搜索

14.5. 优化虚拟机 CPU 性能

download PDF

与主机中的物理 CPU 非常相似,vCPU 对虚拟机 (VM) 性能至关重要。因此,优化 vCPU 会对虚拟机的资源效率产生重大影响。优化 vCPU:

  1. 调整分配给虚拟机的主机 CPU 数。您可以使用 CLIWeb 控制台进行此操作。
  2. 确保 vCPU 模型与主机的 CPU 型号一致。例如,将 testguest1 虚拟机设置为使用主机的 CPU 型号:

    # virt-xml testguest1 --edit --cpu host-model
  3. 停止内核同页合并(KSM)
  4. 如果您的主机使用非统一内存访问(NUMA),您也可以为其虚拟机 配置 NUMA。这会尽可能将主机的 CPU 和内存进程映射到虚拟机的 CPU 和内存进程上。实际上,NUMA 调优为 vCPU 提供了对分配给虚拟机的系统内存更精简的访问,这可以提高 vCPU 的处理效率。

    详情请参阅 在虚拟机中配置 NUMA vCPU 性能调整场景示例

14.5.1. 使用命令行界面添加和删除虚拟 CPU

要提高或优化虚拟机 (VM) 的 CPU 性能,您可以添加或删除分配给虚拟机的虚拟 CPU (vCPU) 。

当在运行的虚拟机上执行时,这也被称为 vCPU 热插和热拔。但请注意,vCPU 热拔在 RHEL 8 中不支持,红帽强烈反对使用它。

先决条件

  • 可选:查看目标虚拟机中的 vCPU 的当前状态。例如,显示 testguest 虚拟机上的 vCPU 数量:

    # virsh vcpucount testguest
    maximum      config         4
    maximum      live           2
    current      config         2
    current      live           1

    此输出显示 testguest 目前使用 1 个 vCPU,另外 1 个 vCPu 可以热插入以提高虚拟机性能。但是,重新引导后,vCPU testguest 使用的数量会改为 2,而且能够热插 2 个 vCPU。

流程

  1. 调整可以附加到虚拟机的最大 vCPU 数量,其在虚拟机下次启动时生效。

    例如,要将 testguest 虚拟机的最大 vCPU 数量增加到 8:

    # virsh setvcpus testguest 8 --maximum --config

    请注意,最大值可能会受 CPU 拓扑、主机硬件、hypervisor 和其他因素的限制。

  2. 将当前附加到虚拟机的 vCPU 数量调整到上一步中配置的最大值。例如:

    • 将附加到正在运行的 testguest 虚拟机的 vCPU 数量增加到 4:

      # virsh setvcpus testguest 4 --live

      这会增加虚拟机的性能和主机的 testguest 负载占用,直到虚拟机下次引导为止。

    • 将附加到 testguest 虚拟机的 vCPU 数量永久减少至 1:

      # virsh setvcpus testguest 1 --config

      这会降低虚拟机的性能和 testguest 的主机负载占用。但是,如果需要可热插入虚拟机以暂时提高性能。

验证

  • 确认虚拟机的 vCPU 的当前状态反映了您的更改。

    # virsh vcpucount testguest
    maximum      config         8
    maximum      live           4
    current      config         1
    current      live           4

14.5.2. 使用 Web 控制台管理虚拟 CPU

通过使用 RHEL 8 web 控制台,您可以查看并配置 web 控制台连接的虚拟机所使用的虚拟 CPU。

前提条件

步骤

  1. 登录到 RHEL 8 web 控制台。

    详情请参阅 登录到 web 控制台

  2. Virtual Machines 界面中,点您要查看其信息的虚拟机。

    此时将打开一个新页面,其中包含关于所选虚拟机基本信息的概述部分,以及用于访问虚拟机的图形界面的控制台部分。

  3. 点概述窗格中 vCPU 数旁边的 edit

    此时会出现 vCPU 详情对话框。

    显示 VM CPU 详情对话框的图片。
  1. 为所选虚拟机配置虚拟 CPU。

    • vCPU 数量 - 当前正在使用的 vCPU 数量。

      注意

      vCPU 数量不能超过 vCPU 的最大值。

    • vCPU 最大 - 可为虚拟机配置的最大虚拟 CPU 数。如果这个值大于 vCPU Count,可以为虚拟机附加额外的 vCPU。
    • 插槽 - 向虚拟机公开的插槽数量。
    • 每个插槽的内核数 - 向虚拟机公开的每个插槽的内核数。
    • 每个内核的线程数 - 向虚拟机公开的每个内核的线程数。

      请注意, 插槽每个插槽的内核数每个内核的线程数选项调整了虚拟机的 CPU 拓扑。这可能对 vCPU 性能有好处,但可能会影响客户机操作系统中某些软件的功能。如果您的部署不需要不同的设置,请保留默认值。

  2. 应用

    配置了虚拟机的虚拟 CPU。

    注意

    对虚拟 CPU 设置的更改仅在重启虚拟机后生效。

14.5.3. 在虚拟机中配置 NUMA

以下方法可用于配置 RHEL 8 主机上虚拟机(VM)的非统一内存访问(NUMA)设置。

先决条件

  • 主机是一个与 NUMA 兼容的机器。要检测是否是这种情况,请使用 virsh nodeinfo 命令,并查看 NUMA cell (s) 行:

    # virsh nodeinfo
    CPU model:           x86_64
    CPU(s):              48
    CPU frequency:       1200 MHz
    CPU socket(s):       1
    Core(s) per socket:  12
    Thread(s) per core:  2
    NUMA cell(s):        2
    Memory size:         67012964 KiB

    如果行的值为 2 或更高,则主机与 NUMA 兼容。

流程

为便于使用,您可以使用自动化工具和服务设置虚拟机的 NUMA 配置。但是,手动 NUMA 设置可能会显著提高性能。

自动方法

  • 将虚拟机的 NUMA 策略设为 Preferred。例如,对于 testguest5 虚拟机要这样做:

    # virt-xml testguest5 --edit --vcpus placement=auto
    # virt-xml testguest5 --edit --numatune mode=preferred
  • 在主机上启用自动 NUMA 均衡:

    # echo 1 > /proc/sys/kernel/numa_balancing
  • 启动 numad 服务,来自动将 VM CPU 与内存资源对齐。

    # systemctl start numad

手动方法

  1. 将特定 vCPU 线程固定到特定主机 CPU 或者 CPU 范围。在非 NUMA 主机和虚拟机上也可以这样做,我们推荐您使用一种安全的方法来提高 vCPU 性能。

    例如,以下命令将 testguest6 虚拟机的 vCPU 线程 0 到 5 分别固定到主机 CPU 1、3、5、7、9 和 11:

    # virsh vcpupin testguest6 0 1
    # virsh vcpupin testguest6 1 3
    # virsh vcpupin testguest6 2 5
    # virsh vcpupin testguest6 3 7
    # virsh vcpupin testguest6 4 9
    # virsh vcpupin testguest6 5 11

    之后,您可以验证操作是否成功:

    # virsh vcpupin testguest6
    VCPU   CPU Affinity
    ----------------------
    0      1
    1      3
    2      5
    3      7
    4      9
    5      11
  2. 固定 vCPU 线程后,您还可以将与指定虚拟机关联的 QEMU 进程线程固定到特定的主机 CPU 或 CPU 范围。例如:以下命令将 testguest6 的 QEMU 进程线程 固定到 CPU 13 和 15,确认成功:

    # virsh emulatorpin testguest6 13,15
    # virsh emulatorpin testguest6
    emulator: CPU Affinity
    ----------------------------------
           *: 13,15
  3. 最后,您也可以指定将哪些主机 NUMA 节点专门分配给某个虚拟机。这可提高虚拟机 vCPU 的主机内存用量。例如,以下命令将 testguest6 设置为使用主机 NUMA 节点 3 到 5,确认成功:

    # virsh numatune testguest6 --nodeset 3-5
    # virsh numatune testguest6
注意

为了获得最佳性能,建议使用以上列出的所有手动调优方法

14.5.4. vCPU 性能调整场景示例

要获得最佳 vCPU 性能,红帽建议同时使用手动 vcpupinemulatorpinnumatune 设置,例如在以下场景中。

起始场景

  • 您的主机有以下与硬件相关的信息:

    • 2 个 NUMA 节点
    • 每个节点上的 3 个 CPU 内核
    • 每个内核有 2 个线程

    此类机器的 virsh nodeinfo 输出类似于:

    # virsh nodeinfo
    CPU model:           x86_64
    CPU(s):              12
    CPU frequency:       3661 MHz
    CPU socket(s):       2
    Core(s) per socket:  3
    Thread(s) per core:  2
    NUMA cell(s):        2
    Memory size:         31248692 KiB
  • 您打算将现有的虚拟机修改为有 8 个 vCPU,这意味着单个 NUMA 节点无法容纳它。

    因此,您应该在每个 NUMA 节点上分发 4 个 vCPU,并使 vCPU 拓扑尽可能接近主机拓扑。这意味着,作为给定物理 CPU 的同级线程运行的 vCPU 应该固定到同一核上的主机线程。详情请查看以下解决方案:

解决方案

  1. 获取有关主机拓扑的信息:

    # virsh capabilities

    输出应包含类似如下的部分:

    <topology>
      <cells num="2">
        <cell id="0">
          <memory unit="KiB">15624346</memory>
          <pages unit="KiB" size="4">3906086</pages>
          <pages unit="KiB" size="2048">0</pages>
          <pages unit="KiB" size="1048576">0</pages>
          <distances>
            <sibling id="0" value="10" />
            <sibling id="1" value="21" />
          </distances>
          <cpus num="6">
            <cpu id="0" socket_id="0" core_id="0" siblings="0,3" />
            <cpu id="1" socket_id="0" core_id="1" siblings="1,4" />
            <cpu id="2" socket_id="0" core_id="2" siblings="2,5" />
            <cpu id="3" socket_id="0" core_id="0" siblings="0,3" />
            <cpu id="4" socket_id="0" core_id="1" siblings="1,4" />
            <cpu id="5" socket_id="0" core_id="2" siblings="2,5" />
          </cpus>
        </cell>
        <cell id="1">
          <memory unit="KiB">15624346</memory>
          <pages unit="KiB" size="4">3906086</pages>
          <pages unit="KiB" size="2048">0</pages>
          <pages unit="KiB" size="1048576">0</pages>
          <distances>
            <sibling id="0" value="21" />
            <sibling id="1" value="10" />
          </distances>
          <cpus num="6">
            <cpu id="6" socket_id="1" core_id="3" siblings="6,9" />
            <cpu id="7" socket_id="1" core_id="4" siblings="7,10" />
            <cpu id="8" socket_id="1" core_id="5" siblings="8,11" />
            <cpu id="9" socket_id="1" core_id="3" siblings="6,9" />
            <cpu id="10" socket_id="1" core_id="4" siblings="7,10" />
            <cpu id="11" socket_id="1" core_id="5" siblings="8,11" />
          </cpus>
        </cell>
      </cells>
    </topology>
  2. 可选: 使用适用的工具和实用程序测试虚拟机的性能
  3. 在主机上设置并挂载 1 GiB 巨页:

    注意

    1 GiB 巨页可能不适用于某些架构和配置,如 ARM 64 主机。

    1. 在主机的内核命令行中添加以下行:

      default_hugepagesz=1G hugepagesz=1G
    2. 使用以下内容创建 /etc/systemd/system/hugetlb-gigantic-pages.service 文件:

      [Unit]
      Description=HugeTLB Gigantic Pages Reservation
      DefaultDependencies=no
      Before=dev-hugepages.mount
      ConditionPathExists=/sys/devices/system/node
      ConditionKernelCommandLine=hugepagesz=1G
      
      [Service]
      Type=oneshot
      RemainAfterExit=yes
      ExecStart=/etc/systemd/hugetlb-reserve-pages.sh
      
      [Install]
      WantedBy=sysinit.target
    3. 使用以下内容创建 /etc/systemd/hugetlb-reserve-pages.sh 文件:

      #!/bin/sh
      
      nodes_path=/sys/devices/system/node/
      if [ ! -d $nodes_path ]; then
      	echo "ERROR: $nodes_path does not exist"
      	exit 1
      fi
      
      reserve_pages()
      {
      	echo $1 > $nodes_path/$2/hugepages/hugepages-1048576kB/nr_hugepages
      }
      
      reserve_pages 4 node1
      reserve_pages 4 node2

      这会从 node1 保留 4 个 1GiB 巨页,并在 node2 中保留 4 个 1GiB 巨页。

    4. 使在上一步中创建的脚本可执行:

      # chmod +x /etc/systemd/hugetlb-reserve-pages.sh
    5. 在引导时启用巨页保留:

      # systemctl enable hugetlb-gigantic-pages
  4. 使用 virsh edit 命令编辑您要优化的虚拟机的 XML 配置,在本例中为 super-VM

    # virsh edit super-vm
  5. 用以下方法调整虚拟机的 XML 配置:

    1. 将虚拟机设置为使用 8 个静态 vCPU。使用 <vcpu/> 元素来执行此操作。
    2. 将每个 vCPU 线程固定到拓扑中镜像的对应主机 CPU 线程。为此,请在 <cputune> 部分中使用 <vcpupin/> 元素。

      请注意,如上面 virsh capabilities 工具所示,主机 CPU 线程在各自的内核中不是按顺序排序的。此外,vCPU 线程应固定到同一 NUMA 节点上最多可用的主机核集合。有关表图,请查看以下 示例拓扑 部分。

      步骤 a. 和 b. 的 XML 配置类似:

      <cputune>
        <vcpupin vcpu='0' cpuset='1'/>
        <vcpupin vcpu='1' cpuset='4'/>
        <vcpupin vcpu='2' cpuset='2'/>
        <vcpupin vcpu='3' cpuset='5'/>
        <vcpupin vcpu='4' cpuset='7'/>
        <vcpupin vcpu='5' cpuset='10'/>
        <vcpupin vcpu='6' cpuset='8'/>
        <vcpupin vcpu='7' cpuset='11'/>
        <emulatorpin cpuset='6,9'/>
      </cputune>
    3. 将虚拟机设置为使用 1 GiB 巨页:

      <memoryBacking>
        <hugepages>
          <page size='1' unit='GiB'/>
        </hugepages>
      </memoryBacking>
    4. 配置虚拟机的 NUMA 节点,使其使用主机上对应的 NUMA 节点的内存。要做到这一点,请在 <numatune/> 部分中使用 <memnode/> 元素:

      <numatune>
        <memory mode="preferred" nodeset="1"/>
        <memnode cellid="0" mode="strict" nodeset="0"/>
        <memnode cellid="1" mode="strict" nodeset="1"/>
      </numatune>
    5. 确保 CPU 模式设为 host-passthrough,且 CPU 在 passthrough 模式下使用缓存:

      <cpu mode="host-passthrough">
        <topology sockets="2" cores="2" threads="2"/>
        <cache mode="passthrough"/>
  6. 确认生成的虚拟机 XML 配置包含类似如下内容:

    [...]
      <memoryBacking>
        <hugepages>
          <page size='1' unit='GiB'/>
        </hugepages>
      </memoryBacking>
      <vcpu placement='static'>8</vcpu>
      <cputune>
        <vcpupin vcpu='0' cpuset='1'/>
        <vcpupin vcpu='1' cpuset='4'/>
        <vcpupin vcpu='2' cpuset='2'/>
        <vcpupin vcpu='3' cpuset='5'/>
        <vcpupin vcpu='4' cpuset='7'/>
        <vcpupin vcpu='5' cpuset='10'/>
        <vcpupin vcpu='6' cpuset='8'/>
        <vcpupin vcpu='7' cpuset='11'/>
        <emulatorpin cpuset='6,9'/>
      </cputune>
      <numatune>
        <memory mode="preferred" nodeset="1"/>
        <memnode cellid="0" mode="strict" nodeset="0"/>
        <memnode cellid="1" mode="strict" nodeset="1"/>
      </numatune>
      <cpu mode="host-passthrough">
        <topology sockets="2" cores="2" threads="2"/>
        <cache mode="passthrough"/>
        <numa>
          <cell id="0" cpus="0-3" memory="2" unit="GiB">
            <distances>
              <sibling id="0" value="10"/>
              <sibling id="1" value="21"/>
            </distances>
          </cell>
          <cell id="1" cpus="4-7" memory="2" unit="GiB">
            <distances>
              <sibling id="0" value="21"/>
              <sibling id="1" value="10"/>
            </distances>
          </cell>
        </numa>
      </cpu>
    </domain>
  7. 可选: 使用 适用的工具和实用程序测试虚拟机的性能,以评估虚拟机优化的影响。

拓扑示例

  • 下表演示了 vCPU 和主机 CPU 之间的连接:

    表 14.1. 主机拓扑

    CPU 线程

    0

    3

    1

    4

    2

    5

    6

    9

    7

    10

    8

    11

    内核

    0

    1

    2

    3

    4

    5

    插槽

    0

    1

    NUMA 节点

    0

    1

    表 14.2. VM 拓扑

    vCPU 线程

    0

    1

    2

    3

    4

    5

    6

    7

    内核

    0

    1

    2

    3

    插槽

    0

    1

    NUMA 节点

    0

    1

    表 14.3. 合并主机和虚拟机拓扑

    vCPU 线程

     

    0

    1

    2

    3

     

    4

    5

    6

    7

    主机 CPU 线程

    0

    3

    1

    4

    2

    5

    6

    9

    7

    10

    8

    11

    内核

    0

    1

    2

    3

    4

    5

    插槽

    0

    1

    NUMA 节点

    0

    1

    在这种情况下,有 2 个 NUMA 节点和 8 个 vCPU。因此,应该为每个节点固定 4 个 vCPU 线程。

    另外,红帽建议在每个节点上至少保留一个 CPU 线程用于主机系统操作。

    因为在这个示例中,每个 NUMA 节点都有 3 个核,每个核都有 2 个主机 CPU 线程,节点 0 的设置转换如下:

    <vcpupin vcpu='0' cpuset='1'/>
    <vcpupin vcpu='1' cpuset='4'/>
    <vcpupin vcpu='2' cpuset='2'/>
    <vcpupin vcpu='3' cpuset='5'/>

14.5.5. 停止内核相同页面合并

虽然内核相同页面合并(KSM)提高了内存密度,但它会增加 CPU 的使用率,并且可能会对总体性能产生不利影响,具体取决于工作负载。在这种情况下,您可以通过停用 KSM 来提高虚拟机(VM)的性能。

根据您的要求,您可以对单个会话停用 KSM,或永久停用。

步骤

  • 要对单个会话停用 KSM,请使用 systemctl 工具停止 ksmksmtuned 服务。

    # systemctl stop ksm
    
    # systemctl stop ksmtuned
  • 要永久停用 KSM,请使用 systemctl 工具来禁用 ksmksmtuned 服务。

    # systemctl disable ksm
    Removed /etc/systemd/system/multi-user.target.wants/ksm.service.
    # systemctl disable ksmtuned
    Removed /etc/systemd/system/multi-user.target.wants/ksmtuned.service.
注意

取消激活 KSM 前在虚拟机间共享的内存页将保持共享。要停止共享,请使用以下命令删除系统中的所有 PageKSM 页:

# echo 2 > /sys/kernel/mm/ksm/run

匿名页面替换了 KSM 页面后,khugepaged 内核服务将在虚拟机物理内存中重建透明的大页面。

Red Hat logoGithubRedditYoutubeTwitter

学习

尝试、购买和销售

社区

关于红帽文档

通过我们的产品和服务,以及可以信赖的内容,帮助红帽用户创新并实现他们的目标。

让开源更具包容性

红帽致力于替换我们的代码、文档和 Web 属性中存在问题的语言。欲了解更多详情,请参阅红帽博客.

關於紅帽

我们提供强化的解决方案,使企业能够更轻松地跨平台和环境(从核心数据中心到网络边缘)工作。

© 2024 Red Hat, Inc.