7.3. 调度 NUMA 感知工作负载
运行对延迟敏感工作负载的集群通常具有性能配置集,以帮助最小化工作负载延迟并优化性能。NUMA 感知调度程序根据可用的节点 NUMA 资源部署工作负载,并遵循应用到节点的任何性能配置集设置。NUMA 感知部署和工作负载的性能配置集相结合,确保以最大化性能的方式调度工作负载。
要使 NUMA Resources Operator 完全可正常工作,您必须部署 NUMAResourcesOperator
自定义资源和 NUMA 感知辅助 pod 调度程序。
7.3.1. 创建 NUMAResourcesOperator 自定义资源
安装 NUMA Resources Operator 后,创建 NUMAResourcesOperator
自定义资源 (CR) 来指示 NUMA Resources Operator 安装支持 NUMA 感知调度程序所需的所有集群基础架构,包括守护进程集和 API。
先决条件
-
安装 OpenShift CLI(
oc
)。 -
以具有
cluster-admin
特权的用户身份登录。 - 安装 NUMA Resources Operator。
流程
创建
NUMAResourcesOperator
自定义资源:将以下最小所需的 YAML 文件示例保存为
nrop.yaml
:apiVersion: nodetopology.openshift.io/v1 kind: NUMAResourcesOperator metadata: name: numaresourcesoperator spec: nodeGroups: - machineConfigPoolSelector: matchLabels: pools.operator.machineconfiguration.openshift.io/worker: "" 1
- 1
- 这应该与您要在其上配置 NUMA Resources Operator 的
MachineConfigPool
匹配。例如,您可能已创建了名为worker-cnf
的MachineConfigPool
,它指定运行电信工作负载的一组节点。
运行以下命令来创建
NUMAResourcesOperator
CR:$ oc create -f nrop.yaml
注意创建
NUMAResourcesOperator
会触发相应机器配置池上的重启,因此受影响的节点。
验证
运行以下命令,验证 NUMA Resources Operator 是否已成功部署:
$ oc get numaresourcesoperators.nodetopology.openshift.io
输出示例
NAME AGE numaresourcesoperator 27s
几分钟后,运行以下命令验证所需资源是否已成功部署:
$ oc get all -n openshift-numaresources
输出示例
NAME READY STATUS RESTARTS AGE pod/numaresources-controller-manager-7d9d84c58d-qk2mr 1/1 Running 0 12m pod/numaresourcesoperator-worker-7d96r 2/2 Running 0 97s pod/numaresourcesoperator-worker-crsht 2/2 Running 0 97s pod/numaresourcesoperator-worker-jp9mw 2/2 Running 0 97s
7.3.2. 部署 NUMA 感知辅助 pod 调度程序
安装 NUMA Resources Operator 后,执行以下操作来部署 NUMA 感知辅助 pod 调度程序:
流程
创建
NUMAResourcesScheduler
自定义资源来部署 NUMA 感知自定义 pod 调度程序:将以下最小 YAML 保存到
nro-scheduler.yaml
文件中:apiVersion: nodetopology.openshift.io/v1 kind: NUMAResourcesScheduler metadata: name: numaresourcesscheduler spec: imageSpec: "registry.redhat.io/openshift4/noderesourcetopology-scheduler-rhel9:v4.16"
运行以下命令来创建
NUMAResourcesScheduler
CR:$ oc create -f nro-scheduler.yaml
几秒钟后,运行以下命令确认已成功部署所需资源:
$ oc get all -n openshift-numaresources
输出示例
NAME READY STATUS RESTARTS AGE pod/numaresources-controller-manager-7d9d84c58d-qk2mr 1/1 Running 0 12m pod/numaresourcesoperator-worker-7d96r 2/2 Running 0 97s pod/numaresourcesoperator-worker-crsht 2/2 Running 0 97s pod/numaresourcesoperator-worker-jp9mw 2/2 Running 0 97s pod/secondary-scheduler-847cb74f84-9whlm 1/1 Running 0 10m NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE daemonset.apps/numaresourcesoperator-worker 3 3 3 3 3 node-role.kubernetes.io/worker= 98s NAME READY UP-TO-DATE AVAILABLE AGE deployment.apps/numaresources-controller-manager 1/1 1 1 12m deployment.apps/secondary-scheduler 1/1 1 1 10m NAME DESIRED CURRENT READY AGE replicaset.apps/numaresources-controller-manager-7d9d84c58d 1 1 1 12m replicaset.apps/secondary-scheduler-847cb74f84 1 1 1 10m
7.3.3. 配置单个 NUMA 节点策略
NUMA Resources Operator 要求在集群中配置单个 NUMA 节点策略。这可以通过创建并应用性能配置集或配置 KubeletConfig 来实现。
配置单个 NUMA 节点策略的首选方法是应用性能配置集。您可以使用 Performance Profile Creator (PPC) 工具来创建性能配置集。如果在集群中创建了性能配置集,它会自动创建 KubeletConfig
和 tuned
配置集等其他调优组件。
有关创建性能配置集的更多信息,请参阅 "添加资源" 部分中的 "About the Performance Profile Creator"。
其他资源
7.3.4. 性能配置集示例
此 YAML 示例显示使用性能配置集创建器(PPC) 工具创建的性能配置集:
apiVersion: performance.openshift.io/v2 kind: PerformanceProfile metadata: name: performance spec: cpu: isolated: "3" reserved: 0-2 machineConfigPoolSelector: pools.operator.machineconfiguration.openshift.io/worker: "" 1 nodeSelector: node-role.kubernetes.io/worker: "" numa: topologyPolicy: single-numa-node 2 realTimeKernel: enabled: true workloadHints: highPowerConsumption: true perPodPowerManagement: false realTime: true
7.3.5. 创建 KubeletConfig CRD
配置单个 NUMA 节点策略的建议方法是应用性能配置集。另一种方法是创建并应用 KubeletConfig
自定义资源 (CR),如下所示。
流程
创建
KubeletConfig
自定义资源 (CR) 来为机器配置集配置 pod admittance 策略:将以下 YAML 保存到
nro-kubeletconfig.yaml
文件中:apiVersion: machineconfiguration.openshift.io/v1 kind: KubeletConfig metadata: name: worker-tuning spec: machineConfigPoolSelector: matchLabels: pools.operator.machineconfiguration.openshift.io/worker: "" 1 kubeletConfig: cpuManagerPolicy: "static" 2 cpuManagerReconcilePeriod: "5s" reservedSystemCPUs: "0,1" 3 memoryManagerPolicy: "Static" 4 evictionHard: memory.available: "100Mi" kubeReserved: memory: "512Mi" reservedMemory: - numaNode: 0 limits: memory: "1124Mi" systemReserved: memory: "512Mi" topologyManagerPolicy: "single-numa-node" 5
运行以下命令来创建
KubeletConfig
CR:$ oc create -f nro-kubeletconfig.yaml
注意应用性能配置集或
KubeletConfig
会自动触发节点重新引导。如果没有触发重启,您可以通过查看处理节点组的KubeletConfig
中的标签来排除此问题。
7.3.6. 使用 NUMA 感知调度程序调度工作负载
现在,安装了 topo-aware-scheduler
,会应用 NUMAResourcesOperator
和 NUMAResourcesScheduler
CR,并且集群具有匹配的性能配置集或 kubeletconfig
,您可以使用部署 CR 使用 NUMA 感知调度程序来调度工作负载,该 CR 可以指定最低所需的资源来处理工作负载。
以下示例部署使用 NUMA 感知调度示例工作负载。
先决条件
-
安装 OpenShift CLI(
oc
)。 -
以具有
cluster-admin
特权的用户身份登录。
流程
运行以下命令,获取集群中部署的 NUMA 感知调度程序名称:
$ oc get numaresourcesschedulers.nodetopology.openshift.io numaresourcesscheduler -o json | jq '.status.schedulerName'
输出示例
"topo-aware-scheduler"
创建一个
Deployment
CR,它使用名为topo-aware-scheduler
的调度程序,例如:将以下 YAML 保存到
nro-deployment.yaml
文件中:apiVersion: apps/v1 kind: Deployment metadata: name: numa-deployment-1 namespace: openshift-numaresources spec: replicas: 1 selector: matchLabels: app: test template: metadata: labels: app: test spec: schedulerName: topo-aware-scheduler 1 containers: - name: ctnr image: quay.io/openshifttest/hello-openshift:openshift imagePullPolicy: IfNotPresent resources: limits: memory: "100Mi" cpu: "10" requests: memory: "100Mi" cpu: "10" - name: ctnr2 image: registry.access.redhat.com/rhel:latest imagePullPolicy: IfNotPresent command: ["/bin/sh", "-c"] args: [ "while true; do sleep 1h; done;" ] resources: limits: memory: "100Mi" cpu: "8" requests: memory: "100Mi" cpu: "8"
- 1
schedulerName
必须与集群中部署的 NUMA 感知调度程序的名称匹配,如topo-aware-scheduler
。
运行以下命令来创建
Deployment
CR:$ oc create -f nro-deployment.yaml
验证
验证部署是否成功:
$ oc get pods -n openshift-numaresources
输出示例
NAME READY STATUS RESTARTS AGE numa-deployment-1-6c4f5bdb84-wgn6g 2/2 Running 0 5m2s numaresources-controller-manager-7d9d84c58d-4v65j 1/1 Running 0 18m numaresourcesoperator-worker-7d96r 2/2 Running 4 43m numaresourcesoperator-worker-crsht 2/2 Running 2 43m numaresourcesoperator-worker-jp9mw 2/2 Running 2 43m secondary-scheduler-847cb74f84-fpncj 1/1 Running 0 18m
运行以下命令,验证
topo-aware-scheduler
是否在调度部署的 pod:$ oc describe pod numa-deployment-1-6c4f5bdb84-wgn6g -n openshift-numaresources
输出示例
Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal Scheduled 4m45s topo-aware-scheduler Successfully assigned openshift-numaresources/numa-deployment-1-6c4f5bdb84-wgn6g to worker-1
注意请求的资源超过可用于调度的部署将失败,并显示
MinimumReplicasUnavailable
错误。当所需资源可用时,部署会成功。Pod 会一直处于Pending
状态,直到所需资源可用。验证是否为节点列出了预期的分配资源。
运行以下命令,识别运行部署 pod 的节点:
$ oc get pods -n openshift-numaresources -o wide
输出示例
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES numa-deployment-1-6c4f5bdb84-wgn6g 0/2 Running 0 82m 10.128.2.50 worker-1 <none> <none>
运行以下命令,使用运行部署 Pod 的节点的名称。
$ oc describe noderesourcetopologies.topology.node.k8s.io worker-1
输出示例
... Zones: Costs: Name: node-0 Value: 10 Name: node-1 Value: 21 Name: node-0 Resources: Allocatable: 39 Available: 21 1 Capacity: 40 Name: cpu Allocatable: 6442450944 Available: 6442450944 Capacity: 6442450944 Name: hugepages-1Gi Allocatable: 134217728 Available: 134217728 Capacity: 134217728 Name: hugepages-2Mi Allocatable: 262415904768 Available: 262206189568 Capacity: 270146007040 Name: memory Type: Node
- 1
- 由于已分配给有保证 pod 的资源,
可用的
容量会减少。
通过保证 pod 使用的资源从
noderesourcetopologies.topology.node.k8s.io
中列出的可用节点资源中减去。
对具有
Best-effort
或Burstable
服务质量 (qosClass
) 的pod 的资源分配不会反映在noderesourcetopologies.topology.node.k8s.io
下的 NUMA 节点资源中。如果 pod 消耗的资源没有反映在节点资源计算中,请验证 pod 的Guaranteed
具有qosClass
,且 CPU 请求是一个整数值,而不是十进制值。您可以运行以下命令来验证 pod 是否具有Guaranteed
的qosClass
:$ oc get pod numa-deployment-1-6c4f5bdb84-wgn6g -n openshift-numaresources -o jsonpath="{ .status.qosClass }"
输出示例
Guaranteed