.

You have the kn CLI installed.

Procedure

1. Create a service account, role, and role binding for the ApiServerSource object.
You can do this by creating a file named authentication.yaml and copying the following sample
code into it:

apiVersion: v1
kind: ServiceAccount
metadata:
 name: events-sa
 namespace: default 1

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: event-watcher
 namespace: default 2
rules:

第 11 章 EVENT SOURCES

83

1 2 3 4 Change this namespace to the namespace that you have selected for installing the
API server source.

注意

If you want to reuse an existing service account with the appropriate permissions,
you must modify the authentication.yaml file for that service account.

Create the service account, role binding, and cluster binding:

2. Create an ApiServerSource object that uses a broker as an event sink:

3. Create a Knative service that dumps incoming messages to its log:

4. Create a trigger to filter events from the default broker to the service:

5. Create events by launching a pod in the default namespace:

 - apiGroups:
 - ""
 resources:
 - events
 verbs:
 - get
 - list
 - watch

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: k8s-ra-event-watcher
 namespace: default 3
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: event-watcher
subjects:
 - kind: ServiceAccount
 name: events-sa
 namespace: default 4

$ oc apply -f authentication.yaml

$ kn source apiserver create <event_source_name> --sink broker:<broker_name> --
resource "event:v1" --service-account <service_account_name> --mode Resource

$ kn service create <service_name> --image quay.io/openshift-knative/knative-eventing-
sources-event-display:latest

$ kn trigger create <trigger_name> --sink ksvc:<service_name>

OpenShift Container Platform 4.5 Serverless

84

6. Check that the controller is mapped correctly by inspecting the output generated by the
following command:

Example output

Verification

You can verify that the Kubernetes events were sent to Knative by looking at the message dumper
function logs.

1. Get the pods:

2. View the message dumper function logs for the pods:

Example output

$ oc create deployment hello-node --image=quay.io/openshift-knative/knative-eventing-
sources-event-display

$ kn source apiserver describe testevents

Name: testevents
Namespace: default
Annotations: sources.knative.dev/creator=developer,
sources.knative.dev/lastModifier=developer
Age: 3m
ServiceAccountName: events-sa
Mode: Resource
Sink:
 Name: default
 Namespace: default
 Kind: Broker (eventing.knative.dev/v1)
Resources:
 Kind: event (v1)
 Controller: false
Conditions:
 OK TYPE AGE REASON
 ++ Ready 3m
 ++ Deployed 3m
 ++ SinkProvided 3m
 ++ SufficientPermissions 3m
 ++ EventTypesProvided 3m

$ oc get pods

$ oc logs $(oc get pod -o name | grep event-display) -c user-container

☁� cloudevents.Event
Validation: valid
Context Attributes,
 specversion: 1.0
 type: dev.knative.apiserver.resource.update
 datacontenttype: application/json
 ...

第 11 章 EVENT SOURCES

85

11.3.6. Deleting an API server source using the Knative CLI

This section describes the steps used to delete the ApiServerSource object, trigger, service, service
account, cluster role, and cluster binding using the kn and oc commands.

Prerequisites

You must have the kn CLI installed.

Procedure

1. Delete the trigger:

2. Delete the service:

3. Delete the API server source:

4. Delete the service account, cluster role, and cluster binding:

11.3.7. Creating an API server source using YAML files

This guide describes the steps required to create an ApiServerSource object using YAML files.

Data,
 {
 "apiVersion": "v1",
 "involvedObject": {
 "apiVersion": "v1",
 "fieldPath": "spec.containers{hello-node}",
 "kind": "Pod",
 "name": "hello-node",
 "namespace": "default",

 },
 "kind": "Event",
 "message": "Started container",
 "metadata": {
 "name": "hello-node.159d7608e3a3572c",
 "namespace": "default",

 },
 "reason": "Started",
 ...
 }

$ kn trigger delete <trigger_name>

$ kn service delete <service_name>

$ kn source apiserver delete <source_name>

$ oc delete -f authentication.yaml

OpenShift Container Platform 4.5 Serverless

86

1 2 3 4

Prerequisites

Knative Serving and Eventing are installed on your cluster.

You have created the default broker in the same namespace as the one defined in the
ApiServerSource object.

Procedure

1. To create a service account, role, and role binding for the API server source, create a file named
authentication.yaml and copy the following sample code into it:

Change this namespace to the namespace that you have selected for installing the
API server source.

注意

apiVersion: v1
kind: ServiceAccount
metadata:
 name: events-sa
 namespace: default 1

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: event-watcher
 namespace: default 2
rules:
 - apiGroups:
 - ""
 resources:
 - events
 verbs:
 - get
 - list
 - watch

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: k8s-ra-event-watcher
 namespace: default 3
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: event-watcher
subjects:
 - kind: ServiceAccount
 name: events-sa
 namespace: default 4

第 11 章 EVENT SOURCES

87

注意

If you want to re-use an existing service account with the appropriate
permissions, you must modify the authentication.yaml for that service account.

After you have created the authentication.yaml file, apply it:

2. To create an ApiServerSource object, create a file named k8s-events.yaml and copy the
following sample code into it:

After you have created the k8s-events.yaml file, apply it:

3. To check that the API server source is set up correctly, create a Knative service that dumps
incoming messages to its log.
Copy the following sample YAML into a file named service.yaml:

After you have created the service.yaml file, apply it:

4. To create a trigger from the default broker that filters events to the service created in the
previous step, create a file named trigger.yaml and copy the following sample code into it:

$ oc apply -f authentication.yaml

apiVersion: sources.knative.dev/v1alpha1
kind: ApiServerSource
metadata:
 name: testevents
spec:
 serviceAccountName: events-sa
 mode: Resource
 resources:
 - apiVersion: v1
 kind: Event
 sink:
 ref:
 apiVersion: eventing.knative.dev/v1
 kind: Broker
 name: default

$ oc apply -f k8s-events.yaml

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: event-display
 namespace: default
spec:
 template:
 spec:
 containers:
 - image: quay.io/openshift-knative/knative-eventing-sources-event-display:latest

$ oc apply -f service.yaml

OpenShift Container Platform 4.5 Serverless

88

After you have created the trigger.yaml file, apply it:

5. To create events, launch a pod in the default namespace:

6. To check that the controller is mapped correctly, enter the following command and inspect the
output:

Example output

apiVersion: eventing.knative.dev/v1
kind: Trigger
metadata:
 name: event-display-trigger
 namespace: default
spec:
 broker: default
 subscriber:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: event-display

$ oc apply -f trigger.yaml

$ oc create deployment hello-node --image=quay.io/openshift-knative/knative-eventing-
sources-event-display

$ oc get apiserversource.sources.knative.dev testevents -o yaml

apiVersion: sources.knative.dev/v1alpha1
kind: ApiServerSource
metadata:
 annotations:
 creationTimestamp: "2020-04-07T17:24:54Z"
 generation: 1
 name: testevents
 namespace: default
 resourceVersion: "62868"
 selfLink:
/apis/sources.knative.dev/v1alpha1/namespaces/default/apiserversources/testevents2
 uid: 1603d863-bb06-4d1c-b371-f580b4db99fa
spec:
 mode: Resource
 resources:
 - apiVersion: v1
 controller: false
 controllerSelector:
 apiVersion: ""
 kind: ""
 name: ""
 uid: ""
 kind: Event
 labelSelector: {}
 serviceAccountName: events-sa

第 11 章 EVENT SOURCES

89

Verification

To verify that the Kubernetes events were sent to Knative, you can look at the message dumper
function logs.

1. Get the pods:

2. View the message dumper function logs for the pods:

Example output

11.3.8. Deleting the API server source

This section describes how to delete the ApiServerSource object, trigger, service, service account,
cluster role, and cluster binding by deleting their YAML files.

 sink:
 ref:
 apiVersion: eventing.knative.dev/v1
 kind: Broker
 name: default

$ oc get pods

$ oc logs $(oc get pod -o name | grep event-display) -c user-container

☁� cloudevents.Event
Validation: valid
Context Attributes,
 specversion: 1.0
 type: dev.knative.apiserver.resource.update
 datacontenttype: application/json
 ...
Data,
 {
 "apiVersion": "v1",
 "involvedObject": {
 "apiVersion": "v1",
 "fieldPath": "spec.containers{hello-node}",
 "kind": "Pod",
 "name": "hello-node",
 "namespace": "default",

 },
 "kind": "Event",
 "message": "Started container",
 "metadata": {
 "name": "hello-node.159d7608e3a3572c",
 "namespace": "default",

 },
 "reason": "Started",
 ...
 }

OpenShift Container Platform 4.5 Serverless

90

1

2

3

Procedure

1. Delete the trigger:

2. Delete the service:

3. Delete the API server source:

4. Delete the service account, cluster role, and cluster binding:

11.4. USING A PING SOURCE

A ping source is used to periodically send ping events with a constant payload to an event consumer. A
ping source can be used to schedule sending events, similar to a timer, as shown in the example:

Example ping source

The schedule of the event specified using CRON expression.

The event message body expressed as a JSON encoded data string.

These are the details of the event consumer. In this example, we are using a Knative service named
event-display.

11.4.1. Creating a ping source using the Knative CLI

The following sections describe how to create, verify and remove a basic PingSource object using the
kn CLI.

Prerequisites

$ oc delete -f trigger.yaml

$ oc delete -f service.yaml

$ oc delete -f k8s-events.yaml

$ oc delete -f authentication.yaml

apiVersion: sources.knative.dev/v1alpha2
kind: PingSource
metadata:
 name: test-ping-source
spec:
 schedule: "*/2 * * * *" 1
 jsonData: '{"message": "Hello world!"}' 2
 sink: 3
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: event-display

第 11 章 EVENT SOURCES

91

https://kubernetes.io/docs/tasks/job/automated-tasks-with-cron-jobs/#schedule

You have Knative Serving and Eventing installed.

You have the kn CLI installed.

Procedure

1. To verify that the ping source is working, create a simple Knative service that dumps incoming
messages to the service’s logs:

2. For each set of ping events that you want to request, create a PingSource object in the same
namespace as the event consumer:

3. Check that the controller is mapped correctly by entering the following command and
inspecting the output:

Example output

Verification

You can verify that the Kubernetes events were sent to the Knative event sink by looking at the logs of
the sink pod.

By default, Knative services terminate their pods if no traffic is received within a 60 second period. The

$ kn service create event-display \
 --image quay.io/openshift-knative/knative-eventing-sources-event-display:latest

$ kn source ping create test-ping-source \
 --schedule "*/2 * * * *" \
 --data '{"message": "Hello world!"}' \
 --sink ksvc:event-display

$ kn source ping describe test-ping-source

Name: test-ping-source
Namespace: default
Annotations: sources.knative.dev/creator=developer,
sources.knative.dev/lastModifier=developer
Age: 15s
Schedule: */2 * * * *
Data: {"message": "Hello world!"}

Sink:
 Name: event-display
 Namespace: default
 Resource: Service (serving.knative.dev/v1)

Conditions:
 OK TYPE AGE REASON
 ++ Ready 8s
 ++ Deployed 8s
 ++ SinkProvided 15s
 ++ ValidSchedule 15s
 ++ EventTypeProvided 15s
 ++ ResourcesCorrect 15s

OpenShift Container Platform 4.5 Serverless

92

By default, Knative services terminate their pods if no traffic is received within a 60 second period. The
example shown in this guide creates a PingSource object that sends a message every 2 minutes, so
each message should be observed in a newly created pod.

1. Watch for new pods created:

2. Cancel watching the pods using Ctrl+C, then look at the logs of the created pod:

Example output

11.4.1.1. Remove the ping source

1. Delete the PingSource object:

2. Delete the event-display service:

11.4.2. Creating a ping source using YAML files

The following sections describe how to create, verify and remove a basic ping source using YAML files.

Prerequisites

You have Knative Serving and Eventing installed.

注意

The following procedure requires you to create YAML files.

If you change the names of the YAML files from those used in the examples, you must
ensure that you also update the corresponding CLI commands.

$ watch oc get pods

$ oc logs $(oc get pod -o name | grep event-display) -c user-container

☁� cloudevents.Event
Validation: valid
Context Attributes,
 specversion: 1.0
 type: dev.knative.sources.ping
 source: /apis/v1/namespaces/default/pingsources/test-ping-source
 id: 99e4f4f6-08ff-4bff-acf1-47f61ded68c9
 time: 2020-04-07T16:16:00.000601161Z
 datacontenttype: application/json
Data,
 {
 "message": "Hello world!"
 }

$ kn delete pingsources.sources.knative.dev test-ping-source

$ kn delete service.serving.knative.dev event-display

第 11 章 EVENT SOURCES

93

Procedure

1. To verify that the ping source is working, create a simple Knative service that dumps incoming
messages to the log of the service.

a. Copy the example YAML into a file named service.yaml:

b. Apply the service.yaml file:

2. For each set of ping events that you want to request, create a PingSource object in the same
namespace as the event consumer.

a. Copy the example YAML into a file named ping-source.yaml:

b. Apply the ping-source.yaml file:

3. Check that the controller is mapped correctly by entering the following command and observing
the output:

Example output

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: event-display
spec:
 template:
 spec:
 containers:
 - image: quay.io/openshift-knative/knative-eventing-sources-event-display:latest

$ oc apply --filename service.yaml

apiVersion: sources.knative.dev/v1alpha2
kind: PingSource
metadata:
 name: test-ping-source
spec:
 schedule: "*/2 * * * *"
 jsonData: '{"message": "Hello world!"}'
 sink:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: event-display

$ oc apply --filename ping-source.yaml

$ oc get pingsource.sources.knative.dev test-ping-source -oyaml

apiVersion: sources.knative.dev/v1alpha2
kind: PingSource
metadata:
 annotations:

OpenShift Container Platform 4.5 Serverless

94

Verification

You can verify that the Kubernetes events were sent to the Knative event sink by looking at the logs of
the sink pod.

By default, Knative services terminate their pods if no traffic is received within a 60 second period. The
example shown in this guide creates a PingSource object that sends a message every 2 minutes, so
each message should be observed in a newly created pod.

1. Watch for new pods created:

2. Cancel watching the pods using Ctrl+C, then look at the logs of the created pod:

Example output

11.4.2.1. Remove the PingSource

 sources.knative.dev/creator: developer
 sources.knative.dev/lastModifier: developer
 creationTimestamp: "2020-04-07T16:11:14Z"
 generation: 1
 name: test-ping-source
 namespace: default
 resourceVersion: "55257"
 selfLink: /apis/sources.knative.dev/v1alpha2/namespaces/default/pingsources/test-ping-
source
 uid: 3d80d50b-f8c7-4c1b-99f7-3ec00e0a8164
spec:
 jsonData: '{ value: "hello" }'
 schedule: '*/2 * * * *'
 sink:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: event-display
 namespace: default

$ watch oc get pods

$ oc logs $(oc get pod -o name | grep event-display) -c user-container

☁� cloudevents.Event
Validation: valid
Context Attributes,
 specversion: 1.0
 type: dev.knative.sources.ping
 source: /apis/v1/namespaces/default/pingsources/test-ping-source
 id: 042ff529-240e-45ee-b40c-3a908129853e
 time: 2020-04-07T16:22:00.000791674Z
 datacontenttype: application/json
Data,
 {
 "message": "Hello world!"
 }

第 11 章 EVENT SOURCES

95

1. Delete the service by entering the following command:

2. Delete the PingSource object by entering the following command:

11.5. USING SINK BINDING

Sink binding is used to connect event producers, or event sources, to an event consumer, or event sink,
for example, a Knative service or application.

重要

Before developers can use sink binding, cluster administrators must label the namespace
that will be configured in the SinkBinding object with
bindings.knative.dev/include:"true":

11.5.1. Using sink binding with the Knative CLI

This guide describes the steps required to create, manage, and delete a sink binding instance using the
kn CLI.

Prerequisites

You have Knative Serving and Eventing installed.

You have the the kn CLI installed.

注意

The following procedure requires you to create YAML files.

If you change the names of the YAML files from those used in the examples, you must
ensure that you also update the corresponding CLI commands.

重要

Before developers can use sink binding, cluster administrators must label the namespace
that will be configured in the SinkBinding object with
bindings.knative.dev/include:"true":

Procedure

1. To check that sink binding is set up correctly, create a Knative event display service, or event
sink, that dumps incoming messages to its log:

$ oc delete --filename service.yaml

$ oc delete --filename ping-source.yaml

$ oc label namespace <namespace> bindings.knative.dev/include=true

$ oc label namespace <namespace> bindings.knative.dev/include=true

OpenShift Container Platform 4.5 Serverless

96

2. Create a SinkBinding object that directs events to the service:

3. Create a CronJob.

a. Create a file named heartbeats-cronjob.yaml and copy the following sample code into it:

重要

$ kn service create event-display --image quay.io/openshift-knative/knative-eventing-
sources-event-display:latest

$ kn source binding create bind-heartbeat --subject Job:batch/v1:app=heartbeat-cron --sink
ksvc:event-display

apiVersion: batch/v1beta1
kind: CronJob
metadata:
 name: heartbeat-cron
spec:
spec:
 # Run every minute
 schedule: "* * * * *"
 jobTemplate:
 metadata:
 labels:
 app: heartbeat-cron
 bindings.knative.dev/include: "true"
 spec:
 template:
 spec:
 restartPolicy: Never
 containers:
 - name: single-heartbeat
 image: quay.io/openshift-knative/knative-eventing-sources-heartbeats:latest
 args:
 - --period=1
 env:
 - name: ONE_SHOT
 value: "true"
 - name: POD_NAME
 valueFrom:
 fieldRef:
 fieldPath: metadata.name
 - name: POD_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace

第 11 章 EVENT SOURCES

97

重要

To use sink binding, you must manually add a
bindings.knative.dev/include=true label to your Knative resources.

For example, to add this label to a CronJob object, add the following lines to
the Job resource YAML definition:

b. After you have created the heartbeats-cronjob.yaml file, apply it:

4. Check that the controller is mapped correctly by entering the following command and
inspecting the output:

Example output

Verification

You can verify that the Kubernetes events were sent to the Knative event sink by looking at the
message dumper function logs.

View the message dumper function logs:

 jobTemplate:
 metadata:
 labels:
 app: heartbeat-cron
 bindings.knative.dev/include: "true"

$ oc apply --filename heartbeats-cronjob.yaml

$ kn source binding describe bind-heartbeat

Name: bind-heartbeat
Namespace: demo-2
Annotations: sources.knative.dev/creator=minikube-user,
sources.knative.dev/lastModifier=minikub ...
Age: 2m
Subject:
 Resource: job (batch/v1)
 Selector:
 app: heartbeat-cron
Sink:
 Name: event-display
 Resource: Service (serving.knative.dev/v1)

Conditions:
 OK TYPE AGE REASON
 ++ Ready 2m

$ oc get pods

$ oc logs $(oc get pod -o name | grep event-display) -c user-container

OpenShift Container Platform 4.5 Serverless

98

Example output

11.5.2. Using sink binding with the YAML method

This guide describes the steps required to create, manage, and delete a sink binding instance using
YAML files.

Prerequisites

You have Knative Serving and Eventing installed.

注意

The following procedure requires you to create YAML files.

If you change the names of the YAML files from those used in the examples, you must
ensure that you also update the corresponding CLI commands.

重要

Before developers can use sink binding, cluster administrators must label the namespace
that will be configured in the SinkBinding object with
bindings.knative.dev/include:"true":

Procedure

1. To check that sink binding is set up correctly, create a Knative event display service, or event
sink, that dumps incoming messages to its log.

a. Copy the following sample YAML into a file named service.yaml:

☁� cloudevents.Event
Validation: valid
Context Attributes,
 specversion: 1.0
 type: dev.knative.eventing.samples.heartbeat
 source: https://knative.dev/eventing-contrib/cmd/heartbeats/#event-test/mypod
 id: 2b72d7bf-c38f-4a98-a433-608fbcdd2596
 time: 2019-10-18T15:23:20.809775386Z
 contenttype: application/json
Extensions,
 beats: true
 heart: yes
 the: 42
Data,
 {
 "id": 1,
 "label": ""
 }

$ oc label namespace <namespace> bindings.knative.dev/include=true

apiVersion: serving.knative.dev/v1

第 11 章 EVENT SOURCES

99

1

b. After you have created the service.yaml file, apply it:

2. Create a SinkBinding object that directs events to the service.

a. Create a file named sinkbinding.yaml and copy the following sample code into it:

In this example, any Job with the label app: heartbeat-cron will be bound to the event
sink.

b. After you have created the sinkbinding.yaml file, apply it:

3. Create a CronJob object.

a. Create a file named heartbeats-cronjob.yaml and copy the following sample code into it:

kind: Service
metadata:
 name: event-display
spec:
 template:
 spec:
 containers:
 - image: quay.io/openshift-knative/knative-eventing-sources-event-display:latest

$ oc apply -f service.yaml

apiVersion: sources.knative.dev/v1alpha1
kind: SinkBinding
metadata:
 name: bind-heartbeat
spec:
 subject:
 apiVersion: batch/v1
 kind: Job 1
 selector:
 matchLabels:
 app: heartbeat-cron

 sink:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: event-display

$ oc apply -f sinkbinding.yaml

apiVersion: batch/v1beta1
kind: CronJob
metadata:
 name: heartbeat-cron
spec:
spec:
 # Run every minute
 schedule: "* * * * *"

OpenShift Container Platform 4.5 Serverless

100

重要

To use sink binding, you must manually add a
bindings.knative.dev/include=true label to your Knative resources.

For example, to add this label to a cron job instance, add the following lines to
the Job resource YAML definition:

b. After you have created the heartbeats-cronjob.yaml file, apply it:

4. Check that the controller is mapped correctly by entering the following command and
inspecting the output:

Example output

 jobTemplate:
 metadata:
 labels:
 app: heartbeat-cron
 bindings.knative.dev/include: "true"
 spec:
 template:
 spec:
 restartPolicy: Never
 containers:
 - name: single-heartbeat
 image: quay.io/openshift-knative/knative-eventing-sources-heartbeats:latest
 args:
 - --period=1
 env:
 - name: ONE_SHOT
 value: "true"
 - name: POD_NAME
 valueFrom:
 fieldRef:
 fieldPath: metadata.name
 - name: POD_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace

 jobTemplate:
 metadata:
 labels:
 app: heartbeat-cron
 bindings.knative.dev/include: "true"

$ oc apply -f heartbeats-cronjob.yaml

$ oc get sinkbindings.sources.knative.dev bind-heartbeat -oyaml

spec:
 sink:

第 11 章 EVENT SOURCES

101

Verification

You can verify that the Kubernetes events were sent to the Knative event sink by looking at the
message dumper function logs.

1. View the message dumper function logs:

Example output

 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: event-display
 namespace: default
 subject:
 apiVersion: batch/v1
 kind: Job
 namespace: default
 selector:
 matchLabels:
 app: heartbeat-cron

$ oc get pods

$ oc logs $(oc get pod -o name | grep event-display) -c user-container

☁� cloudevents.Event
Validation: valid
Context Attributes,
 specversion: 1.0
 type: dev.knative.eventing.samples.heartbeat
 source: https://knative.dev/eventing-contrib/cmd/heartbeats/#event-test/mypod
 id: 2b72d7bf-c38f-4a98-a433-608fbcdd2596
 time: 2019-10-18T15:23:20.809775386Z
 contenttype: application/json
Extensions,
 beats: true
 heart: yes
 the: 42
Data,
 {
 "id": 1,
 "label": ""
 }

OpenShift Container Platform 4.5 Serverless

102

第 12 章 NETWORKING

12.1. USING SERVICE MESH WITH OPENSHIFT SERVERLESS

Using Service Mesh with OpenShift Serverless enables developers to configure additional networking
and routing options that are not supported when using OpenShift Serverless with the default Kourier
implementation. These options include setting custom domains, using TLS certificates, and using JSON
Web Token authentication.

Prerequisites

1. Install the OpenShift Serverless Operator and Knative Serving.

2. Install Red Hat OpenShift Service Mesh .

Procedure

1. Add the default namespace to the ServiceMeshMemberRoll as a member:

重要

Adding sidecar injection to Pods in system namespaces such as knative-serving
and knative-serving-ingress is not supported.

2. Create a network policy that permits traffic flow from Knative system pods to Knative services:

a. Add the serving.knative.openshift.io/system-namespace=true label to the knative-
serving namespace:

b. Add the serving.knative.openshift.io/system-namespace=true label to the knative-
serving-ingress namespace:

c. Copy the following NetworkPolicy resource into a YAML file:

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:
 name: default
 namespace: istio-system
spec:
 members:
 - default

$ oc label namespace knative-serving serving.knative.openshift.io/system-
namespace=true

$ oc label namespace knative-serving-ingress serving.knative.openshift.io/system-
namespace=true

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-from-serving-system-namespace

第 12 章 NETWORKING

103

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/serverless/#installing-openshift-serverless
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/serverless/#installing-knative-serving
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/service_mesh/#preparing-ossm-installation-v1x
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/service_mesh/#ossm-member-roll-create_installing-ossm

1

d. Apply the NetworkPolicy resource:

12.1.1. Enabling sidecar injection for a Knative service

You can add an annotation to the Service resource YAML file to enable sidecar injection for a Knative
service.

Procedure

1. Add the sidecar.istio.io/inject="true" annotation to the Service resource:

Add the sidecar.istio.io/inject="true" annotation.

2. Apply the Service resource YAML file:

12.1.2. Additional resources

For more information about Red Hat OpenShift Service Mesh, see Red Hat OpenShift Service
Mesh architecture.

12.2. USING JSON WEB TOKEN AUTHENTICATION WITH SERVICE
MESH AND OPENSHIFT SERVERLESS

 namespace: default
spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 serving.knative.openshift.io/system-namespace: "true"
 podSelector: {}
 policyTypes:
 - Ingress

$ oc apply -f <filename>

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: hello-example-1
spec:
 template:
 metadata:
 annotations:
 sidecar.istio.io/inject: "true" 1
 spec:
 containers:
 - image: docker.io/openshift/hello-openshift
 name: container

$ oc apply -f <filename>

OpenShift Container Platform 4.5 Serverless

104

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/service_mesh/#ossm-architecture-v1x

You can enable JSON Web Token (JWT) authentication for Knative services by creating a policy in your
serverless application namespace that only allows requests with valid JWTs.

Prerequisites

Install OpenShift Serverless.

Install Red Hat OpenShift Service Mesh .

Configure Service Mesh with OpenShift Serverless , including enabling sidecar injection for your
Knative services.

重要

Adding sidecar injection to pods in system namespaces such as knative-serving and
knative-serving-ingress is not supported.

Procedure

1. Copy the following Policy resource into a YAML file:

重要

The paths /metrics and /healthz must be included in excludedPaths because
they are accessed from system pods in the knative-serving namespace.

2. Apply the Policy resource YAML file:

Verification

1. If you try to use a curl request to get the Knative service URL, it is denied.

Example output

apiVersion: authentication.istio.io/v1alpha1
kind: Policy
metadata:
 name: default
spec:
 origins:
 - jwt:
 issuer: testing@secure.istio.io
 jwksUri: "https://raw.githubusercontent.com/istio/istio/release-
1.6/security/tools/jwt/samples/jwks.json"
 triggerRules:
 - excludedPaths:
 - prefix: /metrics
 - prefix: /healthz
 principalBinding: USE_ORIGIN

$ oc apply -f <filename>

$ curl http://hello-example-default.apps.mycluster.example.com/

第 12 章 NETWORKING

105

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/serverless/#installing-openshift-serverless
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/service_mesh/#preparing-ossm-installation-v1x
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/serverless/#serverless-ossm

2. Verify the request with a valid JWT.

a. Get the valid JWT token by entering the following command:

b. Access the service by using the valid token in the curl request header:

The request is now allowed.

Example output

12.2.1. Additional resources

See Red Hat OpenShift Service Mesh architecture .

For more information about verifying Knative services and using curl requests, see Verifying
your serverless application deployment.

12.3. USING CUSTOM DOMAINS FOR KNATIVE SERVICES WITH
SERVICE MESH

By default, Knative services have a fixed domain format:

You can customize the domain for your Knative service by configuring the service as a private service
and creating the required Service Mesh resources.

Prerequisites

Install the OpenShift Serverless Operator and Knative Serving.

Install Red Hat OpenShift Service Mesh .

Complete the configuration steps in Using Service Mesh with OpenShift Serverless .

You can configure a custom domain for an existing Knative service, or create a new sample
service. To create a new service, see Creating and managing serverless applications .

12.3.1. Setting cluster availability to cluster-local

By default, Knative services are published to a public IP address. Being published to a public IP address

Origin authentication failed.

$ TOKEN=$(curl https://raw.githubusercontent.com/istio/istio/release-
1.6/security/tools/jwt/samples/demo.jwt -s) && echo "$TOKEN" | cut -d '.' -f2 - | base64 --
decode -

$ curl http://hello-example-default.apps.mycluster.example.com/ -H "Authorization:
Bearer $TOKEN"

Hello OpenShift!

 <application_name>-<namespace>.<openshift_cluster_domain>

OpenShift Container Platform 4.5 Serverless

106

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/service_mesh/#ossm-architecture-v1x
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/serverless/#verifying-serverless-app-deployment_serving-creating-managing-apps
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/serverless/#installing-openshift-serverless
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/serverless/#installing-knative-serving
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/service_mesh/#preparing-ossm-installation-v1x
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/serverless/#serverless-ossm
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/serverless/#serving-creating-managing-apps

By default, Knative services are published to a public IP address. Being published to a public IP address
means that Knative services are public applications, and have a publicly accessible URL.

Publicly accessible URLs are accessible from outside of the cluster. However, developers may need to
build back-end services that are only be accessible from inside the cluster, known as private services .
Developers can label individual services in the cluster with the serving.knative.dev/visibility=cluster-
local label to make them private.

Procedure

Set the visibility for your service by adding the serving.knative.dev/visibility=cluster-local
label:

Verification

Check that the URL for your service is now in the format http://<service_name>.
<namespace>.svc.cluster.local, by entering the following command and reviewing the output:

Example output

12.3.2. Creating necessary Service Mesh resources

Procedure

1. Create an Istio gateway to accept traffic.

a. Create a YAML file, and copy the following YAML into it:

b. Apply the YAML file:

$ oc label ksvc <service_name> serving.knative.dev/visibility=cluster-local

$ oc get ksvc

NAME URL LATESTCREATED
LATESTREADY READY REASON
hello http://hello.default.svc.cluster.local hello-tx2g7 hello-
tx2g7 True

apiVersion: networking.istio.io/v1alpha3
kind: Gateway
metadata:
 name: default-gateway
spec:
 selector:
 istio: ingressgateway
 servers:
 - port:
 number: 80
 name: http
 protocol: HTTP
 hosts:
 - "*"

第 12 章 NETWORKING

107

1 2

1

2. Create an Istio VirtualService object to rewrite the host header.

a. Create a YAML file, and copy the following YAML into it:

Your Knative service in the format <service_name>.<namespace>.svc.

b. Apply the YAML file:

3. Create an Istio ServiceEntry object. This is required for OpenShift Serverless because Kourier
is outside of the service mesh.

a. Create a YAML file, and copy the following YAML into it:

Your Knative service in the format <service_name>.<namespace>.svc.

$ oc apply -f <filename>

apiVersion: networking.istio.io/v1alpha3
kind: VirtualService
metadata:
 name: hello
spec:
 hosts:
 - custom-ksvc-domain.example.com
 gateways:
 - default-gateway
 http:
 - rewrite:
 authority: hello.default.svc 1
 route:
 - destination:
 host: hello.default.svc 2
 port:
 number: 80

$ oc apply -f <filename>

apiVersion: networking.istio.io/v1alpha3
kind: ServiceEntry
metadata:
 name: hello.default.svc
spec:
 hosts:
 - hello.default.svc 1
 location: MESH_EXTERNAL
 endpoints:
 - address: kourier-internal.knative-serving-ingress.svc
 ports:
 - number: 80
 name: http
 protocol: HTTP
 resolution: DNS

OpenShift Container Platform 4.5 Serverless

108

1

b. Apply the YAML file:

4. Create an OpenShift Container Platform route that points to the VirtualService object.

a. Create a YAML file, and copy the following YAML into it:

The OpenShift Container Platform route must be created in the same namespace as the
ServiceMeshControlPlane. In this example, the ServiceMeshControlPlane is deployed in the istio-
system namespace.

a. Apply the YAML file:

12.3.3. Accessing a service using your custom domain

Procedure

1. Access the custom domain by using the Host header in a curl request. For example:

where <ip_address> is the IP address that the OpenShift Container Platform ingress router is
exposed to.

Example output

12.3.4. Additional resources

For more information about Red Hat OpenShift Service Mesh, see Understanding Red Hat
OpenShift Service Mesh.

$ oc apply -f <filename>

apiVersion: route.openshift.io/v1
kind: Route
metadata:
 name: hello
 namespace: istio-system 1
spec:
 host: custom-ksvc-domain.example.com
 port:
 targetPort: 8080
 to:
 kind: Service
 name: istio-ingressgateway

$ oc apply -f <filename>

$ curl -H "Host: custom-ksvc-domain.example.com" http://<ip_address>

Hello OpenShift!

第 12 章 NETWORKING

109

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/service_mesh/#ossm-architecture-v1x

第 13 章 USING METERING WITH OPENSHIFT SERVERLESS
As a cluster administrator, you can use metering to analyze what is happening in your OpenShift
Serverless cluster.

For more information about metering on OpenShift Container Platform, see About metering.

13.1. INSTALLING METERING

For information about installing metering on OpenShift Container Platform, see Installing Metering .

13.2. DATASOURCES FOR KNATIVE SERVING METERING

The following ReportDataSources are examples of how Knative Serving can be used with OpenShift
Container Platform metering.

13.2.1. Datasource for CPU usage in Knative Serving

This datasource provides the accumulated CPU seconds used per Knative service over the report time
period.

Example YAML file

13.2.2. Datasource for memory usage in Knative Serving

This datasource provides the average memory consumption per Knative service over the report time
period.

Example YAML file

apiVersion: metering.openshift.io/v1
kind: ReportDataSource
metadata:
 name: knative-service-cpu-usage
spec:
 prometheusMetricsImporter:
 query: >
 sum
 by(namespace,
 label_serving_knative_dev_service,
 label_serving_knative_dev_revision)
 (

label_replace(rate(container_cpu_usage_seconds_total{container!="POD",container!="",pod!=""}
[1m]), "pod", "$1", "pod", "(.*)")
 *
 on(pod, namespace)
 group_left(label_serving_knative_dev_service, label_serving_knative_dev_revision)
 kube_pod_labels{label_serving_knative_dev_service!=""}
)

apiVersion: metering.openshift.io/v1
kind: ReportDataSource

OpenShift Container Platform 4.5 Serverless

110

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/metering/#about-metering
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/metering/#installing-metering

13.2.3. Applying data sources for Knative Serving metering

Procedure

Apply the ReportDataSources resource as a YAML file:

Example command

$ oc apply -f knative-service-memory-usage.yaml

13.3. QUERIES FOR KNATIVE SERVING METERING

The following ReportQuery resources reference the example DataSources provided.

13.3.1. Query for CPU usage in Knative Serving

Example YAML file

metadata:
 name: knative-service-memory-usage
spec:
 prometheusMetricsImporter:
 query: >
 sum
 by(namespace,
 label_serving_knative_dev_service,
 label_serving_knative_dev_revision)
 (
 label_replace(container_memory_usage_bytes{container!="POD", container!="",pod!=""},
"pod", "$1", "pod", "(.*)")
 *
 on(pod, namespace)
 group_left(label_serving_knative_dev_service, label_serving_knative_dev_revision)
 kube_pod_labels{label_serving_knative_dev_service!=""}
)

$ oc apply -f <datasource_name>.yaml

apiVersion: metering.openshift.io/v1
kind: ReportQuery
metadata:
 name: knative-service-cpu-usage
spec:
 inputs:
 - name: ReportingStart
 type: time
 - name: ReportingEnd
 type: time
 - default: knative-service-cpu-usage
 name: KnativeServiceCpuUsageDataSource
 type: ReportDataSource
 columns:

第 13 章 USING METERING WITH OPENSHIFT SERVERLESS

111

13.3.2. Query for memory usage in Knative Serving

Example YAML file

 - name: period_start
 type: timestamp
 unit: date
 - name: period_end
 type: timestamp
 unit: date
 - name: namespace
 type: varchar
 unit: kubernetes_namespace
 - name: service
 type: varchar
 - name: data_start
 type: timestamp
 unit: date
 - name: data_end
 type: timestamp
 unit: date
 - name: service_cpu_seconds
 type: double
 unit: cpu_core_seconds
 query: |
 SELECT
 timestamp '{| default .Report.ReportingStart .Report.Inputs.ReportingStart| prestoTimestamp |}'
AS period_start,
 timestamp '{| default .Report.ReportingEnd .Report.Inputs.ReportingEnd | prestoTimestamp |}' AS
period_end,
 labels['namespace'] as project,
 labels['label_serving_knative_dev_service'] as service,
 min("timestamp") as data_start,
 max("timestamp") as data_end,
 sum(amount * "timeprecision") AS service_cpu_seconds
 FROM {| dataSourceTableName .Report.Inputs.KnativeServiceCpuUsageDataSource |}
 WHERE "timestamp" >= timestamp '{| default .Report.ReportingStart .Report.Inputs.ReportingStart
| prestoTimestamp |}'
 AND "timestamp" < timestamp '{| default .Report.ReportingEnd .Report.Inputs.ReportingEnd |
prestoTimestamp |}'
 GROUP BY labels['namespace'],labels['label_serving_knative_dev_service']

apiVersion: metering.openshift.io/v1
kind: ReportQuery
metadata:
 name: knative-service-memory-usage
spec:
 inputs:
 - name: ReportingStart
 type: time
 - name: ReportingEnd
 type: time
 - default: knative-service-memory-usage
 name: KnativeServiceMemoryUsageDataSource
 type: ReportDataSource

OpenShift Container Platform 4.5 Serverless

112

13.3.3. Applying queries for Knative Serving metering

Apply the query as a YAML file:

Example command

13.4. METERING REPORTS FOR KNATIVE SERVING

You can run metering reports against Knative Serving by creating Report resources. Before you run a
report, you must modify the input parameter within the Report resource to specify the start and end
dates of the reporting period.

 columns:
 - name: period_start
 type: timestamp
 unit: date
 - name: period_end
 type: timestamp
 unit: date
 - name: namespace
 type: varchar
 unit: kubernetes_namespace
 - name: service
 type: varchar
 - name: data_start
 type: timestamp
 unit: date
 - name: data_end
 type: timestamp
 unit: date
 - name: service_usage_memory_byte_seconds
 type: double
 unit: byte_seconds
 query: |
 SELECT
 timestamp '{| default .Report.ReportingStart .Report.Inputs.ReportingStart| prestoTimestamp |}'
AS period_start,
 timestamp '{| default .Report.ReportingEnd .Report.Inputs.ReportingEnd | prestoTimestamp |}' AS
period_end,
 labels['namespace'] as project,
 labels['label_serving_knative_dev_service'] as service,
 min("timestamp") as data_start,
 max("timestamp") as data_end,
 sum(amount * "timeprecision") AS service_usage_memory_byte_seconds
 FROM {| dataSourceTableName .Report.Inputs.KnativeServiceMemoryUsageDataSource |}
 WHERE "timestamp" >= timestamp '{| default .Report.ReportingStart .Report.Inputs.ReportingStart
| prestoTimestamp |}'
 AND "timestamp" < timestamp '{| default .Report.ReportingEnd .Report.Inputs.ReportingEnd |
prestoTimestamp |}'
 GROUP BY labels['namespace'],labels['label_serving_knative_dev_service']

$ oc apply -f <query_name>.yaml

$ oc apply -f knative-service-memory-usage.yaml

第 13 章 USING METERING WITH OPENSHIFT SERVERLESS

113

1

2

3

Example YAML file

Start date of the report, in ISO 8601 format.

End date of the report, in ISO 8601 format.

Either knative-service-cpu-usage for CPU usage report or knative-service-memory-usage for a
memory usage report.

13.4.1. Running a metering report

1. Run the report by applying it as a YAML file:

2. You can then check the report by entering the following command:

Example output

apiVersion: metering.openshift.io/v1
kind: Report
metadata:
 name: knative-service-cpu-usage
spec:
 reportingStart: '2019-06-01T00:00:00Z' 1
 reportingEnd: '2019-06-30T23:59:59Z' 2
 query: knative-service-cpu-usage 3
runImmediately: true

$ oc apply -f <report_name>.yaml

$ oc get report

NAME QUERY SCHEDULE RUNNING FAILED LAST
REPORT TIME AGE
knative-service-cpu-usage knative-service-cpu-usage Finished 2019-06-
30T23:59:59Z 10h

OpenShift Container Platform 4.5 Serverless

114

第 14 章 INTEGRATIONS

14.1. USING NVIDIA GPU RESOURCES WITH SERVERLESS
APPLICATIONS

NVIDIA supports experimental use of GPU resources on OpenShift Container Platform. See OpenShift
Container Platform on NVIDIA GPU accelerated clusters for more information about setting up GPU
resources on OpenShift Container Platform.

After GPU resources are enabled for your OpenShift Container Platform cluster, you can specify GPU
requirements for a Knative service using the kn CLI.

Procedure

You can specify a GPU resource requirement when you create a Knative service using kn.

1. Create a service.

2. Set the GPU resource requirement limit to 1 by using nvidia.com/gpu=1:

$ kn service create hello --image docker.io/knativesamples/hellocuda-go --limit
nvidia.com/gpu=1

A GPU resource requirement limit of 1 means that the service has 1 GPU resource dedicated.
Services do not share GPU resources. Any other services that require GPU resources must wait
until the GPU resource is no longer in use.

A limit of 1 GPU also means that applications exceeding usage of 1 GPU resource are restricted.
If a service requests more than 1 GPU resource, it is deployed on a node where the GPU
resource requirements can be met.

Updating GPU requirements for a Knative service using kn

Update the service. Change the GPU resource requirement limit to 3 by using
nvidia.com/gpu=3:

$ kn service update hello --limit nvidia.com/gpu=3

14.1.1. Additional resources

For more information about limits, see Setting resource quotas for extended resources .

第 14 章 INTEGRATIONS

115

https://docs.nvidia.com/datacenter/kubernetes/openshift-on-gpu-install-guide/index.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/applications/#resource-quotas-per-project

	目录
	第 1 章 OPENSHIFT SERVERLESS RELEASE NOTES
	1.1. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.10.1
	1.1.1. Fixed issues

	1.2. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.10.0
	1.2.1. New features
	1.2.2. Fixed issues

	1.3. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.9.0
	1.3.1. New features
	1.3.2. Known issues

	1.4. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.8.0
	1.4.1. New features
	1.4.2. Known issues

	1.5. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.7.2
	1.5.1. Fixed issues

	1.6. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.7.1
	1.6.1. New features
	1.6.2. Fixed issues

	1.7. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.7.0
	1.7.1. New features
	1.7.2. Fixed issues
	1.7.3. Known issues

	1.8. ADDITIONAL RESOURCES

	第 2 章 OPENSHIFT SERVERLESS SUPPORT
	2.1. GETTING SUPPORT
	2.2. GATHERING DIAGNOSTIC INFORMATION FOR SUPPORT
	2.2.1. About the must-gather tool
	2.2.2. About collecting OpenShift Serverless data

	第 3 章 GETTING STARTED WITH OPENSHIFT SERVERLESS
	3.1. HOW OPENSHIFT SERVERLESS WORKS
	3.2. SUPPORTED CONFIGURATIONS
	3.3. NEXT STEPS

	第 4 章 INSTALLING OPENSHIFT SERVERLESS
	4.1. INSTALLING OPENSHIFT SERVERLESS
	4.1.1. Defining cluster size requirements for an OpenShift Serverless installation
	4.1.2. Additional requirements for advanced use cases
	4.1.3. Scaling your cluster using machine sets
	4.1.4. Installing the OpenShift Serverless Operator
	4.1.5. Next steps

	4.2. INSTALLING KNATIVE SERVING
	4.2.1. Creating the knative-serving namespace
	4.2.1.1. Creating the knative-serving namespace using the web console
	4.2.1.2. Creating the knative-serving namespace using the CLI

	4.2.2. Prerequisites
	4.2.3. Installing Knative Serving using the web console
	4.2.4. Installing Knative Serving using YAML
	4.2.5. Next steps

	4.3. INSTALLING KNATIVE EVENTING
	4.3.1. Creating the knative-eventing namespace
	4.3.1.1. Creating the knative-eventing namespace using the web console
	4.3.1.2. Creating the knative-eventing namespace using the CLI

	4.3.2. Prerequisites
	4.3.3. Installing Knative Eventing using the web console
	4.3.4. Installing Knative Eventing using YAML
	4.3.5. Next steps

	4.4. ADVANCED INSTALLATION CONFIGURATION OPTIONS
	4.4.1. Knative Serving supported installation configuration options
	4.4.1.1. Controller custom certificates
	4.4.1.2. High availability

	4.4.2. Additional resources

	4.5. UPGRADING OPENSHIFT SERVERLESS
	4.5.1. Upgrading the Subscription Channel

	4.6. REMOVING OPENSHIFT SERVERLESS
	4.6.1. Uninstalling Knative Serving
	4.6.2. Uninstalling Knative Eventing
	4.6.3. Removing the OpenShift Serverless Operator
	4.6.4. Deleting OpenShift Serverless CRDs

	4.7. INSTALLING THE KNATIVE CLI (KN)
	4.7.1. Installing the kn CLI using the OpenShift Container Platform web console
	4.7.2. Installing the kn CLI for Linux using an RPM
	4.7.3. Installing the kn CLI for Linux
	4.7.4. Installing the kn CLI for macOS
	4.7.5. Installing the kn CLI for Windows

	第 5 章 ARCHITECTURE
	5.1. KNATIVE SERVING ARCHITECTURE
	5.1.1. Knative Serving CRDs

	5.2. KNATIVE EVENTING ARCHITECTURE
	5.2.1. Event sinks

	第 6 章 CREATING AND MANAGING SERVERLESS APPLICATIONS
	6.1. SERVERLESS APPLICATIONS USING KNATIVE SERVICES
	6.2. CREATING SERVERLESS APPLICATIONS USING THE OPENSHIFT CONTAINER PLATFORM WEB CONSOLE
	6.2.1. Creating serverless applications using the Administrator perspective
	6.2.2. Creating serverless applications using the Developer perspective

	6.3. CREATING SERVERLESS APPLICATIONS USING THE KN CLI
	6.4. CREATING SERVERLESS APPLICATIONS USING YAML
	6.5. VERIFYING YOUR SERVERLESS APPLICATION DEPLOYMENT
	6.6. INTERACTING WITH A SERVERLESS APPLICATION USING HTTP2 AND GRPC

	第 7 章 HIGH AVAILABILITY ON OPENSHIFT SERVERLESS
	7.1. CONFIGURING HIGH AVAILABILITY REPLICAS ON OPENSHIFT SERVERLESS

	第 8 章 TRACING REQUESTS USING JAEGER
	8.1. CONFIGURING JAEGER FOR USE WITH OPENSHIFT SERVERLESS

	第 9 章 KNATIVE SERVING
	9.1. USING KN TO COMPLETE SERVING TASKS
	9.1.1. Basic workflow using kn
	9.1.2. Autoscaling workflow using kn
	9.1.3. Traffic splitting using kn
	9.1.3.1. Assigning tag revisions
	9.1.3.2. Unassigning tag revisions
	9.1.3.3. Traffic flag operation precedence
	9.1.3.4. Traffic splitting flags

	9.2. CONFIGURING KNATIVE SERVING AUTOSCALING
	9.2.1. Configuring concurrent requests for Knative Serving autoscaling
	9.2.1.1. Configuring concurrent requests using the target annotation
	9.2.1.2. Configuring concurrent requests using the containerConcurrency field

	9.2.2. Configuring scale bounds Knative Serving autoscaling

	9.3. CLUSTER LOGGING WITH OPENSHIFT SERVERLESS
	9.3.1. About deploying cluster logging
	9.3.2. About deploying and configuring cluster logging
	9.3.2.1. Configuring and Tuning Cluster Logging
	9.3.2.2. Sample modified ClusterLogging custom resource

	9.3.3. Using cluster logging to find logs for Knative Serving components
	9.3.4. Using cluster logging to find logs for services deployed with Knative Serving

	9.4. SPLITTING TRAFFIC BETWEEN REVISIONS
	9.4.1. Splitting traffic between revisions using the Developer perspective

	第 10 章 EVENT WORKFLOWS
	10.1. EVENT DELIVERY WORKFLOWS USING BROKERS AND TRIGGERS
	10.1.1. Creating a broker
	10.1.1.1. Creating a broker using the Knative CLI
	10.1.1.2. Creating a broker by annotating a trigger
	10.1.1.3. Creating a broker by labeling a namespace

	10.1.2. Managing brokers
	10.1.2.1. Listing existing brokers using the Knative CLI
	10.1.2.2. Describing an existing broker using the Knative CLI
	10.1.2.3. Deleting a broker that was created by injection

	10.1.3. Filtering events using triggers
	10.1.3.1. Creating a trigger using the Developer perspective
	10.1.3.2. Deleting a trigger using the Developer perspective
	10.1.3.3. Creating a trigger using kn
	10.1.3.4. Listing triggers using kn

	10.2. EVENT DELIVERY WORKFLOWS USING CHANNELS
	10.2.1. Supported channel types
	10.2.1.1. Using the default development channel configuration

	10.2.2. Creating a development channel
	10.2.3. Creating a subscription

	第 11 章 EVENT SOURCES
	11.1. GETTING STARTED WITH EVENT SOURCES
	11.1.1. Creating event sources
	11.1.2. Additional resources

	11.2. USING THE KNATIVE CLI TO LIST EVENT SOURCES AND EVENT SOURCE TYPES
	11.2.1. Listing available event source types using the Knative CLI
	11.2.2. Listing available event sources using the Knative CLI
	11.2.3. Next steps

	11.3. USING THE API SERVER SOURCE
	11.3.1. Prerequisites
	11.3.2. Creating a service account, role, and binding for event sources
	11.3.3. Creating an ApiServerSource event source using the Developer perspective
	11.3.4. Deleting the ApiServerSource
	11.3.5. Using the API server source with the Knative CLI
	11.3.6. Deleting an API server source using the Knative CLI
	11.3.7. Creating an API server source using YAML files
	11.3.8. Deleting the API server source

	11.4. USING A PING SOURCE
	11.4.1. Creating a ping source using the Knative CLI
	11.4.1.1. Remove the ping source

	11.4.2. Creating a ping source using YAML files
	11.4.2.1. Remove the PingSource

	11.5. USING SINK BINDING
	11.5.1. Using sink binding with the Knative CLI
	11.5.2. Using sink binding with the YAML method

	第 12 章 NETWORKING
	12.1. USING SERVICE MESH WITH OPENSHIFT SERVERLESS
	12.1.1. Enabling sidecar injection for a Knative service
	12.1.2. Additional resources

	12.2. USING JSON WEB TOKEN AUTHENTICATION WITH SERVICE MESH AND OPENSHIFT SERVERLESS
	12.2.1. Additional resources

	12.3. USING CUSTOM DOMAINS FOR KNATIVE SERVICES WITH SERVICE MESH
	12.3.1. Setting cluster availability to cluster-local
	12.3.2. Creating necessary Service Mesh resources
	12.3.3. Accessing a service using your custom domain
	12.3.4. Additional resources

	第 13 章 USING METERING WITH OPENSHIFT SERVERLESS
	13.1. INSTALLING METERING
	13.2. DATASOURCES FOR KNATIVE SERVING METERING
	13.2.1. Datasource for CPU usage in Knative Serving
	13.2.2. Datasource for memory usage in Knative Serving
	13.2.3. Applying data sources for Knative Serving metering

	13.3. QUERIES FOR KNATIVE SERVING METERING
	13.3.1. Query for CPU usage in Knative Serving
	13.3.2. Query for memory usage in Knative Serving
	13.3.3. Applying queries for Knative Serving metering

	13.4. METERING REPORTS FOR KNATIVE SERVING
	13.4.1. Running a metering report

	第 14 章 INTEGRATIONS
	14.1. USING NVIDIA GPU RESOURCES WITH SERVERLESS APPLICATIONS
	14.1.1. Additional resources

