搜索

节点

download PDF
OpenShift Container Platform 4.15

在 OpenShift Container Platform 中配置和管理节点

Red Hat OpenShift Documentation Team

摘要

本文提供有关在集群中配置和管理节点、Pod 和容器的说明。它还提供有关配置 Pod 调度和放置、使用作业(job)和 DaemonSet 来自动执行操作,以及确保集群保持高效性的其他任务信息。

第 1 章 节点概述

1.1. 关于节点

节点是 Kubernetes 集群中的虚拟机或裸机。Worker 节点托管您的应用程序容器,分组为 pod。control plane 节点运行控制 Kubernetes 集群所需的服务。在 OpenShift Container Platform 中,control plane 节点不仅仅包含用于管理 OpenShift Container Platform 集群的 Kubernetes 服务。

在集群中运行稳定和健康的节点是基本运行托管应用程序的基本操作。在 OpenShift Container Platform 中,您可以通过代表节点的 Node 对象访问、管理和监控节点。使用 OpenShift CLI(oc)或 Web 控制台,您可以在节点上执行以下操作。

节点的以下组件负责维护运行 pod 并提供 Kubernetes 运行时环境。

容器运行时
容器运行时负责运行容器。Kubernetes 提供多个运行时,如 containerd、cri-o、rktlet 和 Docker。
Kubelet
kubelet 在节点上运行并读取容器清单。它确保定义的容器已启动且正在运行。kubelet 进程维护工作和节点服务器的状态。kubelet 管理网络流量和端口转发。kubelet 管理仅由 Kubernetes 创建的容器。
Kube-proxy
kube-proxy 在集群的每个节点上运行,并维护 Kubernetes 资源之间的网络流量。Kube-proxy 可确保网络环境被隔离并可访问。
DNS
集群 DNS 是一个 DNS 服务器,它为 Kubernetes 服务提供 DNS 记录。由 Kubernetes 启动的容器会在其 DNS 搜索中自动包含此 DNS 服务器。
control plane 和 worker 节点概述
读取操作

通过读操作,管理员可以或开发人员获取 OpenShift Container Platform 集群中节点的信息。

管理操作

作为管理员,您可以通过几个任务轻松地在 OpenShift Container Platform 集群中管理节点:

增强操作

OpenShift Container Platform 不仅支持访问和管理节点;作为管理员,您可以在节点上执行以下任务,使集群更高效、应用程序友好,并为开发人员提供更好的环境。

1.2. 关于 pod

pod 是节点上共同部署的一个或多个容器。作为集群管理员,您可以定义 pod,为它分配在准备好调度和管理的健康节点上运行。只要容器正在运行,pod 就会运行。在 Pod 被定义并运行后,您无法更改它。使用 pod 时,您可以执行的一些操作包括:

读取操作

作为管理员,您可以通过以下任务来获取项目中的 pod 信息:

管理操作

以下任务列表概述了管理员如何在 OpenShift Container Platform 集群中管理 pod。

增强操作

您可以使用 OpenShift Container Platform 中提供的各种工具和功能,更轻松地使用 pod。以下操作涉及使用这些工具和功能来更好地管理 pod。

操作用户更多信息

创建并使用 pod 横向自动扩展。

开发者

您可以使用 pod 横向自动扩展来指定您要运行的 pod 的最小和最大数量,以及 pod 的目标 CPU 使用率或内存使用率。通过使用 pod 横向自动扩展,您可以自动扩展 pod

安装和使用垂直 pod 自动缩放器

管理员和开发人员

作为管理员,通过监控资源和资源要求,使用垂直 pod 自动扩展来更好地利用集群资源。

作为开发人员,使用垂直 pod 自动扩展来确保 pod 在高负载时可以继续工作,方法是将 pod 调度到具有每个 pod 充足资源的节点。

使用设备插件提供对外部资源的访问。

Administrator

设备插件是在节点(kubelet 的外部)上运行的 gRPC 服务,用于管理特定的硬件资源。您可以部署设插件,以提供一致且可移植的解决方案,以便在集群中使用硬件设备。

使用 Secret 对象 向 pod 提供敏感数据。

Administrator

有些应用程序需要敏感信息,如密码和用户名。您可以使用 Secret 对象向应用程序 pod 提供此类信息。

1.3. 关于容器

容器是 OpenShift Container Platform 应用程序的基本单元,它由应用程序代码与其依赖项、库和二进制文件一起打包。容器提供不同环境间的一致性和多个部署目标:物理服务器、虚拟机 (VM) 和私有或公有云。

Linux 容器技术是一种轻量型机制,用于隔离运行中的进程,仅限制对指定的资源的访问。作为管理员,您可以在 Linux 容器上执行各种任务,例如:

OpenShift Container Platform 提供针对 Init 容器的专用容器。init 容器在应用程序容器之前运行,可以包含应用程序镜像中不存在的工具或设置脚本。您可以在部署 pod 的其余部分之前,使用 Init 容器执行任务。

除了在节点、Pod 和容器上执行特定任务外,您还可使用整个 OpenShift Container Platform 集群来使集群高效和应用程序 pod 具有高可用性。

1.4. 关于节点上的自动扩展 pod

OpenShift Container Platform 提供了三种工具,可用于自动扩展节点上的 pod 数量以及分配给 pod 的资源。

Pod 横向自动扩展

Horizontal Pod Autoscaler (HPA) 可以根据从属于该复制控制器或部署配置的 pod 收集的指标自动增加或减少复制控制器或部署配置的规模。

如需更多信息,请参阅使用 pod 横向自动扩展自动扩展 pod

自定义 Metrics Autoscaler

自定义 Metrics Autoscaler 可以根据不基于 CPU 或内存的自定义指标自动增加或减少部署、有状态集、自定义资源或作业的 pod 数量。

如需更多信息,请参阅自定义 Metrics Autoscaler Operator 概述

Vertical Pod Autoscaler

Vertical Pod Autoscaler (VPA) 可以自动查看 pod 中容器的运行状况和当前的 CPU 和内存资源,并根据它所了解的用量值更新资源限值和请求。

如需更多信息,请参阅使用垂直 pod 自动扩展自动调整 pod 资源级别

1.5. OpenShift Container Platform 节点的常用术语表

该术语表定义了在节点内容中使用的常用术语。

Container
它是一个轻量级且可执行的镜像,它包括了软件及其所有依赖项。容器虚拟化操作系统,因此您可以在任意位置运行容器,包括数据中心到公共或私有云,甚至在开发人员笔记本电脑中运行。
守护进程集
确保 pod 副本在 OpenShift Container Platform 集群的合格节点上运行。
egress
通过来自 pod 的网络出站流量进行外部数据共享的过程。
垃圾回收
清理集群资源的过程,如终止的容器和未被任何正在运行的 Pod 引用的镜像。
横向 Pod 自动扩展 (HPA)
作为 Kubernetes API 资源和控制器实现。您可以使用 HPA 指定您要运行的 pod 的最小和最大数量。您还可以指定 pod 应该针对的 CPU 或内存使用率。当超过给定 CPU 或内存阈值时,HPA 会扩展或缩放 pod。
入口
到一个 pod 的传入流量。
作业
要完成的进程。作业创建一个或多个 pod 对象,并确保指定的 pod 成功完成。
标签
您可以使用标签(即键值对)来组织并选择对象子集,如 pod。
节点
OpenShift Container Platform 集群中的 worker 机器。节点可以是虚拟机 (VM) 或物理机器。
Node Tuning Operator
您可以使用 Node Tuning Operator,使用 TuneD 守护进程来管理节点级别的性能优化。它保证了自定义性能优化设置以可被守护进程支持的格式传递到在集群中运行的所有容器化的 TuneD 守护进程中。相应的守护进程会在集群的所有节点上运行,每个节点上运行一个。
自助服务修复 Operator
Operator 在集群节点上运行,并检测和重启不健康的节点。
Pod
一个或多个带有共享资源(如卷和 IP 地址)的容器,在 OpenShift Container Platform 集群中运行。pod 是定义、部署和管理的最小计算单元。
容限(toleration)
表示 pod 允许(但不需要)调度到具有匹配污点的节点组。您可以使用容限来启用调度程序来调度具有匹配污点的 pod。
污点(taint)
一个核心对象,由一个键、值和效果组成。污点和容限可以一起工作,以确保 pod 不会调度到不相关的节点上。

第 2 章 使用 pod

2.1. 使用 pod

pod 是共同部署在同一主机上的一个或多个容器,也是可被定义、部署和管理的最小计算单元。

2.1.1. 了解 pod

对容器而言,Pod 大致相当于一个机器实例(物理或虚拟)。每个 pod 分配有自己的内部 IP 地址,因此拥有完整的端口空间,并且 pod 内的容器可以共享其本地存储和网络。

Pod 有生命周期,它们经过定义后,被分配到某一节点上运行,然后持续运行,直到容器退出或它们因为其他原因被删除为止。根据策略和退出代码,Pod 可在退出后删除,或被保留下来以启用对容器日志的访问。

OpenShift Container Platform 将 pod 基本上视为不可变;在运行期间无法更改 pod 定义。OpenShift Container Platform 通过终止现有的 pod,再利用修改后的配置和/或基础镜像重新创建 pod,从而实现更改。Pod 也被视为是可抛弃的,不会在重新创建时保持原来的状态。因此,pod 通常应通过更高级别的控制器来管理,而不直接由用户管理。

注意

如需了解每个 OpenShift Container Platform 节点主机的最大 pod 数,请参阅“集群限制”。

警告

不受复制控制器管理的裸机 pod 不能在节点中断时重新调度。

2.1.2. pod 配置示例

OpenShift Container Platform 使用 Kubernetes 的 pod 概念,它是共同部署在同一主机上的一个或多个容器,也是可被定义、部署和管理的最小计算单元。

以下是 pod 的示例定义。它展示了 pod 的许多特性,其中大多数已在其他主题中阐述,因此这里仅简略提及:

Pod 对象定义(YAML)

kind: Pod
apiVersion: v1
metadata:
  name: example
  labels:
    environment: production
    app: abc 1
spec:
  restartPolicy: Always 2
  securityContext: 3
    runAsNonRoot: true
    seccompProfile:
      type: RuntimeDefault
  containers: 4
    - name: abc
      args:
      - sleep
      - "1000000"
      volumeMounts: 5
       - name: cache-volume
         mountPath: /cache 6
      image: registry.access.redhat.com/ubi7/ubi-init:latest 7
      securityContext:
        allowPrivilegeEscalation: false
        runAsNonRoot: true
        capabilities:
          drop: ["ALL"]
      resources:
        limits:
          memory: "100Mi"
          cpu: "1"
        requests:
          memory: "100Mi"
          cpu: "1"
  volumes: 8
  - name: cache-volume
    emptyDir:
      sizeLimit: 500Mi

1
pod 可以被“标上”一个或多个标签,然后使用这些标签在一个操作中选择和管理多组 pod。标签以键/值格式保存在 metadata 散列中。
2
pod 重启策略,可能的值有 AlwaysOnFailureNever。默认值为 Always
3
OpenShift Container Platform 为容器定义了一个安全上下文,指定是否允许其作为特权容器来运行,或者以所选用户身份运行,等等。默认上下文的限制性比较强,但管理员可以根据需要进行修改。
4
containers 指定包括一个或多个容器定义的数组。
5
容器指定在容器中挂载外部存储卷的位置。
6
指定要为 pod 提供的卷。卷挂载在指定路径上。不要挂载到容器 root、/ 或主机和容器中相同的任何路径。如果容器有足够权限,可能会损坏您的主机系统(如主机的 /dev/pts 文件)。使用 /host 挂载主机是安全的。
7
pod 中的每个容器使用自己的容器镜像进行实例化。
8
pod 定义了可供其容器使用的存储卷。

如果将具有高文件数的持久性卷附加到 pod,则这些 pod 可能会失败,或者可能需要很长时间才能启动。如需更多信息,请参阅在 OpenShift 中使用具有高文件计数的持久性卷时,为什么 pod 无法启动或占用大量时间来实现"Ready"状态?

注意

此 pod 定义不包括 OpenShift Container Platform 在 pod 创建并开始其生命周期后自动填充的属性。Kubernetes pod 文档详细介绍了 pod 的功能和用途。

2.1.3. 其他资源

2.2. 查看 pod

作为管理员,您可以查看集群中的 pod,并确定这些 pod 和整个集群的健康状态。

2.2.1. 关于 pod

OpenShift Container Platform 使用 Kubernetes 的 pod 概念,它是共同部署在同一主机上的一个或多个容器,也是可被定义、部署和管理的最小计算单元。对容器而言,Pod 大致相当于机器实例(物理或虚拟)。

您可以查看与特定项目关联的 pod 列表,或者查看 pod 的使用情况统计。

2.2.2. 查看项目中的 pod

您可以查看与当前项目关联的 pod 列表,包括副本数、当前状态、重启次数和 pod 的年龄。

流程

查看项目中的 pod:

  1. 切换到对应项目:

    $ oc project <project-name>
  2. 运行以下命令:

    $ oc get pods

    例如:

    $ oc get pods

    输出示例

    NAME                       READY   STATUS    RESTARTS   AGE
    console-698d866b78-bnshf   1/1     Running   2          165m
    console-698d866b78-m87pm   1/1     Running   2          165m

    添加 -o wide 标记来查看 pod IP 地址和 pod 所在的节点。

    $ oc get pods -o wide

    输出示例

    NAME                       READY   STATUS    RESTARTS   AGE    IP            NODE                           NOMINATED NODE
    console-698d866b78-bnshf   1/1     Running   2          166m   10.128.0.24   ip-10-0-152-71.ec2.internal    <none>
    console-698d866b78-m87pm   1/1     Running   2          166m   10.129.0.23   ip-10-0-173-237.ec2.internal   <none>

2.2.3. 查看 pod 用量统计

您可以显示 pod 的用量统计,这些统计信息为容器提供了运行时环境。这些用量统计包括 CPU、内存和存储的消耗。

先决条件

  • 您必须有 cluster-reader 权限才能查看用量统计。
  • 必须安装 Metrics 才能查看用量统计。

流程

查看用量统计:

  1. 运行以下命令:

    $ oc adm top pods

    例如:

    $ oc adm top pods -n openshift-console

    输出示例

    NAME                         CPU(cores)   MEMORY(bytes)
    console-7f58c69899-q8c8k     0m           22Mi
    console-7f58c69899-xhbgg     0m           25Mi
    downloads-594fcccf94-bcxk8   3m           18Mi
    downloads-594fcccf94-kv4p6   2m           15Mi

  2. 运行以下命令,以查看带有标签的 pod 用量统计:

    $ oc adm top pod --selector=''

    您必须选择过滤所基于的选择器(标签查询)。支持 ===!=

    例如:

    $ oc adm top pod --selector='name=my-pod'

2.2.4. 查看资源日志

您可以在 OpenShift CLI (oc) 和 Web 控制台中查看各种资源的日志。日志从日志的尾部或末尾读取。

先决条件

  • 访问 OpenShift CLI(oc)。

流程 (UI)

  1. 在 OpenShift Container Platform 控制台中,导航到 WorkloadsPods,或通过您要调查的资源导航到 pod。

    注意

    有些资源(如构建)没有直接查询的 pod。在这种情况下,您可以在资源的 Details 页面中找到 Logs 链接。

  2. 从下拉菜单中选择一个项目。
  3. 点您要调查的 pod 的名称。
  4. Logs

流程 (CLI)

  • 查看特定 pod 的日志:

    $ oc logs -f <pod_name> -c <container_name>

    其中:

    -f
    可选:指定输出是否遵循要写到日志中的内容。
    <pod_name>
    指定 pod 的名称。
    <container_name>
    可选:指定容器的名称。当 pod 具有多个容器时,您必须指定容器名称。

    例如:

    $ oc logs ruby-58cd97df55-mww7r
    $ oc logs -f ruby-57f7f4855b-znl92 -c ruby

    输出的日志文件内容。

  • 查看特定资源的日志:

    $ oc logs <object_type>/<resource_name> 1
    1
    指定资源类型和名称。

    例如:

    $ oc logs deployment/ruby

    输出的日志文件内容。

2.3. 为 pod 配置 OpenShift Container Platform 集群

作为管理员,您可以为 pod 创建和维护高效的集群。

通过确保集群高效运行,您可以使用一些工具为开发人员提供更好的环境,例如,pod 退出时的行为,确保始终有所需数量的 pod 在运行,何时重启设计为只运行一次的 pod,限制 pod 可以使用的带宽,以及如何在中断时让 pod 保持运行。

2.3.1. 配置 pod 重启后的行为

pod 重启策略决定了 OpenShift Container Platform 在该 pod 中的容器退出时作出何种响应。该策略适用于 pod 中的所有容器。

可能的值有:

  • Always - 在 pod 被重启之前,按规定的延时值(10s,20s,40s)不断尝试重启 pod 中成功退出的容器(最长为 5 分钟)。默认值为 Always
  • OnFailure - 按规定的延时值(10s,20s,40s)不断尝试重启 pod 中失败的容器,上限为 5 分钟。
  • Never - 不尝试重启 pod 中已退出或失败的容器。Pod 立即失败并退出。

在 pod 绑定到某个节点后,该 pod 永远不会绑定到另一个节点。这意味着,需要一个控制器才能使 pod 在节点失败后存活:

状况控制器类型重启策略

应该终止的 Pod(例如,批量计算)

作业

OnFailureNever

不应该终止的 Pod(例如,Web 服务器)

复制控制器

Always

每台机器必须运行一个的 Pod

守护进程集

任意

如果 pod 上的容器失败且重启策略设为 OnFailure,则 pod 会保留在该节点上并重新启动容器。如果您不希望容器重新启动,请使用 Never 重启策略。

如果整个 pod 失败,OpenShift Container Platform 会启动一个新 pod。开发人员必须解决应用程序可能会在新 pod 中重启的情况。特别是,应用程序必须处理由以往运行产生的临时文件、锁定、不完整输出等结果。

注意

Kubernetes 架构需要来自云提供商的可靠端点。当云提供商停机时,kubelet 会防止 OpenShift Container Platform 重启。

如果底层云提供商端点不可靠,请不要使用云提供商集成来安装集群。应像在非云环境中一样安装集群。不建议在已安装的集群中打开或关闭云提供商集成。

如需详细了解 OpenShift Container Platform 如何使用与失败容器相关的重启策略,请参阅 Kubernetes 文档中的示例状态

2.3.2. 限制可供 pod 使用的带宽

您可以对 pod 应用服务质量流量控制,有效限制其可用带宽。出口流量(从 pod 传出)按照策略来处理,仅在超出配置的速率时丢弃数据包。入口流量(传入 pod 中)通过控制已排队数据包进行处理,以便有效地处理数据。您对 pod 应用的限制不会影响其他 pod 的带宽。

流程

限制 pod 的带宽:

  1. 编写对象定义 JSON 文件,并使用 kubernetes.io/ingress-bandwidthkubernetes.io/egress-bandwidth 注解指定数据流量速度。例如,将 pod 出口和入口带宽限制为 10M/s:

    受限 Pod 对象定义

    {
        "kind": "Pod",
        "spec": {
            "containers": [
                {
                    "image": "openshift/hello-openshift",
                    "name": "hello-openshift"
                }
            ]
        },
        "apiVersion": "v1",
        "metadata": {
            "name": "iperf-slow",
            "annotations": {
                "kubernetes.io/ingress-bandwidth": "10M",
                "kubernetes.io/egress-bandwidth": "10M"
            }
        }
    }

  2. 使用对象定义创建 pod:

    $ oc create -f <file_or_dir_path>

2.3.3. 了解如何使用 pod 中断预算来指定必须在线的 pod 数量

pod 中断预算允许在操作过程中指定 pod 的安全限制,如排空节点以进行维护。

PodDisruptionBudget 是一个 API 对象,用于指定在某一时间必须保持在线的副本的最小数量或百分比。在项目中进行这些设置对节点维护(比如缩减集群或升级集群)有益,而且仅在自愿驱除(而非节点失败)时遵从这些设置。

PodDisruptionBudget 对象的配置由以下关键部分组成:

  • 标签选择器,即一组 pod 的标签查询。
  • 可用性级别,用来指定必须同时可用的最少 pod 的数量:

    • minAvailable 是必须始终可用的 pod 的数量,即使在中断期间也是如此。
    • maxUnavailable 是中断期间可以无法使用的 pod 的数量。
注意

Available 指的是具有 Ready=True 的 pod 数量。ready=True 指的是能够服务请求的 pod,并应添加到所有匹配服务的负载平衡池中。

允许 maxUnavailable0%0minAvailable100% 或等于副本数,但这样设置可能会阻止节点排空操作。

警告

对于 OpenShift Container Platform 中的所有机器配置池,maxUnavailable 的默认设置是 1。建议您不要更改这个值,且一次只更新一个 control plane 节点。对于 control plane 池,请不要将这个值改为 3

您可以使用以下命令来检查所有项目的 pod 中断预算:

$ oc get poddisruptionbudget --all-namespaces
注意

以下示例包含特定于 AWS 上的 OpenShift Container Platform 的一些值。

输出示例

NAMESPACE                              NAME                                    MIN AVAILABLE   MAX UNAVAILABLE   ALLOWED DISRUPTIONS   AGE
openshift-apiserver                    openshift-apiserver-pdb                 N/A             1                 1                     121m
openshift-cloud-controller-manager     aws-cloud-controller-manager            1               N/A               1                     125m
openshift-cloud-credential-operator    pod-identity-webhook                    1               N/A               1                     117m
openshift-cluster-csi-drivers          aws-ebs-csi-driver-controller-pdb       N/A             1                 1                     121m
openshift-cluster-storage-operator     csi-snapshot-controller-pdb             N/A             1                 1                     122m
openshift-cluster-storage-operator     csi-snapshot-webhook-pdb                N/A             1                 1                     122m
openshift-console                      console                                 N/A             1                 1                     116m
#...

如果系统中至少有 minAvailable 个 pod 正在运行,则 PodDisruptionBudget 被视为是健康的。超过这一限制的每个 pod 都可被驱除。

注意

根据您的 pod 优先级与抢占设置,可能会无视 pod 中断预算要求而移除较低优先级 pod。

2.3.3.1. 使用 pod 中断预算指定必须在线的 pod 数量

您可以使用 PodDisruptionBudget 对象来指定某一时间必须保持在线的副本的最小数量或百分比。

流程

配置 pod 中断预算:

  1. 使用类似以下示例的对象定义来创建 YAML 文件:

    apiVersion: policy/v1 1
    kind: PodDisruptionBudget
    metadata:
      name: my-pdb
    spec:
      minAvailable: 2  2
      selector:  3
        matchLabels:
          name: my-pod
    1
    PodDisruptionBudgetpolicy/v1 API 组的一部分。
    2
    必须同时可用的最小 pod 数量。这可以是整数,也可以是指定百分比的字符串(如 20%)。
    3
    对一组资源进行的标签查询。matchLabelsmatchExpressions 的结果在逻辑上是联合的。要选择项目中的所有 pod,将此参数设置为空,如 selector {}

    或者:

    apiVersion: policy/v1 1
    kind: PodDisruptionBudget
    metadata:
      name: my-pdb
    spec:
      maxUnavailable: 25% 2
      selector: 3
        matchLabels:
          name: my-pod
    1
    PodDisruptionBudgetpolicy/v1 API 组的一部分。
    2
    同时不能使用的最多的 pod 数量。这可以是整数,也可以是指定百分比的字符串(如 20%)。
    3
    对一组资源进行的标签查询。matchLabelsmatchExpressions 的结果在逻辑上是联合的。要选择项目中的所有 pod,将此参数设置为空,如 selector {}
  2. 运行以下命令,将对象添加到项目中:

    $ oc create -f </path/to/file> -n <project_name>
2.3.3.2. 为不健康的 pod 指定驱除策略

当您使用 pod 中断预算 (PDB) 来指定必须同时有多少 pod 可用时,您还可以定义驱除不健康 pod 的条件。

您可以选择以下策略之一:

IfHealthyBudget
只有在保护的应用程序没有被中断时,运行的还没有处于健康状态的 pod 才能被驱除。
AlwaysAllow

无论是否满足 pod 中断预算中的条件,运行的还没有处于健康状态的 pod 都可以被驱除。此策略可帮助驱除出现故障的应用程序,如 pod 处于 CrashLoopBackOff 状态或无法报告 Ready 状态的应用程序。

注意

建议您在 PodDisruptionBudget 对象中将 unhealthyPodEvictionPolicy 字段设置为 AlwaysAllow,以便在节点排空期间支持收集错误的应用程序。默认行为是等待应用程序 pod 处于健康状态,然后才能排空操作。

流程

  1. 创建定义 PodDisruptionBudget 对象的 YAML 文件,并指定不健康的 pod 驱除策略:

    pod-disruption-budget.yaml 文件示例

    apiVersion: policy/v1
    kind: PodDisruptionBudget
    metadata:
      name: my-pdb
    spec:
      minAvailable: 2
      selector:
        matchLabels:
          name: my-pod
      unhealthyPodEvictionPolicy: AlwaysAllow 1

    1
    选择 IfHealthyBudgetAlwaysAllow 作为不健康 pod 的驱除策略。当 unhealthyPodEvictionPolicy 字段为空时,默认为 IfHealthyBudget
  2. 运行以下命令来创建 PodDisruptionBudget 对象:

    $ oc create -f pod-disruption-budget.yaml

现在,设置了 AlwaysAllow 不健康 pod 驱除策略的 PDB,您可以排空节点并驱除受此 PDB 保护的应用程序的 pod。

其他资源

2.3.4. 使用关键 pod 防止删除 pod

有不少核心组件对于集群完全正常工作而言至关重要,但它们在常规集群节点而非主节点上运行。如果一个关键附加组件被驱除,集群可能会停止正常工作。

标记为关键 (critical) 的 Pod 不允许被驱除。

流程

使 pod 成为关键 pod:

  1. 创建 Pod spec 或编辑现有的 pod,使其包含 system-cluster-critical 优先级类:

    apiVersion: v1
    kind: Pod
    metadata:
      name: my-pdb
    spec:
      template:
        metadata:
          name: critical-pod
        priorityClassName: system-cluster-critical 1
    # ...
    1
    绝不可从节点驱除的 pod 的默认优先级类。

    此外,对于对集群而言很重要但可在必要时移除的 pod,可以指定 system-node-critical

  2. 创建 pod:

    $ oc create -f <file-name>.yaml

2.3.5. 当使用带有大量文件的持久性卷时,可以减少 pod 超时的情况

如果存储卷包含多个文件(~1,000,000 或更多),您可能会遇到 pod 超时的问题。

这是因为当挂载卷时,OpenShift Container Platform 会递归更改每个卷内容的所有权和权限,以匹配 pod 的 securityContext 中指定的 fsGroup。对于大型卷,检查和更改所有权和权限可能会非常耗时,从而导致 pod 启动非常慢。

您可以通过应用以下临时解决方案之一来缩短这个延迟:

  • 使用安全性上下文约束 (SCC) 跳过卷的 SELinux 重新标记。
  • 使用 SCC 中的 fsGroupChangePolicy 字段来控制 OpenShift Container Platform 检查和管理卷的所有权和权限的方式。
  • 使用 Cluster Resource Override Operator 自动应用 SCC 来跳过 SELinux 重新标记。
  • 使用运行时类跳过卷的 SELinux 重新标记。

如需更多信息,请参阅在 OpenShift 中使用具有高文件计数的持久性卷时,为什么 pod 无法启动或占用大量时间来实现"Ready"状态?

2.4. 使用 pod 横向自动扩展自动扩展 pod

作为开发人员,您可以使用 pod 横向自动扩展 (HPA) 来指定 OpenShift Container Platform 如何根据从属于某复制控制器或部署配置的 pod 收集的指标来自动增加或缩小该复制控制器或部署配置的规模。您可以为部署、部署配置、副本集、复制控制器或有状态集创建 HPA。

有关根据自定义指标缩放 pod 的信息,请参阅基于自定义指标自动扩展 pod

注意

除非需要特定功能或由其他对象提供的行为,否则建议使用 Deployment 对象或 ReplicaSet 对象。如需有关这些对象的更多信息,请参阅了解部署

2.4.1. 了解 pod 横向自动扩展

您可以创建一个 pod 横向自动扩展来指定您要运行的 pod 的最小和最大数量,以及 pod 的目标 CPU 使用率或内存使用率。

在创建了 pod 横向自动扩展后,OpenShift Container Platform 会开始查询 pod 上的 CPU 和/或内存资源指标。当这些指标可用时,pod 横向自动扩展会计算当前指标使用率与所需指标使用率的比率,并相应地扩展或缩减。查询和缩放是定期进行的,但可能需要一到两分钟时间才会有可用指标。

对于复制控制器,这种缩放直接与复制控制器的副本对应。对于部署配置,缩放直接与部署配置的副本计数对应。注意,自动缩放仅应用到 Complete 阶段的最新部署。

OpenShift Container Platform 会自动考虑资源情况,并防止在资源激增期间进行不必要的自动缩放,比如在启动过程中。处于 unready 状态的 pod 在扩展时具有 0 CPU 用量,自动扩展在缩减时会忽略这些 pod。没有已知指标的 Pod 在扩展时具有 0% CPU 用量,在缩减时具有 100% CPU 用量。这在 HPA 决策过程中提供更高的稳定性。要使用这个功能,您必须配置就绪度检查来确定新 pod 是否准备就绪。

要使用 pod 横向自动扩展,您的集群管理员必须已经正确配置了集群指标。

2.4.1.1. 支持的指标

pod 横向自动扩展支持以下指标:

表 2.1. 指标
指标描述API 版本

CPU 使用率

已用的 CPU 内核数。可以用来计算 pod 的已请求 CPU 百分比。

autoscaling/v1, autoscaling/v2

内存使用率

已用内存量。可以用来计算 pod 的已请求内存百分比。

autoscaling/v2

重要

对于基于内存的自动缩放,内存用量必须与副本数呈正比增大和减小。平均而言:

  • 增加副本数一定会导致每个 pod 的内存(工作集)用量总体降低。
  • 减少副本数一定会导致每个 pod 的内存用量总体增高。

使用 OpenShift Container Platform Web 控制台检查应用程序的内存行为,并确保应用程序在使用基于内存的自动缩放前满足这些要求。

以下示例显示了 image-registry Deployment 对象的自动扩展。初始部署需要 3 个 pod。HPA 对象将最小值增加到 5。如果 pod 的 CPU 用量达到 75%,pod 会增加到 7:

$ oc autoscale deployment/image-registry --min=5 --max=7 --cpu-percent=75

输出示例

horizontalpodautoscaler.autoscaling/image-registry autoscaled

image-registry Deployment 对象的 HPA 示例,其中 minReplicas 被设置为 3

apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
  name: image-registry
  namespace: default
spec:
  maxReplicas: 7
  minReplicas: 3
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: image-registry
  targetCPUUtilizationPercentage: 75
status:
  currentReplicas: 5
  desiredReplicas: 0

  1. 查看部署的新状态:

    $ oc get deployment image-registry

    部署中现在有 5 个 pod:

    输出示例

    NAME             REVISION   DESIRED   CURRENT   TRIGGERED BY
    image-registry   1          5         5         config

2.4.2. HPA 的工作原理?

pod 横向自动扩展(HPA)扩展了 pod 自动扩展的概念。HPA 允许您创建和管理一组负载均衡的节点。当给定的 CPU 或内存阈值被超过时,HPA 会自动增加或减少 pod 数量。

图 2.1. HPA 的高级别工作流

工作流

HPA 是 Kubernetes 自动扩展 API 组中的 API 资源。自动扩展器充当控制循环,在同步周期内默认为 15 秒。在此期间,控制器管理器会根据 HPA 的 YAML 文件中定义的 CPU、内存使用率或两者查询 CPU、内存使用或两者。控制器管理器为 HPA 为目标的每个 pod 来获取来自每个 pod 资源指标(如 CPU 或内存)的资源指标的利用率指标。

如果设置了使用值目标,控制器会将利用率值视为各个 pod 中容器对等资源请求的百分比。然后,控制器需要所有目标 pod 的平均利用率,并生成一个用于缩放所需副本数的比率。HPA 配置为从 metrics.k8s.io 获取指标(由 metrics 服务器提供)。由于指标评估的动态性质,副本的数量在扩展一组副本期间会波动。

注意

要实现 HPA,所有目标 pod 都必须在其容器上设置了一个资源请求。

2.4.3. 关于请求和限制

调度程序使用您为 pod 中容器指定的资源请求,来确定要将 pod 放置到哪个节点。kubelet 强制执行您为容器指定的资源限值,以确保容器不允许使用超过指定的限制。kubelet 还保留针对该容器使用的系统资源的请求数量。

如何使用资源指标?

在 pod 规格中,您必须指定资源请求,如 CPU 和内存。HPA 使用此规范来确定资源利用率,然后扩展目标或缩减。

例如,HPA 对象使用以下指标源:

type: Resource
resource:
  name: cpu
  target:
    type: Utilization
    averageUtilization: 60

在本例中,HPA 将 pod 的平均利用率保持在 scale 目标为 60%。使用率是当前资源使用量与 pod 请求的资源之间的比率。

2.4.4. 最佳实践

所有 pod 都必须配置资源请求

HPA 根据 OpenShift Container Platform 集群中观察的 pod 或内存使用率值做出缩放决定。利用率值计算为各个容器集的资源请求的百分比。缺少资源请求值可能会影响 HPA 的最佳性能。

配置冷却期

在横向 pod 自动扩展过程中,可能会快速扩展事件,而不会造成时间差。配置 cool down 周期,以防止频繁的副本波动。您可以通过配置 stabilizationWindowSeconds 字段指定 cool down period。当用于扩展的指标保持波动时,stabilization 窗口用于限制副本数的波动。自动扩展算法使用这个窗口来推断以前的预期状态,并避免对工作负载扩展不需要的更改。

例如,为 scaleDown 字段指定了 stabilization 窗口:

behavior:
  scaleDown:
    stabilizationWindowSeconds: 300

在上例中,过去 5 分钟的所有所需状态都被视为。此近似滚动的最大值,避免让扩展算法频繁删除 pod,仅在稍后触发同等的 pod 重新创建。

2.4.4.1. 扩展策略

autoscaling/v2 API 允许您为 pod 横向自动扩展添加扩展策略。扩展策略用于控制 OpenShift Container Platform 横向自动扩展(HPA)如何扩展 pod。扩展策略允许您通过设置在指定时间段内扩展的特定数量或特定百分比来限制 HPA 扩展或缩减的速率。您还可以定义一个稳定化窗口(stabilization window),在指标有较大波动时,使用之前计算出的期望状态来控制扩展。您可以为相同的扩展方向创建多个策略,并根据更改的大小决定使用哪些策略。您还可以通过计时的迭代限制缩放。HPA 在迭代过程中扩展 pod,然后在以后的迭代中执行扩展(如果需要)。

带有扩展策略的 HPA 对象示例

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
  name: hpa-resource-metrics-memory
  namespace: default
spec:
  behavior:
    scaleDown: 1
      policies: 2
      - type: Pods 3
        value: 4 4
        periodSeconds: 60 5
      - type: Percent
        value: 10 6
        periodSeconds: 60
      selectPolicy: Min 7
      stabilizationWindowSeconds: 300 8
    scaleUp: 9
      policies:
      - type: Pods
        value: 5 10
        periodSeconds: 70
      - type: Percent
        value: 12 11
        periodSeconds: 80
      selectPolicy: Max
      stabilizationWindowSeconds: 0
...

1
指定扩展策略的方向,可以是 scaleDownscaleUp。本例为缩减创建一个策略。
2
定义扩展策略。
3
决定策略是否在每次迭代过程中根据特定的 pod 数量或 pod 百分比进行扩展。默认值为 pod
4
在每次迭代过程中缩放数量(pod 数量或 pod 的百分比)的限制。在按 pod 数量进行缩减时没有默认的值。
5
决定扩展迭代的长度。默认值为 15 秒。
6
按百分比缩减的默认值为 100%。
7
如果定义了多个策略,则决定首先使用哪个策略。指定 Max 使用允许最多更改的策略,Min 使用允许最小更改的策略,或者 Disabled 阻止 HPA 在策略方向进行扩展。默认值为 Max
8
决定 HPA 应该重新查看所需状态的时间周期。默认值为 0
9
本例为扩展创建了策略。
10
扩展数量的限制(按 pod 的数量)。扩展 pod 数量的默认值为 4%。
11
扩展数量的限制(按 pod 的百分比)。按百分比扩展的默认值为 100%。

缩减策略示例

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
  name: hpa-resource-metrics-memory
  namespace: default
spec:
...
  minReplicas: 20
...
  behavior:
    scaleDown:
      stabilizationWindowSeconds: 300
      policies:
      - type: Pods
        value: 4
        periodSeconds: 30
      - type: Percent
        value: 10
        periodSeconds: 60
      selectPolicy: Max
    scaleUp:
      selectPolicy: Disabled

在本例中,当 pod 的数量大于 40 时,则使用基于百分比的策略进行缩减。这个策略会产生较大变化,这是 selectPolicy 需要的。

如果有 80 个 pod 副本,在第一次迭代时 HPA 会将 pod 减少 8 个,即 80 个 pod 的 10%(根据 type: Percentvalue: 10 参数),持续一分钟(periodSeconds: 60)。对于下一个迭代,pod 的数量为 72。HPA 计算剩余 pod 的 10% 为 7.2,这个数值被舍入到 8,这会缩减 8 个 pod。在每一后续迭代中,将根据剩余的 pod 数量重新计算要缩放的 pod 数量。当 pod 的数量低于 40 时,基于 pod 的策略会被应用,因为基于 pod 的数值会大于基于百分比的数值。HPA 每次减少 4 个 pod(type: Podvalue: 4),持续 30 秒(periodSeconds: 30),直到剩余 20 个副本(minReplicas)。

selectPolicy: Disabled 参数可防止 HPA 扩展 pod。如果需要,可以通过调整副本集或部署集中的副本数来手动扩展。

如果设置,您可以使用 oc edit 命令查看扩展策略:

$ oc edit hpa hpa-resource-metrics-memory

输出示例

apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
  annotations:
    autoscaling.alpha.kubernetes.io/behavior:\
'{"ScaleUp":{"StabilizationWindowSeconds":0,"SelectPolicy":"Max","Policies":[{"Type":"Pods","Value":4,"PeriodSeconds":15},{"Type":"Percent","Value":100,"PeriodSeconds":15}]},\
"ScaleDown":{"StabilizationWindowSeconds":300,"SelectPolicy":"Min","Policies":[{"Type":"Pods","Value":4,"PeriodSeconds":60},{"Type":"Percent","Value":10,"PeriodSeconds":60}]}}'
...

2.4.5. 使用 Web 控制台创建 pod 横向自动扩展

在 web 控制台中,您可以创建一个 pod 横向自动扩展(HPA),用于指定要在 DeploymentDeploymentConfig 对象上运行的 pod 的最小和最大数量。您还可以定义 pod 的目标 CPU 或内存用量。

注意

HPA 不能添加到作为 Operator 支持服务、Knative 服务或 Helm chart 一部分的部署中。

流程

在 web 控制台中创建 HPA:

  1. Topology 视图中,点击节点公开侧面板。
  2. Actions 下拉列表中,选择 Add HorizontalPodAutoscaler 来打开 Add HorizontalPodAutoscaler 表单。

    图 2.2. 添加 HorizontalPodAutoscaler

    Add HorizontalPodAutoscaler 表单
  3. Add HorizontalPodAutoscaler 表单中,定义名称、最小和最大 pod 限值、CPU 和内存用量,并点 Save

    注意

    如果缺少 CPU 和内存用量的值,则会显示警告。

在 web 控制台中编辑 HPA:

  1. Topology 视图中,点击节点公开侧面板。
  2. Actions 下拉列表中,选择 Edit HorizontalPodAutoscaler 来打开 Edit Horizontal Pod Autoscaler 表单。
  3. Edit Horizontal Pod Autoscaler 表单中,编辑最小和最大 pod 限值以及 CPU 和内存用量,然后点 Save
注意

在 web 控制台中创建或编辑 pod 横向自动扩展时,您可以从 Form 视图切换到 YAML 视图

在 web 控制台中删除 HPA:

  1. Topology 视图中,点击节点公开侧面板。
  2. Actions 下拉列表中,选择 Remove HorizontalPodAutoscaler
  3. 在确认弹出窗口中点击 Remove 删除 HPA。

2.4.6. 使用 CLI 根据 CPU 使用率创建 pod 横向自动扩展

使用 OpenShift Container Platform CLI,您可以创建一个 pod 横向自动扩展(HPA)来自动扩展现有的 DeploymentDeploymentConfigReplicaSetReplicationControllerStatefulSet 对象。HPA 扩展与该对象关联的 pod,以维护您指定的 CPU 用量。

注意

除非需要特定功能或由其他对象提供的行为,否则建议使用 Deployment 对象或 ReplicaSet 对象。

HPA 会在最小和最大数量之间增加和减少副本数,以保持所有 pod 的指定 CPU 使用率。

为 CPU 使用率自动扩展时,您可以使用 oc autoscale 命令,并指定要在任意给定时间运行的 pod 的最小和最大数量,以及 pod 的目标平均 CPU 使用率。如果未指定最小值,则 OpenShift Container Platform 服务器会为 pod 赋予一个默认值。

要自动缩放特定 CPU 值,创建一个带有目标 CPU 和 pod 限制的 HorizontalPodAutoscaler 对象。

先决条件

要使用 pod 横向自动扩展,您的集群管理员必须已经正确配置了集群指标。您可以使用 oc describe PodMetrics <pod-name> 命令来判断是否已配置了指标。如果配置了指标,输出类似于以下示例,其中 Usage 下列出了 CpuMemory

$ oc describe PodMetrics openshift-kube-scheduler-ip-10-0-135-131.ec2.internal

输出示例

Name:         openshift-kube-scheduler-ip-10-0-135-131.ec2.internal
Namespace:    openshift-kube-scheduler
Labels:       <none>
Annotations:  <none>
API Version:  metrics.k8s.io/v1beta1
Containers:
  Name:  wait-for-host-port
  Usage:
    Memory:  0
  Name:      scheduler
  Usage:
    Cpu:     8m
    Memory:  45440Ki
Kind:        PodMetrics
Metadata:
  Creation Timestamp:  2019-05-23T18:47:56Z
  Self Link:           /apis/metrics.k8s.io/v1beta1/namespaces/openshift-kube-scheduler/pods/openshift-kube-scheduler-ip-10-0-135-131.ec2.internal
Timestamp:             2019-05-23T18:47:56Z
Window:                1m0s
Events:                <none>

流程

为 CPU 使用率创建 pod 横向自动扩展:

  1. 执行以下之一:

    • 要根据 CPU 使用率百分比来缩放,请为现有对象创建一个 HorizontalPodAutoscaler 对象:

      $ oc autoscale <object_type>/<name> \1
        --min <number> \2
        --max <number> \3
        --cpu-percent=<percent> 4
      1
      指定要自动扩展的对象类型和名称。对象必须存在,并需要是 Deployment, DeploymentConfig/dc, ReplicaSet/rs, ReplicationController/rc, 或 StatefulSet
      2
      另外,还可以指定缩减时的最小副本数量。
      3
      指定扩展时的最大副本数量。
      4
      指定所有 pod 的目标平均 CPU 使用率(以请求 CPU 的百分比表示)。如果未指定或为负数,则会使用默认的自动缩放策略。

      例如,以下命令显示 image-registry Deployment 对象的自动扩展。初始部署需要 3 个 pod。HPA 对象将最小值增加到 5。如果 pod 的 CPU 用量达到 75%,pod 将增加到 7:

      $ oc autoscale deployment/image-registry --min=5 --max=7 --cpu-percent=75
    • 要扩展特定 CPU 值,请为现有对象创建类似如下的 YAML 文件:

      1. 创建一个类似以下示例的 YAML 文件:

        apiVersion: autoscaling/v2 1
        kind: HorizontalPodAutoscaler
        metadata:
          name: cpu-autoscale 2
          namespace: default
        spec:
          scaleTargetRef:
            apiVersion: apps/v1 3
            kind: Deployment 4
            name: example 5
          minReplicas: 1 6
          maxReplicas: 10 7
          metrics: 8
          - type: Resource
            resource:
              name: cpu 9
              target:
                type: AverageValue 10
                averageValue: 500m 11
        1
        使用 autoscaling/v2 API。
        2
        指定此 pod 横向自动扩展对象的名称。
        3
        指定要缩放对象的 API 版本:
        • 对于 DeploymentReplicaSetStatefulset 对象,使用 apps/v1
        • 对于 ReplicationController,使用 v1
        • 对于 DeploymentConfig,使用 apps.openshift.io/v1
        4
        指定对象类型。对象需要是 Deployment, DeploymentConfig/dc, ReplicaSet/rs, ReplicationController/rc, 或 StatefulSet.
        5
        指定要缩放的对象名称。对象必须存在。
        6
        指定缩减时的最小副本数量。
        7
        指定扩展时的最大副本数量。
        8
        对于内存使用率,使用 metrics 参数。
        9
        为 CPU 使用率指定 cpu
        10
        设置为 AverageValue
        11
        使用目标 CPU 值设置为 averageValue
      2. 创建 Pod 横向自动扩展:

        $ oc create -f <file-name>.yaml
  2. 验证 pod 横向自动扩展是否已创建:

    $ oc get hpa cpu-autoscale

    输出示例

    NAME            REFERENCE            TARGETS         MINPODS   MAXPODS   REPLICAS   AGE
    cpu-autoscale   Deployment/example   173m/500m       1         10        1          20m

2.4.7. 使用 CLI 根据内存使用率创建 pod 横向自动扩展对象

使用 OpenShift Container Platform CLI,您可以创建一个 pod 横向自动扩展(HPA)来自动扩展现有的 DeploymentDeploymentConfigReplicaSetReplicationControllerStatefulSet 对象。HPA 扩展与该对象关联的 pod,以维护您指定的平均内存使用率(可以是直接值,也可以是请求的内存百分比)。

注意

除非需要特定功能或由其他对象提供的行为,否则建议使用 Deployment 对象或 ReplicaSet 对象。

HPA 增加和减少最小和最大数量之间的副本数量,以维护所有 pod 的指定内存使用率。

对于内存使用率,您可以指定 pod 的最小和最大数量,以及 pod 的目标平均内存使用率。如果未指定最小值,则 OpenShift Container Platform 服务器会为 pod 赋予一个默认值。

先决条件

要使用 pod 横向自动扩展,您的集群管理员必须已经正确配置了集群指标。您可以使用 oc describe PodMetrics <pod-name> 命令来判断是否已配置了指标。如果配置了指标,输出类似于以下示例,其中 Usage 下列出了 CpuMemory

$ oc describe PodMetrics openshift-kube-scheduler-ip-10-0-129-223.compute.internal -n openshift-kube-scheduler

输出示例

Name:         openshift-kube-scheduler-ip-10-0-129-223.compute.internal
Namespace:    openshift-kube-scheduler
Labels:       <none>
Annotations:  <none>
API Version:  metrics.k8s.io/v1beta1
Containers:
  Name:  wait-for-host-port
  Usage:
    Cpu:     0
    Memory:  0
  Name:      scheduler
  Usage:
    Cpu:     8m
    Memory:  45440Ki
Kind:        PodMetrics
Metadata:
  Creation Timestamp:  2020-02-14T22:21:14Z
  Self Link:           /apis/metrics.k8s.io/v1beta1/namespaces/openshift-kube-scheduler/pods/openshift-kube-scheduler-ip-10-0-129-223.compute.internal
Timestamp:             2020-02-14T22:21:14Z
Window:                5m0s
Events:                <none>

流程

根据内存使用率创建 pod 横向自动扩展:

  1. 为以下之一创建一个 YAML 文件:

    • 要扩展特定内存值,请为现有对象创建类似如下的 HorizontalPodAutoscaler 对象:

      apiVersion: autoscaling/v2 1
      kind: HorizontalPodAutoscaler
      metadata:
        name: hpa-resource-metrics-memory 2
        namespace: default
      spec:
        scaleTargetRef:
          apiVersion: apps/v1 3
          kind: Deployment 4
          name: example 5
        minReplicas: 1 6
        maxReplicas: 10 7
        metrics: 8
        - type: Resource
          resource:
            name: memory 9
            target:
              type: AverageValue 10
              averageValue: 500Mi 11
        behavior: 12
          scaleDown:
            stabilizationWindowSeconds: 300
            policies:
            - type: Pods
              value: 4
              periodSeconds: 60
            - type: Percent
              value: 10
              periodSeconds: 60
            selectPolicy: Max
      1
      使用 autoscaling/v2 API。
      2
      指定此 pod 横向自动扩展对象的名称。
      3
      指定要缩放对象的 API 版本:
      • 对于 DeploymentReplicaSetStatefulset 对象,请使用 apps/v1
      • 对于 ReplicationController,使用 v1
      • 对于 DeploymentConfig,使用 apps.openshift.io/v1
      4
      指定对象类型。对象必须是 DeploymentDeploymentConfigReplicaSetReplicationControllerStatefulSet
      5
      指定要缩放的对象名称。对象必须存在。
      6
      指定缩减时的最小副本数量。
      7
      指定扩展时的最大副本数量。
      8
      对于内存使用率,使用 metrics 参数。
      9
      为内存使用率指定 memory
      10
      将类型设置为 AverageValue
      11
      指定 averageValue 和一个特定的内存值。
      12
      可选:指定一个扩展策略来控制扩展或缩减率。
    • 要缩放一个百分比,请为现有对象创建一个类似如下的 HorizontalPodAutoscaler 对象:

      apiVersion: autoscaling/v2 1
      kind: HorizontalPodAutoscaler
      metadata:
        name: memory-autoscale 2
        namespace: default
      spec:
        scaleTargetRef:
          apiVersion: apps/v1 3
          kind: Deployment 4
          name: example 5
        minReplicas: 1 6
        maxReplicas: 10 7
        metrics: 8
        - type: Resource
          resource:
            name: memory 9
            target:
              type: Utilization 10
              averageUtilization: 50 11
        behavior: 12
          scaleUp:
            stabilizationWindowSeconds: 180
            policies:
            - type: Pods
              value: 6
              periodSeconds: 120
            - type: Percent
              value: 10
              periodSeconds: 120
            selectPolicy: Max
      1
      使用 autoscaling/v2 API。
      2
      指定此 pod 横向自动扩展对象的名称。
      3
      指定要缩放对象的 API 版本:
      • 对于 ReplicationController,使用 v1
      • 对于 DeploymentConfig,使用 apps.openshift.io/v1
      • 对于 Deployment、ReplicaSet 和 Statefulset 对象,使用 apps/v1
      4
      指定对象类型。对象必须是 DeploymentDeploymentConfigReplicaSetReplicationControllerStatefulSet
      5
      指定要缩放的对象名称。对象必须存在。
      6
      指定缩减时的最小副本数量。
      7
      指定扩展时的最大副本数量。
      8
      对于内存使用率,使用 metrics 参数。
      9
      为内存使用率指定 memory
      10
      设置 Utilization
      11
      为所有 pod 指定 averageUtilization 和一个目标平均内存利用率,以请求内存的百分比表示。目标 pod 必须配置内存请求。
      12
      可选:指定一个扩展策略来控制扩展或缩减率。
  2. 创建 Pod 横向自动扩展:

    $ oc create -f <file-name>.yaml

    例如:

    $ oc create -f hpa.yaml

    输出示例

    horizontalpodautoscaler.autoscaling/hpa-resource-metrics-memory created

  3. 验证 pod 横向自动扩展是否已创建:

    $ oc get hpa hpa-resource-metrics-memory

    输出示例

    NAME                          REFERENCE            TARGETS         MINPODS   MAXPODS   REPLICAS   AGE
    hpa-resource-metrics-memory   Deployment/example   2441216/500Mi   1         10        1          20m

    $ oc describe hpa hpa-resource-metrics-memory

    输出示例

    Name:                        hpa-resource-metrics-memory
    Namespace:                   default
    Labels:                      <none>
    Annotations:                 <none>
    CreationTimestamp:           Wed, 04 Mar 2020 16:31:37 +0530
    Reference:                   Deployment/example
    Metrics:                     ( current / target )
      resource memory on pods:   2441216 / 500Mi
    Min replicas:                1
    Max replicas:                10
    ReplicationController pods:  1 current / 1 desired
    Conditions:
      Type            Status  Reason              Message
      ----            ------  ------              -------
      AbleToScale     True    ReadyForNewScale    recommended size matches current size
      ScalingActive   True    ValidMetricFound    the HPA was able to successfully calculate a replica count from memory resource
      ScalingLimited  False   DesiredWithinRange  the desired count is within the acceptable range
    Events:
      Type     Reason                   Age                 From                       Message
      ----     ------                   ----                ----                       -------
      Normal   SuccessfulRescale        6m34s               horizontal-pod-autoscaler  New size: 1; reason: All metrics below target

2.4.8. 使用 CLI 了解 pod 横向自动扩展状态条件

您可以使用设置的状态条件来判断 pod 横向自动扩展 (HPA) 是否能够缩放,以及目前是否受到某种方式的限制。

HPA 状态条件可通过 v2 版的自动扩展 API 使用。

HPA 可以通过下列状态条件给予响应:

  • AbleToScale 条件指示 HPA 是否能够获取和更新指标,以及是否有任何与退避相关的条件阻碍了缩放。

    • True 条件表示允许缩放。
    • False 条件表示因为指定原因不允许缩放。
  • ScalingActive 条件指示 HPA 是否已启用(例如,目标的副本数不为零),并且可以计算所需的指标。

    • True 条件表示指标工作正常。
    • False 条件通常表示获取指标时出现问题。
  • ScalingLimited 条件表示所需的规模由 pod 横向自动扩展限定最大或最小限制。

    • True 条件表示您需要提高或降低最小或最大副本数才能进行缩放。
    • False 条件表示允许请求的缩放。

      $ oc describe hpa cm-test

      输出示例

      Name:                           cm-test
      Namespace:                      prom
      Labels:                         <none>
      Annotations:                    <none>
      CreationTimestamp:              Fri, 16 Jun 2017 18:09:22 +0000
      Reference:                      ReplicationController/cm-test
      Metrics:                        ( current / target )
        "http_requests" on pods:      66m / 500m
      Min replicas:                   1
      Max replicas:                   4
      ReplicationController pods:     1 current / 1 desired
      Conditions: 1
        Type              Status    Reason              Message
        ----              ------    ------              -------
        AbleToScale       True      ReadyForNewScale    the last scale time was sufficiently old as to warrant a new scale
        ScalingActive     True      ValidMetricFound    the HPA was able to successfully calculate a replica count from pods metric http_request
        ScalingLimited    False     DesiredWithinRange  the desired replica count is within the acceptable range
      Events:

      1
      pod 横向自动扩展状态消息。

下例中是一个无法缩放的 pod:

输出示例

Conditions:
  Type         Status  Reason          Message
  ----         ------  ------          -------
  AbleToScale  False   FailedGetScale  the HPA controller was unable to get the target's current scale: no matches for kind "ReplicationController" in group "apps"
Events:
  Type     Reason          Age               From                       Message
  ----     ------          ----              ----                       -------
  Warning  FailedGetScale  6s (x3 over 36s)  horizontal-pod-autoscaler  no matches for kind "ReplicationController" in group "apps"

下例中是一个无法获得缩放所需指标的 pod:

输出示例

Conditions:
  Type                  Status    Reason                    Message
  ----                  ------    ------                    -------
  AbleToScale           True     SucceededGetScale          the HPA controller was able to get the target's current scale
  ScalingActive         False    FailedGetResourceMetric    the HPA was unable to compute the replica count: failed to get cpu utilization: unable to get metrics for resource cpu: no metrics returned from resource metrics API

下例中是一个请求的自动缩放低于所需下限的 pod:

输出示例

Conditions:
  Type              Status    Reason              Message
  ----              ------    ------              -------
  AbleToScale       True      ReadyForNewScale    the last scale time was sufficiently old as to warrant a new scale
  ScalingActive     True      ValidMetricFound    the HPA was able to successfully calculate a replica count from pods metric http_request
  ScalingLimited    False     DesiredWithinRange  the desired replica count is within the acceptable range

2.4.8.1. 使用 CLI 查看 pod 横向自动扩展状态条件

您可以查看 pod 横向自动扩展 (HPA) 对 pod 设置的状态条件。

注意

pod 横向自动扩展状态条件可通过 v2 版本的自动扩展 API 使用。

先决条件

要使用 pod 横向自动扩展,您的集群管理员必须已经正确配置了集群指标。您可以使用 oc describe PodMetrics <pod-name> 命令来判断是否已配置了指标。如果配置了指标,输出类似于以下示例,其中 Usage 下列出了 CpuMemory

$ oc describe PodMetrics openshift-kube-scheduler-ip-10-0-135-131.ec2.internal

输出示例

Name:         openshift-kube-scheduler-ip-10-0-135-131.ec2.internal
Namespace:    openshift-kube-scheduler
Labels:       <none>
Annotations:  <none>
API Version:  metrics.k8s.io/v1beta1
Containers:
  Name:  wait-for-host-port
  Usage:
    Memory:  0
  Name:      scheduler
  Usage:
    Cpu:     8m
    Memory:  45440Ki
Kind:        PodMetrics
Metadata:
  Creation Timestamp:  2019-05-23T18:47:56Z
  Self Link:           /apis/metrics.k8s.io/v1beta1/namespaces/openshift-kube-scheduler/pods/openshift-kube-scheduler-ip-10-0-135-131.ec2.internal
Timestamp:             2019-05-23T18:47:56Z
Window:                1m0s
Events:                <none>

流程

要查看 pod 上的状态条件,请使用以下命令并提供 pod 的名称:

$ oc describe hpa <pod-name>

例如:

$ oc describe hpa cm-test

这些条件会出现在输出中的 Conditions 字段里。

输出示例

Name:                           cm-test
Namespace:                      prom
Labels:                         <none>
Annotations:                    <none>
CreationTimestamp:              Fri, 16 Jun 2017 18:09:22 +0000
Reference:                      ReplicationController/cm-test
Metrics:                        ( current / target )
  "http_requests" on pods:      66m / 500m
Min replicas:                   1
Max replicas:                   4
ReplicationController pods:     1 current / 1 desired
Conditions: 1
  Type              Status    Reason              Message
  ----              ------    ------              -------
  AbleToScale       True      ReadyForNewScale    the last scale time was sufficiently old as to warrant a new scale
  ScalingActive     True      ValidMetricFound    the HPA was able to successfully calculate a replica count from pods metric http_request
  ScalingLimited    False     DesiredWithinRange  the desired replica count is within the acceptable range

2.4.9. 其他资源

2.5. 使用垂直 pod 自动扩展自动调整 pod 资源级别

OpenShift Container Platform Vertical Pod Autoscaler Operator(VPA)会自动检查 pod 中容器的运行状况和当前的 CPU 和内存资源,并根据它所了解的用量值更新资源限值和请求。VPA 使用单独的自定义资源(CR)来更新与工作负载对象关联的所有 Pod,如 DeploymentDeployment ConfigStatefulSetJobDaemonSetReplicaSetReplicationController

VPA 可帮助您了解 Pod 的最佳 CPU 和内存使用情况,并可以通过 pod 生命周期自动维护 pod 资源。

2.5.1. 关于 Vertical Pod Autoscaler Operator

Vertical Pod Autoscaler Operator(VPA)作为 API 资源和自定义资源(CR)实现。CR 决定 VPA Operator 对与特定工作负载对象(如守护进程集、复制控制器等)关联的 pod 执行的操作。

VPA Operator 由三个组件组成,每个组件在 VPA 命名空间中都有自己的 pod:

Recommender
VPA recommender 监控当前和过去的资源消耗,并根据这些数据决定关联工作负载对象中的 pod 的最佳 CPU 和内存资源。
Updater
VPA updater 检查相关工作负载对象中的 pod 是否具有正确的资源。如果资源正确,则 updater 不执行任何操作。如果资源不正确,则 updater 会终止 pod,以便它们的控制器可以使用更新的请求重新创建它们。
准入控制器
VPA 准入控制器在关联的工作负载对象中的每个新 pod 上设置正确的资源请求,无论 pod 是新的,还是因为 VPA updater 的操作由它的控制器重新创建的。

您可以使用默认推荐程序,或使用您自己的备选推荐程序根据您自己的算法自动扩展。

默认推荐器会自动计算这些 pod 中容器的流程以及当前的 CPU 和内存使用情况,并使用这些数据来决定优化的资源限制和请求,以确保这些 pod 始终高效操作。例如,默认推荐器会建议,减少请求资源超过使用资源的 pod 的资源,并为没有请求充足资源的 pod 增加资源。

VPA 每次自动删除任何与建议不兼容的 pod,以便您的应用程序可以在不需要停机的情况下继续满足请求。然后,工作负载对象使用原始资源限制和请求重新部署 pod。VPA 使用一个变异准入 webhook 来更新 pod,在 pod 被允许到节点前,具有优化的资源限制和请求。如果您不希望 VPA 删除 pod,可以查看 VPA 资源限制和请求,并根据需要手动更新 pod。

注意

默认情况下,工作负载对象必须至少指定两个副本,以便 VPA 自动删除其 pod。指定了比这个最小值更少的副本数的工作负载对象不会被删除。如果您手动删除这些 pod,当工作负载对象重新部署 pod 时,VPA 会使用其建议更新新的 pod。您可以通过修改 VerticalPodAutoscalerController 对象来更改这个最小值,如更改 VPA 最小值所示。

例如,您有一个 pod 使用了 CPU 的 50%,但只请求 10%。VPA 会认定该 pod 消耗的 CPU 多于请求的 CPU,并删除 pod。工作负载对象(如副本集)会重启 pod,VPA 使用推荐的资源更新新 pod。

对于开发人员,您可以使用 VPA 来帮助确保 pod 在高负载时可以继续工作,具体方法是将 pod 调度到每个 pod 具有适当资源的节点上。

管理员可以使用 VPA 来更好地利用集群资源,例如防止 pod 保留比所需的 CPU 资源更多的资源。VPA 监控实际使用的工作负载,并对资源进行调整,以确保可以满足其他工作负载的需要。VPA 还维护初始容器配置中指定的限值和请求之间的比例。

注意

如果您停止在集群中运行 VPA,或删除特定的 VPA CR,则已由 VPA 修改的 pod 的资源请求不会改变。任何新 pod 都会根据工作负载对象中的定义获得资源,而不是之前由 VPA 提供的的建议。

2.5.2. 安装 Vertical Pod Autoscaler Operator

您可以使用 OpenShift Container Platform web 控制台安装 Vertical Pod Autoscaler Operator(VPA)。

流程

  1. 在 OpenShift Container Platform Web 控制台中,点击 OperatorsOperatorHub
  2. 从可用 Operator 列表中选择 VerticalPodAutoscaler,点 Install
  3. Install Operator 页面中,确保选择了 Operator 推荐的命名空间 选项。这会在 openshift-vertical-pod-autoscaler 命名空间中创建 Operator。如果这个命名空间还没有存在,会自动创建它。
  4. Install

验证

  1. 列出 VPA Operator 组件来验证安装:

    1. 导航到 WorkloadsPods
    2. 从下拉菜单中选择 openshift-vertical-pod-autoscaler 项目,并验证是否运行了四个 pod。
    3. 进入 WorkloadsDeployments 以验证运行了四个部署。
  2. 可选:使用以下命令在 OpenShift Container Platform CLI 中验证安装:

    $ oc get all -n openshift-vertical-pod-autoscaler

    输出显示四个 pod 和四个部署:

    输出示例

    NAME                                                    READY   STATUS    RESTARTS   AGE
    pod/vertical-pod-autoscaler-operator-85b4569c47-2gmhc   1/1     Running   0          3m13s
    pod/vpa-admission-plugin-default-67644fc87f-xq7k9       1/1     Running   0          2m56s
    pod/vpa-recommender-default-7c54764b59-8gckt            1/1     Running   0          2m56s
    pod/vpa-updater-default-7f6cc87858-47vw9                1/1     Running   0          2m56s
    
    NAME                  TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)   AGE
    service/vpa-webhook   ClusterIP   172.30.53.206   <none>        443/TCP   2m56s
    
    NAME                                               READY   UP-TO-DATE   AVAILABLE   AGE
    deployment.apps/vertical-pod-autoscaler-operator   1/1     1            1           3m13s
    deployment.apps/vpa-admission-plugin-default       1/1     1            1           2m56s
    deployment.apps/vpa-recommender-default            1/1     1            1           2m56s
    deployment.apps/vpa-updater-default                1/1     1            1           2m56s
    
    NAME                                                          DESIRED   CURRENT   READY   AGE
    replicaset.apps/vertical-pod-autoscaler-operator-85b4569c47   1         1         1       3m13s
    replicaset.apps/vpa-admission-plugin-default-67644fc87f       1         1         1       2m56s
    replicaset.apps/vpa-recommender-default-7c54764b59            1         1         1       2m56s
    replicaset.apps/vpa-updater-default-7f6cc87858                1         1         1       2m56s

2.5.3. 关于使用 Vertical Pod Autoscaler Operator

要使用 Vertical Pod Autoscaler Operator(vpa),您需要为集群中的工作负载对象创建 VPA 自定义资源(CR)。VPA 学习并应用与该工作负载对象关联的 pod 的最佳 CPU 和内存资源。您可以使用 VPA 与部署、有状态集、作业、守护进程集、副本集或复制控制器工作负载对象一起使用。VPA CR 必须与您要监控的 pod 位于同一个项目中。

您可以使用 VPA CR 关联一个工作负载对象,并指定 VPA 使用什么模式运行:

  • AutoRecreate 模式会在 pod 生命周期内自动应用 VPA 对 CPU 和内存建议。VPA 会删除项目中任何与建议不兼容的 pod。当由工作负载对象重新部署时,VPA 会在其建议中更新新 pod。
  • Initial 模式仅在创建 pod 时自动应用 VPA 建议。
  • Off 模式只提供推荐的资源限制和请求信息,用户可以手动应用其中的建议。off 模式不会更新 pod。

您还可以使用 CR 使特定容器不受 VPA 评估和更新的影响。

例如,pod 具有以下限制和请求:

resources:
  limits:
    cpu: 1
    memory: 500Mi
  requests:
    cpu: 500m
    memory: 100Mi

在创建了一个设置为 auto 的 VPA 后,VPA 会了解资源使用情况并删除 pod。重新部署时,pod 会使用新的资源限值和请求:

resources:
  limits:
    cpu: 50m
    memory: 1250Mi
  requests:
    cpu: 25m
    memory: 262144k

您可以使用以下命令查看 VPA 建议:

$ oc get vpa <vpa-name> --output yaml

几分钟后,输出显示 CPU 和内存请求的建议,如下所示:

输出示例

...
status:
...
  recommendation:
    containerRecommendations:
    - containerName: frontend
      lowerBound:
        cpu: 25m
        memory: 262144k
      target:
        cpu: 25m
        memory: 262144k
      uncappedTarget:
        cpu: 25m
        memory: 262144k
      upperBound:
        cpu: 262m
        memory: "274357142"
    - containerName: backend
      lowerBound:
        cpu: 12m
        memory: 131072k
      target:
        cpu: 12m
        memory: 131072k
      uncappedTarget:
        cpu: 12m
        memory: 131072k
      upperBound:
        cpu: 476m
        memory: "498558823"
...

输出显示推荐的资源、目标、最低推荐资源、lowerBound、最高推荐资源、upperBound、以及最新资源建议和 uncappedTarget

VPA 使用 lessBoundupperBound 值来确定一个 pod 是否需要更新。如果 pod 的资源请求低于 lowerBound 值,或高于 upperBound 值,则 VPA 会终止 pod,并使用 target 值重新创建 pod。

2.5.3.1. 更改 VPA 最小值

默认情况下,工作负载对象必须至少指定两个副本,以便 VPA 自动删除和更新其 pod。因此,VPA 不会自动执行指定少于两个副本的工作负载对象。如果 pod 由 VPA 外部的一些进程重启,VPA 会从这些工作负载对象更新的新 pod。您可以通过修改 VerticalPodAutoscalerController 自定义资源(CR)中的 minReplicas 参数来更改此集群范围的最小值。

例如,如果您将 minReplicas 设置为 3,则 VPA 不会为指定少于三个副本的工作负载对象删除和更新 pod。

注意

如果将 minReplicas 设置为 1,则 VPA 可以为只指定一个副本的工作负载对象删除唯一的 pod。只有在 VPA 删除 pod 以调整其资源时,您的工作负载可以允许停机时,才应使用此设置来使用一个副本对象。为了避免使用一个副本的对象出现不必要的停机时间,将带有 podUpdatePolicy 设置的 VPA CR 配置为 Initial,这只有在 VPA 外部的一些进程重启时,或状态为 Off 时才重启。这可让您在适合的时间手动更新 pod。

VerticalPodAutoscalerController 对象示例

apiVersion: autoscaling.openshift.io/v1
kind: VerticalPodAutoscalerController
metadata:
  creationTimestamp: "2021-04-21T19:29:49Z"
  generation: 2
  name: default
  namespace: openshift-vertical-pod-autoscaler
  resourceVersion: "142172"
  uid: 180e17e9-03cc-427f-9955-3b4d7aeb2d59
spec:
  minReplicas: 3 1
  podMinCPUMillicores: 25
  podMinMemoryMb: 250
  recommendationOnly: false
  safetyMarginFraction: 0.15

1 1
指定 VPA 中要操作的工作负载对象中的最小副本数。VPA 不会自动删除任何小于最小副本的对象。
2.5.3.2. 自动应用 VPA 建议

要使用 VPA 来自动更新 pod,为特定工作负载对象创建一个 VPA CR,并将 updateMode 设置为 AutoRecreate

当为工作复杂对象创建 pod 时,VPA 会持续监控容器以分析其 CPU 和内存需求。VPA 会删除任何不满足 VPA 对 CPU 和内存的建议的 pod。重新部署后,pod 根据 VPA 建议使用新的资源限值和请求,并遵循您的应用程序的 pod 中断预算。建议被添加到 VPA CR 的 status 字段中以进行引用。

注意

默认情况下,工作负载对象必须至少指定两个副本,以便 VPA 自动删除其 pod。指定了比这个最小值更少的副本数的工作负载对象不会被删除。如果您手动删除这些 pod,当工作负载对象重新部署 pod 时,VPA 会使用其建议更新新的 pod。您可以通过修改 VerticalPodAutoscalerController 对象来更改这个最小值,如更改 VPA 最小值所示。

Auto 模式的 VPA CR 示例

apiVersion: autoscaling.k8s.io/v1
kind: VerticalPodAutoscaler
metadata:
  name: vpa-recommender
spec:
  targetRef:
    apiVersion: "apps/v1"
    kind:       Deployment 1
    name:       frontend 2
  updatePolicy:
    updateMode: "Auto" 3

1
您希望此 VPA CR 管理的工作负载对象类型。
2
您希望此 VPA CR 管理的工作负载对象名称。
3
将模式设置为 AutoRecreate:
  • Auto.VPA 分配创建 pod 的资源请求,并在请求的资源与新建议有很大不同时终止这些 Pod 来更新现存的 pod。
  • Recreate。VPA 分配创建 pod 的资源请求,并在请求的资源与新建议有很大不同时终止这些 Pod 来更新现存的 pod。这个模式应该很少使用,只有在需要确保每当资源请求改变时 pod 就需要重启时才使用。
注意

在 VPA 可以决定资源建议并将推荐的资源应用到新 pod 之前,操作 pod 必须存在并在项目中运行。

如果工作负载的资源使用情况(如 CPU 和内存)一致,VPA 可以在几分钟内决定资源的建议。如果工作负载的资源使用情况不一致,VPA 必须以各种资源使用量间隔收集指标,以便 VPA 做出准确的建议。

2.5.3.3. 在创建 pod 时自动应用 VPA 建议

要仅在 pod 首次部署时使用 VPA 来应用推荐的资源,为特定的工作负载对象创建一个 VPA CR,将 updateMode 设置为 Initial

然后,手动删除与您要使用 VPA 建议的工作负载对象关联的 pod。在 Initial 模式中,VPA 不会删除 pod,也不会更新 pod,它会学习新的资源建议。

Initial 模式的 VPA CR 示例

apiVersion: autoscaling.k8s.io/v1
kind: VerticalPodAutoscaler
metadata:
  name: vpa-recommender
spec:
  targetRef:
    apiVersion: "apps/v1"
    kind:       Deployment 1
    name:       frontend 2
  updatePolicy:
    updateMode: "Initial" 3

1
您希望此 VPA CR 管理的工作负载对象类型。
2
您希望此 VPA CR 管理的工作负载对象名称。
3
将模式设置为 Initial。VPA 在 pod 创建时分配资源,在 pod 生命周期中不会更改资源。
注意

在 VPA 可以决定推荐的资源并对新 pod 应用建议之前,操作 pod 必须存在并在项目中运行。

要从 VPA 获取最准确的建议,请至少等待 8 天,让 pod 运行以及 VPA 稳定。

2.5.3.4. 手动应用 VPA 建议

要使用 VPA 来仅决定推荐的 CPU 和内存值而不进行实际的应用,对特定的工作负载创建一个 VPA CR,把 updateMode 设置为 off

当为该工作负载对象创建 pod 时, VPA 会分析容器的 CPU 和内存需求,并在 VPA CR 的 status 字段中记录推荐。VPA 会提供新的资源建议,但不会更新 pod。

使用 Off 模式的 VPA CR 示例

apiVersion: autoscaling.k8s.io/v1
kind: VerticalPodAutoscaler
metadata:
  name: vpa-recommender
spec:
  targetRef:
    apiVersion: "apps/v1"
    kind:       Deployment 1
    name:       frontend 2
  updatePolicy:
    updateMode: "Off" 3

1
您希望此 VPA CR 管理的工作负载对象类型。
2
您希望此 VPA CR 管理的工作负载对象名称。
3
将模式设置为 Off

您可以使用以下命令查看建议。

$ oc get vpa <vpa-name> --output yaml

根据建议,您可以编辑工作负载对象以添加 CPU 和内存请求,然后删除 pod 并使用推荐的资源重新部署 pod。

注意

在 VPA 可以决定推荐的资源并对新 pod 应用建议之前,操作 pod 必须存在并在项目中运行。

要从 VPA 获取最准确的建议,请至少等待 8 天,让 pod 运行以及 VPA 稳定。

2.5.3.5. 阻止容器特定容器应用 VPA 建议

如果您的工作负载对象有多个容器,且您不希望 VPA 对所有容器进行评估并进行操作,请为特定工作负载对象创建一个 VPA CR,添加一个 resourcePolicy 已使特定容器不受 VPA 的影响。

当 VPA 使用推荐的资源更新 pod 时,任何带有 resourcePolicy 的容器都不会被更新,且 VPA 不会对这些 pod 中的容器提供建议。

apiVersion: autoscaling.k8s.io/v1
kind: VerticalPodAutoscaler
metadata:
  name: vpa-recommender
spec:
  targetRef:
    apiVersion: "apps/v1"
    kind:       Deployment 1
    name:       frontend 2
  updatePolicy:
    updateMode: "Auto" 3
  resourcePolicy: 4
    containerPolicies:
    - containerName: my-opt-sidecar
      mode: "Off"
1
您希望此 VPA CR 管理的工作负载对象类型。
2
您希望此 VPA CR 管理的工作负载对象名称。
3
将模式设置为 AutoRecreateOffRecreate 模式应该很少使用,只有在需要确保每当资源请求改变时 pod 就需要重启时才使用。
4
指定不受 VPA 影响的容器,将 mode 设置为 Off

例如,一个 pod 有两个容器,它们有相同的资源请求和限值:

# ...
spec:
  containers:
  - name: frontend
    resources:
      limits:
        cpu: 1
        memory: 500Mi
      requests:
        cpu: 500m
        memory: 100Mi
  - name: backend
    resources:
      limits:
        cpu: "1"
        memory: 500Mi
      requests:
        cpu: 500m
        memory: 100Mi
# ...

在启用一个带有 backend 排除容器设置的 VPA CR 后,VPA 终止并使用推荐的资源重新创建 pod 的行为只适用于 frontend 容器:

...
spec:
  containers:
    name: frontend
    resources:
      limits:
        cpu: 50m
        memory: 1250Mi
      requests:
        cpu: 25m
        memory: 262144k
...
    name: backend
    resources:
      limits:
        cpu: "1"
        memory: 500Mi
      requests:
        cpu: 500m
        memory: 100Mi
...
2.5.3.6. 性能调优 VPA Operator

作为集群管理员,您可以调整 Vertical Pod Autoscaler Operator (VPA) 的性能,以限制 VPA 对 Kubernetes API 服务器发出请求的速率,并为 VPA recommender, updater 和准入控制器组件 pod 指定 CPU 和内存资源。

另外,您可以将 VPA Operator 配置为仅监控由 VPA 自定义资源 (CR) 管理的工作负载。默认情况下,VPA Operator 会监控集群中的所有工作负载。这允许 VPA Operator 为所有工作负载处理和存储 8 天的历史数据,如果为工作负载创建新的 VPA CR,Operator 可以使用该数据。但是,这会导致 VPA Operator 使用大量 CPU 和内存,这可能会导致 Operator 失败,特别是在大型集群中。通过将 VPA Operator 配置为仅监控 VPA CR 的工作负载,您可以在 CPU 和内存资源上保存。一个权衡方案是,如果您有一个运行的工作负载,并且创建一个 VPA CR 来管理那个工作负载,则 VPA Operator 没有该工作负载的历史数据。因此,在工作负载运行了一段时间后,初始建议并没有这些有用。

这些调整允许您确保 VPA 有足够资源以峰值效率运行,并防止 pod 准入中的节流和可能的延迟。

您可以通过编辑 VerticalPodAutoscalerController 自定义资源 (CR) 在 VPA 组件上执行以下调整:

  • 要防止节流和 pod 准入延迟,使用 kube-api-qpskube-api-burst 参数为 Kubernetes API 服务器的 VPA 请求设置 queries-per-second (QPS) 和突发率。
  • 为确保足够的 CPU 和内存,请使用标准 cpumemory 资源请求为 VPA 组件 pod 设置 CPU 和内存请求。
  • 要将 VPA Operator 配置为仅监控由 VPA CR 管理的工作负载,请将 recommender 组件的 memory-saver 参数设置为 true

以下示例 VPA 控制器 CR 设置 VPA API QPS 和突发(burts)率,配置组件 pod 资源请求,并为 recommender 将 memory-saver 设置为 true

示例 VerticalPodAutoscalerController CR

apiVersion: autoscaling.openshift.io/v1
kind: VerticalPodAutoscalerController
metadata:
  name: default
  namespace: openshift-vertical-pod-autoscaler
spec:
  deploymentOverrides:
    admission: 1
      container:
        args: 2
          - '--kube-api-qps=30.0'
          - '--kube-api-burst=40.0'
        resources:
          requests: 3
            cpu: 40m
            memory: 40Mi
    recommender: 4
      container:
        args:
          - '--kube-api-qps=20.0'
          - '--kube-api-burst=60.0'
          - '--memory-saver=true' 5
        resources:
          requests:
            cpu: 60m
            memory: 60Mi
    updater: 6
      container:
        args:
          - '--kube-api-qps=20.0'
          - '--kube-api-burst=80.0'
        resources:
          requests:
            cpu: 80m
            memory: 80Mi
  minReplicas: 2
  podMinCPUMillicores: 25
  podMinMemoryMb: 250
  recommendationOnly: false
  safetyMarginFraction: 0.15

1
为 VPA 准入控制器指定调优参数。
2
为 VPA 准入控制器指定 API QPS 和突发率。
  • kube-api-qps: 指定向 Kubernetes API 服务器发出请求时的每秒查询 (QPS) 限制。默认值为 5.0
  • kube-api-burst :指定向 Kubernetes API 服务器发出请求时的突发限制。默认值为 10.0
3
指定 VPA 准入控制器 pod 的 CPU 和内存请求。
4
指定 VPA 建议器的调优参数。
5
指定 VPA Operator 只监控 VPA CR 的工作负载。默认值为 false
6
指定 VPA updater 的调优参数。

您可以验证设置是否已应用到每个 VPA 组件 pod。

updater pod 示例

apiVersion: v1
kind: Pod
metadata:
  name: vpa-updater-default-d65ffb9dc-hgw44
  namespace: openshift-vertical-pod-autoscaler
# ...
spec:
  containers:
  - args:
    - --logtostderr
    - --v=1
    - --min-replicas=2
    - --kube-api-qps=20.0
    - --kube-api-burst=80.0
# ...
    resources:
      requests:
        cpu: 80m
        memory: 80Mi
# ...

准入控制器 pod 示例

apiVersion: v1
kind: Pod
metadata:
  name: vpa-admission-plugin-default-756999448c-l7tsd
  namespace: openshift-vertical-pod-autoscaler
# ...
spec:
  containers:
  - args:
    - --logtostderr
    - --v=1
    - --tls-cert-file=/data/tls-certs/tls.crt
    - --tls-private-key=/data/tls-certs/tls.key
    - --client-ca-file=/data/tls-ca-certs/service-ca.crt
    - --webhook-timeout-seconds=10
    - --kube-api-qps=30.0
    - --kube-api-burst=40.0
# ...
    resources:
      requests:
        cpu: 40m
        memory: 40Mi
# ...

recommender pod 示例

apiVersion: v1
kind: Pod
metadata:
  name: vpa-recommender-default-74c979dbbc-znrd2
  namespace: openshift-vertical-pod-autoscaler
# ...
spec:
  containers:
  - args:
    - --logtostderr
    - --v=1
    - --recommendation-margin-fraction=0.15
    - --pod-recommendation-min-cpu-millicores=25
    - --pod-recommendation-min-memory-mb=250
    - --kube-api-qps=20.0
    - --kube-api-burst=60.0
    - --memory-saver=true
# ...
    resources:
      requests:
        cpu: 60m
        memory: 60Mi
# ...

2.5.3.7. 使用一个替代推荐器

您可以根据自己的算法使用自己的推荐器来自动扩展。如果您没有指定替代的推荐器,OpenShift Container Platform 会使用默认的推荐器,它会根据历史使用情况推荐 CPU 和内存请求。因为没有适用于所有工作负载的通用推荐策略,您可能需要为特定工作负载创建和部署不同的推荐器。

例如,当容器出现某些资源行为时,默认的推荐器可能无法准确预测将来的资源使用量,例如,在监控应用程序使用的使用量高峰和闲置间交替的模式,或者重复与深度学习应用程序使用的模式。将默认推荐器用于这些使用行为可能会导致应用程序的过度置备和内存不足(OOM)终止。

注意

有关如何创建推荐器的说明超出了本文档的范围,

流程

为 pod 使用替代推荐器:

  1. 为替代推荐器创建服务帐户,并将该服务帐户绑定到所需的集群角色:

    apiVersion: v1 1
    kind: ServiceAccount
    metadata:
      name: alt-vpa-recommender-sa
      namespace: <namespace_name>
    ---
    apiVersion: rbac.authorization.k8s.io/v1 2
    kind: ClusterRoleBinding
    metadata:
      name: system:example-metrics-reader
    roleRef:
      apiGroup: rbac.authorization.k8s.io
      kind: ClusterRole
      name: system:metrics-reader
    subjects:
    - kind: ServiceAccount
      name: alt-vpa-recommender-sa
      namespace: <namespace_name>
    ---
    apiVersion: rbac.authorization.k8s.io/v1 3
    kind: ClusterRoleBinding
    metadata:
      name: system:example-vpa-actor
    roleRef:
      apiGroup: rbac.authorization.k8s.io
      kind: ClusterRole
      name: system:vpa-actor
    subjects:
    - kind: ServiceAccount
      name: alt-vpa-recommender-sa
      namespace: <namespace_name>
    ---
    apiVersion: rbac.authorization.k8s.io/v1 4
    kind: ClusterRoleBinding
    metadata:
      name: system:example-vpa-target-reader-binding
    roleRef:
      apiGroup: rbac.authorization.k8s.io
      kind: ClusterRole
      name: system:vpa-target-reader
    subjects:
    - kind: ServiceAccount
      name: alt-vpa-recommender-sa
      namespace: <namespace_name>
    1
    在部署了推荐器的命名空间中为推荐器创建一个服务账户。
    2
    将推进器服务帐户绑定到 metrics-reader 角色。指定要部署推进器的命名空间。
    3
    将推进器服务帐户绑定到 vpa-actor 角色。指定要部署推进器的命名空间。
    4
    将推进器服务帐户绑定到 vpa-target-reader 角色。指定要部署推进器的命名空间。
  2. 要在集群中添加备选推荐程序,请创建一个类似如下的 Deployment 对象:

    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: alt-vpa-recommender
      namespace: <namespace_name>
    spec:
      replicas: 1
      selector:
        matchLabels:
          app: alt-vpa-recommender
      template:
        metadata:
          labels:
            app: alt-vpa-recommender
        spec:
          containers: 1
          - name: recommender
            image: quay.io/example/alt-recommender:latest 2
            imagePullPolicy: Always
            resources:
              limits:
                cpu: 200m
                memory: 1000Mi
              requests:
                cpu: 50m
                memory: 500Mi
            ports:
            - name: prometheus
              containerPort: 8942
            securityContext:
              allowPrivilegeEscalation: false
              capabilities:
                drop:
                  - ALL
              seccompProfile:
                type: RuntimeDefault
          serviceAccountName: alt-vpa-recommender-sa 3
          securityContext:
            runAsNonRoot: true
    1
    为您的备选推荐程序创建容器。
    2
    指定您的推荐镜像。
    3
    关联您为推荐器创建的服务帐户。

    为同一命名空间中的备选推荐器创建新 pod。

    $ oc get pods

    输出示例

    NAME                                        READY   STATUS    RESTARTS   AGE
    frontend-845d5478d-558zf                    1/1     Running   0          4m25s
    frontend-845d5478d-7z9gx                    1/1     Running   0          4m25s
    frontend-845d5478d-b7l4j                    1/1     Running   0          4m25s
    vpa-alt-recommender-55878867f9-6tp5v        1/1     Running   0          9s

  3. 配置包含替代推荐器 Deployment 对象名称的 VPA CR。

    VPA CR 示例,使其包含替代的推荐程序

    apiVersion: autoscaling.k8s.io/v1
    kind: VerticalPodAutoscaler
    metadata:
      name: vpa-recommender
      namespace: <namespace_name>
    spec:
      recommenders:
        - name: alt-vpa-recommender 1
      targetRef:
        apiVersion: "apps/v1"
        kind:       Deployment 2
        name:       frontend

    1
    指定替代推荐器部署的名称。
    2
    指定您希望此 VPA 管理的现有工作负载对象的名称。

2.5.4. 使用 Vertical Pod Autoscaler Operator

您可以通过创建 VPA 自定义资源(CR)来使用 Vertical Pod Autoscaler Operator(VPA)。CR 指明应分析哪些 pod,并决定 VPA 应该对这些 pod 执行的操作。

先决条件

  • 要自动扩展的工作负载对象必须存在。
  • 如果要使用替代的推荐器,则必须存在包括那个推进器的部署。

流程

为特定工作负载对象创建 VPA CR:

  1. 切换到您要缩放的工作负载对象所在的项目。

    1. 创建一个 VPA CR YAML 文件:

      apiVersion: autoscaling.k8s.io/v1
      kind: VerticalPodAutoscaler
      metadata:
        name: vpa-recommender
      spec:
        targetRef:
          apiVersion: "apps/v1"
          kind:       Deployment 1
          name:       frontend 2
        updatePolicy:
          updateMode: "Auto" 3
        resourcePolicy: 4
          containerPolicies:
          - containerName: my-opt-sidecar
            mode: "Off"
        recommenders: 5
          - name: my-recommender
      1
      指定您需要这个 VPA 管理的工作负载对象类型: DeploymentStatefulSetJobDaemonSetReplicaSetReplicationController
      2
      指定您希望此 VPA 管理的现有工作负载对象的名称。
      3
      指定 VPA 模式:
      • auto 会在与控制器关联的 pod 上自动应用推荐的资源。VPA 会终止现有的 pod,并使用推荐的资源限制和请求创建新 pod。
      • recreate 会在与工作负载对象关联的 pod 上自动应用推荐的资源。VPA 会终止现有的 pod,并使用推荐的资源限制和请求创建新 pod。recreate 模式应该很少使用,只有在需要确保每当资源请求改变时 pod 就需要重启时才使用。
      • Initial 在创建与工作负载对象关联的 pod 时自动应用推荐的资源。VPA 会学习新的资源建议,但不会更新 pod。
      • off 仅为与工作负载对象关联的 pod 生成资源建议。VPA 不会更新 pod,它只会学习新的资源建议,且不会将建议应用到新 pod。
      4
      可选。指定不需要受 VPA 影响的容器,将模式设置为 Off
      5
      可选。指定替代的推荐器。
    2. 创建 VPA CR:

      $ oc create -f <file-name>.yaml

      在一段短暂的时间后,VPA 会了解与工作负载对象关联的 pod 中容器的资源使用情况。

      您可以使用以下命令查看 VPA 建议:

      $ oc get vpa <vpa-name> --output yaml

      输出显示 CPU 和内存请求的建议,如下所示:

      输出示例

      ...
      status:
      
      ...
      
        recommendation:
          containerRecommendations:
          - containerName: frontend
            lowerBound: 1
              cpu: 25m
              memory: 262144k
            target: 2
              cpu: 25m
              memory: 262144k
            uncappedTarget: 3
              cpu: 25m
              memory: 262144k
            upperBound: 4
              cpu: 262m
              memory: "274357142"
          - containerName: backend
            lowerBound:
              cpu: 12m
              memory: 131072k
            target:
              cpu: 12m
              memory: 131072k
            uncappedTarget:
              cpu: 12m
              memory: 131072k
            upperBound:
              cpu: 476m
              memory: "498558823"
      
      ...

      1
      lowerBound 是最低的推荐资源级别。
      2
      target是推荐的资源级别。
      3
      upperBound 是最高的推荐资源级别。
      4
      uncappedTarget 是最新资源建议。

2.5.5. 卸载 Vertical Pod Autoscaler Operator

您可以从 OpenShift Container Platform 集群中删除 Vertical Pod Autoscaler Operator(VPA)。卸载后,已由现有 VPA CR 修改的 pod 的资源请求不会改变。任何新 pod 都会根据工作负载对象中的定义获得资源,而不是之前由 VPA 提供的的建议。

注意

您可以使用 oc delete vpa <vpa-name> 命令删除特定的 VPA CR。在卸载垂直 pod 自动扩展时,同样的操作适用于资源请求。

删除 VPA Operator 后,建议您删除与 Operator 相关的其他组件,以避免潜在的问题。

先决条件

  • 已安装 Vertical Pod Autoscaler Operator。

流程

  1. 在 OpenShift Container Platform web 控制台中,点击 OperatorsInstalled Operators
  2. 切换到 openshift-vertical-pod-autoscaler 项目。
  3. 对于 VerticalPodAutoscaler Operator,点 Options 菜单 kebab 并选择 Uninstall Operator
  4. 可选: 要删除与 Operator 关联的所有操作对象,请在对话框中选择 Delete all operand instance for this operator 复选框。
  5. Uninstall
  6. 可选: 使用 OpenShift CLI 删除 VPA 组件:

    1. 删除 VPA 命名空间:

      $ oc delete namespace openshift-vertical-pod-autoscaler
    2. 删除 VPA 自定义资源定义 (CRD) 对象:

      $ oc delete crd verticalpodautoscalercheckpoints.autoscaling.k8s.io
      $ oc delete crd verticalpodautoscalercontrollers.autoscaling.openshift.io
      $ oc delete crd verticalpodautoscalers.autoscaling.k8s.io

      删除 CRD 会删除关联的角色、集群角色和角色绑定。

      注意

      此操作会从集群中移除,集群中的所有用户创建的 VPA CR。如果重新安装 VPA,您必须再次创建这些对象。

    3. 运行以下命令来删除 MutatingWebhookConfiguration 对象:

      $ oc delete MutatingWebhookConfiguration vpa-webhook-config
    4. 删除 VPA Operator:

      $ oc delete operator/vertical-pod-autoscaler.openshift-vertical-pod-autoscaler

2.6. 使用 secret 为 pod 提供敏感数据

有些应用程序需要密码和用户名等敏感信息,但您不希望开发人员持有这些信息。

作为管理员,您可以使用 Secret 对象在不以明文方式公开的前提下提供此类信息。

2.6.1. 了解 secret

Secret 对象类型提供了一种机制来保存敏感信息,如密码、OpenShift Container Platform 客户端配置文件和私有源存储库凭证等。secret 将敏感内容与 Pod 分离。您可以使用卷插件将 secret 信息挂载到容器中,系统也可以使用 secret 代表 Pod 执行操作。

主要属性包括:

  • Secret 数据可以独立于其定义来引用。
  • Secret 数据卷由临时文件工具 (tmpfs) 支持,永远不会停留在节点上。
  • secret 数据可以在命名空间内共享。

YAML Secret 对象定义

apiVersion: v1
kind: Secret
metadata:
  name: test-secret
  namespace: my-namespace
type: Opaque 1
data: 2
  username: <username> 3
  password: <password>
stringData: 4
  hostname: myapp.mydomain.com 5

1
指示 secret 的键和值的结构。
2
data 字段中允许的键格式必须符合 Kubernetes 标识符术语表DNS_SUBDOMAIN 值的规范。
3
data 映射中键关联的值必须采用 base64 编码。
4
stringData 映射中的条目将转换为 base64,然后该条目将自动移动到 data 映射中。此字段是只写的;其值仅通过 data 字段返回。
5
stringData 映射中键关联的值由纯文本字符串组成。

您必须先创建 secret,然后创建依赖于此 secret 的 Pod。

在创建 secret 时:

  • 使用 secret 数据创建 secret 对象。
  • 更新 pod 的服务帐户以允许引用该 secret。
  • 创建以环境变量或文件(使用 secret 卷)形式消耗 secret 的 pod。
2.6.1.1. secret 的类型

type 字段中的值指明 secret 的键名称和值的结构。此类型可用于强制使 secret 对象中存在用户名和密钥。如果您不想进行验证,请使用 opaque 类型,这也是默认类型。

指定以下一种类型来触发最小服务器端验证,确保 secret 数据中存在特定的键名称:

  • kubernetes.io/basic-auth:使用基本身份验证
  • kubernetes.io/dockercfg:用作镜像 pull secret
  • kubernetes.io/dockerconfigjson: 用作镜像 pull secret
  • kubernetes.io/service-account-token:用来获取旧的服务帐户 API 令牌
  • kubernetes.io/ssh-auth:与 SSH 密钥身份验证一起使用
  • kubernetes.io/tls:与 TLS 证书颁发机构一起使用

如果您不想要验证,请指定 type: Opaque,即 secret 没有声明键名称或值需要符合任何约定。opaque secret 允许使用无结构 key:value 对,可以包含任意值。

注意

您可以指定其他任意类型,如 example.com/my-secret-type。这些类型不是在服务器端强制执行,而是表明 secret 的创建者意在符合该类型的键/值要求。

有关创建不同类型的 secret 的示例,请参阅 了解如何创建 secret

2.6.1.2. Secret 数据密钥

Secret 密钥必须在 DNS 子域中。

2.6.1.3. 自动生成的 secret

默认情况下,OpenShift Container Platform 会为每个服务帐户创建以下 secret:

  • dockercfg 镜像 pull secret
  • 服务帐户令牌 secret

    注意

    在 OpenShift Container Platform 4.11 之前,在创建服务帐户时会生成第二个服务帐户令牌 secret。此服务帐户令牌 secret 用于访问 Kubernetes API。

    从 OpenShift Container Platform 4.11 开始,不再创建第二个服务帐户令牌 secret。这是因为启用了 LegacyServiceAccountTokenNoAutoGeneration 上游 Kubernetes 功能门,这会停止自动生成基于 secret 的服务帐户令牌来访问 Kubernetes API。

    升级到 4.15 后,任何现有的服务帐户令牌 secret 都不会被删除,并可以继续正常工作。

需要此服务帐户令牌 secret 和 docker 配置镜像 pull secret,才能将 OpenShift 镜像 registry 集成到集群的用户身份验证和授权系统中。

但是,如果您不启用 ImageRegistry 功能,或者在 Cluster Image Registry Operator 配置中禁用集成的 OpenShift 镜像 registry,则不会为每个服务帐户生成这些 secret。

警告

不要依赖于这些自动生成的 secret 以供您自己使用;它们可能会在以后的 OpenShift Container Platform 发行版本中删除。

工作负载自动注入投射卷以获取绑定服务帐户令牌。如果您的工作负载需要额外的服务帐户令牌,请在工作负载清单中添加额外的投射卷。绑定服务帐户令牌比服务帐户令牌 secret 更安全,原因如下:

  • 绑定服务帐户令牌具有绑定的生命周期。
  • 绑定服务帐户令牌包含受众。
  • 绑定服务帐户令牌可以绑定到 pod 或 secret,绑定令牌在删除绑定对象时无效。

如需更多信息,请参阅使用卷投射配置绑定服务帐户令牌

如果您可以接受在一个可读的 API 对象暴露没有过期的令牌,您也可以手动创建服务帐户令牌 secret 来获取令牌。如需更多信息,请参阅创建服务帐户令牌 secret

其他资源

2.6.2. 了解如何创建 secret

作为管理员,您必须先创建 secret,然后开发人员才能创建依赖于该 secret 的 pod。

在创建 secret 时:

  1. 创建包含您要保留 secret 的数据的 secret 对象。在以下部分中取消每个 secret 类型所需的特定数据。

    创建不透明 secret 的 YAML 对象示例

    apiVersion: v1
    kind: Secret
    metadata:
      name: test-secret
    type: Opaque 1
    data: 2
      username: <username>
      password: <password>
    stringData: 3
      hostname: myapp.mydomain.com
      secret.properties: |
        property1=valueA
        property2=valueB

    1
    指定 secret 的类型。
    2
    指定编码的字符串和数据。
    3
    指定解码的字符串和数据。

    使用 datastringdata 字段,不能同时使用这两个字段。

  2. 更新 pod 的服务帐户以引用 secret:

    使用 secret 的服务帐户的 YAML

    apiVersion: v1
    kind: ServiceAccount
     ...
    secrets:
    - name: test-secret

  3. 创建以环境变量或文件(使用 secret 卷)形式消耗 secret 的 pod:

    pod 的 YAML 使用 secret 数据填充卷中的文件

    apiVersion: v1
    kind: Pod
    metadata:
      name: secret-example-pod
    spec:
      securityContext:
        runAsNonRoot: true
        seccompProfile:
          type: RuntimeDefault
      containers:
        - name: secret-test-container
          image: busybox
          command: [ "/bin/sh", "-c", "cat /etc/secret-volume/*" ]
          volumeMounts: 1
              - name: secret-volume
                mountPath: /etc/secret-volume 2
                readOnly: true 3
          securityContext:
            allowPrivilegeEscalation: false
            capabilities:
              drop: [ALL]
      volumes:
        - name: secret-volume
          secret:
            secretName: test-secret 4
      restartPolicy: Never

    1
    为每个需要 secret 的容器添加 volumeMounts 字段。
    2
    指定您希望显示 secret 的未使用目录名称。secret 数据映射中的每个密钥都将成为 mountPath 下的文件名。
    3
    设置为 true。如果为 true,这指示驱动程序提供只读卷。
    4
    指定 secret 的名称。

    pod 的 YAML 使用 secret 数据填充环境变量

    apiVersion: v1
    kind: Pod
    metadata:
      name: secret-example-pod
    spec:
      securityContext:
        runAsNonRoot: true
        seccompProfile:
          type: RuntimeDefault
      containers:
        - name: secret-test-container
          image: busybox
          command: [ "/bin/sh", "-c", "export" ]
          env:
            - name: TEST_SECRET_USERNAME_ENV_VAR
              valueFrom:
                secretKeyRef: 1
                  name: test-secret
                  key: username
          securityContext:
            allowPrivilegeEscalation: false
            capabilities:
              drop: [ALL]
      restartPolicy: Never

    1
    指定消耗 secret 密钥的环境变量。

    构建配置的 YAML 使用 secret 数据填充环境变量

    apiVersion: build.openshift.io/v1
    kind: BuildConfig
    metadata:
      name: secret-example-bc
    spec:
      strategy:
        sourceStrategy:
          env:
          - name: TEST_SECRET_USERNAME_ENV_VAR
            valueFrom:
              secretKeyRef: 1
                name: test-secret
                key: username
          from:
            kind: ImageStreamTag
            namespace: openshift
            name: 'cli:latest'

    1
    指定消耗 secret 密钥的环境变量。
2.6.2.1. Secret 创建限制

若要使用 secret,pod 需要引用该 secret。可以通过三种方式将 secret 用于 Pod:

  • 为容器产生环境变量。
  • 作为挂载到一个或多个容器上的卷中的文件。
  • 在拉取 Pod 的镜像时通过 kubelet 使用。

卷类型 secret 使用卷机制将数据作为文件写入到容器中。镜像拉取 secret 使用服务帐户,将 secret 自动注入到命名空间中的所有 pod。

当模板包含 secret 定义时,模板使用提供的 secret 的唯一方法是确保验证 secret 卷源通过验证,并且指定的对象引用实际指向 Secret 类型的对象。因此,secret 需要在依赖它的任何 Pod 之前创建。确保这一点的最有效方法是通过使用服务帐户自动注入。

Secret API 对象驻留在命名空间中。它们只能由同一命名空间中的 pod 引用。

每个 secret 的大小限制为 1MB。这是为了防止创建可能会耗尽 apiserver 和 kubelet 内存的大型 secret。不过,创建许多较小的 secret 也可能会耗尽内存。

2.6.2.2. 创建不透明 secret

作为管理员,您可以创建一个不透明 secret,它允许您存储包含任意值的无结构 key:value 对。

流程

  1. 在控制平面节点上的 YAML 文件中创建 Secret 对象。

    例如:

    apiVersion: v1
    kind: Secret
    metadata:
      name: mysecret
    type: Opaque 1
    data:
      username: <username>
      password: <password>
    1
    指定不透明 secret。
  2. 使用以下命令来创建 Secret 对象:

    $ oc create -f <filename>.yaml
  3. 在 pod 中使用该 secret:

    1. 更新 pod 的服务帐户以引用 secret,如 "Understanding how to create secrets" 部分所示。
    2. 创建以环境变量或文件(使用 secret 卷)形式消耗 secret 的 pod,如"创建 secret"部分所示。

其他资源

2.6.2.3. 创建服务帐户令牌 secret

作为管理员,您可以创建一个服务帐户令牌 secret,该 secret 允许您将服务帐户令牌分发到必须通过 API 进行身份验证的应用程序。

注意

建议使用 TokenRequest API 获取绑定的服务帐户令牌,而不使用服务帐户令牌 secret。从 TokenRequest API 获取的令牌比存储在 secret 中的令牌更安全,因为它们具有绑定的生命周期,且不能被其他 API 客户端读取。

只有在无法使用 TokenRequest API 且在可读的 API 对象中存在非过期令牌时,才应创建服务帐户令牌 secret。

有关创建绑定服务帐户令牌的详情,请参考下面的其他参考资料部分。

流程

  1. 在控制平面节点上的 YAML 文件中创建 Secret 对象:

    secret 对象示例:

    apiVersion: v1
    kind: Secret
    metadata:
      name: secret-sa-sample
      annotations:
        kubernetes.io/service-account.name: "sa-name" 1
    type: kubernetes.io/service-account-token 2

    1
    指定一个现有服务帐户名称。如果您要同时创建 ServiceAccountSecret 对象,请首先创建 ServiceAccount 对象。
    2
    指定服务帐户令牌 secret。
  2. 使用以下命令来创建 Secret 对象:

    $ oc create -f <filename>.yaml
  3. 在 pod 中使用该 secret:

    1. 更新 pod 的服务帐户以引用 secret,如 "Understanding how to create secrets" 部分所示。
    2. 创建以环境变量或文件(使用 secret 卷)形式消耗 secret 的 pod,如"创建 secret"部分所示。

其他资源

2.6.2.4. 创建基本身份验证 secret

作为管理员,您可以创建一个基本身份验证 secret,该 secret 允许您存储基本身份验证所需的凭证。在使用此 secret 类型时,Secret 对象的 data 参数必须包含以下密钥,采用 base64 格式编码:

  • 用户名 :用于身份验证的用户名
  • 密码 :用于身份验证的密码或令牌
注意

您可以使用 stringData 参数使用明文内容。

流程

  1. 在控制平面节点上的 YAML 文件中创建 Secret 对象:

    secret 对象示例

    apiVersion: v1
    kind: Secret
    metadata:
      name: secret-basic-auth
    type: kubernetes.io/basic-auth 1
    data:
    stringData: 2
      username: admin
      password: <password>

    1
    指定基本身份验证 secret。
    2
    指定要使用的基本身份验证值。
  2. 使用以下命令来创建 Secret 对象:

    $ oc create -f <filename>.yaml
  3. 在 pod 中使用该 secret:

    1. 更新 pod 的服务帐户以引用 secret,如 "Understanding how to create secrets" 部分所示。
    2. 创建以环境变量或文件(使用 secret 卷)形式消耗 secret 的 pod,如"创建 secret"部分所示。

其他资源

2.6.2.5. 创建 SSH 身份验证 secret

作为管理员,您可以创建一个 SSH 验证 secret,该 secret 允许您存储用于 SSH 验证的数据。在使用此 secret 类型时,Secret 对象的 data 参数必须包含要使用的 SSH 凭证。

流程

  1. 在控制平面节点上的 YAML 文件中创建 Secret 对象:

    secret 对象示例:

    apiVersion: v1
    kind: Secret
    metadata:
      name: secret-ssh-auth
    type: kubernetes.io/ssh-auth 1
    data:
      ssh-privatekey: | 2
              MIIEpQIBAAKCAQEAulqb/Y ...

    1
    指定 SSH 身份验证 secret。
    2
    指定 SSH 密钥/值对,作为要使用的 SSH 凭据。
  2. 使用以下命令来创建 Secret 对象:

    $ oc create -f <filename>.yaml
  3. 在 pod 中使用该 secret:

    1. 更新 pod 的服务帐户以引用 secret,如 "Understanding how to create secrets" 部分所示。
    2. 创建以环境变量或文件(使用 secret 卷)形式消耗 secret 的 pod,如"创建 secret"部分所示。

其他资源

2.6.2.6. 创建 Docker 配置 secret

作为管理员,您可以创建一个 Docker 配置 secret,该 secret 允许您存储用于访问容器镜像 registry 的凭证。

  • kubernetes.io/dockercfg。使用此机密类型存储本地 Docker 配置文件。secret 对象的 data 参数必须包含以 base64 格式编码的 .dockercfg 文件的内容。
  • kubernetes.io/dockerconfigjson。使用此机密类型存储本地 Docker 配置 JSON 文件。secret 对象的 data 参数必须包含以 base64 格式编码的 .docker/config.json 文件的内容。

流程

  1. 在控制平面节点上的 YAML 文件中创建 Secret 对象。

    Docker 配置 secret 对象示例

    apiVersion: v1
    kind: Secret
    metadata:
      name: secret-docker-cfg
      namespace: my-project
    type: kubernetes.io/dockerconfig 1
    data:
      .dockerconfig:bm5ubm5ubm5ubm5ubm5ubm5ubm5ubmdnZ2dnZ2dnZ2dnZ2dnZ2dnZ2cgYXV0aCBrZXlzCg== 2

    1
    指定该 secret 使用 Docker 配置文件。
    2
    base64 编码的 Docker 配置文件

    Docker 配置 JSON secret 对象示例

    apiVersion: v1
    kind: Secret
    metadata:
      name: secret-docker-json
      namespace: my-project
    type: kubernetes.io/dockerconfig 1
    data:
      .dockerconfigjson:bm5ubm5ubm5ubm5ubm5ubm5ubm5ubmdnZ2dnZ2dnZ2dnZ2dnZ2dnZ2cgYXV0aCBrZXlzCg== 2

    1
    指定该 secret 使用 Docker 配置 JSONfile。
    2
    base64 编码的 Docker 配置 JSON 文件
  2. 使用以下命令来创建 Secret 对象

    $ oc create -f <filename>.yaml
  3. 在 pod 中使用该 secret:

    1. 更新 pod 的服务帐户以引用 secret,如 "Understanding how to create secrets" 部分所示。
    2. 创建以环境变量或文件(使用 secret 卷)形式消耗 secret 的 pod,如"创建 secret"部分所示。

其他资源

2.6.2.7. 使用 Web 控制台创建 secret

您可以使用 Web 控制台创建 secret。

流程

  1. 导航到 WorkloadsSecrets
  2. CreateFrom YAML

    1. 手动编辑您的规格的 YAML,或者将文件拖放到 YAML 编辑器。例如:

      apiVersion: v1
      kind: Secret
      metadata:
        name: example
        namespace: <namespace>
      type: Opaque 1
      data:
        username: <base64 encoded username>
        password: <base64 encoded password>
      stringData: 2
        hostname: myapp.mydomain.com
      1
      本例指定了一个 opaque secret,但您可以看到其他 secret 类型,如服务帐户令牌 secret、基本身份验证 secret、SSH 身份验证 secret 或使用 Docker 配置的 secret。
      2
      stringData 映射中的条目将转换为 base64,然后该条目将自动移动到 data 映射中。此字段是只写的;其值仅通过 data 字段返回。
  3. Create
  4. Add Secret to workload

    1. 从下拉菜单中选择要添加的工作负载。
    2. 点击 Save

2.6.3. 了解如何更新 secret

修改 secret 值时,值(由已在运行的 pod 使用)不会动态更改。若要更改 secret,您必须删除原始 pod 并创建一个新 pod(可能具有相同的 PodSpec)。

更新 secret 遵循与部署新容器镜像相同的工作流程。您可以使用 kubectl rolling-update 命令。

secret 中的 resourceVersion 值不在引用时指定。因此,如果在 pod 启动的同时更新 secret,则将不能定义用于 pod 的 secret 版本。

注意

目前,无法检查 Pod 创建时使用的 secret 对象的资源版本。按照计划 Pod 将报告此信息,以便控制器可以重启使用旧 resourceVersion 的 Pod。在此期间,请勿更新现有 secret 的数据,而应创建具有不同名称的新数据。

2.6.4. 创建和使用 secret

作为管理员,您可以创建一个服务帐户令牌 secret。这可让您将服务帐户令牌分发到必须通过 API 进行身份验证的应用程序。

流程

  1. 运行以下命令,在命名空间中创建服务帐户:

    $ oc create sa <service_account_name> -n <your_namespace>
  2. 将以下 YAML 示例保存到名为 service-account-token-secret.yaml 的文件中。这个示例包括可用于生成服务帐户令牌的 Secret 对象配置:

    apiVersion: v1
    kind: Secret
    metadata:
      name: <secret_name> 1
      annotations:
        kubernetes.io/service-account.name: "sa-name" 2
    type: kubernetes.io/service-account-token 3
    1
    <secret_name> 替换为服务帐户令牌 secret 的名称。
    2
    指定一个现有服务帐户名称。如果您要同时创建 ServiceAccountSecret 对象,请首先创建 ServiceAccount 对象。
    3
    指定服务帐户令牌 secret 类型。
  3. 通过应用文件来生成服务帐户令牌:

    $ oc apply -f service-account-token-secret.yaml
  4. 运行以下命令,从 secret 获取服务帐户令牌:

    $ oc get secret <sa_token_secret> -o jsonpath='{.data.token}' | base64 --decode 1

    输出示例

    ayJhbGciOiJSUzI1NiIsImtpZCI6IklOb2dtck1qZ3hCSWpoNnh5YnZhSE9QMkk3YnRZMVZoclFfQTZfRFp1YlUifQ.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJkZWZhdWx0Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZWNyZXQubmFtZSI6ImJ1aWxkZXItdG9rZW4tdHZrbnIiLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC5uYW1lIjoiYnVpbGRlciIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VydmljZS1hY2NvdW50LnVpZCI6IjNmZGU2MGZmLTA1NGYtNDkyZi04YzhjLTNlZjE0NDk3MmFmNyIsInN1YiI6InN5c3RlbTpzZXJ2aWNlYWNjb3VudDpkZWZhdWx0OmJ1aWxkZXIifQ.OmqFTDuMHC_lYvvEUrjr1x453hlEEHYcxS9VKSzmRkP1SiVZWPNPkTWlfNRp6bIUZD3U6aN3N7dMSN0eI5hu36xPgpKTdvuckKLTCnelMx6cxOdAbrcw1mCmOClNscwjS1KO1kzMtYnnq8rXHiMJELsNlhnRyyIXRTtNBsy4t64T3283s3SLsancyx0gy0ujx-Ch3uKAKdZi5iT-I8jnnQ-ds5THDs2h65RJhgglQEmSxpHrLGZFmyHAQI-_SjvmHZPXEc482x3SkaQHNLqpmrpJorNqh1M8ZHKzlujhZgVooMvJmWPXTb2vnvi3DGn2XI-hZxl1yD2yGH1RBpYUHA

    1
    将 <sa_token_secret> 替换为服务帐户令牌 secret 的名称。
  5. 使用您的服务帐户令牌与集群的 API 进行身份验证:

    $ curl -X GET <openshift_cluster_api> --header "Authorization: Bearer <token>" 1 2
    1
    <openshift_cluster_api> 替换为 OpenShift 集群 API。
    2
    <token> 替换为上一命令输出的服务帐户令牌。

2.6.5. 关于将签名证书与 secret 搭配使用

若要与服务进行安全通信,您可以配置 OpenShift Container Platform,以生成一个签名的服务用证书/密钥对,再添加到项目中的 secret 里。

服务用证书 secret 旨在支持需要开箱即用证书的复杂中间件应用程序。它的设置与管理员工具为节点和 master 生成的服务器证书相同。

为服务用证书 secret 配置的服务 Pod 规格。

apiVersion: v1
kind: Service
metadata:
  name: registry
  annotations:
    service.beta.openshift.io/serving-cert-secret-name: registry-cert1
# ...

1
指定证书的名称

其他 pod 可以信任集群创建的证书(仅对内部 DNS 名称进行签名),方法是使用 pod 中自动挂载的 /var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt 文件中的 CA 捆绑。

此功能的签名算法是 x509.SHA256WithRSA。要手动轮转,请删除生成的 secret。这会创建新的证书。

2.6.5.1. 生成签名证书以便与 secret 搭配使用

要将签名的服务用证书/密钥对用于 pod,请创建或编辑服务以添加到 service.beta.openshift.io/serving-cert-secret-name 注解,然后将 secret 添加到该 pod。

流程

创建服务用证书 secret

  1. 编辑服务的 Pod spec。
  2. 使用您要用于 secret 的名称,添加 service.beta.openshift.io/serving-cert-secret-name 注解。

    kind: Service
    apiVersion: v1
    metadata:
      name: my-service
      annotations:
          service.beta.openshift.io/serving-cert-secret-name: my-cert 1
    spec:
      selector:
        app: MyApp
      ports:
      - protocol: TCP
        port: 80
        targetPort: 9376

    证书和密钥采用 PEM 格式,分别存储在 tls.crttls.key 中。

  3. 创建服务:

    $ oc create -f <file-name>.yaml
  4. 查看 secret 以确保已成功创建:

    1. 查看所有 secret 列表:

      $ oc get secrets

      输出示例

      NAME                     TYPE                                  DATA      AGE
      my-cert                  kubernetes.io/tls                     2         9m

    2. 查看您的 secret 详情:

      $ oc describe secret my-cert

      输出示例

      Name:         my-cert
      Namespace:    openshift-console
      Labels:       <none>
      Annotations:  service.beta.openshift.io/expiry: 2023-03-08T23:22:40Z
                    service.beta.openshift.io/originating-service-name: my-service
                    service.beta.openshift.io/originating-service-uid: 640f0ec3-afc2-4380-bf31-a8c784846a11
                    service.beta.openshift.io/expiry: 2023-03-08T23:22:40Z
      
      Type:  kubernetes.io/tls
      
      Data
      ====
      tls.key:  1679 bytes
      tls.crt:  2595 bytes

  5. 编辑与该 secret 搭配的 Pod spec。

    apiVersion: v1
    kind: Pod
    metadata:
      name: my-service-pod
    spec:
      securityContext:
        runAsNonRoot: true
        seccompProfile:
          type: RuntimeDefault
      containers:
      - name: mypod
        image: redis
        volumeMounts:
        - name: my-container
          mountPath: "/etc/my-path"
        securityContext:
          allowPrivilegeEscalation: false
          capabilities:
            drop: [ALL]
      volumes:
      - name: my-volume
        secret:
          secretName: my-cert
          items:
          - key: username
            path: my-group/my-username
            mode: 511

    当它可用时,您的 Pod 就可运行。该证书对内部服务 DNS 名称 <service.name>.<service.namespace>.svc 有效。

    证书/密钥对在接近到期时自动替换。在 secret 的 service.beta.openshift.io/expiry 注解中查看过期日期,其格式为 RFC3339。

    注意

    在大多数情形中,服务 DNS 名称 <service.name>.<service.namespace>.svc 不可从外部路由。<service.name>.<service.namespace>.svc 的主要用途是集群内或服务内通信,也用于重新加密路由。

2.6.6. secret 故障排除

如果服务证书生成失败并显示以下信息( 服务的 service.beta.openshift.io/serving-cert-generation-error 注解包含):

secret/ssl-key references serviceUID 62ad25ca-d703-11e6-9d6f-0e9c0057b608, which does not match 77b6dd80-d716-11e6-9d6f-0e9c0057b60

生成证书的服务不再存在,或者具有不同的 serviceUID 。您必须删除旧 secret 并清除服务上的以下注解 service.beta.openshift.io/serving-cert-generation-error, service.beta.openshift.io/serving-cert-generation-error-num 以强制重新生成证书:

  1. 删除 secret:

    $ oc delete secret <secret_name>
  2. 清除注解:

    $ oc annotate service <service_name> service.beta.openshift.io/serving-cert-generation-error-
    $ oc annotate service <service_name> service.beta.openshift.io/serving-cert-generation-error-num-
注意

在用于移除注解的命令中,要移除的注解后面有一个 -

2.7. 使用外部 secret 存储为 pod 提供敏感数据

有些应用程序需要密码和用户名等敏感信息,但您不希望开发人员持有这些信息。

使用 Kubernetes Secret 对象提供敏感信息的一个替代选择是,使用外部 secret 存储来存储敏感信息。您可以使用 Secrets Store CSI Driver Operator 与外部 secret 存储集成,并将 secret 内容挂载为 pod 卷。

重要

Secret Store CSI Driver Operator 只是一个技术预览功能。技术预览功能不受红帽产品服务等级协议(SLA)支持,且功能可能并不完整。红帽不推荐在生产环境中使用它们。这些技术预览功能可以使用户提早试用新的功能,并有机会在开发阶段提供反馈意见。

有关红帽技术预览功能支持范围的更多信息,请参阅技术预览功能支持范围

2.7.1. 关于 Secret Store CSI Driver Operator

Kubernetes secret 以 Base64 编码的形式存储。etcd 为这些 secret 提供加密,但在检索 secret 时,它们会被解密并提供给用户。如果没有在集群中正确配置基于角色的访问控制,则具有 API 或 etcd 访问权限的任何人都可以检索或修改 secret。另外,有权在命名空间中创建 pod 的任何人都可以使用该命名空间中的任何 secret 来读取该命名空间中的任何 secret。

要安全地存储和管理您的 secret,您可以将 OpenShift Container Platform Secrets Store Container Storage Interface (CSI) Driver Operator 配置为使用供应商插件从外部 secret 管理系统(如 Azure Key Vault)挂载 secret。应用程序可以使用 secret,但 secret 在应用程序 pod 被销毁后不会在系统中保留。

Secret Store CSI Driver Operator(secrets-store.csi.k8s.io)允许 OpenShift Container Platform 将存储在企业级外部 secret 中的多个 secret、密钥和证书作为卷挂载到 pod 中。Secrets Store CSI Driver Operator 使用 gRPC 与供应商通信,以从指定的外部 secret 存储获取挂载内容。附加卷后,其中的数据将挂载到容器的文件系统。Secret 存储卷以 in-line 形式挂载。

2.7.1.1. Secret 存储供应商

以下 secret 存储供应商可用于 Secret Store CSI Driver Operator:

  • AWS Secrets Manager
  • AWS Systems Manager Parameter Store
  • Azure Key Vault
2.7.1.2. 自动轮转

Secrets Store CSI 驱动程序会定期使用外部 secret 存储中的内容轮转挂载卷中的内容。如果外部 secret 存储中更新了 secret,secret 将在挂载的卷中更新。Secrets Store CSI Driver Operator 每 2 分钟轮询一次更新。

如果启用了将挂载内容作为 Kubernetes secret 同步,则 Kubernetes secret 也会被轮转。

使用 secret 数据的应用程序必须监视是否有对 secret 的更新。

2.7.2. 安装 Secret Store CSI 驱动程序

先决条件

  • 访问 OpenShift Container Platform Web 控制台。
  • 集群的管理员访问权限。

流程

安装 Secret Store CSI 驱动程序:

  1. 安装 Secret Store CSI Driver Operator:

    1. 登录到 web 控制台。
    2. OperatorsOperatorHub
    3. 通过在过滤器框中输入 "Secrets Store CSI" 来查找 Secrets Store CSI Driver Operator。
    4. Secrets Store CSI Driver Operator 按钮。
    5. Secrets Store CSI Driver Operator 页面中,点 Install
    6. Install Operator 页面中,确保:

      • 选择 All namespaces on the cluster (default)
      • 安装的命名空间 被设置为 openshift-cluster-csi-drivers
    7. Install

      安装完成后,Secret Store CSI Driver Operator 会在 web 控制台的 Installed Operators 部分列出。

  2. 为驱动程序创建 ClusterCSIDriver 实例 (secrets-store.csi.k8s.io):

    1. AdministrationCustomResourceDefinitionsClusterCSIDriver
    2. Instances 选项卡上,单击 Create ClusterCSIDriver

      使用以下 YAML 文件:

      apiVersion: operator.openshift.io/v1
      kind: ClusterCSIDriver
      metadata:
          name: secrets-store.csi.k8s.io
      spec:
        managementState: Managed
    3. Create

2.7.3. 将 secret 从外部 secret 存储挂载到 CSI 卷

安装 Secret Store CSI Driver Operator 后,您可以将 secret 从以下外部 secret 存储挂载到 CSI 卷:

2.7.3.1. 从 AWS Secrets Manager 挂载 secret

您可以使用 Secrets Store CSI Driver Operator 将 secret 从 AWS Secrets Manager 挂载到 OpenShift Container Platform 中的 CSI 卷。要从 AWS Secrets Manager 挂载 secret,您的集群必须安装在 AWS 上,并使用 AWS 安全令牌服务 (STS)。

先决条件

  • 您的集群安装在 AWS 上,并使用 AWS 安全令牌服务 (STS)。
  • 已安装 Secrets Store CSI Driver Operator。具体步骤请参阅 安装 Secret Store CSI 驱动程序
  • 您已将 AWS Secrets Manager 配置为存储所需的 secret。
  • 您已提取并准备好 ccoctl 二进制文件。
  • 已安装 jq CLI 工具。
  • 您可以使用具有 cluster-admin 角色的用户访问集群。

流程

  1. 安装 AWS Secrets Manager 供应商:

    1. 使用供应商资源的以下配置创建一个 YAML 文件:

      重要

      Secret Store CSI 驱动程序的 AWS Secrets Manager 供应商是一个上游供应商。

      此配置会根据上游 AWS 文档中提供的配置进行修改,以便它可以与 OpenShift Container Platform 正常工作。对此配置的更改可能会影响功能。

      aws-provider.yaml 文件示例

      apiVersion: v1
      kind: ServiceAccount
      metadata:
        name: csi-secrets-store-provider-aws
        namespace: openshift-cluster-csi-drivers
      ---
      apiVersion: rbac.authorization.k8s.io/v1
      kind: ClusterRole
      metadata:
        name: csi-secrets-store-provider-aws-cluster-role
      rules:
      - apiGroups: [""]
        resources: ["serviceaccounts/token"]
        verbs: ["create"]
      - apiGroups: [""]
        resources: ["serviceaccounts"]
        verbs: ["get"]
      - apiGroups: [""]
        resources: ["pods"]
        verbs: ["get"]
      - apiGroups: [""]
        resources: ["nodes"]
        verbs: ["get"]
      ---
      apiVersion: rbac.authorization.k8s.io/v1
      kind: ClusterRoleBinding
      metadata:
        name: csi-secrets-store-provider-aws-cluster-rolebinding
      roleRef:
        apiGroup: rbac.authorization.k8s.io
        kind: ClusterRole
        name: csi-secrets-store-provider-aws-cluster-role
      subjects:
      - kind: ServiceAccount
        name: csi-secrets-store-provider-aws
        namespace: openshift-cluster-csi-drivers
      ---
      apiVersion: apps/v1
      kind: DaemonSet
      metadata:
        namespace: openshift-cluster-csi-drivers
        name: csi-secrets-store-provider-aws
        labels:
          app: csi-secrets-store-provider-aws
      spec:
        updateStrategy:
          type: RollingUpdate
        selector:
          matchLabels:
            app: csi-secrets-store-provider-aws
        template:
          metadata:
            labels:
              app: csi-secrets-store-provider-aws
          spec:
            serviceAccountName: csi-secrets-store-provider-aws
            hostNetwork: false
            containers:
              - name: provider-aws-installer
                image: public.ecr.aws/aws-secrets-manager/secrets-store-csi-driver-provider-aws:1.0.r2-50-g5b4aca1-2023.06.09.21.19
                imagePullPolicy: Always
                args:
                    - --provider-volume=/etc/kubernetes/secrets-store-csi-providers
                resources:
                  requests:
                    cpu: 50m
                    memory: 100Mi
                  limits:
                    cpu: 50m
                    memory: 100Mi
                securityContext:
                  privileged: true
                volumeMounts:
                  - mountPath: "/etc/kubernetes/secrets-store-csi-providers"
                    name: providervol
                  - name: mountpoint-dir
                    mountPath: /var/lib/kubelet/pods
                    mountPropagation: HostToContainer
            tolerations:
            - operator: Exists
            volumes:
              - name: providervol
                hostPath:
                  path: "/etc/kubernetes/secrets-store-csi-providers"
              - name: mountpoint-dir
                hostPath:
                  path: /var/lib/kubelet/pods
                  type: DirectoryOrCreate
            nodeSelector:
              kubernetes.io/os: linux

    2. 运行以下命令,授予 csi-secrets-store-provider-aws 服务帐户的特权访问权限:

      $ oc adm policy add-scc-to-user privileged -z csi-secrets-store-provider-aws -n openshift-cluster-csi-drivers
    3. 运行以下命令来创建供应商资源:

      $ oc apply -f aws-provider.yaml
  2. 授予服务帐户读取 AWS secret 对象的权限:

    1. 运行以下命令,创建一个目录使其包含凭证请求:

      $ mkdir credentialsrequest-dir-aws
    2. 使用以下配置为凭证请求创建 YAML 文件:

      credentialsrequest.yaml 文件示例

      apiVersion: cloudcredential.openshift.io/v1
      kind: CredentialsRequest
      metadata:
        name: aws-provider-test
        namespace: openshift-cloud-credential-operator
      spec:
        providerSpec:
          apiVersion: cloudcredential.openshift.io/v1
          kind: AWSProviderSpec
          statementEntries:
          - action:
            - "secretsmanager:GetSecretValue"
            - "secretsmanager:DescribeSecret"
            effect: Allow
            resource: "arn:*:secretsmanager:*:*:secret:testSecret-??????"
        secretRef:
          name: aws-creds
          namespace: my-namespace
        serviceAccountNames:
        - aws-provider

    3. 运行以下命令来检索 OIDC 供应商:

      $ oc get --raw=/.well-known/openid-configuration | jq -r '.issuer'

      输出示例

      https://<oidc_provider_name>

      从输出中复制 OIDC 供应商名称 <oidc_provider_name>,在下一步中使用。

    4. 运行以下命令,使用 ccoctl 工具处理凭证请求:

      $ ccoctl aws create-iam-roles \
          --name my-role --region=<aws_region> \
          --credentials-requests-dir=credentialsrequest-dir-aws \
          --identity-provider-arn arn:aws:iam::<aws_account>:oidc-provider/<oidc_provider_name> --output-dir=credrequests-ccoctl-output

      输出示例

      2023/05/15 18:10:34 Role arn:aws:iam::<aws_account_id>:role/my-role-my-namespace-aws-creds created
      2023/05/15 18:10:34 Saved credentials configuration to: credrequests-ccoctl-output/manifests/my-namespace-aws-creds-credentials.yaml
      2023/05/15 18:10:35 Updated Role policy for Role my-role-my-namespace-aws-creds

      从输出中复制 <aws_role_arn> 以在下一步中使用。例如,arn:aws:iam::<aws_account_id>:role/my-role-my-namespace-aws-creds

    5. 运行以下命令,使用角色 ARN 绑定服务帐户:

      $ oc annotate -n my-namespace sa/aws-provider eks.amazonaws.com/role-arn="<aws_role_arn>"
  3. 创建 secret 供应商类以定义您的 secret 存储供应商:

    1. 创建定义 SecretProviderClass 对象的 YAML 文件:

      secret-provider-class-aws.yaml示例

      apiVersion: secrets-store.csi.x-k8s.io/v1
      kind: SecretProviderClass
      metadata:
        name: my-aws-provider                   1
        namespace: my-namespace                 2
      spec:
        provider: aws                           3
        parameters:                             4
          objects: |
            - objectName: "testSecret"
              objectType: "secretsmanager"

      1 1
      指定 secret 供应商类的名称。
      2
      指定 secret 供应商类的命名空间。
      3
      将供应商指定为 aws
      4
      指定特定于供应商的配置参数。
    2. 运行以下命令来创建 SecretProviderClass 对象:

      $ oc create -f secret-provider-class-aws.yaml
  4. 创建部署以使用此 secret 供应商类:

    1. 创建定义 Deployment 对象的 YAML 文件:

      deployment.yaml 示例

      apiVersion: apps/v1
      kind: Deployment
      metadata:
        name: my-aws-deployment                              1
        namespace: my-namespace                              2
      spec:
        replicas: 1
        selector:
          matchLabels:
            app: my-storage
        template:
          metadata:
            labels:
              app: my-storage
          spec:
            containers:
            - name: busybox
              image: k8s.gcr.io/e2e-test-images/busybox:1.29
              command:
                - "/bin/sleep"
                - "10000"
              volumeMounts:
              - name: secrets-store-inline
                mountPath: "/mnt/secrets-store"
                readOnly: true
            volumes:
              - name: secrets-store-inline
                csi:
                  driver: secrets-store.csi.k8s.io
                  readOnly: true
                  volumeAttributes:
                    secretProviderClass: "my-aws-provider" 3

      1
      指定部署的名称。
      2
      指定部署的命名空间。这必须与 secret 供应商类相同。
      3
      指定 secret 供应商类的名称。
    2. 运行以下命令来创建 Deployment 对象:

      $ oc create -f deployment.yaml

验证

  • 验证您可以从 pod 卷挂载中的 AWS Secrets Manager 访问 secret:

    1. 列出 pod 挂载中的 secret:

      $ oc exec busybox-<hash> -n my-namespace -- ls /mnt/secrets-store/

      输出示例

      testSecret

    2. 查看 pod 挂载中的 secret:

      $ oc exec busybox-<hash> -n my-namespace -- cat /mnt/secrets-store/testSecret

      输出示例

      <secret_value>

2.7.3.2. 从 AWS Systems Manager Parameter Store 中挂载 secret

您可以使用 Secrets Store CSI Driver Operator 将 secret 从 AWS Systems Manager Parameter Store 挂载到 OpenShift Container Platform 中的 CSI 卷。要从 AWS Systems Manager Parameter Store 挂载 secret,您的集群必须安装在 AWS 上,并使用 AWS 安全令牌服务(STS)。

先决条件

  • 您的集群安装在 AWS 上,并使用 AWS 安全令牌服务 (STS)。
  • 已安装 Secrets Store CSI Driver Operator。具体步骤请参阅 安装 Secret Store CSI 驱动程序
  • 您已配置了 AWS Systems Manager Parameter Store 以存储所需的 secret。
  • 您已提取并准备好 ccoctl 二进制文件。
  • 已安装 jq CLI 工具。
  • 您可以使用具有 cluster-admin 角色的用户访问集群。

流程

  1. 安装 AWS Systems Manager Parameter Store 供应商:

    1. 使用供应商资源的以下配置创建一个 YAML 文件:

      重要

      Secret Store CSI 驱动程序的 AWS Systems Manager Parameter Store 供应商是一个上游供应商。

      此配置会根据上游 AWS 文档中提供的配置进行修改,以便它可以与 OpenShift Container Platform 正常工作。对此配置的更改可能会影响功能。

      aws-provider.yaml 文件示例

      apiVersion: v1
      kind: ServiceAccount
      metadata:
        name: csi-secrets-store-provider-aws
        namespace: openshift-cluster-csi-drivers
      ---
      apiVersion: rbac.authorization.k8s.io/v1
      kind: ClusterRole
      metadata:
        name: csi-secrets-store-provider-aws-cluster-role
      rules:
      - apiGroups: [""]
        resources: ["serviceaccounts/token"]
        verbs: ["create"]
      - apiGroups: [""]
        resources: ["serviceaccounts"]
        verbs: ["get"]
      - apiGroups: [""]
        resources: ["pods"]
        verbs: ["get"]
      - apiGroups: [""]
        resources: ["nodes"]
        verbs: ["get"]
      ---
      apiVersion: rbac.authorization.k8s.io/v1
      kind: ClusterRoleBinding
      metadata:
        name: csi-secrets-store-provider-aws-cluster-rolebinding
      roleRef:
        apiGroup: rbac.authorization.k8s.io
        kind: ClusterRole
        name: csi-secrets-store-provider-aws-cluster-role
      subjects:
      - kind: ServiceAccount
        name: csi-secrets-store-provider-aws
        namespace: openshift-cluster-csi-drivers
      ---
      apiVersion: apps/v1
      kind: DaemonSet
      metadata:
        namespace: openshift-cluster-csi-drivers
        name: csi-secrets-store-provider-aws
        labels:
          app: csi-secrets-store-provider-aws
      spec:
        updateStrategy:
          type: RollingUpdate
        selector:
          matchLabels:
            app: csi-secrets-store-provider-aws
        template:
          metadata:
            labels:
              app: csi-secrets-store-provider-aws
          spec:
            serviceAccountName: csi-secrets-store-provider-aws
            hostNetwork: false
            containers:
              - name: provider-aws-installer
                image: public.ecr.aws/aws-secrets-manager/secrets-store-csi-driver-provider-aws:1.0.r2-50-g5b4aca1-2023.06.09.21.19
                imagePullPolicy: Always
                args:
                    - --provider-volume=/etc/kubernetes/secrets-store-csi-providers
                resources:
                  requests:
                    cpu: 50m
                    memory: 100Mi
                  limits:
                    cpu: 50m
                    memory: 100Mi
                securityContext:
                  privileged: true
                volumeMounts:
                  - mountPath: "/etc/kubernetes/secrets-store-csi-providers"
                    name: providervol
                  - name: mountpoint-dir
                    mountPath: /var/lib/kubelet/pods
                    mountPropagation: HostToContainer
            tolerations:
            - operator: Exists
            volumes:
              - name: providervol
                hostPath:
                  path: "/etc/kubernetes/secrets-store-csi-providers"
              - name: mountpoint-dir
                hostPath:
                  path: /var/lib/kubelet/pods
                  type: DirectoryOrCreate
            nodeSelector:
              kubernetes.io/os: linux

    2. 运行以下命令,授予 csi-secrets-store-provider-aws 服务帐户的特权访问权限:

      $ oc adm policy add-scc-to-user privileged -z csi-secrets-store-provider-aws -n openshift-cluster-csi-drivers
    3. 运行以下命令来创建供应商资源:

      $ oc apply -f aws-provider.yaml
  2. 授予服务帐户读取 AWS secret 对象的权限:

    1. 运行以下命令,创建一个目录使其包含凭证请求:

      $ mkdir credentialsrequest-dir-aws
    2. 使用以下配置为凭证请求创建 YAML 文件:

      credentialsrequest.yaml 文件示例

      apiVersion: cloudcredential.openshift.io/v1
      kind: CredentialsRequest
      metadata:
        name: aws-provider-test
        namespace: openshift-cloud-credential-operator
      spec:
        providerSpec:
          apiVersion: cloudcredential.openshift.io/v1
          kind: AWSProviderSpec
          statementEntries:
          - action:
            - "ssm:GetParameter"
            - "ssm:GetParameters"
            effect: Allow
            resource: "arn:*:ssm:*:*:parameter/testParameter*"
        secretRef:
          name: aws-creds
          namespace: my-namespace
        serviceAccountNames:
        - aws-provider

    3. 运行以下命令来检索 OIDC 供应商:

      $ oc get --raw=/.well-known/openid-configuration | jq -r '.issuer'

      输出示例

      https://<oidc_provider_name>

      从输出中复制 OIDC 供应商名称 <oidc_provider_name>,在下一步中使用。

    4. 运行以下命令,使用 ccoctl 工具处理凭证请求:

      $ ccoctl aws create-iam-roles \
          --name my-role --region=<aws_region> \
          --credentials-requests-dir=credentialsrequest-dir-aws \
          --identity-provider-arn arn:aws:iam::<aws_account>:oidc-provider/<oidc_provider_name> --output-dir=credrequests-ccoctl-output

      输出示例

      2023/05/15 18:10:34 Role arn:aws:iam::<aws_account_id>:role/my-role-my-namespace-aws-creds created
      2023/05/15 18:10:34 Saved credentials configuration to: credrequests-ccoctl-output/manifests/my-namespace-aws-creds-credentials.yaml
      2023/05/15 18:10:35 Updated Role policy for Role my-role-my-namespace-aws-creds

      从输出中复制 <aws_role_arn> 以在下一步中使用。例如,arn:aws:iam::<aws_account_id>:role/my-role-my-namespace-aws-creds

    5. 运行以下命令,使用角色 ARN 绑定服务帐户:

      $ oc annotate -n my-namespace sa/aws-provider eks.amazonaws.com/role-arn="<aws_role_arn>"
  3. 创建 secret 供应商类以定义您的 secret 存储供应商:

    1. 创建定义 SecretProviderClass 对象的 YAML 文件:

      secret-provider-class-aws.yaml示例

      apiVersion: secrets-store.csi.x-k8s.io/v1
      kind: SecretProviderClass
      metadata:
        name: my-aws-provider                   1
        namespace: my-namespace                 2
      spec:
        provider: aws                           3
        parameters:                             4
          objects: |
            - objectName: "testParameter"
              objectType: "ssmparameter"

      1
      指定 secret 供应商类的名称。
      2
      指定 secret 供应商类的命名空间。
      3
      将供应商指定为 aws
      4
      指定特定于供应商的配置参数。
    2. 运行以下命令来创建 SecretProviderClass 对象:

      $ oc create -f secret-provider-class-aws.yaml
  4. 创建部署以使用此 secret 供应商类:

    1. 创建定义 Deployment 对象的 YAML 文件:

      deployment.yaml 示例

      apiVersion: apps/v1
      kind: Deployment
      metadata:
        name: my-aws-deployment                              1
        namespace: my-namespace                              2
      spec:
        replicas: 1
        selector:
          matchLabels:
            app: my-storage
        template:
          metadata:
            labels:
              app: my-storage
          spec:
            containers:
            - name: busybox
              image: k8s.gcr.io/e2e-test-images/busybox:1.29
              command:
                - "/bin/sleep"
                - "10000"
              volumeMounts:
              - name: secrets-store-inline
                mountPath: "/mnt/secrets-store"
                readOnly: true
            volumes:
              - name: secrets-store-inline
                csi:
                  driver: secrets-store.csi.k8s.io
                  readOnly: true
                  volumeAttributes:
                    secretProviderClass: "my-aws-provider" 3

      1
      指定部署的名称。
      2
      指定部署的命名空间。这必须与 secret 供应商类相同。
      3
      指定 secret 供应商类的名称。
    2. 运行以下命令来创建 Deployment 对象:

      $ oc create -f deployment.yaml

验证

  • 验证您可以从 pod 卷挂载中的 AWS Systems Manager Parameter Store 访问 secret:

    1. 列出 pod 挂载中的 secret:

      $ oc exec busybox-<hash> -n my-namespace -- ls /mnt/secrets-store/

      输出示例

      testParameter

    2. 查看 pod 挂载中的 secret:

      $ oc exec busybox-<hash> -n my-namespace -- cat /mnt/secrets-store/testSecret

      输出示例

      <secret_value>

2.7.3.3. 从 Azure Key Vault 挂载 secret

您可以使用 Secrets Store CSI Driver Operator 将 secret 从 Azure Key Vault 挂载到 OpenShift Container Platform 中的 CSI 卷。要从 Azure Key Vault 挂载 secret,您的集群必须安装在 Microsoft Azure 上。

先决条件

  • 集群安装在 Azure 上。
  • 已安装 Secrets Store CSI Driver Operator。具体步骤请参阅 安装 Secret Store CSI 驱动程序
  • 您已将 Azure Key Vault 配置为存储所需的 secret。
  • 已安装 Azure CLI (az)。
  • 您可以使用具有 cluster-admin 角色的用户访问集群。

流程

  1. 安装 Azure Key Vault 供应商:

    1. 使用供应商资源的以下配置创建一个 YAML 文件:

      重要

      Secrets Store CSI 驱动程序的 Azure Key Vault 供应商是一个上游供应商。

      此配置会根据上游 Azure 文档中提供的配置进行修改,以便它可以与 OpenShift Container Platform 正常工作。对此配置的更改可能会影响功能。

      azure-provider.yaml 文件示例

      apiVersion: v1
      kind: ServiceAccount
      metadata:
        name: csi-secrets-store-provider-azure
        namespace: openshift-cluster-csi-drivers
      ---
      apiVersion: rbac.authorization.k8s.io/v1
      kind: ClusterRole
      metadata:
        name: csi-secrets-store-provider-azure-cluster-role
      rules:
      - apiGroups: [""]
        resources: ["serviceaccounts/token"]
        verbs: ["create"]
      - apiGroups: [""]
        resources: ["serviceaccounts"]
        verbs: ["get"]
      - apiGroups: [""]
        resources: ["pods"]
        verbs: ["get"]
      - apiGroups: [""]
        resources: ["nodes"]
        verbs: ["get"]
      ---
      apiVersion: rbac.authorization.k8s.io/v1
      kind: ClusterRoleBinding
      metadata:
        name: csi-secrets-store-provider-azure-cluster-rolebinding
      roleRef:
        apiGroup: rbac.authorization.k8s.io
        kind: ClusterRole
        name: csi-secrets-store-provider-azure-cluster-role
      subjects:
      - kind: ServiceAccount
        name: csi-secrets-store-provider-azure
        namespace: openshift-cluster-csi-drivers
      ---
      apiVersion: apps/v1
      kind: DaemonSet
      metadata:
        namespace: openshift-cluster-csi-drivers
        name: csi-secrets-store-provider-azure
        labels:
          app: csi-secrets-store-provider-azure
      spec:
        updateStrategy:
          type: RollingUpdate
        selector:
          matchLabels:
            app: csi-secrets-store-provider-azure
        template:
          metadata:
            labels:
              app: csi-secrets-store-provider-azure
          spec:
            serviceAccountName: csi-secrets-store-provider-azure
            hostNetwork: true
            containers:
              - name: provider-azure-installer
                image: mcr.microsoft.com/oss/azure/secrets-store/provider-azure:v1.4.1
                imagePullPolicy: IfNotPresent
                args:
                  - --endpoint=unix:///provider/azure.sock
                  - --construct-pem-chain=true
                  - --healthz-port=8989
                  - --healthz-path=/healthz
                  - --healthz-timeout=5s
                livenessProbe:
                  httpGet:
                    path: /healthz
                    port: 8989
                  failureThreshold: 3
                  initialDelaySeconds: 5
                  timeoutSeconds: 10
                  periodSeconds: 30
                resources:
                  requests:
                    cpu: 50m
                    memory: 100Mi
                  limits:
                    cpu: 50m
                    memory: 100Mi
                securityContext:
                  allowPrivilegeEscalation: false
                  readOnlyRootFilesystem: true
                  runAsUser: 0
                  capabilities:
                    drop:
                    - ALL
                volumeMounts:
                  - mountPath: "/provider"
                    name: providervol
            affinity:
              nodeAffinity:
                requiredDuringSchedulingIgnoredDuringExecution:
                  nodeSelectorTerms:
                  - matchExpressions:
                    - key: type
                      operator: NotIn
                      values:
                      - virtual-kubelet
            volumes:
              - name: providervol
                hostPath:
                  path: "/var/run/secrets-store-csi-providers"
            tolerations:
            - operator: Exists
            nodeSelector:
              kubernetes.io/os: linux

    2. 运行以下命令,授予 csi-secrets-store-provider-azure 服务帐户的特权访问权限:

      $ oc adm policy add-scc-to-user privileged -z csi-secrets-store-provider-azure -n openshift-cluster-csi-drivers
    3. 运行以下命令来创建供应商资源:

      $ oc apply -f azure-provider.yaml
  2. 创建服务主体来访问密钥库:

    1. 运行以下命令,将服务主体客户端 secret 设置为环境变量:

      $ SERVICE_PRINCIPAL_CLIENT_SECRET="$(az ad sp create-for-rbac --name https://$KEYVAULT_NAME --query 'password' -otsv)"
    2. 运行以下命令,将服务主体客户端 ID 设置为环境变量:

      $ SERVICE_PRINCIPAL_CLIENT_ID="$(az ad sp list --display-name https://$KEYVAULT_NAME --query '[0].appId' -otsv)"
    3. 运行以下命令,使用服务主体客户端 secret 和 ID 创建通用 secret:

      $ oc create secret generic secrets-store-creds -n my-namespace --from-literal clientid=${SERVICE_PRINCIPAL_CLIENT_ID} --from-literal clientsecret=${SERVICE_PRINCIPAL_CLIENT_SECRET}
    4. 应用 secrets-store.csi.k8s.io/used=true 标签,以允许供应商查找此 nodePublishSecretRef secret:

      $ oc -n my-namespace label secret secrets-store-creds secrets-store.csi.k8s.io/used=true
  3. 创建 secret 供应商类以定义您的 secret 存储供应商:

    1. 创建定义 SecretProviderClass 对象的 YAML 文件:

      secret-provider-class-azure.yaml 示例

      apiVersion: secrets-store.csi.x-k8s.io/v1
      kind: SecretProviderClass
      metadata:
        name: my-azure-provider                 1
        namespace: my-namespace                 2
      spec:
        provider: azure                         3
        parameters:                             4
          usePodIdentity: "false"
          useVMManagedIdentity: "false"
          userAssignedIdentityID: ""
          keyvaultName: "kvname"
          objects: |
            array:
              - |
                objectName: secret1
                objectType: secret
          tenantId: "tid"

      1
      指定 secret 供应商类的名称。
      2
      指定 secret 供应商类的命名空间。
      3
      将供应商指定为 azure
      4
      指定特定于供应商的配置参数。
    2. 运行以下命令来创建 SecretProviderClass 对象:

      $ oc create -f secret-provider-class-azure.yaml
  4. 创建部署以使用此 secret 供应商类:

    1. 创建定义 Deployment 对象的 YAML 文件:

      deployment.yaml 示例

      apiVersion: apps/v1
      kind: Deployment
      metadata:
        name: my-azure-deployment                            1
        namespace: my-namespace                              2
      spec:
        replicas: 1
        selector:
          matchLabels:
            app: my-storage
        template:
          metadata:
            labels:
              app: my-storage
          spec:
            containers:
            - name: busybox
              image: k8s.gcr.io/e2e-test-images/busybox:1.29
              command:
                - "/bin/sleep"
                - "10000"
              volumeMounts:
              - name: secrets-store-inline
                mountPath: "/mnt/secrets-store"
                readOnly: true
            volumes:
              - name: secrets-store-inline
                csi:
                  driver: secrets-store.csi.k8s.io
                  readOnly: true
                  volumeAttributes:
                    secretProviderClass: "my-azure-provider" 3
                  nodePublishSecretRef:
                    name: secrets-store-creds                4

      1
      指定部署的名称。
      2
      指定部署的命名空间。这必须与 secret 供应商类相同。
      3
      指定 secret 供应商类的名称。
      4
      指定包含用于访问 Azure Key Vault 的服务主体凭证的 Kubernetes secret 名称。
    2. 运行以下命令来创建 Deployment 对象:

      $ oc create -f deployment.yaml

验证

  • 验证您可以从 pod 卷挂载中的 Azure Key Vault 访问 secret:

    1. 列出 pod 挂载中的 secret:

      $ oc exec busybox-<hash> -n my-namespace -- ls /mnt/secrets-store/

      输出示例

      secret1

    2. 查看 pod 挂载中的 secret:

      $ oc exec busybox-<hash> -n my-namespace -- cat /mnt/secrets-store/secret1

      输出示例

      my-secret-value

2.7.4. 启用对作为 Kubernetes secret 挂载的内容进行同步

您可以启用同步,从挂载的卷中的内容创建 Kubernetes secret。您可能要启用同步的示例是使用部署中的环境变量来引用 Kubernetes secret。

警告

如果您不想将 secret 存储在 OpenShift Container Platform 集群和 etcd 中,请不要启用同步。仅在需要它时启用此功能,比如当您想要使用环境变量来引用 secret 时。

如果启用了同步,在启动挂载 secret 的 pod 后,来自挂载卷的 secret 会同步为 Kubernetes secret。

当所有挂载内容的 pod 被删除时,同步的 Kubernetes secret 会被删除。

先决条件

  • 已安装 Secrets Store CSI Driver Operator。
  • 已安装 secret 存储供应商。
  • 您已创建了 secret 供应商类。
  • 您可以使用具有 cluster-admin 角色的用户访问集群。

流程

  1. 运行以下命令来编辑 SecretProviderClass 资源:

    $ oc edit secretproviderclass my-azure-provider 1
    1
    my-azure-provider 替换为 secret 供应商类的名称。
  2. 使用同步的 Kubernetes secret 配置添加 secretsObjects 部分:

    apiVersion: secrets-store.csi.x-k8s.io/v1
    kind: SecretProviderClass
    metadata:
      name: my-azure-provider
      namespace: my-namespace
    spec:
      provider: azure
      secretObjects:                                   1
        - secretName: tlssecret                        2
          type: kubernetes.io/tls                      3
          labels:
            environment: "test"
          data:
            - objectName: tlskey                       4
              key: tls.key                             5
            - objectName: tlscrt
              key: tls.crt
      parameters:
        usePodIdentity: "false"
        keyvaultName: "kvname"
        objects:  |
          array:
            - |
              objectName: tlskey
              objectType: secret
            - |
              objectName: tlscrt
              objectType: secret
        tenantId: "tid"
    1
    指定同步的 Kubernetes secret 的配置。
    2
    指定要创建的 Kubernetes Secret 对象的名称。
    3
    指定要创建的 Kubernetes Secret 对象的类型。例如:Opaquekubernetes.io/tls
    4
    指定要同步内容的对象名称或别名。
    5
    指定指定 objectName 中的 data 字段来填充 Kubernetes secret。
  3. 保存文件以使改变生效。

2.7.5. 查看 pod 卷挂载中的 secret 状态

您可以查看 pod 卷挂载中 secret 的详细信息,包括版本。

Secrets Store CSI Driver Operator 在与 pod 相同的命名空间中创建一个 SecretProviderClassPodStatus 资源。您可以查看此资源来查看详细信息,包括版本,以及 pod 卷挂载中的 secret。

先决条件

  • 已安装 Secrets Store CSI Driver Operator。
  • 已安装 secret 存储供应商。
  • 您已创建了 secret 供应商类。
  • 您已部署了从 Secrets Store CSI Driver Operator 挂载卷的 pod。
  • 您可以使用具有 cluster-admin 角色的用户访问集群。

流程

  • 运行以下命令,查看 pod 卷挂载中 secret 的详细信息:

    $ oc get secretproviderclasspodstatus <secret_provider_class_pod_status_name> -o yaml 1
    1
    secret 供应商类 pod 状态对象的名称采用 <pod_name>-<namespace>-<secret_provider_class_name> 的格式。

    输出示例

    ...
    status:
      mounted: true
      objects:
      - id: secret/tlscrt
        version: f352293b97da4fa18d96a9528534cb33
      - id: secret/tlskey
        version: 02534bc3d5df481cb138f8b2a13951ef
      podName: busybox-<hash>
      secretProviderClassName: my-azure-provider
      targetPath: /var/lib/kubelet/pods/f0d49c1e-c87a-4beb-888f-37798456a3e7/volumes/kubernetes.io~csi/secrets-store-inline/mount

2.7.6. 卸载 Secret Store CSI Driver Operator

先决条件

  • 访问 OpenShift Container Platform Web 控制台。
  • 集群的管理员访问权限。

流程

卸载 Secret Store CSI Driver Operator:

  1. 停止所有使用 secrets-store.csi.k8s.io 供应商的应用程序 pod。
  2. 为所选 secret 存储删除任何第三方供应商插件。
  3. 删除 Container Storage Interface (CSI) 驱动程序和相关清单:

    1. AdministrationCustomResourceDefinitionsClusterCSIDriver
    2. Instances 选项卡上,对于 secrets-store.csi.k8s.io,点左侧的下拉菜单,然后点 Delete ClusterCSIDriver
    3. 出现提示时,单击 Delete
  4. 验证 CSI 驱动程序 pod 是否不再运行。
  5. 卸载 Secret Store CSI Driver Operator:

    注意

    在卸载 Operator 前,必须先删除 CSI 驱动程序。

    1. OperatorsInstalled Operators
    2. Installed Operators 页面中,在 Search by name 框中输入 "Secrets Store CSI" 来查找 Operator,然后点击它。
    3. Installed Operators > Operator 详情页面 的右上角,点 ActionsUninstall Operator
    4. 当在 Uninstall Operator 窗口中提示时,点 Uninstall 按钮从命名空间中删除 Operator。Operator 在集群中部署的任何应用程序都需要手动清理。

      卸载后,Secret Store CSI Driver Operator 不再列在 web 控制台的 Installed Operators 部分。

2.8. 创建和使用配置映射

以下部分定义配置映射以及如何创建和使用它们。

2.8.1. 了解配置映射

许多应用程序需要使用配置文件、命令行参数和环境变量的某些组合来进行配置。在 OpenShift Container Platform 中,这些配置工件与镜像内容分离,以便使容器化应用程序可以移植。

ConfigMap 对象提供了将容器注入到配置数据的机制,同时保持容器与 OpenShift Container Platform 无关。配置映射可用于存储细粒度信息(如个别属性)或粗粒度信息(如完整配置文件或 JSON blob)。

ConfigMap 对象包含配置数据的键值对,这些数据可在 Pod 中消耗或用于存储控制器等系统组件的配置数据。例如:

ConfigMap 对象定义

kind: ConfigMap
apiVersion: v1
metadata:
  creationTimestamp: 2016-02-18T19:14:38Z
  name: example-config
  namespace: my-namespace
data: 1
  example.property.1: hello
  example.property.2: world
  example.property.file: |-
    property.1=value-1
    property.2=value-2
    property.3=value-3
binaryData:
  bar: L3Jvb3QvMTAw 2

1
包含配置数据。
2
指向含有非 UTF8 数据的文件,如二进制 Java 密钥存储文件。以 Base64 格式输入文件数据。
注意

从二进制文件(如镜像)创建配置映射时,您可以使用 binaryData 字段。

可以在 Pod 中以各种方式消耗配置数据。配置映射可用于:

  • 在容器中填充环境变量值
  • 设置容器中的命令行参数
  • 填充卷中的配置文件

用户和系统组件可以在配置映射中存储配置数据。

配置映射与 secret 类似,但设计为能更加便捷地支持与不含敏感信息的字符串配合。

配置映射限制

在 pod 中可以消耗它的内容前,必须创建配置映射。

可以编写控制器来容许缺少的配置数据。根据具体情况使用配置映射来参考各个组件。

ConfigMap 对象驻留在一个项目中。

它们只能被同一项目中的 pod 引用。

Kubelet 只支持为它从 API 服务器获取的 pod 使用配置映射。

这包括使用 CLI 创建或间接从复制控制器创建的 pod。它不包括通过 OpenShift Container Platform 节点的 --manifest-url 标记、--config 标记,或通过 REST API 创建的 pod,因为这些不是创建 pod 的通用方法。

2.8.2. 在 OpenShift Container Platform Web 控制台中创建配置映射

您可以在 OpenShift Container Platform Web 控制台中创建配置映射。

流程

  • 以集群管理员身份创建配置映射:

    1. 在 Administrator 视角中,选择 WorkloadsConfig Maps
    2. 在该页面右上方选择 Create Config Map
    3. 输入配置映射的内容。
    4. 选择 Create
  • 以开发者身份创建配置映射:

    1. 在 Developer 视角中,选择 Config Maps
    2. 在该页面右上方选择 Create Config Map
    3. 输入配置映射的内容。
    4. 选择 Create

2.8.3. 使用 CLI 创建配置映射

您可以使用以下命令从目录、特定文件或文字值创建配置映射。

流程

  • 创建配置映射:

    $ oc create configmap <configmap_name> [options]
2.8.3.1. 从目录创建配置映射

您可以使用 --from-file 标志从目录创建配置映射。这个方法允许您使用目录中的多个文件来创建配置映射。

目录中的每个文件用于在配置映射中填充键,其中键的名称是文件名,键的值是文件的内容。

例如,以下命令会创建一个带有 example-files 目录内容的配置映射:

$ oc create configmap game-config --from-file=example-files/

查看配置映射中的密钥:

$ oc describe configmaps game-config

输出示例

Name:           game-config
Namespace:      default
Labels:         <none>
Annotations:    <none>

Data

game.properties:        158 bytes
ui.properties:          83 bytes

您可以看到,映射中的两个键都是从命令中指定的目录中的文件名创建的。这些密钥的内容可能非常大,因此 oc describe 的输出只显示键的名称及其大小。

前提条件

  • 您必须有一个目录,其中包含您要使用填充配置映射的数据的文件。

    以下流程使用这些示例文件:game.propertiesui.properties

    $ cat example-files/game.properties

    输出示例

    enemies=aliens
    lives=3
    enemies.cheat=true
    enemies.cheat.level=noGoodRotten
    secret.code.passphrase=UUDDLRLRBABAS
    secret.code.allowed=true
    secret.code.lives=30

    $ cat example-files/ui.properties

    输出示例

    color.good=purple
    color.bad=yellow
    allow.textmode=true
    how.nice.to.look=fairlyNice

流程

  • 输入以下命令,创建包含此目录中每个文件内容的配置映射:

    $ oc create configmap game-config \
        --from-file=example-files/

验证

  • 使用带有 -o 选项的 oc get 命令以查看键的值:

    $ oc get configmaps game-config -o yaml

    输出示例

    apiVersion: v1
    data:
      game.properties: |-
        enemies=aliens
        lives=3
        enemies.cheat=true
        enemies.cheat.level=noGoodRotten
        secret.code.passphrase=UUDDLRLRBABAS
        secret.code.allowed=true
        secret.code.lives=30
      ui.properties: |
        color.good=purple
        color.bad=yellow
        allow.textmode=true
        how.nice.to.look=fairlyNice
    kind: ConfigMap
    metadata:
      creationTimestamp: 2016-02-18T18:34:05Z
      name: game-config
      namespace: default
      resourceVersion: "407"
      selflink: /api/v1/namespaces/default/configmaps/game-config
      uid: 30944725-d66e-11e5-8cd0-68f728db1985

2.8.3.2. 从文件创建配置映射

您可以使用 --from-file 标志从文件创建配置映射。您可以多次将 --from-file 选项传递给 CLI。

您还可以通过将 key=value 表达式传递给 --from-file 选项,在配置映射中为从文件中导入的内容指定要设置的键。例如:

$ oc create configmap game-config-3 --from-file=game-special-key=example-files/game.properties
注意

如果从文件创建一个配置映射,您可以在不会破坏非 UTF8 数据的项中包含非 UTF8 的数据。OpenShift Container Platform 检测到二进制文件,并将该文件编码为 MIME。在服务器上,MIME 有效负载被解码并存储而不会损坏数据。

前提条件

  • 您必须有一个目录,其中包含您要使用填充配置映射的数据的文件。

    以下流程使用这些示例文件:game.propertiesui.properties

    $ cat example-files/game.properties

    输出示例

    enemies=aliens
    lives=3
    enemies.cheat=true
    enemies.cheat.level=noGoodRotten
    secret.code.passphrase=UUDDLRLRBABAS
    secret.code.allowed=true
    secret.code.lives=30

    $ cat example-files/ui.properties

    输出示例

    color.good=purple
    color.bad=yellow
    allow.textmode=true
    how.nice.to.look=fairlyNice

流程

  • 通过指定特定文件来创建配置映射:

    $ oc create configmap game-config-2 \
        --from-file=example-files/game.properties \
        --from-file=example-files/ui.properties
  • 通过指定键值对来创建配置映射:

    $ oc create configmap game-config-3 \
        --from-file=game-special-key=example-files/game.properties

验证

  • 使用 -o 选项为对象输入 oc get 命令,以查看文件中的键值:

    $ oc get configmaps game-config-2 -o yaml

    输出示例

    apiVersion: v1
    data:
      game.properties: |-
        enemies=aliens
        lives=3
        enemies.cheat=true
        enemies.cheat.level=noGoodRotten
        secret.code.passphrase=UUDDLRLRBABAS
        secret.code.allowed=true
        secret.code.lives=30
      ui.properties: |
        color.good=purple
        color.bad=yellow
        allow.textmode=true
        how.nice.to.look=fairlyNice
    kind: ConfigMap
    metadata:
      creationTimestamp: 2016-02-18T18:52:05Z
      name: game-config-2
      namespace: default
      resourceVersion: "516"
      selflink: /api/v1/namespaces/default/configmaps/game-config-2
      uid: b4952dc3-d670-11e5-8cd0-68f728db1985

  • 使用 -o 选项为对象输入 oc get 命令,以查看键值对中的键值:

    $ oc get configmaps game-config-3 -o yaml

    输出示例

    apiVersion: v1
    data:
      game-special-key: |- 1
        enemies=aliens
        lives=3
        enemies.cheat=true
        enemies.cheat.level=noGoodRotten
        secret.code.passphrase=UUDDLRLRBABAS
        secret.code.allowed=true
        secret.code.lives=30
    kind: ConfigMap
    metadata:
      creationTimestamp: 2016-02-18T18:54:22Z
      name: game-config-3
      namespace: default
      resourceVersion: "530"
      selflink: /api/v1/namespaces/default/configmaps/game-config-3
      uid: 05f8da22-d671-11e5-8cd0-68f728db1985

    1
    这是您在前面的步骤中设置的密钥。
2.8.3.3. 从字面值创建配置映射

您可以为配置映射提供字面值。

--from-literal 选项采用 key=value 语法,它允许直接在命令行中提供字面值。

流程

  • 通过指定字面值来创建配置映射:

    $ oc create configmap special-config \
        --from-literal=special.how=very \
        --from-literal=special.type=charm

验证

  • 使用带有 -o 选项的 oc get 命令以查看键的值:

    $ oc get configmaps special-config -o yaml

    输出示例

    apiVersion: v1
    data:
      special.how: very
      special.type: charm
    kind: ConfigMap
    metadata:
      creationTimestamp: 2016-02-18T19:14:38Z
      name: special-config
      namespace: default
      resourceVersion: "651"
      selflink: /api/v1/namespaces/default/configmaps/special-config
      uid: dadce046-d673-11e5-8cd0-68f728db1985

2.8.4. 用例: 在 pod 中使用配置映射

以下小节描述了在 pod 中消耗 ConfigMap 对象时的一些用例。

2.8.4.1. 使用配置映射在容器中填充环境变量

您可以使用配置映射在容器中填充各个环境变量,或从构成有效环境变量名称的所有键填充容器中的环境变量。

例如,请考虑以下配置映射:

有两个环境变量的 ConfigMap

apiVersion: v1
kind: ConfigMap
metadata:
  name: special-config 1
  namespace: default 2
data:
  special.how: very 3
  special.type: charm 4

1
配置映射的名称。
2
配置映射所在的项目。配置映射只能由同一项目中的 pod 引用。
3 4
要注入的环境变量。

带有一个环境变量的ConfigMap

apiVersion: v1
kind: ConfigMap
metadata:
  name: env-config 1
  namespace: default
data:
  log_level: INFO 2

1
配置映射的名称。
2
要注入的环境变量。

流程

  • 您可以使用 configMapKeyRef 部分在 pod 中使用此 ConfigMap 的键。

    配置为注入特定环境变量的 Pod 规格示例

    apiVersion: v1
    kind: Pod
    metadata:
      name: dapi-test-pod
    spec:
      securityContext:
        runAsNonRoot: true
        seccompProfile:
          type: RuntimeDefault
      containers:
        - name: test-container
          image: gcr.io/google_containers/busybox
          command: [ "/bin/sh", "-c", "env" ]
          env: 1
            - name: SPECIAL_LEVEL_KEY 2
              valueFrom:
                configMapKeyRef:
                  name: special-config 3
                  key: special.how 4
            - name: SPECIAL_TYPE_KEY
              valueFrom:
                configMapKeyRef:
                  name: special-config 5
                  key: special.type 6
                  optional: true 7
          envFrom: 8
            - configMapRef:
                name: env-config 9
          securityContext:
            allowPrivilegeEscalation: false
            capabilities:
              drop: [ALL]
      restartPolicy: Never

    1
    ConfigMap 中拉取指定的环境变量的小节。
    2
    要将键值注入到的 pod 环境变量的名称。
    3 5
    要从中拉取特定环境变量的 ConfigMap 名称。
    4 6
    要从 ConfigMap 中拉取的环境变量。
    7
    使环境变量成为可选。作为可选项,即使指定的 ConfigMap 和键不存在,也会启动 pod。
    8
    ConfigMap 中拉取所有环境变量的小节。
    9
    要从中拉取所有环境变量的 ConfigMap 名称。

    当此 pod 运行时,pod 日志包括以下输出:

    SPECIAL_LEVEL_KEY=very
    log_level=INFO
注意

示例输出中没有列出 SPECIAL_TYPE_KEY=charm,因为设置了 optional: true

2.8.4.2. 使用配置映射为容器命令设置命令行参数

您可以通过 Kubernetes 替换语法 $(VAR_NAME),使用配置映射来设置容器中的命令或参数的值。

例如,请考虑以下配置映射:

apiVersion: v1
kind: ConfigMap
metadata:
  name: special-config
  namespace: default
data:
  special.how: very
  special.type: charm

流程

  • 要将值注入到容器中的一个命令中,使用您要用作环境变量的键。然后,您可以使用 $(VAR_NAME) 语法在容器的命令中引用它们。

    配置为注入特定环境变量的 pod 规格示例

    apiVersion: v1
    kind: Pod
    metadata:
      name: dapi-test-pod
    spec:
      securityContext:
        runAsNonRoot: true
        seccompProfile:
          type: RuntimeDefault
      containers:
        - name: test-container
          image: gcr.io/google_containers/busybox
          command: [ "/bin/sh", "-c", "echo $(SPECIAL_LEVEL_KEY) $(SPECIAL_TYPE_KEY)" ] 1
          env:
            - name: SPECIAL_LEVEL_KEY
              valueFrom:
                configMapKeyRef:
                  name: special-config
                  key: special.how
            - name: SPECIAL_TYPE_KEY
              valueFrom:
                configMapKeyRef:
                  name: special-config
                  key: special.type
          securityContext:
            allowPrivilegeEscalation: false
            capabilities:
              drop: [ALL]
      restartPolicy: Never

    1
    使用您要用作环境变量的键将值注入到容器中的命令中。

    当此 pod 运行时,test-container 容器中运行的 echo 命令的输出如下:

    very charm
2.8.4.3. 使用配置映射将内容注入卷

您可以使用配置映射将内容注入卷。

ConfigMap 自定义资源(CR)示例

apiVersion: v1
kind: ConfigMap
metadata:
  name: special-config
  namespace: default
data:
  special.how: very
  special.type: charm

流程

您可以使用配置映射将内容注入卷中有两个不同的选项。

  • 使用配置映射将内容注入卷的最基本方法是在卷中填充键为文件名称的文件,文件的内容是键值:

    apiVersion: v1
    kind: Pod
    metadata:
      name: dapi-test-pod
    spec:
      securityContext:
        runAsNonRoot: true
        seccompProfile:
          type: RuntimeDefault
      containers:
        - name: test-container
          image: gcr.io/google_containers/busybox
          command: [ "/bin/sh", "-c", "cat", "/etc/config/special.how" ]
          volumeMounts:
          - name: config-volume
            mountPath: /etc/config
          securityContext:
            allowPrivilegeEscalation: false
            capabilities:
              drop: [ALL]
      volumes:
        - name: config-volume
          configMap:
            name: special-config 1
      restartPolicy: Never
    1
    包含密钥的文件。

    当这个 pod 运行时,cat 命令的输出将是:

    very
  • 您还可以控制投射配置映射键的卷中的路径:

    apiVersion: v1
    kind: Pod
    metadata:
      name: dapi-test-pod
    spec:
      securityContext:
        runAsNonRoot: true
        seccompProfile:
          type: RuntimeDefault
      containers:
        - name: test-container
          image: gcr.io/google_containers/busybox
          command: [ "/bin/sh", "-c", "cat", "/etc/config/path/to/special-key" ]
          volumeMounts:
          - name: config-volume
            mountPath: /etc/config
          securityContext:
            allowPrivilegeEscalation: false
            capabilities:
              drop: [ALL]
      volumes:
        - name: config-volume
          configMap:
            name: special-config
            items:
            - key: special.how
              path: path/to/special-key 1
      restartPolicy: Never
    1
    配置映射键的路径。

    当这个 pod 运行时,cat 命令的输出将是:

    very

2.9. 使用设备插件来利用 pod 访问外部资源

借助设备插件,您无需编写自定义代码,就能在 OpenShift Container Platform pod 中使用特定的设备类型,如 GPU、InfiniBand 或其他需要供应商专用初始化和设置的类似计算资源。

2.9.1. 了解设备插件

设备插件提供一致并可移植的解决方案,以便跨集群消耗硬件设备。设备插件通过一种扩展机制为这些设备提供支持,从而使这些设备可供容器使用,提供这些设备的健康检查,并安全地共享它们。

重要

OpenShift Container Platform 支持设备插件 API,但设备插件容器由各个供应商提供支持。

设备插件是在节点(kubelet 的外部)上运行的 gRPC 服务,负责管理特定的硬件资源。任何设备插件都必须支持以下远程过程调用 (RPC):

service DevicePlugin {
      // GetDevicePluginOptions returns options to be communicated with Device
      // Manager
      rpc GetDevicePluginOptions(Empty) returns (DevicePluginOptions) {}

      // ListAndWatch returns a stream of List of Devices
      // Whenever a Device state change or a Device disappears, ListAndWatch
      // returns the new list
      rpc ListAndWatch(Empty) returns (stream ListAndWatchResponse) {}

      // Allocate is called during container creation so that the Device
      // Plug-in can run device specific operations and instruct Kubelet
      // of the steps to make the Device available in the container
      rpc Allocate(AllocateRequest) returns (AllocateResponse) {}

      // PreStartcontainer is called, if indicated by Device Plug-in during
      // registration phase, before each container start. Device plug-in
      // can run device specific operations such as resetting the device
      // before making devices available to the container
      rpc PreStartcontainer(PreStartcontainerRequest) returns (PreStartcontainerResponse) {}
}
设备插件示例
注意

对于简单设备插件参考实现,设备管理器代码中有一个 stub 设备插件: vendor/k8s.io/kubernetes/pkg/kubelet/cm/deviceplugin/device_plugin_stub.go

2.9.1.1. 设备插件部署方法
  • 守护进程集是设备插件部署的推荐方法。
  • 在启动时,设备插件会尝试在节点上 /var/lib/kubelet/device-plugin/ 创建一个 UNIX 域套接字,以便服务来自于设备管理器的 RPC。
  • 由于设备插件必须管理硬件资源、主机文件系统的访问权以及套接字创建,它们必须在一个特权安全上下文中运行。
  • 各种设备插件实现中提供了有关部署步骤的更多细节。

2.9.2. 了解设备管理器

设备管理器提供了一种机制,可借助称为“设备插件”的插件公告专用节点硬件资源。

您可以公告专用的硬件,而不必修改任何上游代码。

重要

OpenShift Container Platform 支持设备插件 API,但设备插件容器由各个供应商提供支持。

设备管理器将设备公告为外部资源。用户 pod 可以利用相同的限制/请求机制来使用设备管理器公告的设备,这一机制也用于请求任何其他扩展资源

在启动时,设备插件会在 /var/lib/kubelet/device-plugins/kubelet.sock 上调用 Register 将自身注册到设备管理器,并启动位于 / var/lib/kubelet/device-plugins/<plugin>.sock 的 gRPC 服务,以服务设备管理器请求。

在处理新的注册请求时,设备管理器会在设备插件服务中调用 ListAndWatch 远程过程调用 (RPC)。作为响应,设备管理器通过 gRPC 流从插件中获取设备对象的列表。设备管理器对流进行持续监控,以确认插件有没有新的更新。在插件一端,插件也会使流保持开放;只要任何设备的状态有所改变,就会通过相同的流传输连接将新设备列表发送到设备管理器。

在处理新的 pod 准入请求时,Kubelet 将请求的扩展资源传递给设备管理器以进行设备分配。设备管理器在其数据库中检查,以验证是否存在对应的插件。如果插件存在并且有可分配的设备及本地缓存,则在该特定设备插件上调用 Allocate RPC。

此外,设备插件也可以执行其他几个特定于设备的操作,如驱动程序安装、设备初始化和设备重置。这些功能视具体实现而异。

2.9.3. 启用设备管理器

启用设备管理器来实现设备插件,在不更改上游代码的前提下公告专用硬件。

设备管理器提供了一种机制,可借助称为“设备插件”的插件公告专用节点硬件资源。

  1. 输入以下命令为您要配置的节点类型获取与静态 MachineConfigPool CRD 关联的标签。执行以下步骤之一:

    1. 查看机器配置:

      # oc describe machineconfig <name>

      例如:

      # oc describe machineconfig 00-worker

      输出示例

      Name:         00-worker
      Namespace:
      Labels:       machineconfiguration.openshift.io/role=worker 1

      1
      设备管理器所需标签。

流程

  1. 为配置更改创建自定义资源 (CR)。

    设备管理器 CR 配置示例

    apiVersion: machineconfiguration.openshift.io/v1
    kind: KubeletConfig
    metadata:
      name: devicemgr 1
    spec:
      machineConfigPoolSelector:
        matchLabels:
           machineconfiguration.openshift.io: devicemgr 2
      kubeletConfig:
        feature-gates:
          - DevicePlugins=true 3

    1
    为 CR 分配一个名称。
    2
    输入来自机器配置池的标签。
    3
    DevicePlugins 设为“true”。
  2. 创建设备管理器:

    $ oc create -f devicemgr.yaml

    输出示例

    kubeletconfig.machineconfiguration.openshift.io/devicemgr created

  3. 通过确认节点上已创建了 /var/lib/kubelet/device-plugins/kubelet.sock,确保已启用了设备管理器。这是设备管理器 gRPC 服务器在其上侦听新插件注册的 UNIX 域套接字。只有启用了设备管理器,才会在 Kubelet 启动时创建此 sock 文件。

2.10. 在 pod 调度决策中纳入 pod 优先级

您可以在集群中启用 pod 优先级与抢占功能。pod 优先级代表与其他 pod 相比此 pod 的重要性,并根据优先级进行队列处理。抢占(preemption)则允许集群驱除低优先级 pod 或与之争抢,从而在合适的节点上没有可用空间时能够调度优先级较高的 pod。pod 优先级也会影响 pod 的调度顺序以及节点上资源不足驱除顺序。

要使用优先级和抢占功能,您需要创建优先级类来定义 pod 的相对权重。然后,在 pod 规格中引用优先级类,以应用这个权重来进行调度。

2.10.1. 了解 pod 优先级

当您使用 pod 优先级与抢占功能时,调度程序会根据优先级来调度待处理 pod,而待处理 pod 会放在调度队列中优先级较低的其他待处理 pod 的前面。因此,如果达到调度要求,较高优先级的 pod 可能比低优先级的 pod 更早调度。如果 pod 无法调度,调度程序会继续调度其他较低优先级 pod。

2.10.1.1. Pod 优先级类

您可以为 pod 分配一个优先级类,它是一种非命名空间的对象,用于定义从名称到优先级整数值的映射。数值越大,优先级越高。

优先级类对象可以取小于或等于 1000000000(十亿)的 32 位整数值。对于不得被抢占或被驱除的关键 pod,请保留大于或等于 10 亿的数值。默认情况下,OpenShift Container Platform 有两个保留优先级类,用于需要保证调度的关键系统 pod。

$ oc get priorityclasses

输出示例

NAME                      VALUE        GLOBAL-DEFAULT   AGE
system-node-critical      2000001000   false            72m
system-cluster-critical   2000000000   false            72m
openshift-user-critical   1000000000   false            3d13h
cluster-logging           1000000      false            29s

  • system-node-critical - 此优先级类的值为 2000001000,用于所有不得从节点上驱除的 pod。具有此优先级类的 pod 示例有 sdn-ovssdn 等。许多关键组件默认包括 system-node-critical 优先级类,例如:

    • master-api
    • master-controller
    • master-etcd
    • sdn
    • sdn-ovs
    • sync
  • system-cluster-critical - 此优先级类的值是 2000000000(二十亿),用于对集群而言很重要的 pod。在某些情况下,具有此优先级类的 Pod 可以从节点中驱除。例如,配置了 system-node-critical 优先级类的 pod 可以拥有优先权。不过,此优先级类确实能够保证调度。具有此优先级类的 pod 示例有 fluentd 以及 descheduler 这样的附加组件等。许多关键组件默认包括 system-cluster-critical 优先级类,例如:

    • fluentd
    • metrics-server
    • descheduler
  • openshift-user-critical - 您可以使用带有重要 pod 的 priorityClassName 字段,这些 pod 无法绑定其资源消耗,且没有可预测的资源消耗行为。openshift-monitoringopenshift-user-workload-monitoring 命名空间下的 Prometheus Pod 使用 openshift-user-critical priorityClassName。监控工作负载使用 system-critical 作为其第一个 priorityClass,但在监控使用过量内存时造成问题,且无法驱除它们。因此,监控会丢弃优先级,为调度程序带来灵活性,并围绕移动繁重的工作负载来保持关键节点正常操作。
  • cluster-logging - 此优先级类供 Fluentd 用于确保 Fluentd pod 优先于其他应用调度到节点上。
2.10.1.2. Pod 优先级名称

拥有一个或多个优先级类后,您可以创建 pod,并在 Pod 规格中指定优先级类名称。优先准入控制器使用优先级类名称字段来填充优先级的整数值。如果没有找到给定名称的优先级类,pod 将被拒绝。

2.10.2. 了解 pod 抢占

当开发人员创建 pod 时,pod 会排入某一队列。如果开发人员为 pod 配置了 pod 优先级或抢占,调度程序会从队列中选取 pod,并尝试将 pod 调度到某个节点上。如果调度程序无法在满足 pod 的所有指定要求的适当节点上找到空间,则会为待处理 pod 触发抢占逻辑。

当调度程序在节点上抢占一个或多个 pod 时,较高优先级 Pod spec 的 nominatedNodeName 字段 将设为该节点的名称,nodename 字段也是如此。调度程序使用 nominatedNodeName 字段来跟踪为 pod 保留的资源,同时也向用户提供与集群中抢占相关的信息。

在调度程序抢占了某一较低优先级 pod 后,调度程序会尊重该 pod 的安全终止期限。如果在调度程序等待较低优先级 pod 终止过程中另一节点变为可用,调度程序会将较高优先级 pod 调度到该节点上。因此,Pod spec 的 nominatedNodeName 字段和 nodeName 字段可能会有所不同。

另外,如果调度程序在某一节点上抢占 pod 并正在等待终止,这时又有优先级比待处理 pod 高的 pod 需要调度,那么调度程序可以改为调度这个优先级更高的 pod。在这种情况下,调度程序会清除待处理 pod 的 nominatedNodeName,使该 pod 有资格调度到其他节点上。

抢占不一定从节点中移除所有较低优先级 pod。调度程序可以通过移除一部分较低优先级 pod 调度待处理 pod。

只有待处理 pod 能够调度到节点时,调度程序才会对这个节点考虑 pod 抢占。

2.10.2.1. 非抢占优先级类

抢占策略设置为 Never 的 Pod 会放置在较低优先级 pod 的调度队列中,但无法抢占其他 pod。等待调度的非抢占 pod 会保留在调度队列中,直到资源可用且可以调度。非抢占 pod 与其他 pod 一样,受调度程序后退避的影响。这意味着,如果调度程序尝试调度这些 pod,它们会以较低频率重试,允许在调度前调度其他优先级较低的 pod。

非抢占 pod 仍可被其他高优先级 pod 抢占。

2.10.2.2. Pod 抢占和其他调度程序设置

如果启用 pod 优先级与抢占功能,请考虑其他的调度程序设置:

pod 优先级和 pod 中断预算
pod 中断预算指定某一时间必须保持在线的副本的最小数量或百分比。如果您指定了 pod 中断预算,OpenShift Container Platform 会在抢占 pod 时尽力尊重这些预算。调度程序会尝试在不违反 pod 中断预算的前提下抢占 pod。如果找不到这样的 pod,则可能会无视 pod 中断预算要求而抢占较低优先级 pod。
pod 优先级和 pod 关联性
pod 关联性要求将新 pod 调度到与具有同样标签的其他 pod 相同的节点上。

如果待处理 pod 与节点上的一个或多个低优先级 pod 具有 pod 间关联性,调度程序就不能在不违反关联要求的前提下抢占较低优先级 pod。这时,调度程序会寻找其他节点来调度待处理 pod。但是,不能保证调度程序能够找到合适的节点,因此可能无法调度待处理 pod。

要防止这种情况,请仔细配置优先级相同的 pod 的 pod 关联性。

2.10.2.3. 安全终止被抢占的 pod

在抢占 pod 时,调度程序会等待 pod 安全终止期限到期,使 pod 能够完成工作并退出。如果 pod 在到期后没有退出,调度程序会终止该 pod。此安全终止期限会在调度程序抢占该 pod 的时间和待处理 pod 调度到节点的时间之间造成一个时间差。

要尽量缩短这个时间差,可以为较低优先级 pod 配置较短的安全终止期限。

2.10.3. 配置优先级和抢占

您可以通过创建优先级类对象并使用 pod 规格中的 priorityClassName 将 pod 与优先级关联来应用 pod 优先级与抢占。

注意

您不能直接将优先级类添加到现有调度的 pod 中。

流程

配置集群以使用优先级与抢占功能:

  1. 创建一个或多个优先级类:

    1. 创建一个类似以下示例的 YAML 文件:

      apiVersion: scheduling.k8s.io/v1
      kind: PriorityClass
      metadata:
        name: high-priority 1
      value: 1000000 2
      preemptionPolicy: PreemptLowerPriority 3
      globalDefault: false 4
      description: "This priority class should be used for XYZ service pods only." 5
      1
      优先级类对象的名称。
      2
      对象的优先级值。
      3
      可选。指定此优先级类是否被抢占或非抢占。抢占策略默认为 PreemptLowerPriority,它允许该优先级类中的 pod 抢占较低优先级 pod。如果抢占策略设置为 Never,则该优先级类中的 pod 就不会被抢占。
      4
      可选。指定是否应该将这个优先级类用于没有指定优先级类名称的 pod。此字段默认为 false。集群中只能存在一个 globalDefault 设为 true 的优先级类。如果没有 globalDefault:true 的优先级类,则无优先级类名称的 pod 的优先级为零。添加具有 globalDefault:true 的优先级类只会影响在添加优先级类后创建的 pod,不会更改现有 pod 的优先级。
      5
      可选。描述开发人员应该用于此优先级类的 pod。输入任意文本字符串。
    2. 创建优先级类:

      $ oc create -f <file-name>.yaml
  2. 创建 pod spec 使其包含优先级类的名称:

    1. 创建一个类似以下示例的 YAML 文件:

      apiVersion: v1
      kind: Pod
      metadata:
        name: nginx
        labels:
          env: test
      spec:
        securityContext:
          runAsNonRoot: true
          seccompProfile:
            type: RuntimeDefault
        containers:
        - name: nginx
          image: nginx
          imagePullPolicy: IfNotPresent
          securityContext:
            allowPrivilegeEscalation: false
            capabilities:
              drop: [ALL]
        priorityClassName: high-priority 1
      1
      指定要用于此 pod 的优先级类。
    2. 创建 pod:

      $ oc create -f <file-name>.yaml

    您可以将优先级名称直接添加到 pod 配置或 pod 模板中。

2.11. 使用节点选择器将 pod 放置到特定节点

节点选择器指定一个键值对映射。使用节点中的自定义标签和 pod 中指定的选择器来定义规则。

若要使 pod 有资格在某一节点上运行,pod 必须具有指定为该节点上标签的键值对。

如果您在同一 pod 配置中同时使用节点关联性和节点选择器,请查看下方的重要注意事项。

2.11.1. 使用节点选择器控制 pod 放置

您可以使用节点上的 pod 和标签上的节点选择器来控制 pod 的调度位置。使用节点选择器时,OpenShift Container Platform 会将 pod 调度到包含匹配标签的节点。

您可向节点、计算机器集或机器配置添加标签。将标签添加到计算机器集可确保节点或机器停机时,新节点具有该标签。如果节点或机器停机,添加到节点或机器配置的标签不会保留。

要将节点选择器添加到现有 pod 中,将节点选择器添加到该 pod 的控制对象中,如 ReplicaSet 对象、DaemonSet 对象、StatefulSet 对象、Deployment 对象或 DeploymentConfig 对象。任何属于该控制对象的现有 pod 都会在具有匹配标签的节点上重新创建。如果要创建新 pod,可以将节点选择器直接添加到 pod 规格中。如果 pod 没有控制对象,您必须删除 pod,编辑 pod 规格并重新创建 pod。

注意

您不能直接将节点选择器添加到现有调度的 pod 中。

先决条件

要将节点选择器添加到现有 pod 中,请确定该 pod 的控制对象。例如, router-default-66d5cf9464-m2g75 pod 由 router-default-66d5cf9464 副本集控制:

$ oc describe pod router-default-66d5cf9464-7pwkc

输出示例

kind: Pod
apiVersion: v1
metadata:
# ...
Name:               router-default-66d5cf9464-7pwkc
Namespace:          openshift-ingress
# ...
Controlled By:      ReplicaSet/router-default-66d5cf9464
# ...

Web 控制台在 pod YAML 的 ownerReferences 下列出控制对象:

apiVersion: v1
kind: Pod
metadata:
  name: router-default-66d5cf9464-7pwkc
# ...
  ownerReferences:
    - apiVersion: apps/v1
      kind: ReplicaSet
      name: router-default-66d5cf9464
      uid: d81dd094-da26-11e9-a48a-128e7edf0312
      controller: true
      blockOwnerDeletion: true
# ...

流程

  1. 使用计算机器集或直接编辑节点,为节点添加标签:

    • 在创建节点时,使用 MachineSet 对象向由计算机器集管理的节点添加标签:

      1. 运行以下命令,将标签添加到 MachineSet 对象中:

        $ oc patch MachineSet <name> --type='json' -p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"<key>"="<value>","<key>"="<value>"}}]'  -n openshift-machine-api

        例如:

        $ oc patch MachineSet abc612-msrtw-worker-us-east-1c  --type='json' -p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"type":"user-node","region":"east"}}]'  -n openshift-machine-api
        提示

        您还可以应用以下 YAML 来向计算机器集中添加标签:

        apiVersion: machine.openshift.io/v1beta1
        kind: MachineSet
        metadata:
          name: xf2bd-infra-us-east-2a
          namespace: openshift-machine-api
        spec:
          template:
            spec:
              metadata:
                labels:
                  region: "east"
                  type: "user-node"
        # ...
      2. 使用 oc edit 命令验证标签是否已添加到 MachineSet 对象中:

        例如:

        $ oc edit MachineSet abc612-msrtw-worker-us-east-1c -n openshift-machine-api

        MachineSet 对象示例

        apiVersion: machine.openshift.io/v1beta1
        kind: MachineSet
        
        # ...
        
        spec:
        # ...
          template:
            metadata:
        # ...
            spec:
              metadata:
                labels:
                  region: east
                  type: user-node
        # ...

    • 直接向节点添加标签:

      1. 为节点编辑 Node 对象:

        $ oc label nodes <name> <key>=<value>

        例如,若要为以下节点添加标签:

        $ oc label nodes ip-10-0-142-25.ec2.internal type=user-node region=east
        提示

        您还可以应用以下 YAML 来向节点添加标签:

        kind: Node
        apiVersion: v1
        metadata:
          name: hello-node-6fbccf8d9
          labels:
            type: "user-node"
            region: "east"
        # ...
      2. 验证标签是否已添加到节点:

        $ oc get nodes -l type=user-node,region=east

        输出示例

        NAME                          STATUS   ROLES    AGE   VERSION
        ip-10-0-142-25.ec2.internal   Ready    worker   17m   v1.28.5

  2. 将匹配的节点选择器添加到 pod:

    • 要将节点选择器添加到现有和未来的 pod,请向 pod 的控制对象添加节点选择器:

      带有标签的 ReplicaSet 对象示例

      kind: ReplicaSet
      apiVersion: apps/v1
      metadata:
        name: hello-node-6fbccf8d9
      # ...
      spec:
      # ...
        template:
          metadata:
            creationTimestamp: null
            labels:
              ingresscontroller.operator.openshift.io/deployment-ingresscontroller: default
              pod-template-hash: 66d5cf9464
          spec:
            nodeSelector:
              kubernetes.io/os: linux
              node-role.kubernetes.io/worker: ''
              type: user-node 1
      # ...

      1
      添加节点选择器。
    • 要将节点选择器添加到一个特定的新 pod,直接将选择器添加到 Pod 对象中:

      使用节点选择器的 Pod 对象示例

      apiVersion: v1
      kind: Pod
      metadata:
        name: hello-node-6fbccf8d9
      # ...
      spec:
        nodeSelector:
          region: east
          type: user-node
      # ...

      注意

      您不能直接将节点选择器添加到现有调度的 pod 中。

2.12. Run Once Duration Override Operator

2.12.1. Run Once Duration Override Operator 概述

您可以使用 Run Once Duration Override Operator 指定运行一次 pod 的最大时间限制。

重要

目前,OpenShift Container Platform 4.15 不提供 Run Once Duration Override Operator。计划在不久的将来发布 Operator。

2.12.1.1. 关于 Run Once Duration Override Operator

OpenShift Container Platform 依赖于运行一次 pod 来执行诸如部署 pod 或执行构建等任务。Run-once pod 是带有 RestartPolicyNeverOnFailure 的 pod。

集群管理员可以使用 Run Once Duration Override Operator 来强制限制这些运行一次 pod 处于活跃状态的时间。时间限制过期后,集群将尝试主动终止这些 pod。具有此类限制的主要原因是防止构建等任务运行过长的时间。

要将 Run Once Duration Override Operator 中的运行一次持续时间覆盖应用到运行一次的 pod,您必须在每个适用的命名空间中启用它。

如果运行一次的 pod 和 Run Once Duration Override Operator 都设置了其 activeDeadlineSeconds 值,则会使用这两个值中的低值。

2.12.2. Run Once Duration Override Operator 发行注记

集群管理员可以使用 Run Once Duration Override Operator 来强制对运行一次 pod 处于活跃状态的时间强制限制。时间限制过期后,集群会尝试终止运行一次的 pod。具有此类限制的主要原因是防止构建等任务运行过长的时间。

要将 Run Once Duration Override Operator 中的运行一次持续时间覆盖应用到运行一次的 pod,您必须在每个适用的命名空间中启用它。

本发行注记介绍了为 OpenShift Container Platform 的 Run Once Duration Override Operator 的开发。

有关 Run Once Duration Override Operator 的概述,请参阅关于 Run Once Duration Override Operator

2.12.2.1. Run Once Duration Override Operator 1.1.0

发布日期: 2024 年 2 月 28 日

以下公告可用于 Run Once Duration Override Operator 1.1.0:

2.12.2.1.1. 程序错误修复
  • 此 Run Once Duration Override Operator 发行版本解决了几个常见漏洞和暴露 (CVE)。

2.12.3. 覆盖运行一次 pod 的活动期限

您可以使用 Run Once Duration Override Operator 指定运行一次 pod 的最大时间限制。通过在命名空间上启用运行一次持续时间覆盖,以后在该命名空间中创建或更新的所有运行一次 pod 将其 activeDeadlineSeconds 字段设置为 Run Once Duration Override Operator 指定的值。

重要

目前,OpenShift Container Platform 4.15 不提供 Run Once Duration Override Operator。计划在不久的将来发布 Operator。

2.12.3.1. 安装 Run Once Duration Override Operator

您可以使用 Web 控制台安装 Run Once Duration Override Operator。

先决条件

  • 您可以使用 cluster-admin 权限访问集群。
  • 访问 OpenShift Container Platform web 控制台。

流程

  1. 登陆到 OpenShift Container Platform Web 控制台。
  2. 为 Run Once Duration Override Operator 创建所需的命名空间。

    1. 进行 AdministrationNamespaces,点 Create Namespace
    2. Name 字段中输入 openshift-run-once-duration-override-operator,然后点 Create
  3. 安装 Run Once Duration Override Operator。

    1. 导航至 OperatorsOperatorHub
    2. 在过滤器框中输入 Run Once Duration Override Operator
    3. 选择 Run Once Duration Override Operator 并点 Install
    4. Install Operator 页面中:

      1. Update channel 设置为 stable,它会安装 Run Once Duration Override Operator 的最新稳定版本。
      2. 选择 A specific namespace on the cluster
      3. Installed namespace 下的下拉菜单中选择 openshift-run-once-duration-override-operator
      4. 选择一个 更新批准策略

        • Automatic 策略允许 Operator Lifecycle Manager(OLM)在有新版本可用时自动更新 Operator。
        • Manual 策略需要拥有适当凭证的用户批准 Operator 更新。
      5. Install
  4. 创建 RunOnceDurationOverride 实例。

    1. OperatorsInstalled Operators 页面中,点 Run Once Duration Override Operator
    2. 选择 Run Once Duration Override 选项卡,然后点 Create RunOnceDurationOverride
    3. 根据需要编辑设置。

      runOnceDurationOverride 部分下,您可以更新 spec.activeDeadlineSeconds 值(如果需要)。预定义的值为 3600 秒,或 1 小时。

    4. Create

验证

  1. 登录到 OpenShift CLI。
  2. 验证所有 pod 均已创建并正确运行。

    $ oc get pods -n openshift-run-once-duration-override-operator

    输出示例

    NAME                                                   READY   STATUS    RESTARTS   AGE
    run-once-duration-override-operator-7b88c676f6-lcxgc   1/1     Running   0          7m46s
    runoncedurationoverride-62blp                          1/1     Running   0          41s
    runoncedurationoverride-h8h8b                          1/1     Running   0          41s
    runoncedurationoverride-tdsqk                          1/1     Running   0          41s

2.12.3.2. 在命名空间中启用运行一次持续时间覆盖

要将 Run Once Duration Override Operator 中的运行一次持续时间覆盖应用到运行一次的 pod,您必须在每个适用的命名空间中启用它。

先决条件

  • 已安装 Run Once Duration Override Operator。

流程

  1. 登录到 OpenShift CLI。
  2. 添加标签,为命名空间启用运行一次持续时间覆盖:

    $ oc label namespace <namespace> \ 1
        runoncedurationoverrides.admission.runoncedurationoverride.openshift.io/enabled=true
    1
    指定要启用运行一次持续时间覆盖的命名空间。

在此命名空间中启用运行一次持续时间覆盖后,在此命名空间中未来创建的运行一次的 pod 会将其 activeDeadlineSeconds 字段设置为 Run Once Duration Override Operator 的覆盖值。此命名空间中的现有 pod 也会在下一次更新时将设置其 activeDeadlineSeconds 值。

验证

  1. 在启用了运行一次持续时间覆盖的命名空间中创建一个测试运行一次 pod:

    apiVersion: v1
    kind: Pod
    metadata:
      name: example
      namespace: <namespace>                 1
    spec:
      restartPolicy: Never                   2
      securityContext:
        runAsNonRoot: true
        seccompProfile:
          type: RuntimeDefault
      containers:
        - name: busybox
          securityContext:
            allowPrivilegeEscalation: false
            capabilities:
              drop: [ALL]
          image: busybox:1.25
          command:
            - /bin/sh
            - -ec
            - |
              while sleep 5; do date; done
    1
    <namespace> 替换为您的命名空间的名称。
    2
    restartPolicy 必须是 NeverOnFailure,才能是一个运行一次的 pod。
  2. 验证 pod 是否已设置其 activeDeadlineSeconds 字段:

    $ oc get pods -n <namespace> -o yaml | grep activeDeadlineSeconds

    输出示例

        activeDeadlineSeconds: 3600

2.12.3.3. 更新运行一次活跃截止时间覆盖值

您可以自定义 Run Once Duration Override Operator 适用于运行一次的 pod 的覆盖值。预定义的值为 3600 秒,或 1 小时。

先决条件

  • 您可以使用 cluster-admin 权限访问集群。
  • 已安装 Run Once Duration Override Operator。

流程

  1. 登录到 OpenShift CLI。
  2. 编辑 RunOnceDurationOverride 资源:

    $ oc edit runoncedurationoverride cluster
  3. 更新 activeDeadlineSeconds 字段:

    apiVersion: operator.openshift.io/v1
    kind: RunOnceDurationOverride
    metadata:
    # ...
    spec:
      runOnceDurationOverride:
        spec:
          activeDeadlineSeconds: 1800 1
    # ...
    1
    activeDeadlineSeconds 字段设置为所需的值,以秒为单位。
  4. 保存文件以使改变生效。

在启用了运行一次持续时间覆盖的命名空间中创建的任何运行后 pod 都会将其 activeDeadlineSeconds 字段设置为这个新值。这些命名空间中的现有运行一次 pod 会在更新时收到这个新值。

2.12.4. 卸载 Run Once Duration Override Operator

您可以通过卸载 Operator 并删除其相关资源,从 OpenShift Container Platform 中删除 Run Once Duration Override Operator。

重要

目前,OpenShift Container Platform 4.15 不提供 Run Once Duration Override Operator。计划在不久的将来发布 Operator。

2.12.4.1. 卸载 Run Once Duration Override Operator

您可以使用 Web 控制台卸载 Run Once Duration Override Operator。卸载 Run Once Duration Override Operator 不会取消设置运行一次的 pod 的 activeDeadlineSeconds 字段,但它不再将覆盖值应用到将来的运行一次 Pod。

先决条件

  • 您可以使用 cluster-admin 权限访问集群。
  • 访问 OpenShift Container Platform web 控制台。
  • 已安装 Run Once Duration Override Operator。

流程

  1. 登陆到 OpenShift Container Platform Web 控制台。
  2. 导航到 OperatorsInstalled Operators
  3. Project 下拉列表中选择 openshift-run-once-duration-override-operator
  4. 删除 RunOnceDurationOverride 实例。

    1. Run Once Duration Override Operator 并选择 Run Once Duration Override 选项卡。
    2. 集群 条目旁的 Options 菜单 kebab 并选择 Delete RunOnceDurationOverride
    3. 在确认对话框中,点 Delete
  5. 卸载 Run Once Duration Override Operator Operator。

    1. 导航到 OperatorsInstalled Operators
    2. Run Once Duration Override Operator 条目旁边的 Options 菜单 kebab ,并点 Uninstall Operator
    3. 在确认对话框中,点 Uninstall
2.12.4.2. 卸载 Run Once Duration Override Operator 资源

另外,在卸载 Run Once Duration Override Operator 后,您可以从集群中删除其相关资源。

先决条件

  • 您可以使用 cluster-admin 权限访问集群。
  • 访问 OpenShift Container Platform web 控制台。
  • 您已卸载了 Run Once Duration Override Operator。

流程

  1. 登陆到 OpenShift Container Platform Web 控制台。
  2. 删除安装 Run Once Duration Override Operator 时创建的 CRD:

    1. 进入到 AdministrationCustomResourceDefinitions
    2. Name 字段中输入 RunOnceDurationOverride 来过滤 CRD。
    3. RunOnceDurationOverride CRD 旁边的选项菜单 kebab ,选择 Delete CustomResourceDefinition
    4. 在确认对话框中,点 Delete
  3. 删除 openshift-run-once-duration-override-operator 命名空间。

    1. 导航至 AdministrationNamespaces
    2. 在过滤器框中输入 openshift-run-once-duration-override-operator
    3. openshift-run-once-duration-override-operator 条目旁的 Options 菜单 kebab 并选择 Delete Namespace
    4. 在确认对话框中,输入 openshift-run-once-duration-override-operator 并点 Delete
  4. 从启用的命名空间中删除运行一次持续时间覆盖标签。

    1. 导航至 AdministrationNamespaces
    2. 选择您的命名空间。
    3. Labels 字段旁的 Edit
    4. 删除 runoncedurationoverrides.admission.runoncedurationoverride.openshift.io/enabled=true 标签,然后点 Save

第 3 章 使用自定义 Metrics Autoscaler Operator 自动扩展 pod

3.1. 发行注记

3.1.1. 自定义 Metrics Autoscaler Operator 发行注记

Red Hat OpenShift 的自定义 Metrics Autoscaler Operator 发行注记介绍了新的功能和增强功能、已弃用的功能以及已知的问题。

Custom Metrics Autoscaler Operator 使用基于 Kubernetes 的 Event Driven Autoscaler (KEDA),并基于 OpenShift Container Platform 横向自动扩展(HPA)构建。

注意

Custom Metrics Autoscaler Operator for Red Hat OpenShift 作为可安装的组件提供,它与 OpenShift Container Platform 核心不同。Red Hat OpenShift Container Platform 生命周期政策概述了发行版本兼容性。

3.1.1.1. 支持的版本

下表为每个 OpenShift Container Platform 版本定义自定义 Metrics Autoscaler Operator 版本。

版本OpenShift Container Platform 版本公开发行(GA)

2.12.1

4.15

公开发行(GA)

2.12.1

4.14

公开发行(GA)

2.12.1

4.13

公开发行(GA)

2.12.1

4.12

公开发行(GA)

3.1.1.2. 自定义 Metrics Autoscaler Operator 2.12.1-394 发行注记

此自定义 Metrics Autoscaler Operator 2.12.1-394 发行版本为在 OpenShift Container Platform 集群中运行的 Operator 提供了程序错误修正。以下公告可用于 RHSA-2024:2901

重要

在安装自定义 Metrics Autoscaler Operator 的这个版本前,请删除任何以前安装的技术预览版本或社区支持的 KEDA 版本。

3.1.1.2.1. 程序错误修复
  • 在以前的版本中,当对无效 JSON 的特定表单进行 unmarshaling 处理时,protojson.Unmarshal 函数会进入一个死循环。当 unmarshaling 到包含 google.protobuf.Any 值或设置了 UnmarshalOptions.DiscardUnknown 选项时,可能会出现此条件。此发行版本解决了这个问题。(OCPBUGS-30305)
  • 在以前的版本中,当解析多部分表单时,可以明确使用 Request.ParseMultipartForm 方法明,或使用 Request.FormValueRequest.PostFormValueRequest.FormFile 方法隐式应用,解析表单的总大小限制不适用于在读单一表单行时消耗的内存。这可能会允许在恶意设计的输入中包含非常长的行,从而导致分配大量内存,这可能会导致内存耗尽。在这个版本中,解析过程可以正确地限制表单行的最大大小。(OCPBUGS-30360)
  • 在以前的版本中,当遵循 HTTP 重定向到不在匹配子域或初始域的完全匹配的域时,HTTP 客户端不会转发敏感标头,如 AuthorizationCookie。例如:从 example.com 到 www.example.com 的重定向会转发 Authorization 标头,但重定向到 www.example.org 不会转发标头。恶意精心设计的 HTTP 重定向可能会导致敏感标头被意外转发。此发行版本解决了这个问题。(OCPBUGS-30365)
  • 在以前的版本中,验证包含带有未知公钥算法的证书的证书链会导致证书验证过程 panic。此条件会影响将 Config.ClientAuth 参数设置为 VerifyClientCertIfGivenRequireAndVerifyClientCert 值的所有加密和 TLS 客户端和服务器。默认行为是 TLS 服务器无法验证客户端证书。此发行版本解决了这个问题。(OCPBUGS-30370)
  • 在以前的版本中,如果从 MarshalJSON 方法返回的错误包含用户控制的数据,数据可能会被用来破坏 HTML 模板软件包的上下文自动转义行为。此条件允许后续操作将意外内容注入模板。此发行版本解决了这个问题。(OCPBUGS-30397)
  • 在以前的版本中,net/httpgolang.org/x/net/http2 Go 软件包没有限制为 HTTP/2 请求读取的 CONTINUATION 帧的数量。此条件允许攻击者为单个请求提供任意的一组大量标头,这些标头将被读取、解码,然后丢弃。这可能导致 CPU 消耗过量。此发行版本解决了这个问题。(OCPBUGS-30894)

3.1.2. Custom Metrics Autoscaler Operator 的过去发行版本发行注记

以下发行注记适用于以前的自定义 Metrics Autoscaler Operator 版本。

有关当前版本,请参阅自定义 Metrics Autoscaler Operator 发行注记

3.1.2.1. 自定义 Metrics Autoscaler Operator 2.12.1-384 发行注记

此自定义 Metrics Autoscaler Operator 2.12.1-384 发行版本为在 OpenShift Container Platform 集群中运行的 Operator 提供了新功能和程序错误修复。以下公告可用于 RHBA-2024:2043

重要

在安装自定义 Metrics Autoscaler Operator 的这个版本前,请删除任何以前安装的技术预览版本或社区支持的 KEDA 版本。

3.1.2.1.1. 程序错误修复
  • 在以前的版本中,custom-metrics-autoscalercustom-metrics-autoscaler-adapter 镜像缺少时区信息。因此,带有 cron 触发器的扩展对象无法正常工作,因为控制器无法找到时区信息。在这个版本中,镜像构建被更新为包含时区信息。因此,包含 cron 触发器的对象现在可以正常工作。(OCPBUGS-32395)
3.1.2.2. 自定义 Metrics Autoscaler Operator 2.12.1-376 发行注记

此自定义 Metrics Autoscaler Operator 2.12.1-376 发行版本为在 OpenShift Container Platform 集群中运行的 Operator 提供了安全更新和程序错误修复。以下公告可用于 RHSA-2024:1812

重要

在安装自定义 Metrics Autoscaler Operator 的这个版本前,请删除任何以前安装的技术预览版本或社区支持的 KEDA 版本。

3.1.2.2.1. 程序错误修复
  • 在以前的版本中,如果在扩展对象元数据中指定无效值,如不存在的命名空间,则底层 scaler 客户端无法释放或关闭其客户端描述符,从而导致内存泄漏。在这个版本中,当出现错误时可以正确地关闭底层客户端描述符,从而导致内存泄漏。(OCPBUGS-30145)
  • 在以前的版本中,keda-metrics-apiserver pod 的 ServiceMonitor 自定义资源 (CR) 无法正常工作,因为 CR 引用了 http 的错误指标端口名称。在这个版本中,ServiceMonitor CR 修正了引用 metrics 的正确端口名称。因此,Service Monitor 可以正常工作。(OCPBUGS-25806)
3.1.2.3. 自定义 Metrics Autoscaler Operator 2.11.2-322 发行注记

此自定义 Metrics Autoscaler Operator 2.11.2-322 发行版本为在 OpenShift Container Platform 集群中运行的 Operator 提供了安全更新和程序错误修复。以下公告可用于 RHSA-2023:6144

重要

在安装自定义 Metrics Autoscaler Operator 的这个版本前,请删除任何以前安装的技术预览版本或社区支持的 KEDA 版本。

3.1.2.3.1. 程序错误修复
  • 因为自定义 Metrics Autoscaler Operator 版本 3.11.2-311 已被发布,所以在 Operator 部署中不需要卷挂载,所以自定义 Metrics Autoscaler Operator pod 会每 15 分钟重启。在这个版本中,在 Operator 部署中添加了所需的卷挂载。因此,Operator 不再每 15 分钟重启。(OCPBUGS-22361)
3.1.2.4. 自定义 Metrics Autoscaler Operator 2.11.2-311 发行注记

此自定义 Metrics Autoscaler Operator 2.11.2-311 发行版本为在 OpenShift Container Platform 集群中运行的 Operator 提供了新功能和程序错误修复。自定义 Metrics Autoscaler Operator 2.11.2-311 的组件在 RHBA-2023:5981 中发布。

重要

在安装自定义 Metrics Autoscaler Operator 的这个版本前,请删除任何以前安装的技术预览版本或社区支持的 KEDA 版本。

3.1.2.4.1. 新功能及功能增强
3.1.2.4.1.1. 现在支持 Red Hat OpenShift Service on AWS (ROSA) 和 OpenShift Dedicated

自定义 Metrics Autoscaler Operator 2.11.2-311 可以安装在 OpenShift ROSA 和 OpenShift Dedicated 受管集群上。自定义 Metrics Autoscaler Operator 的早期版本只能安装在 openshift-keda 命名空间中。这导致 Operator 无法安装到 OpenShift ROSA 和 OpenShift Dedicated 集群中。此自定义 Metrics Autoscaler 版本允许安装到其他命名空间,如 openshift-operatorskeda,从而可以安装到 ROSA 和 Dedicated 集群中。

3.1.2.4.2. 程序错误修复
  • 在以前的版本中,如果安装并配置 Custom Metrics Autoscaler Operator,但没有使用,OpenShift CLI 会在任何 oc 命令输入后报告 could not get resource list for external.metrics.k8s.io/v1beta1: Got empty response for: external.metrics.k8s.io/v1beta1 错误。虽然这个消息并没有什么危害,但可能会造成混淆。在这个版本中,Got empty response for: external.metrics…​ 不再会出现。(OCPBUGS-15779)
  • 在以前的版本中,任何注解或标签更改为由自定义 Metrics Autoscaler 管理的对象在修改 Keda Controller 时(例如在配置更改后)会被自定义 Metrics Autoscaler 恢复。这会导致对象中的标签持续更改。自定义 Metrics Autoscaler 现在使用自己的注解来管理标签和注解,注解或标签不再被错误地恢复。(OCPBUGS-15590)
3.1.2.5. 自定义 Metrics Autoscaler Operator 2.10.1-267 发行注记

此自定义 Metrics Autoscaler Operator 2.10.1-267 发行版本为在 OpenShift Container Platform 集群中运行的 Operator 提供了新功能和程序错误修复。自定义 Metrics Autoscaler Operator 2.10.1-267 组件在 RHBA-2023:4089 中发布。

重要

在安装自定义 Metrics Autoscaler Operator 的这个版本前,请删除任何以前安装的技术预览版本或社区支持的 KEDA 版本。

3.1.2.5.1. 程序错误修复
  • 在以前的版本中,custom-metrics-autoscalercustom-metrics-autoscaler-adapter 镜像不包含时区信息。因此,带有 cron 触发器的扩展对象无法正常工作,因为控制器无法找到时区信息。在这个版本中,镜像构建包含时区信息。因此,包含 cron 触发器的对象现在可以正常工作。(OCPBUGS-15264)
  • 在以前的版本中,自定义 Metrics Autoscaler Operator 会尝试拥有所有受管对象,包括其他命名空间中的对象和集群范围的对象。因此,自定义 Metrics Autoscaler Operator 无法创建角色绑定来读取 API 服务器所需的凭证。这会导致 kube-system 命名空间中出现错误。在这个版本中,自定义 Metrics Autoscaler Operator 会跳过将 ownerReference 字段添加到另一个命名空间中的任何对象或任何集群范围的对象。现在,角色绑定会被创建,且没有任何错误。(OCPBUGS-15038)
  • 在以前的版本中,自定义 Metrics Autoscaler Operator 将 ownerReferences 字段添加到 openshift-keda 命名空间中。虽然这不会造成功能问题,但存在此字段可能会给集群管理员造成混淆。在这个版本中,自定义 Metrics Autoscaler Operator 不会将 ownerReference 字段添加到 openshift-keda 命名空间中。因此,openshift-keda 命名空间不再有一个 superfluous ownerReference 字段。(OCPBUGS-15293)
  • 在以前的版本中,如果您使用使用 pod 身份以外的身份验证方法配置的 Prometheus 触发器,并且 podIdentity 参数设置为 none,则触发器将无法扩展。在这个版本中,OpenShift 的自定义 Metrics Autoscaler 可以正确地处理 none pod 身份提供程序类型。因此,使用 pod 身份以外的身份验证方法配置的 Prometheus 触发器,其 podIdentity 参数设置为 none 现在可以正确扩展。(OCPBUGS-15274)
3.1.2.6. 自定义 Metrics Autoscaler Operator 2.10.1 发行注记

此自定义 Metrics Autoscaler Operator 2.10.1 发行版本为在 OpenShift Container Platform 集群中运行的 Operator 提供了新功能和程序错误修复。自定义 Metrics Autoscaler Operator 2.10.1 的组件在 RHEA-2023:3199 中发布。

重要

在安装自定义 Metrics Autoscaler Operator 的这个版本前,请删除任何以前安装的技术预览版本或社区支持的 KEDA 版本。

3.1.2.6.1. 新功能及功能增强
3.1.2.6.1.1. 自定义 Metrics Autoscaler Operator 正式发布

现在,自定义 Metrics Autoscaler Operator 从自定义 Metrics Autoscaler Operator 版本 2.10.1 开始正式发布。

重要

使用扩展作业进行扩展只是一个技术预览功能。技术预览功能不受红帽产品服务等级协议(SLA)支持,且功能可能并不完整。红帽不推荐在生产环境中使用它们。这些技术预览功能可以使用户提早试用新的功能,并有机会在开发阶段提供反馈意见。

有关红帽技术预览功能支持范围的更多信息,请参阅技术预览功能支持范围

3.1.2.6.1.2. 性能指标

现在,您可以使用 Prometheus Query Language (PromQL) 查询自定义 Metrics Autoscaler Operator 的指标。

3.1.2.6.1.3. 暂停扩展对象的自定义指标自动扩展

现在,您可以根据需要暂停扩展对象的自动扩展,并在就绪时恢复自动扩展。

3.1.2.6.1.4. 副本回退到扩展的对象

现在,如果扩展对象无法从源获取指标,您可以指定要回退到的副本数。

3.1.2.6.1.5. 为扩展对象自定义 HPA 命名

现在,您可以在扩展的对象中为 pod 横向自动扩展指定自定义名称。

3.1.2.6.1.6. 激活和扩展阈值

因为 pod 横向自动扩展 (HPA) 无法扩展到 0 个副本或从 0 个副本进行扩展,所以在 HPA 执行缩放后,自定义 Metrics Autoscaler Operator 会进行该扩展。现在,您可以根据副本数指定 HPA 接管自动扩展的时间。这可以提高扩展策略的灵活性。

3.1.2.7. 自定义 Metrics Autoscaler Operator 2.8.2-174 发行注记

此自定义 Metrics Autoscaler Operator 2.8.2-174 发行版本为在 OpenShift Container Platform 集群中运行的 Operator 提供了新功能和程序错误修复。Custom Metrics Autoscaler Operator 2.8.2-174 组件在 RHEA-2023:1683 中发布。

重要

自定义 Metrics Autoscaler Operator 版本 2.8.2-174 是一个技术预览功能。

3.1.2.7.1. 新功能及功能增强
3.1.2.7.1.1. Operator 升级支持

现在,您可以从 Custom Metrics Autoscaler Operator 的早期版本升级。有关升级 Operator 的信息,请参阅"添加资源"中的"删除 Operator 更新频道"。

3.1.2.7.1.2. must-gather 支持

现在,您可以使用 OpenShift Container Platform must-gather 工具收集有关自定义 Metrics Autoscaler Operator 及其组件的数据。目前,使用带有自定义 Metrics Autoscaler 的 must-gather 工具的过程与其他 Operator 不同。如需更多信息,请参阅"添加资源"中的调试数据。

3.1.2.8. 自定义 Metrics Autoscaler Operator 2.8.2 发行注记

此自定义 Metrics Autoscaler Operator 2.8.2 发行版本为在 OpenShift Container Platform 集群中运行的 Operator 提供了新功能和程序错误修复。自定义 Metrics Autoscaler Operator 2.8.2 组件在 RHSA-2023:1042 中发布。

重要

自定义 Metrics Autoscaler Operator 版本 2.8.2 是一个技术预览功能。

3.1.2.8.1. 新功能及功能增强
3.1.2.8.1.1. 审计日志记录

现在,您可以收集并查看自定义 Metrics Autoscaler Operator 及其相关组件的审计日志。审计日志是安全相关的按时间排序的记录,记录各个用户、管理员或其他系统组件影响系统的一系列活动。

3.1.2.8.1.2. 基于 Apache Kafka 指标扩展应用程序

现在,您可以使用 KEDA Apache kafka 触发器/scaler 根据 Apache Kafka 主题扩展部署。

3.1.2.8.1.3. 根据 CPU 指标扩展应用程序

现在,您可以使用 KEDA CPU 触发器/scaler 根据 CPU 指标扩展部署。

3.1.2.8.1.4. 根据内存指标扩展应用程序

现在,您可以使用 KEDA 内存触发器/scaler 根据内存指标扩展部署。

3.2. 自定义 Metrics Autoscaler Operator 概述

作为开发者,您可以使用 Custom Metrics Autoscaler Operator for Red Hat OpenShift 指定 OpenShift Container Platform 如何根据不基于 CPU 或内存的自定义指标自动增加或减少部署、有状态集、自定义资源或作业的数量。

Custom Metrics Autoscaler Operator 是一个基于 Kubernetes Event Driven Autoscaler (KEDA) 的可选 Operator,允许使用 pod 指标以外的其他指标源扩展工作负载。

自定义指标自动扩展目前仅支持 Prometheus、CPU、内存和 Apache Kafka 指标。

Custom Metrics Autoscaler Operator 根据特定应用程序的自定义外部指标扩展 pod。您的其他应用程序继续使用其他扩展方法。您可以配置 触发器 (也称为 scaler),这是自定义指标自动扩展器用来决定如何扩展的事件和指标的来源。自定义指标自动扩展使用 metrics API 将外部指标转换为 OpenShift Container Platform 可以使用的形式。自定义指标自动扩展会创建一个执行实际缩放的 pod 横向自动扩展(HPA)。

要使用自定义指标自动扩展,您可以为工作负载创建一个 ScaledObjectScaledJob 对象,这是定义扩展元数据的自定义资源(CR)。您可以指定要缩放的部署或作业、要缩放的指标源 (trigger) 以及其他参数,如允许的最小和最大副本数。

注意

您只能为每个您要扩展的工作负载创建一个扩展对象或扩展作业。另外,您不能在同一工作负载中使用扩展的对象或扩展作业以及 pod 横向自动扩展 (HPA)。

自定义指标自动扩展与 HPA 不同,可以缩减为零。如果将自定义指标自动扩展 CR 中的 minReplicaCount 值设置为 0,自定义指标自动扩展会将工作负载从 1 缩减到 0 个副本或从 0 个副本扩展到 1。这称为 激活阶段。扩展至 1 个副本后,HPA 会控制扩展。这称为 扩展阶段

某些触发器允许您更改由集群指标自动扩展扩展的副本数量。在所有情况下,配置激活阶段的参数始终使用相同的短语,前缀为 激活。例如,如果 threshold 参数配置缩放,则 activationThreshold 将配置激活。通过配置激活和扩展阶段,您可以提高扩展策略的灵活性。例如,您可以配置更高的激活阶段,以便在指标特别低时防止扩展或缩减。

当每个决策不同时,激活值的优先级高于扩展值。例如,如果 threshold 被设置为 10,并且 activationThreshold50,如果指标报告 40,则缩放器不会激活,并且 pod 缩减为零,即使 HPA 需要 4 个实例。

图 3.1. 自定义指标自动扩展工作流

自定义指标自动扩展工作流
  1. 您可以为集群中的工作负载创建或修改扩展对象自定义资源。对象包含该工作负载的扩展配置。在接受新对象前,OpenShift API 服务器将其发送到自定义指标自动扩展准入 webhook 进程,以确保对象有效。如果验证成功,API 服务器会保留对象。
  2. 自定义指标自动扩展控制器监视是否有新的或修改的扩展对象。当 OpenShift API 服务器通知更改控制器时,控制器会监控任何外部触发器源(也称为数据源)在对象中指定以更改指标数据。一个或多个 scalers 请求从外部触发器源扩展数据。例如,对于 Kafka 触发器类型,控制器使用 Kafka scaler 与 Kafka 实例通信来获取触发器请求的数据。
  3. 控制器为扩展的对象创建一个 pod 横向自动扩展对象。因此,Horizontal Pod Autoscaler (HPA) Operator 开始监控与触发器关联的扩展数据。HPA 请求从集群 OpenShift API 服务器端点扩展数据。
  4. OpenShift API 服务器端点由自定义指标自动扩展指标适配器提供。当 metrics 适配器收到自定义指标的请求时,它使用 GRPC 连接控制器来请求它以获取从 scaler 接收的最新触发器数据。
  5. HPA 根据从 metrics adapter 接收的数据做出缩放决策,并通过增加或减少副本来扩展工作负载。
  6. 当它运行时,工作负载可能会影响扩展指标。例如,如果扩展工作负载以处理 Kafka 队列中的工作,则队列大小会在工作负载处理所有工作后减小。因此,工作负载会缩减。
  7. 如果指标位于 minReplicaCount 值指定的范围内,自定义指标自动扩展控制器会禁用所有扩展,并将副本数保留为固定级别。如果指标超过该范围,自定义指标自动扩展控制器将启用扩展并允许 HPA 扩展工作负载。当禁用扩展时,HPA 不会执行任何操作。

3.3. 安装自定义指标自动扩展

您可以使用 OpenShift Container Platform Web 控制台安装自定义 Metrics Autoscaler Operator。

安装会创建以下五个 CRD:

  • ClusterTriggerAuthentication
  • KedaController
  • ScaledJob
  • ScaledObject
  • TriggerAuthentication

3.3.1. 安装自定义指标自动扩展

您可以使用以下步骤安装自定义 Metrics Autoscaler Operator。

先决条件

  • 删除之前安装的 Cluster Metrics Autoscaler Operator 的技术预览版本。
  • 删除基于社区的 KEDA 的任何版本。

    另外,运行以下命令来删除 KEDA 1.x 自定义资源定义:

    $ oc delete crd scaledobjects.keda.k8s.io
    $ oc delete crd triggerauthentications.keda.k8s.io

流程

  1. 在 OpenShift Container Platform Web 控制台中,点击 OperatorsOperatorHub
  2. 从可用的 Operator 列表中选择 Custom Metrics Autoscaler,然后点 Install
  3. Install Operator 页面中,确保为 Installation Mode 选择 All namespaces on the cluster(default) 选项。这会在所有命名空间中安装 Operator。
  4. 确保为 Installed Namespace 选择了 openshift-keda 命名空间。如果集群中不存在命名空间,OpenShift Container Platform 会创建命名空间。
  5. Install
  6. 列出自定义 Metrics Autoscaler Operator 组件来验证安装:

    1. 导航到 WorkloadsPods
    2. 从下拉菜单中选择 openshift-keda 项目,并验证 custom-metrics-autoscaler-operator-* pod 正在运行。
    3. 进入到 WorkloadsDeployments 以验证 custom-metrics-autoscaler-operator 部署是否正在运行。
  7. 可选:使用以下命令在 OpenShift CLI 中验证安装:

    $ oc get all -n openshift-keda

    输出结果类似如下:

    输出示例

    NAME                                                      READY   STATUS    RESTARTS   AGE
    pod/custom-metrics-autoscaler-operator-5fd8d9ffd8-xt4xp   1/1     Running   0          18m
    
    NAME                                                 READY   UP-TO-DATE   AVAILABLE   AGE
    deployment.apps/custom-metrics-autoscaler-operator   1/1     1            1           18m
    
    NAME                                                            DESIRED   CURRENT   READY   AGE
    replicaset.apps/custom-metrics-autoscaler-operator-5fd8d9ffd8   1         1         1       18m

  8. 安装 KedaController 自定义资源,该资源创建所需的 CRD:

    1. 在 OpenShift Container Platform web 控制台中,点击 OperatorsInstalled Operators
    2. Custom Metrics Autoscaler
    3. Operator Details 页面中,点 KedaController 选项卡。
    4. KedaController 选项卡中,点 Create KedaController 并编辑文件。

      kind: KedaController
      apiVersion: keda.sh/v1alpha1
      metadata:
        name: keda
        namespace: openshift-keda
      spec:
        watchNamespace: '' 1
        operator:
          logLevel: info 2
          logEncoder: console 3
        metricsServer:
          logLevel: '0' 4
          auditConfig: 5
            logFormat: "json"
            logOutputVolumeClaim: "persistentVolumeClaimName"
            policy:
              rules:
              - level: Metadata
              omitStages: ["RequestReceived"]
              omitManagedFields: false
            lifetime:
              maxAge: "2"
              maxBackup: "1"
              maxSize: "50"
        serviceAccount: {}
      1
      指定自定义 Metrics Autoscaler Operator 应该在其中扩展应用程序的单个命名空间。将它留空,或将其留空,以便在所有命名空间中扩展应用程序。此字段应具有命名空间或为空。默认值为空。
      2
      指定自定义 Metrics Autoscaler Operator 日志消息的详细程度。允许的值有 debuginfoerror。默认为 info
      3
      指定 Custom Metrics Autoscaler Operator 日志消息的日志记录格式。允许的值是 consolejson。默认为 console
      4
      指定自定义 Metrics Autoscaler Metrics 服务器的日志记录级别。允许的值是 0(用于 info)和 4(用于 debug )。默认值为 0
      5
      激活自定义 Metrics Autoscaler Operator 的审计日志记录,并指定要使用的审计策略,如"配置审计日志记录"部分中所述。
    5. Create 创建 KEDA 控制器。

3.4. 了解自定义指标自动扩展触发器

触发器(也称为 scalers)提供自定义 Metrics Autoscaler Operator 用来扩展 pod 的指标。

自定义指标自动扩展目前只支持 Prometheus、CPU、内存和 Apache Kafka 触发器。

您可以使用 ScaledObjectScaledJob 自定义资源为特定对象配置触发器,如后面的章节中所述。

3.4.1. 了解 Prometheus 触发器

您可以基于 Prometheus 指标扩展 pod,该指标可以使用已安装的 OpenShift Container Platform 监控或外部 Prometheus 服务器作为指标源。有关使用 OpenShift Container Platform 监控作为指标源所需的配置的信息,请参阅"附加资源"。

注意

如果 Prometheus 从自定义指标自动扩展扩展的应用程序收集指标,请不要在自定义资源中将最小副本设置为 0。如果没有应用程序 pod,自定义指标自动扩展没有任何要缩放的指标。

带有 Prometheus 目标的扩展对象示例

apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
  name: prom-scaledobject
  namespace: my-namespace
spec:
# ...
  triggers:
  - type: prometheus 1
    metadata:
      serverAddress: https://thanos-querier.openshift-monitoring.svc.cluster.local:9092 2
      namespace: kedatest 3
      metricName: http_requests_total 4
      threshold: '5' 5
      query: sum(rate(http_requests_total{job="test-app"}[1m])) 6
      authModes: basic 7
      cortexOrgID: my-org 8
      ignoreNullValues: "false" 9
      unsafeSsl: "false" 10

1
指定 Prometheus 作为触发器类型。
2
指定 Prometheus 服务器的地址。本例使用 OpenShift Container Platform 监控。
3
可选:指定您要缩放的对象的命名空间。如果将 OpenShift Container Platform 监控用作指标的源,则需要此参数。
4
指定在 external.metrics.k8s.io API 中标识指标的名称。如果您使用的是多个触发器,则所有指标名称都必须是唯一的。
5
指定触发扩展的值。必须指定为带引号的字符串值。
6
指定要使用的 Prometheus 查询。
7
指定要使用的身份验证方法。Prometheus scalers 支持 bearer 身份验证 (bearer)、基本身份验证 (basic) 或 TLS 身份验证 (tls)。您可以在触发器身份验证中配置特定的身份验证参数,如以下部分所述。根据需要,您还可以使用 secret。
8
可选:将 X-Scope-OrgID 标头传递给多租户 Cortex 或 Prometheus 的 Mimir 存储。这个参数只需要带有多租户 Prometheus 存储,以指示 Prometheus 应该返回哪些数据。
9
可选:指定在 Prometheus 目标丢失时触发器应如何进行操作。
  • 如果为 true,当 Prometheus 目标丢失时触发器将继续操作。这是默认的行为。
  • 如果为 false,当 Prometheus 目标丢失时触发器会返回错误。
10
可选:指定是否应跳过证书检查。例如,如果在 Prometheus 端点中使用自签名证书,您可以跳过检查。
  • 如果为 true,则执行证书检查。
  • 如果为 false,则不会执行证书检查。这是默认的行为。
3.4.1.1. 配置自定义指标自动扩展以使用 OpenShift Container Platform 监控

您可以使用已安装的 OpenShift Container Platform Prometheus 监控作为自定义指标自动扩展使用的指标的来源。但是,需要执行一些额外的配置。

注意

外部 Prometheus 源不需要这些步骤。

您必须执行以下任务,如本节所述:

  • 创建一个服务帐户。
  • 创建为服务帐户生成令牌的 secret。
  • 创建触发器身份验证。
  • 创建角色。
  • 将该角色添加到服务帐户。
  • 在 Prometheus 使用的触发器验证对象中引用令牌。

先决条件

  • 必须安装 OpenShift Container Platform 监控。
  • OpenShift Container Platform 监控中必须启用对用户定义的工作负载的监控监控,如创建用户定义的工作负载监控配置映射部分所述。
  • 必须安装 Custom Metrics Autoscaler Operator。

流程

  1. 使用您要缩放的对象切换到项目:

    $ oc project my-project
  2. 如果集群没有服务帐户和令牌,请创建服务帐户和令牌:

    1. 使用以下命令创建服务帐户对象:

      $ oc create serviceaccount thanos 1
      1
      指定服务帐户的名称。
    2. 可选:创建一个 secret YAML 来生成服务帐户令牌:

      重要

      如果您禁用 ImageRegistry 功能,或者在 Cluster Image Registry Operator 配置中禁用集成的 OpenShift 镜像 registry,则不会为每个服务帐户生成镜像 pull secret。在这种情况下,您必须执行此步骤。

      apiVersion: v1
      kind: Secret
      metadata:
        name: thanos-token
        annotations:
          kubernetes.io/service-account.name: thanos 1
        type: kubernetes.io/service-account-token
      1
      指定服务帐户的名称。
    3. 使用以下命令创建 secret 对象:

      $ oc create -f <file_name>.yaml
    4. 使用以下命令查找分配给服务帐户的令牌:

      $ oc describe serviceaccount thanos 1
      1
      指定服务帐户的名称。

      输出示例

      Name:                thanos
      Namespace:           my-project
      Labels:              <none>
      Annotations:         <none>
      Image pull secrets:  thanos-dockercfg-nnwgj
      Mountable secrets:   thanos-dockercfg-nnwgj
      Tokens:              thanos-token 1
      Events:              <none>

      1
      在触发器身份验证中使用此令牌。
  3. 使用服务帐户令牌创建触发器身份验证:

    1. 创建一个类似以下示例的 YAML 文件:

      apiVersion: keda.sh/v1alpha1
      kind: TriggerAuthentication
      metadata:
        name: keda-trigger-auth-prometheus
      spec:
        secretTargetRef: 1
        - parameter: bearerToken 2
          name: thanos-token 3
          key: token 4
        - parameter: ca
          name: thanos-token
          key: ca.crt
      1
      指定此对象使用 secret 进行授权。
      2
      使用令牌指定要提供的身份验证参数。
      3
      指定要使用的令牌名称。
      4
      指定令牌中用于指定参数的密钥。
    2. 创建 CR 对象:

      $ oc create -f <file-name>.yaml
  4. 创建用于读取 Thanos 指标的角色:

    1. 使用以下参数创建 YAML 文件:

      apiVersion: rbac.authorization.k8s.io/v1
      kind: Role
      metadata:
        name: thanos-metrics-reader
      rules:
      - apiGroups:
        - ""
        resources:
        - pods
        verbs:
        - get
      - apiGroups:
        - metrics.k8s.io
        resources:
        - pods
        - nodes
        verbs:
        - get
        - list
        - watch
    2. 创建 CR 对象:

      $ oc create -f <file-name>.yaml
  5. 创建用于读取 Thanos 指标的角色绑定:

    1. 创建一个类似以下示例的 YAML 文件:

      apiVersion: rbac.authorization.k8s.io/v1
      kind: RoleBinding
      metadata:
        name: thanos-metrics-reader 1
        namespace: my-project 2
      roleRef:
        apiGroup: rbac.authorization.k8s.io
        kind: Role
        name: thanos-metrics-reader
      subjects:
      - kind: ServiceAccount
        name: thanos 3
        namespace: my-project 4
      1
      指定您创建的角色的名称。
      2
      指定您要缩放的对象的命名空间。
      3
      指定要绑定到角色的服务帐户的名称。
      4
      指定您要缩放的对象的命名空间。
    2. 创建 CR 对象:

      $ oc create -f <file-name>.yaml

现在,您可以部署扩展的对象或扩展作业来为应用程序启用自动扩展,如"了解如何添加自定义指标自动扩展"中所述。要将 OpenShift Container Platform 监控用作源,在触发器或 scaler 中,您必须包括以下参数:

  • triggers.type 必须是 prometheus
  • triggers.metadata.serverAddress 必须是 https://thanos-querier.openshift-monitoring.svc.cluster.local:9092
  • triggers.metadata.authModes 必须是 bearer
  • triggers.metadata.namespace 必须设置为要缩放的对象的命名空间
  • triggers.authenticationRef 必须指向上一步中指定的触发器身份验证资源

3.4.2. 了解 CPU 触发器

您可以根据 CPU 指标扩展 pod。此触发器使用集群指标作为指标的源。

自定义指标自动扩展扩展与对象关联的 pod,以维护您指定的 CPU 用量。自动缩放器增加或减少最小和最大数量之间的副本数量,以维护所有 pod 的指定 CPU 使用率。内存触发器考虑整个 pod 的内存使用率。如果 pod 有多个容器,则内存触发器会考虑 pod 中所有容器的总内存使用率。

注意
  • 此触发器不能与 ScaledJob 自定义资源一起使用。
  • 当使用内存触发器扩展对象时,对象不会扩展到 0,即使您使用多个触发器。

使用 CPU 目标扩展对象示例

apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
  name: cpu-scaledobject
  namespace: my-namespace
spec:
# ...
  triggers:
  - type: cpu 1
    metricType: Utilization 2
    metadata:
      value: '60' 3
  minReplicaCount: 1 4

1
指定 CPU 作为触发器类型。
2
指定要使用的指标类型,可以是 UtilizationAverageValue
3
指定触发扩展的值。必须指定为带引号的字符串值。
  • 在使用 Utilization 时,target 值是所有相关 pod 中资源指标的平均值,以 pod 资源请求的值的百分比表示。
  • 使用 AverageValue 时,target 值是所有相关 Pod 的指标平均值。
4
指定缩减时的最小副本数量。对于 CPU 触发器,输入值 1 或更高的值,因为如果您只使用 CPU 指标,HPA 无法缩减为零。

3.4.3. 了解内存触发器

您可以根据内存指标扩展 pod。此触发器使用集群指标作为指标的源。

自定义指标自动扩展扩展与对象关联的 pod,以维护您指定的平均内存用量。自动缩放器会增加和减少最小和最大数量之间的副本数量,以维护所有 pod 的指定内存使用率。内存触发器考虑整个 pod 的内存使用率。如果 pod 有多个容器,则内存使用率是所有容器的总和。

注意
  • 此触发器不能与 ScaledJob 自定义资源一起使用。
  • 当使用内存触发器扩展对象时,对象不会扩展到 0,即使您使用多个触发器。

使用内存目标扩展对象示例

apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
  name: memory-scaledobject
  namespace: my-namespace
spec:
# ...
  triggers:
  - type: memory 1
    metricType: Utilization 2
    metadata:
      value: '60' 3
      containerName: api 4

1
将 memory 指定为触发器类型。
2
指定要使用的指标类型,可以是 UtilizationAverageValue
3
指定触发扩展的值。必须指定为带引号的字符串值。
  • 在使用 Utilization 时,target 值是所有相关 pod 中资源指标的平均值,以 pod 资源请求的值的百分比表示。
  • 使用 AverageValue 时,target 值是所有相关 Pod 的指标平均值。
4
可选:根据该容器的内存使用率,而不是整个 pod,指定要缩放的独立容器。在本例中,只有名为 api 的容器才会扩展。

3.4.4. 了解 Kafka 触发器

您可以根据 Apache Kafka 主题或支持 Kafka 协议的其他服务扩展 pod。自定义指标自动扩展不会缩放 Kafka 分区数量,除非在扩展的对象或扩展任务中将 allowIdleConsumers 参数设置为 true

注意

如果消费者组数量超过主题中的分区数量,则额外的消费者组处于闲置状态。要避免这种情况,默认情况下副本数不会超过:

  • 如果指定了主题,则主题上的分区数量
  • 如果没有指定主题,则消费者组中的所有主题的分区数量
  • 在扩展对象或扩展作业 CR 中指定的 maxReplicaCount

您可以使用 allowIdleConsumers 参数禁用这些默认行为。

使用 Kafka 目标扩展对象示例

apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
  name: kafka-scaledobject
  namespace: my-namespace
spec:
# ...
  triggers:
  - type: kafka 1
    metadata:
      topic: my-topic 2
      bootstrapServers: my-cluster-kafka-bootstrap.openshift-operators.svc:9092 3
      consumerGroup: my-group 4
      lagThreshold: '10' 5
      activationLagThreshold: '5' 6
      offsetResetPolicy: latest 7
      allowIdleConsumers: true 8
      scaleToZeroOnInvalidOffset: false 9
      excludePersistentLag: false 10
      version: '1.0.0' 11
      partitionLimitation: '1,2,10-20,31' 12

1
指定 Kafka 作为触发器类型。
2
指定 Kafka 在处理偏移滞后的 Kafka 主题的名称。
3
指定要连接的 Kafka 代理的逗号分隔列表。
4
指定用于检查主题上的偏移以及处理相关滞后的 Kafka 消费者组的名称。
5
可选:指定触发扩展的平均目标值。必须指定为带引号的字符串值。默认值为 5
6
可选:指定激活阶段的目标值。必须指定为带引号的字符串值。
7
可选:为 Kafka 使用者指定 Kafka 偏移重置策略。可用值包括:latestearliest。默认为 latest
8
可选:指定 Kafka 副本数是否可以超过主题中的分区数量。
  • 如果为 true,则 Kafka 副本数可能会超过主题上的分区数量。这允许闲置 Kafka 用户。
  • 如果为 false,则 Kafka 副本数不能超过主题上的分区数量。这是默认值。
9
指定当 Kafka 分区没有有效偏移时触发器的行为方式。
  • 如果为 true,则该分区的用户将缩减为零。
  • 如果为 false,则 scaler 为该分区保留单个消费者。这是默认值。
10
可选:指定触发器是否为当前偏移与之前轮询周期的当前偏移量相同或排除分区滞后。
  • 如果为 true,则扩展程序会排除这些分区中的分区滞后。
  • 如果为 false,则触发器在所有分区中包含所有消费者滞后。这是默认值。
11
可选:指定 Kafka 代理的版本。必须指定为带引号的字符串值。默认值为 1.0.0
12
可选:指定一个以逗号分隔的分区 ID 列表来限制缩放。如果设置,则仅考虑计算滞后列出的 ID。必须指定为带引号的字符串值。默认为考虑所有分区。

3.5. 了解自定义指标自动扩展触发器身份验证

触发器身份验证允许您在扩展对象或可供关联容器使用的扩展作业中包含身份验证信息。您可以使用触发器身份验证来传递 OpenShift Container Platform secret、平台原生 Pod 验证机制、环境变量等。

您可以在与您要缩放的对象相同的命名空间中定义一个 TriggerAuthentication 对象。该触发器身份验证只能由该命名空间中的对象使用。

另外,要在多个命名空间中对象间共享凭证,您可以创建一个可在所有命名空间中使用的 ClusterTriggerAuthentication 对象。

触发验证和集群触发器身份验证使用相同的配置。但是,集群触发器身份验证需要在扩展对象的验证引用中有一个额外的 kind 参数。

使用 secret 的触发器验证示例

kind: TriggerAuthentication
apiVersion: keda.sh/v1alpha1
metadata:
  name: secret-triggerauthentication
  namespace: my-namespace 1
spec:
  secretTargetRef: 2
  - parameter: user-name 3
    name: my-secret 4
    key: USER_NAME 5
  - parameter: password
    name: my-secret
    key: USER_PASSWORD

1
指定您要缩放的对象的命名空间。
2
指定此触发器身份验证使用 secret 进行授权。
3
使用 secret 指定提供的身份验证参数。
4
指定要使用的 secret 的名称。
5
指定 secret 中与指定参数一起使用的密钥。

使用 secret 的集群触发器身份验证示例

kind: ClusterTriggerAuthentication
apiVersion: keda.sh/v1alpha1
metadata: 1
  name: secret-cluster-triggerauthentication
spec:
  secretTargetRef: 2
  - parameter: user-name 3
    name: secret-name 4
    key: USER_NAME 5
  - parameter: user-password
    name: secret-name
    key: USER_PASSWORD

1
请注意,没有命名空间用于集群触发器身份验证。
2
指定此触发器身份验证使用 secret 进行授权。
3
使用 secret 指定提供的身份验证参数。
4
指定要使用的 secret 的名称。
5
指定 secret 中与指定参数一起使用的密钥。

使用令牌进行触发器身份验证示例

kind: TriggerAuthentication
apiVersion: keda.sh/v1alpha1
metadata:
  name: token-triggerauthentication
  namespace: my-namespace 1
spec:
  secretTargetRef: 2
  - parameter: bearerToken 3
    name: my-token-2vzfq 4
    key: token 5
  - parameter: ca
    name: my-token-2vzfq
    key: ca.crt

1
指定您要缩放的对象的命名空间。
2
指定此触发器身份验证使用 secret 进行授权。
3
使用令牌指定要提供的身份验证参数。
4
指定要使用的令牌名称。
5
指定令牌中用于指定参数的密钥。

使用环境变量的触发器身份验证示例

kind: TriggerAuthentication
apiVersion: keda.sh/v1alpha1
metadata:
  name: env-var-triggerauthentication
  namespace: my-namespace 1
spec:
  env: 2
  - parameter: access_key 3
    name: ACCESS_KEY 4
    containerName: my-container 5

1
指定您要缩放的对象的命名空间。
2
指定此触发器身份验证使用环境变量进行授权。
3
指定要使用此变量设置的参数。
4
指定环境变量的名称。
5
可选:指定需要身份验证的容器。容器必须与扩展对象中的 scaleTargetRef 引用的资源相同。

使用 pod 验证供应商的触发器身份验证示例

kind: TriggerAuthentication
apiVersion: keda.sh/v1alpha1
metadata:
  name: pod-id-triggerauthentication
  namespace: my-namespace 1
spec:
  podIdentity: 2
    provider: aws-eks 3

1
指定您要缩放的对象的命名空间。
2
指定此触发器身份验证使用平台原生 Pod 验证方法进行授权。
3
指定 pod 身份。支持的值为 none,azure,gcp,aws-eks, 或 aws-kiam。默认为 none

其他资源

3.5.1. 使用触发器身份验证

您可以使用触发器验证和集群触发器身份验证,方法是使用自定义资源来创建身份验证,然后添加对扩展对象或扩展任务的引用。

先决条件

  • 必须安装 Custom Metrics Autoscaler Operator。
  • 如果使用 secret,Secret 对象必须存在,例如:

    secret 示例

    apiVersion: v1
    kind: Secret
    metadata:
      name: my-secret
    data:
      user-name: <base64_USER_NAME>
      password: <base64_USER_PASSWORD>

流程

  1. 创建 TriggerAuthenticationClusterTriggerAuthentication 对象。

    1. 创建定义对象的 YAML 文件:

      使用 secret 的触发器验证示例

      kind: TriggerAuthentication
      apiVersion: keda.sh/v1alpha1
      metadata:
        name: prom-triggerauthentication
        namespace: my-namespace
      spec:
        secretTargetRef:
        - parameter: user-name
          name: my-secret
          key: USER_NAME
        - parameter: password
          name: my-secret
          key: USER_PASSWORD

    2. 创建 TriggerAuthentication 对象:

      $ oc create -f <filename>.yaml
  2. 创建或编辑使用触发器身份验证的 ScaledObject YAML 文件:

    1. 运行以下命令,创建定义对象的 YAML 文件:

      使用触发器身份验证的扩展对象示例

      apiVersion: keda.sh/v1alpha1
      kind: ScaledObject
      metadata:
        name: scaledobject
        namespace: my-namespace
      spec:
        scaleTargetRef:
          name: example-deployment
        maxReplicaCount: 100
        minReplicaCount: 0
        pollingInterval: 30
        triggers:
        - type: prometheus
          metadata:
            serverAddress: https://thanos-querier.openshift-monitoring.svc.cluster.local:9092
            namespace: kedatest # replace <NAMESPACE>
            metricName: http_requests_total
            threshold: '5'
            query: sum(rate(http_requests_total{job="test-app"}[1m]))
            authModes: "basic"
          authenticationRef:
            name: prom-triggerauthentication 1
            kind: TriggerAuthentication 2

      1
      指定触发器身份验证对象的名称。
      2
      指定 TriggerAuthenticationTriggerAuthentication 是默认值。

      使用集群触发器身份验证的扩展对象示例

      apiVersion: keda.sh/v1alpha1
      kind: ScaledObject
      metadata:
        name: scaledobject
        namespace: my-namespace
      spec:
        scaleTargetRef:
          name: example-deployment
        maxReplicaCount: 100
        minReplicaCount: 0
        pollingInterval: 30
        triggers:
        - type: prometheus
          metadata:
            serverAddress: https://thanos-querier.openshift-monitoring.svc.cluster.local:9092
            namespace: kedatest # replace <NAMESPACE>
            metricName: http_requests_total
            threshold: '5'
            query: sum(rate(http_requests_total{job="test-app"}[1m]))
            authModes: "basic"
          authenticationRef:
            name: prom-cluster-triggerauthentication 1
            kind: ClusterTriggerAuthentication 2

      1
      指定触发器身份验证对象的名称。
      2
      指定 ClusterTriggerAuthentication
    2. 运行以下命令来创建扩展的对象:

      $ oc apply -f <filename>

3.6. 暂停扩展对象的自定义指标自动扩展

您可以根据需要暂停并重启工作负载的自动扩展。

例如,您可能想要在执行集群维护前暂停自动扩展,或通过删除非传输工作负载来避免资源不足。

3.6.1. 暂停自定义指标自动扩展

您可以通过将 autoscaling.keda.sh/paused-replicas 注解添加到扩展对象的自定义指标自动扩展中来暂停扩展对象的自动扩展。自定义指标自动扩展将该工作负载的副本扩展到指定的值,并暂停自动扩展,直到注解被删除为止。

apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
  annotations:
    autoscaling.keda.sh/paused-replicas: "4"
# ...

流程

  1. 使用以下命令编辑工作负载的 ScaledObject CR:

    $ oc edit ScaledObject scaledobject
  2. 使用任何值添加 autoscaling.keda.sh/paused-replicas 注解:

    apiVersion: keda.sh/v1alpha1
    kind: ScaledObject
    metadata:
      annotations:
        autoscaling.keda.sh/paused-replicas: "4" 1
      creationTimestamp: "2023-02-08T14:41:01Z"
      generation: 1
      name: scaledobject
      namespace: my-project
      resourceVersion: '65729'
      uid: f5aec682-acdf-4232-a783-58b5b82f5dd0
    1
    指定自定义 Metrics Autoscaler Operator 将副本扩展到指定的值,并停止自动扩展。

3.6.2. 为扩展的对象重启自定义指标自动扩展

您可以通过删除该 ScaledObjectautoscaling.keda.sh/paused-replicas 注解来重启暂停的自定义指标自动扩展。

apiVersion: keda.sh/v1alpha1
kind: ScaledObject
metadata:
  annotations:
    autoscaling.keda.sh/paused-replicas: "4"
# ...

流程

  1. 使用以下命令编辑工作负载的 ScaledObject CR:

    $ oc edit ScaledObject scaledobject
  2. 删除 autoscaling.keda.sh/paused-replicas 注解。

    apiVersion: keda.sh/v1alpha1
    kind: ScaledObject
    metadata:
      annotations:
        autoscaling.keda.sh/paused-replicas: "4" 1
      creationTimestamp: "2023-02-08T14:41:01Z"
      generation: 1
      name: scaledobject
      namespace: my-project
      resourceVersion: '65729'
      uid: f5aec682-acdf-4232-a783-58b5b82f5dd0
    1
    删除此注解以重启暂停的自定义指标自动扩展。

3.7. 收集审计日志

您可以收集审计日志,它们是与安全相关的按时间排序的记录,记录各个用户、管理员或其他系统组件影响系统的一系列活动。

例如,审计日志可帮助您了解自动扩展请求来自哪里。当后端因为用户应用程序发出的请求造成过载时,这个信息非常重要,您需要确定哪个是有问题的应用程序。

3.7.1. 配置审计日志记录

您可以通过编辑 KedaController 自定义资源来为自定义 Metrics Autoscaler Operator 配置审计。日志通过 KedaController CR 中的持久性卷声明发送到卷的审计日志文件。

先决条件

  • 必须安装 Custom Metrics Autoscaler Operator。

流程

  1. 编辑 KedaController 自定义资源以添加 auditConfig 小节:

    kind: KedaController
    apiVersion: keda.sh/v1alpha1
    metadata:
      name: keda
      namespace: openshift-keda
    spec:
    # ...
      metricsServer:
    # ...
        auditConfig:
          logFormat: "json" 1
          logOutputVolumeClaim: "pvc-audit-log" 2
          policy:
            rules: 3
            - level: Metadata
            omitStages: "RequestReceived" 4
            omitManagedFields: false 5
          lifetime: 6
            maxAge: "2"
            maxBackup: "1"
            maxSize: "50"
    1
    指定审计日志的输出格式,可以是 legacyjson
    2
    指定用于存储日志数据的现有持久性卷声明。所有来自 API 服务器的请求都会记录到此持久性卷声明。如果将此字段留空,日志数据将发送到 stdout。
    3
    指定应记录哪些事件及其应包含哪些数据:
    • None :不记录事件。
    • Metadata :仅记录请求的元数据,如用户、时间戳等。不要记录请求文本和响应文本。这是默认值。
    • Request :仅记录元数据和请求文本,而不记录响应文本。这个选项不适用于非资源请求。
    • RequestResponse :日志事件元数据、请求文本和响应文本。这个选项不适用于非资源请求。
    4
    指定没有创建事件的阶段。
    5
    指定是否省略请求的 managed 字段,并从写入 API 审计日志的响应正文,可以是 true 来省略字段,或 false 包含字段。
    6
    指定审计日志的大小和生命周期。
    • MaxAge :根据文件名中编码的时间戳,保留审计日志文件的最大天数。
    • maxBackup :要保留的审计日志文件的最大数量。设置为 0 以保留所有审计日志文件。
    • maxsize :在轮转审计日志文件前以 MB 为单位的最大大小。

验证

  1. 直接查看审计日志文件:

    1. 获取 keda-metrics-apiserver the pod 的名称:

      oc get pod -n openshift-keda

      输出示例

      NAME                                                  READY   STATUS    RESTARTS   AGE
      custom-metrics-autoscaler-operator-5cb44cd75d-9v4lv   1/1     Running   0          8m20s
      keda-metrics-apiserver-65c7cc44fd-rrl4r               1/1     Running   0          2m55s
      keda-operator-776cbb6768-zpj5b                        1/1     Running   0          2m55s

    2. 使用类似如下的命令查看日志数据:

      $ oc logs keda-metrics-apiserver-<hash>|grep -i metadata 1
      1
      可选: 您可以使用 grep 命令指定要显示的日志级别: MetadataRequestRequestResponse

      例如:

      $ oc logs keda-metrics-apiserver-65c7cc44fd-rrl4r|grep -i metadata

      输出示例

       ...
      {"kind":"Event","apiVersion":"audit.k8s.io/v1","level":"Metadata","auditID":"4c81d41b-3dab-4675-90ce-20b87ce24013","stage":"ResponseComplete","requestURI":"/healthz","verb":"get","user":{"username":"system:anonymous","groups":["system:unauthenticated"]},"sourceIPs":["10.131.0.1"],"userAgent":"kube-probe/1.28","responseStatus":{"metadata":{},"code":200},"requestReceivedTimestamp":"2023-02-16T13:00:03.554567Z","stageTimestamp":"2023-02-16T13:00:03.555032Z","annotations":{"authorization.k8s.io/decision":"allow","authorization.k8s.io/reason":""}}
       ...

  2. 另外,您可以查看特定的日志:

    1. 使用类似如下的命令登录到 keda-metrics-apiserver the pod:

      $ oc rsh pod/keda-metrics-apiserver-<hash> -n openshift-keda

      例如:

      $ oc rsh pod/keda-metrics-apiserver-65c7cc44fd-rrl4r -n openshift-keda
    2. 进入 /var/audit-policy/ 目录:

      sh-4.4$ cd /var/audit-policy/
    3. 列出可用的日志:

      sh-4.4$ ls

      输出示例

      log-2023.02.17-14:50  policy.yaml

    4. 根据需要查看日志:

      sh-4.4$ cat <log_name>/<pvc_name>|grep -i <log_level> 1
      1
      可选: 您可以使用 grep 命令指定要显示的日志级别: MetadataRequestRequestResponse

      例如:

      sh-4.4$ cat log-2023.02.17-14:50/pvc-audit-log|grep -i Request

      输出示例

       ...
      {"kind":"Event","apiVersion":"audit.k8s.io/v1","level":"Request","auditID":"63e7f68c-04ec-4f4d-8749-bf1656572a41","stage":"ResponseComplete","requestURI":"/openapi/v2","verb":"get","user":{"username":"system:aggregator","groups":["system:authenticated"]},"sourceIPs":["10.128.0.1"],"responseStatus":{"metadata":{},"code":304},"requestReceivedTimestamp":"2023-02-17T13:12:55.035478Z","stageTimestamp":"2023-02-17T13:12:55.038346Z","annotations":{"authorization.k8s.io/decision":"allow","authorization.k8s.io/reason":"RBAC: allowed by ClusterRoleBinding \"system:discovery\" of ClusterRole \"system:discovery\" to Group \"system:authenticated\""}}
       ...

3.8. 收集调试数据

在提交问题单时同时提供您的集群信息,可以帮助红帽支持为您进行排除故障。

要帮助排除您的问题,请提供以下信息:

  • 使用 must-gather 工具收集的数据。
  • 唯一的集群 ID。

您可以使用 must-gather 工具来收集有关自定义 Metrics Autoscaler Operator 及其组件的数据,包括以下项目:

  • openshift-keda 命名空间及其子对象。
  • Custom Metric Autoscaler Operator 安装对象。
  • Custom Metric Autoscaler Operator CRD 对象。

3.8.1. 收集调试数据

以下命令为自定义 Metrics Autoscaler Operator 运行 must-gather 工具:

$ oc adm must-gather --image="$(oc get packagemanifests openshift-custom-metrics-autoscaler-operator \
-n openshift-marketplace \
-o jsonpath='{.status.channels[?(@.name=="stable")].currentCSVDesc.annotations.containerImage}')"
注意

标准 OpenShift Container Platform must-gather 命令 oc adm must-gather 将不会收集自定义 Metrics Autoscaler Operator 数据。

先决条件

  • 以具有 cluster-admin 角色的用户身份登录到 OpenShift Container Platform。
  • 已安装 OpenShift Container Platform CLI (oc)。

流程

  1. 进入要存储 must-gather 数据的目录。

    注意

    如果集群使用受限网络,则需要执行额外的步骤。如果您镜像的容器镜像仓库有一个信任的 CA,您必须首先将这个信任的 CA 添加到集群中。对于受限网络中的所有集群,您必须运行以下命令来导入默认的 must-gather 镜像作为镜像流。

    $ oc import-image is/must-gather -n openshift
  2. 执行以下之一:

    • 要只获取自定义 Metrics Autoscaler Operator must-gather 数据,请使用以下命令:

      $ oc adm must-gather --image="$(oc get packagemanifests openshift-custom-metrics-autoscaler-operator \
      -n openshift-marketplace \
      -o jsonpath='{.status.channels[?(@.name=="stable")].currentCSVDesc.annotations.containerImage}')"

      must-gather 命令的自定义镜像直接从 Operator 软件包清单中拉取,以便它可用于提供 Custom Metric Autoscaler Operator 的任何集群。

    • 除了 Custom Metric Autoscaler Operator 信息外,要收集默认的 must-gather 数据:

      1. 使用以下命令获取自定义 Metrics Autoscaler Operator 镜像并将其设置为环境变量:

        $ IMAGE="$(oc get packagemanifests openshift-custom-metrics-autoscaler-operator \
          -n openshift-marketplace \
          -o jsonpath='{.status.channels[?(@.name=="stable")].currentCSVDesc.annotations.containerImage}')"
      2. 使用带有自定义 Metrics Autoscaler Operator 镜像的 oc adm must-gather

        $ oc adm must-gather --image-stream=openshift/must-gather --image=${IMAGE}

    例 3.1. Custom Metric Autoscaler 的 must-gather 输出示例:

    └── openshift-keda
        ├── apps
        │   ├── daemonsets.yaml
        │   ├── deployments.yaml
        │   ├── replicasets.yaml
        │   └── statefulsets.yaml
        ├── apps.openshift.io
        │   └── deploymentconfigs.yaml
        ├── autoscaling
        │   └── horizontalpodautoscalers.yaml
        ├── batch
        │   ├── cronjobs.yaml
        │   └── jobs.yaml
        ├── build.openshift.io
        │   ├── buildconfigs.yaml
        │   └── builds.yaml
        ├── core
        │   ├── configmaps.yaml
        │   ├── endpoints.yaml
        │   ├── events.yaml
        │   ├── persistentvolumeclaims.yaml
        │   ├── pods.yaml
        │   ├── replicationcontrollers.yaml
        │   ├── secrets.yaml
        │   └── services.yaml
        ├── discovery.k8s.io
        │   └── endpointslices.yaml
        ├── image.openshift.io
        │   └── imagestreams.yaml
        ├── k8s.ovn.org
        │   ├── egressfirewalls.yaml
        │   └── egressqoses.yaml
        ├── keda.sh
        │   ├── kedacontrollers
        │   │   └── keda.yaml
        │   ├── scaledobjects
        │   │   └── example-scaledobject.yaml
        │   └── triggerauthentications
        │       └── example-triggerauthentication.yaml
        ├── monitoring.coreos.com
        │   └── servicemonitors.yaml
        ├── networking.k8s.io
        │   └── networkpolicies.yaml
        ├── openshift-keda.yaml
        ├── pods
        │   ├── custom-metrics-autoscaler-operator-58bd9f458-ptgwx
        │   │   ├── custom-metrics-autoscaler-operator
        │   │   │   └── custom-metrics-autoscaler-operator
        │   │   │       └── logs
        │   │   │           ├── current.log
        │   │   │           ├── previous.insecure.log
        │   │   │           └── previous.log
        │   │   └── custom-metrics-autoscaler-operator-58bd9f458-ptgwx.yaml
        │   ├── custom-metrics-autoscaler-operator-58bd9f458-thbsh
        │   │   └── custom-metrics-autoscaler-operator
        │   │       └── custom-metrics-autoscaler-operator
        │   │           └── logs
        │   ├── keda-metrics-apiserver-65c7cc44fd-6wq4g
        │   │   ├── keda-metrics-apiserver
        │   │   │   └── keda-metrics-apiserver
        │   │   │       └── logs
        │   │   │           ├── current.log
        │   │   │           ├── previous.insecure.log
        │   │   │           └── previous.log
        │   │   └── keda-metrics-apiserver-65c7cc44fd-6wq4g.yaml
        │   └── keda-operator-776cbb6768-fb6m5
        │       ├── keda-operator
        │       │   └── keda-operator
        │       │       └── logs
        │       │           ├── current.log
        │       │           ├── previous.insecure.log
        │       │           └── previous.log
        │       └── keda-operator-776cbb6768-fb6m5.yaml
        ├── policy
        │   └── poddisruptionbudgets.yaml
        └── route.openshift.io
            └── routes.yaml
  3. 从工作目录中创建的 must-gather 目录创建一个压缩文件。例如,在使用 Linux 操作系统的计算机上运行以下命令:

    $ tar cvaf must-gather.tar.gz must-gather.local.5421342344627712289/ 1
    1
    must-gather-local.5421342344627712289/ 替换为实际目录名称。
  4. 红帽客户门户中为您的问题单附上压缩文件。

3.9. 查看 Operator 指标

Custom Metrics Autoscaler Operator 会公开从集群监控组件中提取的可随时使用的指标。您可以使用 Prometheus Query Language (PromQL) 来分析和诊断问题来查询指标。控制器 pod 重启时会重置所有指标。

3.9.1. 访问性能指标

您可以使用 OpenShift Container Platform Web 控制台访问指标并运行查询。

流程

  1. 在 OpenShift Container Platform Web 控制台中选择 Administrator 视角。
  2. 选择 ObserveMetrics
  3. 要创建自定义查询,请将 PromQL 查询添加到 Expression 字段中。
  4. 要添加多个查询,选择 Add Query
3.9.1.1. 提供的 Operator 指标

Custom Metrics Autoscaler Operator 会公开以下指标,您可以使用 OpenShift Container Platform Web 控制台查看这些指标。

表 3.1. 自定义 Metric Autoscaler Operator 指标
指标名称描述

keda_scaler_activity

特定的 scaler 是活跃的还是不活跃的。值 1 表示 scaler 处于活跃状态; 0 表示 scaler 不活跃。

keda_scaler_metrics_value

每个 scaler 的指标的当前值,由计算目标平均值中的 Horizontal Pod Autoscaler (HPA) 使用。

keda_scaler_metrics_latency

从每个 scaler 检索当前指标的延迟。

keda_scaler_errors

每个 scaler 发生的错误数量。

keda_scaler_errors_total

所有 scaler 遇到的错误总数。

keda_scaled_object_errors

每个扩展的对象发生的错误数量。

keda_resource_totals

每个命名空间中的自定义 Metrics Autoscaler 自定义资源总数,每种自定义资源类型。

keda_trigger_totals

根据触发器类型的触发器总数。

自定义 Metrics Autoscaler Admission Webhook 指标

自定义 Metrics Autoscaler Admission Webhook 也会公开以下 Prometheus 指标。

指标名称描述

keda_scaled_object_validation_total

扩展对象验证的数量。

keda_scaled_object_validation_errors

验证错误的数量。

3.10. 了解如何添加自定义指标自动扩展

要添加自定义指标自动扩展,请为部署、有状态集或自定义资源创建 ScaledObject 自定义资源。为作业创建 ScaledJob 自定义资源。

您只能为每个您要扩展的工作负载创建一个扩展对象。另外,您不能在同一工作负载中使用扩展的对象和 pod 横向自动扩展(HPA)。

3.10.1. 在工作负载中添加自定义指标自动扩展

您可以为 DeploymentStatefulSetcustom resource 对象创建的工作负载创建自定义指标自动扩展。

先决条件

  • 必须安装 Custom Metrics Autoscaler Operator。
  • 如果您使用自定义指标自动扩展来根据 CPU 或内存进行扩展:

    • 您的集群管理员必须已配置了集群指标。您可以使用 oc describe PodMetrics <pod-name> 命令来判断是否已配置了指标。如果配置了指标,输出将类似以下示例,CPU 和 Memory 在 Usage 下显示。

      $ oc describe PodMetrics openshift-kube-scheduler-ip-10-0-135-131.ec2.internal

      输出示例

      Name:         openshift-kube-scheduler-ip-10-0-135-131.ec2.internal
      Namespace:    openshift-kube-scheduler
      Labels:       <none>
      Annotations:  <none>
      API Version:  metrics.k8s.io/v1beta1
      Containers:
        Name:  wait-for-host-port
        Usage:
          Memory:  0
        Name:      scheduler
        Usage:
          Cpu:     8m
          Memory:  45440Ki
      Kind:        PodMetrics
      Metadata:
        Creation Timestamp:  2019-05-23T18:47:56Z
        Self Link:           /apis/metrics.k8s.io/v1beta1/namespaces/openshift-kube-scheduler/pods/openshift-kube-scheduler-ip-10-0-135-131.ec2.internal
      Timestamp:             2019-05-23T18:47:56Z
      Window:                1m0s
      Events:                <none>

    • 与您要缩放的对象关联的 pod 必须包含指定的内存和 CPU 限值。例如:

      pod 规格示例

      apiVersion: v1
      kind: Pod
      # ...
      spec:
        containers:
        - name: app
          image: images.my-company.example/app:v4
          resources:
            limits:
              memory: "128Mi"
              cpu: "500m"
      # ...

流程

  1. 创建一个类似如下的 YAML 文件:只有名称 <2>, 对象名称 <4>, 和对象类型 <5> 是必需的。

    缩放对象示例

    apiVersion: keda.sh/v1alpha1
    kind: ScaledObject
    metadata:
      annotations:
        autoscaling.keda.sh/paused-replicas: "0" 1
      name: scaledobject 2
      namespace: my-namespace
    spec:
      scaleTargetRef:
        apiVersion: apps/v1 3
        name: example-deployment 4
        kind: Deployment 5
        envSourceContainerName: .spec.template.spec.containers[0] 6
      cooldownPeriod:  200 7
      maxReplicaCount: 100 8
      minReplicaCount: 0 9
      metricsServer: 10
        auditConfig:
          logFormat: "json"
          logOutputVolumeClaim: "persistentVolumeClaimName"
          policy:
            rules:
            - level: Metadata
            omitStages: "RequestReceived"
            omitManagedFields: false
          lifetime:
            maxAge: "2"
            maxBackup: "1"
            maxSize: "50"
      fallback: 11
        failureThreshold: 3
        replicas: 6
      pollingInterval: 30 12
      advanced:
        restoreToOriginalReplicaCount: false 13
        horizontalPodAutoscalerConfig:
          name: keda-hpa-scale-down 14
          behavior: 15
            scaleDown:
              stabilizationWindowSeconds: 300
              policies:
              - type: Percent
                value: 100
                periodSeconds: 15
      triggers:
      - type: prometheus 16
        metadata:
          serverAddress: https://thanos-querier.openshift-monitoring.svc.cluster.local:9092
          namespace: kedatest
          metricName: http_requests_total
          threshold: '5'
          query: sum(rate(http_requests_total{job="test-app"}[1m]))
          authModes: basic
        authenticationRef: 17
          name: prom-triggerauthentication
          kind: TriggerAuthentication

    1
    可选:指定自定义 Metrics Autoscaler Operator 将副本扩展到指定的值和停止自动扩展,如 "Pausing the custom metrics autoscaler for a workload" 部分所述。
    2
    指定此自定义指标自动扩展的名称。
    3
    可选:指定目标资源的 API 版本。默认为 apps/v1
    4
    指定要缩放的对象名称。
    5
    指定 kindDeployment, StatefulSetCustomResource
    6
    可选:指定目标资源中的容器的名称,其中的自定义自动扩展器获取包含 secret 的环境变量等。默认为 .spec.template.spec.containers[0]
    7
    可选。指定一个在最后的触发器报告后等待的时间(以秒为单位),在经过这个时间后才会将部署缩减为 0(如果 minReplicaCount 设置为 0)。默认值为 300
    8
    可选:指定扩展时的最大副本数量。默认值为 100
    9
    可选:指定缩减时的最小副本数量。
    10
    可选:指定审计日志的参数。如"配置审计日志记录"部分中所述。
    11
    可选:指定在扩展程序无法从源中获取由 failureThreshold 参数定义的次数时回退到的副本数。有关回退行为的更多信息,请参阅 KEDA 文档
    12
    可选:指定检查每个触发器的时间间隔(以秒为单位)。默认值为 30
    13
    可选:指定是否在删除扩展对象后将目标资源扩展为原始副本数。默认为 false,这会在删除扩展对象时保留副本数。
    14
    可选:指定 pod 横向自动扩展的名称。默认为 keda-hpa-{scaled-object-name}
    15
    可选:指定一个扩展策略来控制用来扩展或缩减 pod 的速度,如"扩展策略"部分中所述。
    16
    指定用作扩展基础的触发器,如"识别自定义指标自动扩展触发器"部分中所述。本例使用 OpenShift Container Platform 监控。
    17
    可选:指定触发器身份验证或集群触发器身份验证。如需更多信息,请参阅附加资源部分中的 了解自定义指标自动扩展触发器身份验证
    • 输入 TriggerAuthentication 来使用触发器身份验证。这是默认值。
    • 输入 ClusterTriggerAuthentication 来使用集群触发器身份验证。
  2. 运行以下命令来创建自定义指标自动扩展:

    $ oc create -f <filename>.yaml

验证

  • 查看命令输出,以验证是否已创建自定义指标自动扩展:

    $ oc get scaledobject <scaled_object_name>

    输出示例

    NAME            SCALETARGETKIND      SCALETARGETNAME        MIN   MAX   TRIGGERS     AUTHENTICATION               READY   ACTIVE   FALLBACK   AGE
    scaledobject    apps/v1.Deployment   example-deployment     0     50    prometheus   prom-triggerauthentication   True    True     True       17s

    请注意输出中的以下字段:

    • TRIGGERS :指示正在使用的触发器或缩放器。
    • AUTHENTICATION :指示所使用的任何触发器身份验证的名称。
    • READY :指示扩展对象是否准备好启动缩放:

      • 如果为 True,则扩展的对象已就绪。
      • 如果 False,由于您创建的对象中的一个或多个对象有问题,扩展的对象将不可用。
    • ACTIVE :指示扩展是否发生:

      • 如果为 True,则会进行缩放。
      • 如果 False,则不会发生缩放,因为您创建的一个或多个对象中没有指标或多个问题。
    • FALLBACK :指示自定义指标自动扩展是否能够从源获取指标

      • 如果 False,自定义指标自动扩展器会获取指标。
      • 如果为 True,自定义指标自动扩展会获取指标,因为您创建的一个或多个对象中没有指标或多个问题。

3.10.2. 在作业中添加自定义指标自动扩展

您可以为任何作业对象创建自定义指标自动扩展。

重要

使用扩展作业进行扩展只是一个技术预览功能。技术预览功能不受红帽产品服务等级协议(SLA)支持,且功能可能并不完整。红帽不推荐在生产环境中使用它们。这些技术预览功能可以使用户提早试用新的功能,并有机会在开发阶段提供反馈意见。

有关红帽技术预览功能支持范围的更多信息,请参阅技术预览功能支持范围

先决条件

  • 必须安装 Custom Metrics Autoscaler Operator。

流程

  1. 创建一个类似以下示例的 YAML 文件:

    kind: ScaledJob
    apiVersion: keda.sh/v1alpha1
    metadata:
      name: scaledjob
      namespace: my-namespace
    spec:
      failedJobsHistoryLimit: 5
      jobTargetRef:
        activeDeadlineSeconds: 600 1
        backoffLimit: 6 2
        parallelism: 1 3
        completions: 1 4
        template:  5
          metadata:
            name: pi
          spec:
            containers:
            - name: pi
              image: perl
              command: ["perl",  "-Mbignum=bpi", "-wle", "print bpi(2000)"]
      maxReplicaCount: 100 6
      pollingInterval: 30 7
      successfulJobsHistoryLimit: 5 8
      failedJobsHistoryLimit: 5 9
      envSourceContainerName: 10
      rolloutStrategy: gradual 11
      scalingStrategy: 12
        strategy: "custom"
        customScalingQueueLengthDeduction: 1
        customScalingRunningJobPercentage: "0.5"
        pendingPodConditions:
          - "Ready"
          - "PodScheduled"
          - "AnyOtherCustomPodCondition"
        multipleScalersCalculation : "max"
      triggers:
      - type: prometheus 13
        metadata:
          serverAddress: https://thanos-querier.openshift-monitoring.svc.cluster.local:9092
          namespace: kedatest
          metricName: http_requests_total
          threshold: '5'
          query: sum(rate(http_requests_total{job="test-app"}[1m]))
          authModes: "bearer"
        authenticationRef: 14
          name: prom-cluster-triggerauthentication
    1
    指定作业可以运行的最长持续时间。
    2
    指定作业的重试次数。默认值为 6
    3
    可选:指定作业应并行运行多少个 pod 副本;默认为 1
    • 对于非并行作业,请保留未设置。如果未设置,则默认值为 1
    4
    可选:指定标记作业完成需要成功完成多少个 pod。
    • 对于非并行作业,请保留未设置。如果未设置,则默认值为 1
    • 对于具有固定完成计数的并行作业,请指定完成数。
    • 对于带有工作队列的并行作业,请保留 unset。当取消设置默认值时,默认值为 parallelism 参数的值。
    5
    指定控制器创建的 pod 模板。
    6
    可选:指定扩展时的最大副本数量。默认值为 100
    7
    可选:指定检查每个触发器的时间间隔(以秒为单位)。默认值为 30
    8
    可选:指定成功完成作业的数量。默认值为 100
    9
    可选:指定应保留多少个失败作业。默认值为 100
    10
    可选:指定目标资源中的容器的名称,其中的自定义自动扩展器获取包含 secret 的环境变量等。默认为 .spec.template.spec.containers[0]
    11
    可选:指定在更新扩展作业时是否被终止现有作业:
    • default :如果关联的扩展作业被更新,则自动扩展器会终止一个现有作业。自动扩展会使用最新的 specs 重新创建作业。
    • gradual :如果关联的扩展作业被更新,则自动扩展不会终止现有的作业。自动缩放器使用最新的 specs 创建新作业。
    12
    可选:指定一个扩展策略: defaultcustomaccurate。默认为 default。如需更多信息,请参阅下面的"添加资源"部分中的链接。
    13
    指定用作扩展基础的触发器,如"识别自定义指标自动扩展触发器"部分中所述。
    14
    可选:指定触发器身份验证或集群触发器身份验证。如需更多信息,请参阅附加资源部分中的 了解自定义指标自动扩展触发器身份验证
    • 输入 TriggerAuthentication 来使用触发器身份验证。这是默认值。
    • 输入 ClusterTriggerAuthentication 来使用集群触发器身份验证。
  2. 运行以下命令来创建自定义指标自动扩展:

    $ oc create -f <filename>.yaml

验证

  • 查看命令输出,以验证是否已创建自定义指标自动扩展:

    $ oc get scaledjob <scaled_job_name>

    输出示例

    NAME        MAX   TRIGGERS     AUTHENTICATION              READY   ACTIVE    AGE
    scaledjob   100   prometheus   prom-triggerauthentication  True    True      8s

    请注意输出中的以下字段:

    • TRIGGERS :指示正在使用的触发器或缩放器。
    • AUTHENTICATION :指示所使用的任何触发器身份验证的名称。
    • READY :指示扩展对象是否准备好启动缩放:

      • 如果为 True,则扩展的对象已就绪。
      • 如果 False,由于您创建的对象中的一个或多个对象有问题,扩展的对象将不可用。
    • ACTIVE :指示扩展是否发生:

      • 如果为 True,则会进行缩放。
      • 如果 False,则不会发生缩放,因为您创建的一个或多个对象中没有指标或多个问题。

3.10.3. 其他资源

3.11. 删除自定义 Metrics Autoscaler Operator

您可以从 OpenShift Container Platform 集群中删除自定义指标自动扩展。删除自定义 Metrics Autoscaler Operator 后,删除与 Operator 相关的其他组件以避免出现潜在的问题。

注意

首先删除 KedaController 自定义资源(CR)。如果没有删除 KedaController CR,OpenShift Container Platform 会在删除 openshift-keda 项目时挂起。如果在删除 CR 前删除了自定义 Metrics Autoscaler Operator,您将无法删除 CR。

3.11.1. 卸载自定义 Metrics Autoscaler Operator

使用以下步骤从 OpenShift Container Platform 集群中删除自定义指标自动扩展。

先决条件

  • 必须安装 Custom Metrics Autoscaler Operator。

流程

  1. 在 OpenShift Container Platform web 控制台中,点击 OperatorsInstalled Operators
  2. 切换到 openshift-keda 项目。
  3. 删除 KedaController 自定义资源。

    1. 找到 CustomMetricsAutoscaler Operator 并点 KedaController 选项卡。
    2. 找到自定义资源,然后点 Delete KedaController
    3. Uninstall
  4. 删除自定义 Metrics Autoscaler Operator:

    1. OperatorsInstalled Operators
    2. 找到 CustomMetricsAutoscaler Operator 并点 Options 菜单 kebab 并选择 Uninstall Operator
    3. Uninstall
  5. 可选: 使用 OpenShift CLI 删除自定义指标自动扩展组件:

    1. 删除自定义指标自动扩展 CRD:

      • clustertriggerauthentications.keda.sh
      • kedacontrollers.keda.sh
      • scaledjobs.keda.sh
      • scaledobjects.keda.sh
      • triggerauthentications.keda.sh
      $ oc delete crd clustertriggerauthentications.keda.sh kedacontrollers.keda.sh scaledjobs.keda.sh scaledobjects.keda.sh triggerauthentications.keda.sh

      删除 CRD 会删除关联的角色、集群角色和角色绑定。但是,可能存在一些必须手动删除的集群角色。

    2. 列出任何自定义指标自动扩展集群角色:

      $ oc get clusterrole | grep keda.sh
    3. 删除列出的自定义指标自动扩展集群角色。例如:

      $ oc delete clusterrole.keda.sh-v1alpha1-admin
    4. 列出任何自定义指标自动扩展集群角色绑定:

      $ oc get clusterrolebinding | grep keda.sh
    5. 删除列出的自定义指标自动扩展集群角色绑定。例如:

      $ oc delete clusterrolebinding.keda.sh-v1alpha1-admin
  6. 删除自定义指标自动扩展项目:

    $ oc delete project openshift-keda
  7. 删除 Cluster Metric Autoscaler Operator:

    $ oc delete operator/openshift-custom-metrics-autoscaler-operator.openshift-keda

第 4 章 控制节点上的 pod 放置(调度)

4.1. 使用调度程序控制 pod 放置

Pod 调度是一个内部过程,决定新 pod 如何放置到集群内的节点上。

调度程度代码具有明确隔离,会监测创建的新 pod 并确定最适合托管它们的节点。然后,它会利用主 API 为 pod 创建 pod 至节点的绑定。

默认 pod 调度
OpenShift Container Platform 附带一个满足大多数用户需求的默认调度程序。默认调度程序使用内置和自定义工具来决定最适合 pod 的调度程序。
高级 pod 调度

如果您想要更多地控制新 pod 的放置位置,可以利用 OpenShift Container Platform 高级调度功能来配置 pod,从而使 pod 能够根据要求或偏好在特定的节点上运行,或者与特定的 pod 一起运行。

您可以使用以下调度功能来控制 pod 放置:

4.1.1. 关于默认调度程序

默认的 OpenShift Container Platform pod 调度程序负责确定新 pod 放置到集群中的节点上。它从 pod 读取数据,并查找最适合配置的配置集的节点。它完全独立存在,作为独立解决方案。它不会修改 pod;它会为将 pod 绑定到特定节点的 pod 创建绑定。

4.1.1.1. 了解默认调度

现有的通用调度程序是平台默认提供的调度程序引擎,它可通过三步操作来选择托管 pod 的节点:

过滤节点
根据指定的约束或要求过滤可用的节点。这可以通过使用名为 predicates, 或 filters 的过滤器函数列表在每个节点上运行来实现。
排列过滤后节点列表的优先顺序
这可以通过一系列 priority, 或 scoring 来实现,这些函数为其分配分数介于 0 到 10 之间,0 表示不适合,10 则表示最适合托管该 pod。调度程序配置还可以为每个评分功能使用简单的 权重 (正数值)。每个评分功能提供的节点分数乘以权重(大多数分数的默认权重为 1),然后将每个节点通过为所有分数提供的分数相加。管理员可以使用这个权重属性为某些分数赋予更高的重要性。
选择最适合的节点
节点按照分数排序,系统选择分数最高的节点来托管该 pod。如果多个节点的分数相同,则随机选择其中一个。

4.1.2. 调度程序用例

在 OpenShift Container Platform 中调度的一个重要用例是支持灵活的关联性和反关联性策略。

4.1.2.1. 基础架构拓扑级别

管理员可以通过在节点上指定标签,为基础架构(节点)定义多个拓扑级别。例如,region=r1zone=z1rack=s1

这些标签名称没有特别的含义,管理员可以自由为其基础架构级别命名,比如城市/楼宇/房间。另外,管理员可以为其基础架构拓扑定义任意数量的级别,通常三个级别比较适当(例如:regionszoneracks)。管理员可以在各个级别上以任何组合指定关联性和反关联性规则。

4.1.2.2. 关联性

管理员应能够配置调度程序,在任何一个甚至多个拓扑级别上指定关联性。特定级别上的关联性指示所有属于同一服务的 pod 调度到属于同一级别的节点。这会让管理员确保对等 pod 在地理上不会过于分散,以此处理应用程序对延迟的要求。如果同一关联性组中没有节点可用于托管 pod,则不调度该 pod。

如果您需要更好地控制 pod 的调度位置,请参阅使用节点关联性规则控制节点上的 pod 放置,以及使用关联性和反关联性规则相对于其他 pod 放置 pod

管理员可以利用这些高级调度功能,来指定 pod 可以调度到哪些节点,并且相对于其他 pod 来强制或拒绝调度。

4.1.2.3. 反关联性

管理员应能够配置调度程序,在任何一个甚至多个拓扑级别上指定反关联性。特定级别上的反关联性(或分散)指示属于同一服务的所有 pod 分散到属于该级别的不同节点上。这样可确保应用程序合理分布,以实现高可用性目的。调度程序尝试在所有适用的节点之间尽可能均匀地平衡服务 pod。

如果您需要更好地控制 pod 的调度位置,请参阅使用节点关联性规则控制节点上的 pod 放置,以及使用关联性和反关联性规则相对于其他 pod 放置 pod

管理员可以利用这些高级调度功能,来指定 pod 可以调度到哪些节点,并且相对于其他 pod 来强制或拒绝调度。

4.2. 使用调度程序配置集调度 pod

您可以将 OpenShift Container Platform 配置为使用调度配置集将 pod 调度到集群内的节点上。

4.2.1. 关于调度程序配置集

您可以指定一个调度程序配置集来控制 pod 如何调度到节点上。

可用的调度程序配置集如下:

LowNodeUtilization
此配置集尝试在节点间平均分配 pod,以获得每个节点的资源用量较低。这个配置集提供默认的调度程序行为。
HighNodeUtilization
此配置集会尝试将尽量多的 pod 放置到尽量少的节点。这样可最小化节点数,并且每个节点的资源使用率很高。
NoScoring
这是一个低延迟配置集,通过禁用所有分数(score)插件来实现最快的调度周期。这可能会为更快的调度决策提供更好的要求。

4.2.2. 配置调度程序配置集

您可以将调度程序配置为使用调度程序配置集。

先决条件

  • 使用具有 cluster-admin 角色的用户访问集群。

流程

  1. 编辑 Scheduler 对象:

    $ oc edit scheduler cluster
  2. 指定在 spec.profile 字段中使用的配置集:

    apiVersion: config.openshift.io/v1
    kind: Scheduler
    metadata:
      name: cluster
    #...
    spec:
      mastersSchedulable: false
      profile: HighNodeUtilization 1
    #...
    1
    设置为 LowNodeUtilizationHighNodeUtilizationNoScoring
  3. 保存文件以使改变生效。

4.3. 使用关联性和反关联性规则相对于其他 pod 放置 pod

关联性是 pod 的一个属性,用于控制它们希望调度到的节点。反关联性是 pod 的一个属性,用于阻止 pod 调度到某个节点上。

在 OpenShift Container Platform 中,可以借助 pod 关联性pod 反关联性来根据其他 pod 上的键/值标签限制 pod 有资格调度到哪些节点。

4.3.1. 了解 pod 关联性

您可以借助 pod 关联性pod 反关联性来根据其他 pod 上的键/值标签限制 pod 有资格调度到哪些节点。

  • 如果新 pod 上的标签选择器与当前 pod 上的标签匹配,pod 关联性可以命令调度程序将新 pod 放置到与其他 pod 相同的节点上。
  • 如果新 pod 上的标签选择器与当前 pod 上的标签匹配,pod 反关联性可以阻止调度程序将新 pod 放置到与具有相同标签的 pod 相同的节点上。

例如,您可以使用关联性规则,在服务内或相对于其他服务中的 pod 来分散或聚拢 pod。如果特定服务的 pod 的性能已知会受到另一服务的 pod 影响,那么您可以利用反关联性规则,防止前一服务的 pod 调度到与后一服务的 pod 相同的节点上。或者,您可以将服务的 pod 分散到节点间、可用性区域或可用性集,以减少相关的故障。

注意

标签选择器可能与带有多个 pod 部署的 pod 匹配。在配置反关联性规则时,请使用标签的唯一组合以避免匹配的 pod。

pod 关联性规则有两种,即必要规则和偏好规则。

必须满足必要规则,pod 才能调度到节点上。偏好规则指定在满足规则时调度程序会尝试强制执行规则,但不保证一定能强制执行成功。

注意

根据 pod 优先级和抢占设置,调度程序可能无法在不违反关联性要求的前提下为 pod 找到适合的节点。若是如此,pod 可能不会被调度。

要防止这种情况,请仔细配置优先级相同的 pod 的 pod 关联性。

您可以通过 Pod 规格文件配置 pod 关联性/反关联性。您可以指定必要规则或偏好规则,或同时指定这两种规则。如果您同时指定,节点必须首先满足必要规则,然后尝试满足偏好规则。

以下示例显示了配置了 pod 关联性和反关联性的 Pod 规格。

在本例中,pod 关联性规则指明,只有当节点至少有一个已在运行且具有键 security 和值 S1 的标签的 pod 时,pod 才可以调度到这个节点上。pod 反关联性则表示,如果节点已在运行带有键 security 和值 S2.的标签的 pod,则 pod 将偏向于不调度到该节点上。

具有 pod 关联性的 Pod 配置文件示例

apiVersion: v1
kind: Pod
metadata:
  name: with-pod-affinity
spec:
  securityContext:
    runAsNonRoot: true
    seccompProfile:
      type: RuntimeDefault
  affinity:
    podAffinity: 1
      requiredDuringSchedulingIgnoredDuringExecution: 2
      - labelSelector:
          matchExpressions:
          - key: security 3
            operator: In 4
            values:
            - S1 5
        topologyKey: topology.kubernetes.io/zone
  containers:
  - name: with-pod-affinity
    image: docker.io/ocpqe/hello-pod
    securityContext:
      allowPrivilegeEscalation: false
      capabilities:
        drop: [ALL]

1
用于配置 pod 关联性的小节。
2
定义必要规则。
3 5
必须匹配键和值(标签)才会应用该规则。
4
运算符表示现有 pod 上的标签和新 pod 规格中 matchExpression 参数的值集合之间的关系。可以是 InNotInExistsDoesNotExist

具有 pod 反关联性的 Pod 配置文件示例

apiVersion: v1
kind: Pod
metadata:
  name: with-pod-antiaffinity
spec:
  securityContext:
    runAsNonRoot: true
    seccompProfile:
      type: RuntimeDefault
  affinity:
    podAntiAffinity: 1
      preferredDuringSchedulingIgnoredDuringExecution: 2
      - weight: 100  3
        podAffinityTerm:
          labelSelector:
            matchExpressions:
            - key: security 4
              operator: In 5
              values:
              - S2
          topologyKey: kubernetes.io/hostname
  containers:
  - name: with-pod-affinity
    image: docker.io/ocpqe/hello-pod
    securityContext:
      allowPrivilegeEscalation: false
      capabilities:
        drop: [ALL]

1
用于配置 pod 反关联性的小节。
2
定义偏好规则。
3
为偏好规则指定权重。优先选择权重最高的节点。
4
描述用来决定何时应用反关联性规则的 pod 标签。指定标签的键和值。
5
运算符表示现有 pod 上的标签和新 pod 规格中 matchExpression 参数的值集合之间的关系。可以是 InNotInExistsDoesNotExist
注意

如果节点标签在运行时改变,使得不再满足 pod 上的关联性规则,pod 会继续在该节点上运行。

4.3.2. 配置 pod 关联性规则

以下步骤演示了一个简单的双 pod 配置,它创建一个带有某标签的 pod,以及一个使用关联性来允许随着该 pod 一起调度的 pod。

注意

您不能直接将关联性添加到调度的 pod 中。

流程

  1. 创建 pod 规格中具有特定标签的 pod:

    1. 使用以下内容创建 YAML 文件:

      apiVersion: v1
      kind: Pod
      metadata:
        name: security-s1
        labels:
          security: S1
      spec:
        securityContext:
          runAsNonRoot: true
          seccompProfile:
            type: RuntimeDefault
        containers:
        - name: security-s1
          image: docker.io/ocpqe/hello-pod
          securityContext:
            runAsNonRoot: true
            seccompProfile:
              type: RuntimeDefault
    2. 创建 pod。

      $ oc create -f <pod-spec>.yaml
  2. 在创建其他 pod 时,配置以下参数以添加关联性:

    1. 使用以下内容创建 YAML 文件:

      apiVersion: v1
      kind: Pod
      metadata:
        name: security-s1-east
      # ...
      spec:
        affinity: 1
          podAffinity:
            requiredDuringSchedulingIgnoredDuringExecution: 2
            - labelSelector:
                matchExpressions:
                - key: security 3
                  values:
                  - S1
                  operator: In 4
              topologyKey: topology.kubernetes.io/zone 5
      # ...
      1
      添加 pod 关联性。
      2
      配置 requiredDuringSchedulingIgnoredDuringExecution 参数或 preferredDuringSchedulingIgnoredDuringExecution 参数。
      3
      指定必须满足的 keyvalues。如果您希望新 pod 与其他 pod 一起调度,请使用与第一个 pod 上标签相同的 keyvalues 参数。
      4
      指定一个 operator。运算符可以是 InNotInExistsDoesNotExist。例如,使用运算符 In 来要求节点上存在该标签。
      5
      指定 topologyKey,这是一个预填充的 Kubernetes 标签,供系统用于表示这样的拓扑域。
    2. 创建 pod。

      $ oc create -f <pod-spec>.yaml

4.3.3. 配置 pod 反关联性规则

以下步骤演示了一个简单的双 pod 配置,它创建一个带有某标签的 pod,以及一个使用反关联性偏好规则来尝试阻止随着该 pod 一起调度的 pod。

注意

您不能直接将关联性添加到调度的 pod 中。

流程

  1. 创建 pod 规格中具有特定标签的 pod:

    1. 使用以下内容创建 YAML 文件:

      apiVersion: v1
      kind: Pod
      metadata:
        name: security-s1
        labels:
          security: S1
      spec:
        securityContext:
          runAsNonRoot: true
          seccompProfile:
            type: RuntimeDefault
        containers:
        - name: security-s1
          image: docker.io/ocpqe/hello-pod
          securityContext:
            allowPrivilegeEscalation: false
            capabilities:
              drop: [ALL]
    2. 创建 pod。

      $ oc create -f <pod-spec>.yaml
  2. 在创建其他 pod 时,配置以下参数:

    1. 使用以下内容创建 YAML 文件:

      apiVersion: v1
      kind: Pod
      metadata:
        name: security-s2-east
      # ...
      spec:
      # ...
        affinity: 1
          podAntiAffinity:
            preferredDuringSchedulingIgnoredDuringExecution: 2
            - weight: 100 3
              podAffinityTerm:
                labelSelector:
                  matchExpressions:
                  - key: security 4
                    values:
                    - S1
                    operator: In 5
                topologyKey: kubernetes.io/hostname 6
      # ...
      1
      添加 pod 反关联性。
      2
      配置 requiredDuringSchedulingIgnoredDuringExecution 参数或 preferredDuringSchedulingIgnoredDuringExecution 参数。
      3
      对于一个首选的规则,为节点指定一个 1-100 的权重。优先选择权重最高的节点。
      4
      指定必须满足的 keyvalues。如果您希望新 pod 不与其他 pod 一起调度,请使用与第一个 pod 上标签相同的 keyvalues 参数。
      5
      指定一个 operator。运算符可以是 InNotInExistsDoesNotExist。例如,使用运算符 In 来要求节点上存在该标签。
      6
      指定 topologyKey,它是一个预先填充的 Kubernetes 标签,用于表示这样的拓扑域。
    2. 创建 pod。

      $ oc create -f <pod-spec>.yaml

4.3.4. pod 关联性和反关联性规则示例

以下示例演示了 pod 关联性和 pod 反关联性。

4.3.4.1. Pod 关联性

以下示例演示了具有匹配标签和标签选择器的 pod 的 pod 关联性。

  • pod team4 具有标签 team:4

    apiVersion: v1
    kind: Pod
    metadata:
      name: team4
      labels:
         team: "4"
    # ...
    spec:
      securityContext:
        runAsNonRoot: true
        seccompProfile:
          type: RuntimeDefault
      containers:
      - name: ocp
        image: docker.io/ocpqe/hello-pod
        securityContext:
          allowPrivilegeEscalation: false
          capabilities:
            drop: [ALL]
    # ...
  • pod team4apodAffinity 下具有标签选择器 team:4

    apiVersion: v1
    kind: Pod
    metadata:
      name: team4a
    # ...
    spec:
      securityContext:
        runAsNonRoot: true
        seccompProfile:
          type: RuntimeDefault
      affinity:
        podAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
          - labelSelector:
              matchExpressions:
              - key: team
                operator: In
                values:
                - "4"
            topologyKey: kubernetes.io/hostname
      containers:
      - name: pod-affinity
        image: docker.io/ocpqe/hello-pod
        securityContext:
          allowPrivilegeEscalation: false
          capabilities:
            drop: [ALL]
    # ...
  • team4a pod 调度到与 team4 pod 相同的节点上。
4.3.4.2. Pod 反关联性

以下示例演示了具有匹配标签和标签选择器的 pod 的 pod 反关联性。

  • pod pod-s1 具有标签 security:s1

    apiVersion: v1
    kind: Pod
    metadata:
      name: pod-s1
      labels:
        security: s1
    # ...
    spec:
      securityContext:
        runAsNonRoot: true
        seccompProfile:
          type: RuntimeDefault
      containers:
      - name: ocp
        image: docker.io/ocpqe/hello-pod
        securityContext:
          allowPrivilegeEscalation: false
          capabilities:
            drop: [ALL]
    # ...
  • pod pod-s2podAntiAffinity 下具有标签选择器 security:s1

    apiVersion: v1
    kind: Pod
    metadata:
      name: pod-s2
    # ...
    spec:
      securityContext:
        runAsNonRoot: true
        seccompProfile:
          type: RuntimeDefault
      affinity:
        podAntiAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
          - labelSelector:
              matchExpressions:
              - key: security
                operator: In
                values:
                - s1
            topologyKey: kubernetes.io/hostname
      containers:
      - name: pod-antiaffinity
        image: docker.io/ocpqe/hello-pod
        securityContext:
          allowPrivilegeEscalation: false
          capabilities:
            drop: [ALL]
    # ...
  • pod pod-s2 无法调度到与 pod-s1 相同的节点上。
4.3.4.3. 无匹配标签的 Pod 反关联性

以下示例演示了在没有匹配标签和标签选择器时的 pod 的 pod 关联性。

  • pod pod-s1 具有标签 security:s1

    apiVersion: v1
    kind: Pod
    metadata:
      name: pod-s1
      labels:
        security: s1
    # ...
    spec:
      securityContext:
        runAsNonRoot: true
        seccompProfile:
          type: RuntimeDefault
      containers:
      - name: ocp
        image: docker.io/ocpqe/hello-pod
        securityContext:
          allowPrivilegeEscalation: false
          capabilities:
            drop: [ALL]
    # ...
  • pod pod-s2 具有标签选择器 security:s2

    apiVersion: v1
    kind: Pod
    metadata:
      name: pod-s2
    # ...
    spec:
      securityContext:
        runAsNonRoot: true
        seccompProfile:
          type: RuntimeDefault
      affinity:
        podAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
          - labelSelector:
              matchExpressions:
              - key: security
                operator: In
                values:
                - s2
            topologyKey: kubernetes.io/hostname
      containers:
      - name: pod-affinity
        image: docker.io/ocpqe/hello-pod
        securityContext:
          allowPrivilegeEscalation: false
          capabilities:
            drop: [ALL]
    # ...
  • 除非节点上具有带 security:s2 标签的 pod,否则不会调度 pod-s2。如果没有具有该标签的其他 pod,新 pod 会保持在待处理状态:

    输出示例

    NAME      READY     STATUS    RESTARTS   AGE       IP        NODE
    pod-s2    0/1       Pending   0          32s       <none>

4.3.5. 使用 pod 关联性和反关联性来控制安装 Operator 的位置

默认情况下,当安装 Operator 时,OpenShift Container Platform 会随机将 Operator pod 安装到其中一个 worker 节点。然而,在某些情况下,您可能希望该 pod 调度到特定节点或一组节点上。

以下示例描述了您可能希望将 Operator pod 调度到特定节点或一组节点的情况:

  • 如果 Operator 需要特定的平台,如 amd64arm64
  • 如果 Operator 需要特定的操作系统,如 Linux 或 Windows
  • 如果您希望 Operator 在同一个主机上或位于同一机架的主机上工作
  • 如果您希望 Operator 在整个基础架构中分散,以避免因为网络或硬件问题而停机

您可以通过向 Operator 的 Subscription 对象添加 pod 关联性或反关联性来控制 Operator pod 的安装位置。

以下示例演示了如何使用 pod 反关联性来防止从具有特定标签的 pod 中安装自定义 Metrics Autoscaler Operator:

将 Operator pod 放置到一个或多个特定节点的 Pod 关联性示例

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
  name: openshift-custom-metrics-autoscaler-operator
  namespace: openshift-keda
spec:
  name: my-package
  source: my-operators
  sourceNamespace: operator-registries
  config:
    affinity:
      podAffinity: 1
        requiredDuringSchedulingIgnoredDuringExecution:
        - labelSelector:
            matchExpressions:
            - key: app
              operator: In
              values:
              - test
          topologyKey: kubernetes.io/hostname
#...

1
将 Operator 的 pod 放置到具有 app=test 标签的 pod 的节点上的 pod 关联性。

防止 Operator pod 来自一个或多个特定节点的 Pod 反关联性示例

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
  name: openshift-custom-metrics-autoscaler-operator
  namespace: openshift-keda
spec:
  name: my-package
  source: my-operators
  sourceNamespace: operator-registries
  config:
    affinity:
      podAntiAffinity: 1
        requiredDuringSchedulingIgnoredDuringExecution:
        - labelSelector:
            matchExpressions:
            - key: cpu
              operator: In
              values:
              - high
          topologyKey: kubernetes.io/hostname
#...

1
一个 pod 反关联性,它可防止 Operator 的 pod 调度到具有 cpu=high 标签的 pod 的节点上。

流程

要控制 Operator pod 的放置,请完成以下步骤:

  1. 照常安装 Operator。
  2. 如果需要,请确保您的节点已标记为正确响应关联性。
  3. 编辑 Operator Subscription 对象以添加关联性:

    apiVersion: operators.coreos.com/v1alpha1
    kind: Subscription
    metadata:
      name: openshift-custom-metrics-autoscaler-operator
      namespace: openshift-keda
    spec:
      name: my-package
      source: my-operators
      sourceNamespace: operator-registries
      config:
        affinity:
          podAntiAffinity: 1
            requiredDuringSchedulingIgnoredDuringExecution:
              podAffinityTerm:
                labelSelector:
                  matchExpressions:
                  - key: kubernetes.io/hostname
                    operator: In
                    values:
                    - ip-10-0-185-229.ec2.internal
                topologyKey: topology.kubernetes.io/zone
    #...
    1
    添加 podAffinitypodAntiAffinity

验证

  • 要确保 pod 部署到特定的节点上,请运行以下命令:

    $ oc get pods -o wide

    输出示例

    NAME                                                  READY   STATUS    RESTARTS   AGE   IP            NODE                           NOMINATED NODE   READINESS GATES
    custom-metrics-autoscaler-operator-5dcc45d656-bhshg   1/1     Running   0          50s   10.131.0.20   ip-10-0-185-229.ec2.internal   <none>           <none>

4.4. 使用节点关联性规则控制节点上的 pod 放置

关联性是 pod 的一个属性,用于控制它们希望调度到的节点。

在 OpenShift Container Platform 中,节点关联性是由调度程序用来确定 pod 的可放置位置的一组规则。规则是使用节点中的自定义标签和 pod 中指定的选择器进行定义的。

4.4.1. 了解节点关联性

节点关联性允许 pod 指定与可以放置该 pod 的一组节点的关联性。节点对放置没有控制权。

例如,您可以将 pod 配置为仅在具有特定 CPU 或位于特定可用区的节点上运行。

节点关联性规则有两种,即必要规则和偏好规则。

必须满足必要规则,pod 才能调度到节点上。偏好规则指定在满足规则时调度程序会尝试强制执行规则,但不保证一定能强制执行成功。

注意

如果节点标签在运行时改变,使得不再满足 pod 上的节点关联性规则,该 pod 将继续在这个节点上运行。

您可以通过 Pod 规格文件配置节点关联性。您可以指定必要规则或偏好规则,或同时指定这两种规则。如果您同时指定,节点必须首先满足必要规则,然后尝试满足偏好规则。

下例中的 Pod spec 包含一条规则,要求 pod 放置到具有键为 e2e-az-NorthSouth 且值为 e2e-az-Northe2e-az-South 的标签的节点上:

具有节点关联性必要规则的 pod 配置文件示例

apiVersion: v1
kind: Pod
metadata:
  name: with-node-affinity
spec:
  securityContext:
    runAsNonRoot: true
    seccompProfile:
      type: RuntimeDefault
  affinity:
    nodeAffinity: 1
      requiredDuringSchedulingIgnoredDuringExecution: 2
        nodeSelectorTerms:
        - matchExpressions:
          - key: e2e-az-NorthSouth 3
            operator: In 4
            values:
            - e2e-az-North 5
            - e2e-az-South 6
  containers:
  - name: with-node-affinity
    image: docker.io/ocpqe/hello-pod
    securityContext:
      allowPrivilegeEscalation: false
      capabilities:
        drop: [ALL]
# ...

1
用于配置节点关联性的小节。
2
定义必要规则。
3 5 6
必须匹配键/值对(标签)才会应用该规则。
4
运算符表示节点上的标签和 Pod 规格中 matchExpression 参数的值集合之间的关系。这个值可以是 InNotInExistsDoesNotExistLtGt

下例中的节点规格包含一条偏好规则,其规定优先为 pod 选择具有键为 e2e-az-EastWest 且值为 e2e-az-Easte2e-az-West 的节点:

具有节点关联性偏好规则的 pod 配置文件示例

apiVersion: v1
kind: Pod
metadata:
  name: with-node-affinity
spec:
  securityContext:
    runAsNonRoot: true
    seccompProfile:
      type: RuntimeDefault
  affinity:
    nodeAffinity: 1
      preferredDuringSchedulingIgnoredDuringExecution: 2
      - weight: 1 3
        preference:
          matchExpressions:
          - key: e2e-az-EastWest 4
            operator: In 5
            values:
            - e2e-az-East 6
            - e2e-az-West 7
  containers:
  - name: with-node-affinity
    image: docker.io/ocpqe/hello-pod
    securityContext:
      allowPrivilegeEscalation: false
      capabilities:
        drop: [ALL]
# ...

1
用于配置节点关联性的小节。
2
定义偏好规则。
3
为偏好规则指定权重。优先选择权重最高的节点。
4 6 7
必须匹配键/值对(标签)才会应用该规则。
5
运算符表示节点上的标签和 Pod 规格中 matchExpression 参数的值集合之间的关系。这个值可以是 InNotInExistsDoesNotExistLtGt

没有明确的节点反关联性概念,但使用 NotInDoesNotExist 运算符就能实现这种行为。

注意

如果您在同一 pod 配置中同时使用节点关联性和节点选择器,请注意以下几点:

  • 如果同时配置了 nodeSelectornodeAffinity,则必须满足这两个条件时 pod 才能调度到候选节点。
  • 如果您指定了多个与 nodeAffinity 类型关联的 nodeSelectorTerms,那么其中一个 nodeSelectorTerms 满足时 pod 就能调度到节点上。
  • 如果您指定了多个与 nodeSelectorTerms 关联的 matchExpressions,那么只有所有 matchExpressions 都满足时 pod 才能调度到节点上。

4.4.2. 配置节点关联性必要规则

必须满足必要规则,pod 才能调度到节点上。

流程

以下步骤演示了一个简单的配置,此配置会创建一个节点,以及调度程序要放置到该节点上的 pod。

  1. 使用 oc label node 命令给节点添加标签:

    $ oc label node node1 e2e-az-name=e2e-az1
    提示

    您还可以应用以下 YAML 来添加标签:

    kind: Node
    apiVersion: v1
    metadata:
      name: <node_name>
      labels:
        e2e-az-name: e2e-az1
    #...
  2. 创建 pod 规格中具有特定标签的 pod:

    1. 使用以下内容创建 YAML 文件:

      注意

      您不能直接将关联性添加到调度的 pod 中。

      输出示例

      apiVersion: v1
      kind: Pod
      metadata:
        name: s1
      spec:
        affinity: 1
          nodeAffinity:
            requiredDuringSchedulingIgnoredDuringExecution: 2
              nodeSelectorTerms:
              - matchExpressions:
                - key: e2e-az-name 3
                  values:
                  - e2e-az1
                  - e2e-az2
                  operator: In 4
      #...

      1
      添加 pod 关联性。
      2
      配置 requiredDuringSchedulingIgnoredDuringExecution 参数。
      3
      指定必须满足的 keyvalues。如果希望新 pod 调度到您编辑的节点上,请使用与节点中标签相同的 keyvalues 参数:
      4
      指定一个 operator。运算符可以是 InNotInExistsDoesNotExist。例如,使用运算符 In 来要求节点上存在该标签。
    2. 创建 pod:

      $ oc create -f <file-name>.yaml

4.4.3. 配置首选的节点关联性规则

偏好规则指定在满足规则时调度程序会尝试强制执行规则,但不保证一定能强制执行成功。

流程

以下步骤演示了一个简单的配置,此配置会创建一个节点,以及调度程序尝试放置到该节点上的 pod。

  1. 使用 oc label node 命令给节点添加标签:

    $ oc label node node1 e2e-az-name=e2e-az3
  2. 创建具有特定标签的 pod:

    1. 使用以下内容创建 YAML 文件:

      注意

      您不能直接将关联性添加到调度的 pod 中。

      apiVersion: v1
      kind: Pod
      metadata:
        name: s1
      spec:
        affinity: 1
          nodeAffinity:
            preferredDuringSchedulingIgnoredDuringExecution: 2
            - weight: 3
              preference:
                matchExpressions:
                - key: e2e-az-name 4
                  values:
                  - e2e-az3
                  operator: In 5
      #...
      1
      添加 pod 关联性。
      2
      配置 preferredDuringSchedulingIgnoredDuringExecution 参数。
      3
      为节点指定一个数字为 1-100 的权重。优先选择权重最高的节点。
      4
      指定必须满足的 keyvalues。如果希望新 pod 调度到您编辑的节点上,请使用与节点中标签相同的 keyvalues 参数:
      5
      指定一个 operator。运算符可以是 InNotInExistsDoesNotExist。例如,使用运算符 In 来要求节点上存在该标签。
    2. 创建 pod。

      $ oc create -f <file-name>.yaml

4.4.4. 节点关联性规则示例

以下示例演示了节点关联性。

4.4.4.1. 具有匹配标签的节点关联性

以下示例演示了具有匹配标签的节点与 pod 的节点关联性:

  • Node1 节点具有标签 zone:us

    $ oc label node node1 zone=us
    提示

    您还可以应用以下 YAML 来添加标签:

    kind: Node
    apiVersion: v1
    metadata:
      name: <node_name>
      labels:
        zone: us
    #...
  • pod-s1 pod 在节点关联性必要规则下具有 zoneus 键/值对:

    $ cat pod-s1.yaml

    输出示例

    apiVersion: v1
    kind: Pod
    metadata:
      name: pod-s1
    spec:
      securityContext:
        runAsNonRoot: true
        seccompProfile:
          type: RuntimeDefault
      containers:
        - image: "docker.io/ocpqe/hello-pod"
          name: hello-pod
          securityContext:
            allowPrivilegeEscalation: false
            capabilities:
              drop: [ALL]
      affinity:
        nodeAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
            nodeSelectorTerms:
              - matchExpressions:
                - key: "zone"
                  operator: In
                  values:
                  - us
    #...

  • pod-s1 pod 可以调度到 Node1 上:

    $ oc get pod -o wide

    输出示例

    NAME     READY     STATUS       RESTARTS   AGE      IP      NODE
    pod-s1   1/1       Running      0          4m       IP1     node1

4.4.4.2. 没有匹配标签的节点关联性

以下示例演示了无匹配标签的节点与 pod 的节点关联性:

  • Node1 节点具有标签 zone:emea:

    $ oc label node node1 zone=emea
    提示

    您还可以应用以下 YAML 来添加标签:

    kind: Node
    apiVersion: v1
    metadata:
      name: <node_name>
      labels:
        zone: emea
    #...
  • pod-s1 pod 在节点关联性必要规则下具有 zoneus 键/值对:

    $ cat pod-s1.yaml

    输出示例

    apiVersion: v1
    kind: Pod
    metadata:
      name: pod-s1
    spec:
      securityContext:
        runAsNonRoot: true
        seccompProfile:
          type: RuntimeDefault
      containers:
        - image: "docker.io/ocpqe/hello-pod"
          name: hello-pod
          securityContext:
            allowPrivilegeEscalation: false
            capabilities:
              drop: [ALL]
      affinity:
        nodeAffinity:
          requiredDuringSchedulingIgnoredDuringExecution:
            nodeSelectorTerms:
              - matchExpressions:
                - key: "zone"
                  operator: In
                  values:
                  - us
    #...

  • pod-s1 pod 无法调度到 Node1 上:

    $ oc describe pod pod-s1

    输出示例

    ...
    
    Events:
     FirstSeen LastSeen Count From              SubObjectPath  Type                Reason
     --------- -------- ----- ----              -------------  --------            ------
     1m        33s      8     default-scheduler Warning        FailedScheduling    No nodes are available that match all of the following predicates:: MatchNodeSelector (1).

4.4.5. 使用节点关联性来控制安装 Operator 的位置

默认情况下,当安装 Operator 时,OpenShift Container Platform 会随机将 Operator pod 安装到其中一个 worker 节点。然而,在某些情况下,您可能希望该 pod 调度到特定节点或一组节点上。

以下示例描述了您可能希望将 Operator pod 调度到特定节点或一组节点的情况:

  • 如果 Operator 需要特定的平台,如 amd64arm64
  • 如果 Operator 需要特定的操作系统,如 Linux 或 Windows
  • 如果您希望 Operator 在同一个主机上或位于同一机架的主机上工作
  • 如果您希望 Operator 在整个基础架构中分散,以避免因为网络或硬件问题而停机

您可以通过在 Operator 的 Subscription 对象中添加节点关联性约束来控制 Operator pod 的安装位置。

以下示例演示了如何使用节点关联性将自定义 Metrics Autoscaler Operator 实例安装到集群中的特定节点:

将 Operator pod 放置到特定节点的节点关联性示例

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
  name: openshift-custom-metrics-autoscaler-operator
  namespace: openshift-keda
spec:
  name: my-package
  source: my-operators
  sourceNamespace: operator-registries
  config:
    affinity:
      nodeAffinity: 1
        requiredDuringSchedulingIgnoredDuringExecution:
          nodeSelectorTerms:
          - matchExpressions:
            - key: kubernetes.io/hostname
              operator: In
              values:
              - ip-10-0-163-94.us-west-2.compute.internal
#...

1
要求 Operator 的 pod 调度到名为 ip-10-0-163-94.us-west-2.compute.internal 的节点关联性。

将 Operator pod 放置到带有特定平台的节点关联性示例

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
  name: openshift-custom-metrics-autoscaler-operator
  namespace: openshift-keda
spec:
  name: my-package
  source: my-operators
  sourceNamespace: operator-registries
  config:
    affinity:
      nodeAffinity: 1
        requiredDuringSchedulingIgnoredDuringExecution:
          nodeSelectorTerms:
          - matchExpressions:
            - key: kubernetes.io/arch
              operator: In
              values:
              - arm64
            - key: kubernetes.io/os
              operator: In
              values:
              - linux
#...

1
要求 Operator 的 pod 调度到具有 kubernetes.io/arch=arm64kubernetes.io/os=linux 标签的节点上。

流程

要控制 Operator pod 的放置,请完成以下步骤:

  1. 照常安装 Operator。
  2. 如果需要,请确保您的节点已标记为正确响应关联性。
  3. 编辑 Operator Subscription 对象以添加关联性:

    apiVersion: operators.coreos.com/v1alpha1
    kind: Subscription
    metadata:
      name: openshift-custom-metrics-autoscaler-operator
      namespace: openshift-keda
    spec:
      name: my-package
      source: my-operators
      sourceNamespace: operator-registries
      config:
        affinity: 1
          nodeAffinity:
            requiredDuringSchedulingIgnoredDuringExecution:
              nodeSelectorTerms:
              - matchExpressions:
                - key: kubernetes.io/hostname
                  operator: In
                  values:
                  - ip-10-0-185-229.ec2.internal
    #...
    1
    添加 nodeAffinity

验证

  • 要确保 pod 部署到特定的节点上,请运行以下命令:

    $ oc get pods -o wide

    输出示例

    NAME                                                  READY   STATUS    RESTARTS   AGE   IP            NODE                           NOMINATED NODE   READINESS GATES
    custom-metrics-autoscaler-operator-5dcc45d656-bhshg   1/1     Running   0          50s   10.131.0.20   ip-10-0-185-229.ec2.internal   <none>           <none>

4.4.6. 其他资源

4.5. 将 pod 放置到过量使用的节点

处于过量使用(overcommited)状态时,容器计算资源请求和限制的总和超过系统中可用的资源。过量使用常用于开发环境,因为在这种环境中可以接受以牺牲保障性能来换取功能的情况。

请求和限制可让管理员允许和管理节点上资源的过量使用。调度程序使用请求来调度容器,并提供最低服务保证。限制约束节点上可以消耗的计算资源数量。

4.5.1. 了解过量使用

请求和限制可让管理员允许和管理节点上资源的过量使用。调度程序使用请求来调度容器,并提供最低服务保证。限制约束节点上可以消耗的计算资源数量。

OpenShift Container Platform 管理员可以通过配置主控机(master)来覆盖开发人员容器上设置的请求和限制之间的比率,来控制过量使用的程度并管理节点上的容器密度。与项目一级上的用于指定限制和默认值的 LimitRange 对象一起使用,可以调整容器限制和请求以达到所需的过量使用程度。

注意

如果没有在容器中设定限制,则这些覆盖无效。创建一个带有默认限制(基于每个独立的项目或在项目模板中)的 LimitRange 对象,以确保能够应用覆盖。

在进行这些覆盖后,容器限制和请求必须仍需要满足项目中的 LimitRange 对象的要求。这可能会导致 pod 被禁止的情况。例如,开发人员指定了一个接近最小限制的限制,然后其请求被覆盖为低于最小限制。这个问题在以后会加以解决,但目前而言,请小心地配置此功能和 LimitRange 对象。

4.5.2. 了解节点过量使用

在过量使用的环境中,务必要正确配置节点,以提供最佳的系统行为。

当节点启动时,它会确保为内存管理正确设置内核可微调标识。除非物理内存不足,否则内核应该永不会在内存分配时失败。

为确保这一行为,OpenShift Container Platform 通过将 vm.overcommit_memory 参数设置为 1 来覆盖默认操作系统设置,从而将内核配置为始终过量使用内存。

OpenShift Container Platform 还通过将 vm.panic_on_oom 参数设置为 0,将内核配置为不会在内存不足时崩溃。设置为 0 可告知内核在内存不足 (OOM) 情况下调用 oom_killer,以根据优先级终止进程

您可以通过对节点运行以下命令来查看当前的设置:

$ sysctl -a |grep commit

输出示例

#...
vm.overcommit_memory = 0
#...

$ sysctl -a |grep panic

输出示例

#...
vm.panic_on_oom = 0
#...

注意

节点上应该已设置了上述标记,不需要进一步操作。

您还可以为每个节点执行以下配置:

  • 使用 CPU CFS 配额禁用或强制实施 CPU 限制
  • 为系统进程保留资源
  • 为不同的服务质量等级保留内存

4.6. 使用节点污点控制 pod 放置

通过污点和容限,节点可以控制哪些 pod 应该(或不应该)调度到节点上。

4.6.1. 了解污点和容限

通过使用污点(taint),节点可以拒绝调度 pod,除非 pod 具有匹配的容限(toleration)

您可以通过节点规格(NodeSpec)将污点应用到节点,并通过 Pod 规格(PodSpec)将容限应用到 pod。当您应用污点时,调度程序无法将 pod 放置到该节点上,除非 pod 可以容限该污点。

节点规格中的污点示例

apiVersion: v1
kind: Node
metadata:
  name: my-node
#...
spec:
  taints:
  - effect: NoExecute
    key: key1
    value: value1
#...

Pod 规格中的容限示例

apiVersion: v1
kind: Pod
metadata:
  name: my-pod
#...
spec:
  tolerations:
  - key: "key1"
    operator: "Equal"
    value: "value1"
    effect: "NoExecute"
    tolerationSeconds: 3600
#...

污点与容限由 key、value 和 effect 组成。

表 4.1. 污点和容限组件
参数描述

key

key 是任意字符串,最多 253 个字符。key 必须以字母或数字开头,可以包含字母、数字、连字符、句点和下划线。

value

value 是任意字符串,最多 63 个字符。value 必须以字母或数字开头,可以包含字母、数字、连字符、句点和下划线。

effect

effect 的值包括:

NoSchedule [1]

  • 与污点不匹配的新 pod 不会调度到该节点上。
  • 该节点上现有的 pod 会保留。

PreferNoSchedule

  • 与污点不匹配的新 pod 可以调度到该节点上,但调度程序会尽量不这样调度。
  • 该节点上现有的 pod 会保留。

NoExecute

  • 与污点不匹配的新 pod 无法调度到该节点上。
  • 节点上没有匹配容限的现有 pod 将被移除。

operator

Equal

key/value/effect 参数必须匹配。这是默认值。

Exists

key/effect 参数必须匹配。您必须保留一个空的 value 参数,这将匹配任何值。

  1. 如果向 control plane 节点添加了一个 NoSchedule 污点,节点必须具有 node-role.kubernetes.io/master=:NoSchedule 污点,这默认会添加。

    例如:

    apiVersion: v1
    kind: Node
    metadata:
      annotations:
        machine.openshift.io/machine: openshift-machine-api/ci-ln-62s7gtb-f76d1-v8jxv-master-0
        machineconfiguration.openshift.io/currentConfig: rendered-master-cdc1ab7da414629332cc4c3926e6e59c
      name: my-node
    #...
    spec:
      taints:
      - effect: NoSchedule
        key: node-role.kubernetes.io/master
    #...

容限与污点匹配:

  • 如果 operator 参数设为 Equal

    • key 参数相同;
    • value 参数相同;
    • effect 参数相同。
  • 如果 operator 参数设为 Exists

    • key 参数相同;
    • effect 参数相同。

OpenShift Container Platform 中内置了以下污点:

  • node.kubernetes.io/not-ready:节点未就绪。这与节点状况 Ready=False 对应。
  • node.kubernetes.io/unreachable:节点无法从节点控制器访问。这与节点状况 Ready=Unknown 对应。
  • node.kubernetes.io/memory-pressure:节点存在内存压力问题。这与节点状况 MemoryPressure=True 对应。
  • node.kubernetes.io/disk-pressure:节点存在磁盘压力问题。这与节点状况 DiskPressure=True 对应。
  • node.kubernetes.io/network-unavailable:节点网络不可用。
  • node.kubernetes.io/unschedulable:节点不可调度。
  • node.cloudprovider.kubernetes.io/uninitialized:当节点控制器通过外部云提供商启动时,在节点上设置这个污点来将其标记为不可用。在云控制器管理器中的某个控制器初始化这个节点后,kubelet 会移除此污点。
  • node.kubernetes.io/pid-pressure :节点具有 pid 压力。这与节点状况 PIDPressure=True 对应。

    重要

    OpenShift Container Platform 不设置默认的 pid.available evictionHard

4.6.1.1. 了解如何使用容限秒数来延迟 pod 驱除

您可以通过在 Pod 规格或 MachineSet 对象中指定 tolerationSeconds 参数,指定 pod 在被驱除前可以保持与节点绑定的时长。如果将具有 NoExecute effect 的污点添加到节点,则容限污点(包含 tolerationSeconds 参数)的 pod,在此期限内 pod 不会被驱除。