此内容没有您所选择的语言版本。

Chapter 4. Using CPU Manager


CPU Manager manages groups of CPUs and constrains workloads to specific CPUs.

CPU Manager is useful for workloads that have some of these attributes:

  • Require as much CPU time as possible.
  • Are sensitive to processor cache misses.
  • Are low-latency network applications.
  • Coordinate with other processes and benefit from sharing a single processor cache.

4.1. Setting up CPU Manager

Procedure

  1. Optional: Label a node:

    # oc label node perf-node.example.com cpumanager=true
  2. Edit the MachineConfigPool of the nodes where CPU Manager should be enabled. In this example, all workers have CPU Manager enabled:

    # oc edit machineconfigpool worker
  3. Add a label to the worker MachineConfigPool:

    metadata:
      creationTimestamp: 2019-xx-xxx
      generation: 3
      labels:
        custom-kubelet: cpumanager-enabled
  4. Create a KubeletConfig, cpumanager-kubeletconfig.yaml, custom resource (CR). Refer to the label created in the previous step to have the correct nodes updated with the new KubeletConfig. See the machineConfigPoolSelector section:

    apiVersion: machineconfiguration.openshift.io/v1
    kind: KubeletConfig
    metadata:
      name: cpumanager-enabled
    spec:
      machineConfigPoolSelector:
        matchLabels:
          custom-kubelet: cpumanager-enabled
      kubeletConfig:
         cpuManagerPolicy: static
         cpuManagerReconcilePeriod: 5s
  5. Create the dynamic KubeletConfig:

    # oc create -f cpumanager-kubeletconfig.yaml

    This adds the CPU Manager feature to the KubeletConfig and, if needed, the Machine Config Operator (MCO) reboots the node. To enable CPU Manager, a reboot is not needed.

  6. Check for the merged KubeletConfig:

    # oc get machineconfig 99-worker-XXXXXX-XXXXX-XXXX-XXXXX-kubelet -o json | grep ownerReference -A7
    
           "ownerReferences": [
                {
                    "apiVersion": "machineconfiguration.openshift.io/v1",
                    "kind": "KubeletConfig",
                    "name": "cpumanager-enabled",
                    "uid": "7ed5616d-6b72-11e9-aae1-021e1ce18878"
                }
            ],
  7. Check the worker for the updated kubelet.conf:

    # oc debug node/perf-node.example.com
    sh-4.4# cat /host/etc/kubernetes/kubelet.conf | grep cpuManager
    cpuManagerPolicy: static        1
    cpuManagerReconcilePeriod: 5s   2
    1 2
    These settings were defined when you created the KubeletConfig CR.
  8. Create a Pod that requests a core or multiple cores. Both limits and requests must have their CPU value set to a whole integer. That is the number of cores that will be dedicated to this Pod:

    # cat cpumanager-pod.yaml
    apiVersion: v1
    kind: Pod
    metadata:
      generateName: cpumanager-
    spec:
      containers:
      - name: cpumanager
        image: gcr.io/google_containers/pause-amd64:3.0
        resources:
          requests:
            cpu: 1
            memory: "1G"
          limits:
            cpu: 1
            memory: "1G"
      nodeSelector:
        cpumanager: "true"
  9. Create the Pod:

    # oc create -f cpumanager-pod.yaml
  10. Verify that the Pod is scheduled to the node that you labeled:

    # oc describe pod cpumanager
    Name:               cpumanager-6cqz7
    Namespace:          default
    Priority:           0
    PriorityClassName:  <none>
    Node:  perf-node.example.com/xxx.xx.xx.xxx
    ...
     Limits:
          cpu:     1
          memory:  1G
        Requests:
          cpu:        1
          memory:     1G
    ...
    QoS Class:       Guaranteed
    Node-Selectors:  cpumanager=true
  11. Verify that the cgroups are set up correctly. Get the process ID (PID) of the pause process:

    # ├─init.scope
    │ └─1 /usr/lib/systemd/systemd --switched-root --system --deserialize 17
    └─kubepods.slice
      ├─kubepods-pod69c01f8e_6b74_11e9_ac0f_0a2b62178a22.slice
      │ ├─crio-b5437308f1a574c542bdf08563b865c0345c8f8c0b0a655612c.scope
      │ └─32706 /pause

    Pods of quality of service (QoS) tier Guaranteed are placed within the kubepods.slice. Pods of other QoS tiers end up in child cgroups of kubepods:

    # cd /sys/fs/cgroup/cpuset/kubepods.slice/kubepods-pod69c01f8e_6b74_11e9_ac0f_0a2b62178a22.slice/crio-b5437308f1ad1a7db0574c542bdf08563b865c0345c86e9585f8c0b0a655612c.scope
    # for i in `ls cpuset.cpus tasks` ; do echo -n "$i "; cat $i ; done
    cpuset.cpus 1
    tasks 32706
  12. Check the allowed CPU list for the task:

    # grep ^Cpus_allowed_list /proc/32706/status
     Cpus_allowed_list:    1
  13. Verify that another pod (in this case, the pod in the burstable QoS tier) on the system cannot run on the core allocated for the Guaranteed pod:

    # cat /sys/fs/cgroup/cpuset/kubepods.slice/kubepods-besteffort.slice/kubepods-besteffort-podc494a073_6b77_11e9_98c0_06bba5c387ea.slice/crio-c56982f57b75a2420947f0afc6cafe7534c5734efc34157525fa9abbf99e3849.scope/cpuset.cpus
    
    0
    # oc describe node perf-node.example.com
    ...
    Capacity:
     attachable-volumes-aws-ebs:  39
     cpu:                         2
     ephemeral-storage:           124768236Ki
     hugepages-1Gi:               0
     hugepages-2Mi:               0
     memory:                      8162900Ki
     pods:                        250
    Allocatable:
     attachable-volumes-aws-ebs:  39
     cpu:                         1500m
     ephemeral-storage:           124768236Ki
     hugepages-1Gi:               0
     hugepages-2Mi:               0
     memory:                      7548500Ki
     pods:                        250
    -------                               ----                           ------------  ----------  ---------------  -------------  ---
      default                                 cpumanager-6cqz7               1 (66%)       1 (66%)     1G (12%)         1G (12%)       29m
    
    Allocated resources:
      (Total limits may be over 100 percent, i.e., overcommitted.)
      Resource                    Requests          Limits
      --------                    --------          ------
      cpu                         1440m (96%)       1 (66%)

    This VM has two CPU cores. You set kube-reserved to 500 millicores, meaning half of one core is subtracted from the total capacity of the node to arrive at the Node Allocatable amount. You can see that Allocatable CPU is 1500 millicores. This means you can run one of the CPU Manager pods since each will take one whole core. A whole core is equivalent to 1000 millicores. If you try to schedule a second pod, the system will accept the pod, but it will never be scheduled:

    NAME                    READY   STATUS    RESTARTS   AGE
    cpumanager-6cqz7        1/1     Running   0          33m
    cpumanager-7qc2t        0/1     Pending   0          11s
Red Hat logoGithubRedditYoutubeTwitter

学习

尝试、购买和销售

社区

关于红帽文档

通过我们的产品和服务,以及可以信赖的内容,帮助红帽用户创新并实现他们的目标。

让开源更具包容性

红帽致力于替换我们的代码、文档和 Web 属性中存在问题的语言。欲了解更多详情,请参阅红帽博客.

關於紅帽

我们提供强化的解决方案,使企业能够更轻松地跨平台和环境(从核心数据中心到网络边缘)工作。

© 2024 Red Hat, Inc.