Dieser Inhalt ist in der von Ihnen ausgewählten Sprache nicht verfügbar.

Chapter 3. Querying remote caches


You can index and query remote caches on Data Grid Server.

3.1. Querying caches from Hot Rod Java clients

Data Grid lets you programmatically query remote caches from Java clients through the Hot Rod endpoint. This procedure explains how to index query a remote cache that stores Book instances.

Prerequisites

  • Add the ProtoStream processor to your pom.xml.

Data Grid provides this processor for the @ProtoField annotations so you can generate Protobuf schemas and perform queries.

<build>
  <plugins>
    <plugin>
      <groupId>org.apache.maven.plugins</groupId>
      <artifactId>maven-compiler-plugin</artifactId>
      <version>...</version>
      <configuration>
        <annotationProcessorPaths>
          <annotationProcessorPath>
            <groupId>org.infinispan.protostream</groupId>
            <artifactId>protostream-processor</artifactId>
            <version>...</version>
          </annotationProcessorPath>
        </annotationProcessorPaths>
      </configuration>
    </plugin>
  </plugins>
</build>

Procedure

  1. Add indexing annotations to your class, as in the following example:

    Book.java

    import org.infinispan.api.annotations.indexing.Basic;
    import org.infinispan.api.annotations.indexing.Indexed;
    import org.infinispan.api.annotations.indexing.Text;
    import org.infinispan.protostream.annotations.ProtoFactory;
    import org.infinispan.protostream.annotations.ProtoField;
    
    @Indexed
    public class Book {
    
       @Text
       @ProtoField(number = 1)
       final String title;
    
       @Text
       @ProtoField(number = 2)
       final String description;
    
       @Basic
       @ProtoField(number = 3, defaultValue = "0")
       final int publicationYear;
    
       @ProtoFactory
       Book(String title, String description, int publicationYear) {
          this.title = title;
          this.description = description;
          this.publicationYear = publicationYear;
       }
       // public Getter methods omitted for brevity
    }

  2. Implement the SerializationContextInitializer interface in a new class and then add the @ProtoSchema annotation.

    1. Reference the class that includes the @ProtoField annotations with the includeClasses parameter.
    2. Define a name for the Protobuf schema that you generate and filesystem path with the schemaFileName and schemaFilePath parameters.
    3. Specify the package name for the Protobuf schema with the schemaPackageName parameter.

      RemoteQueryInitializer.java

      import org.infinispan.protostream.SerializationContextInitializer;
      import org.infinispan.protostream.annotations.ProtoSchema;
      
      @ProtoSchema(
            includeClasses = {
                  Book.class
            },
            schemaFileName = "book.proto",
            schemaFilePath = "proto/",
            schemaPackageName = "book_sample")
      public interface RemoteQueryInitializer extends SerializationContextInitializer {
      }

  3. Compile your project.

    The code examples in this procedure generate a proto/book.proto schema and an RemoteQueryInitializerImpl.java implementation of the annotated Book class.

Next steps

Create a remote cache that configures Data Grid to index your entities. For example, the following remote cache indexes the Book entity in the book.proto schema that you generated in the previous step:

<replicated-cache name="books">
  <indexing>
    <indexed-entities>
      <indexed-entity>book_sample.Book</indexed-entity>
    </indexed-entities>
  </indexing>
</replicated-cache>

The following RemoteQuery class does the following:

  • Registers the RemoteQueryInitializerImpl serialization context with a Hot Rod Java client.
  • Registers the Protobuf schema, book.proto, with Data Grid Server.
  • Adds two Book instances to the remote cache.
  • Performs a full-text query that matches books by keywords in the title.

RemoteQuery.java

package org.infinispan;

import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.List;

import org.infinispan.client.hotrod.RemoteCache;
import org.infinispan.client.hotrod.RemoteCacheManager;
import org.infinispan.client.hotrod.Search;
import org.infinispan.client.hotrod.configuration.ConfigurationBuilder;
import org.infinispan.query.dsl.Query;
import org.infinispan.query.dsl.QueryFactory;
import org.infinispan.query.remote.client.ProtobufMetadataManagerConstants;

public class RemoteQuery {

   public static void main(String[] args) throws Exception {
      ConfigurationBuilder clientBuilder = new ConfigurationBuilder();
      // RemoteQueryInitializerImpl is generated
      clientBuilder.addServer().host("127.0.0.1").port(11222)
            .security().authentication().username("user").password("user")
            .addContextInitializers(new RemoteQueryInitializerImpl());

      RemoteCacheManager remoteCacheManager = new RemoteCacheManager(clientBuilder.build());

      // Grab the generated protobuf schema and registers in the server.
      Path proto = Paths.get(RemoteQuery.class.getClassLoader()
            .getResource("proto/book.proto").toURI());
      String protoBufCacheName = ProtobufMetadataManagerConstants.PROTOBUF_METADATA_CACHE_NAME;
      remoteCacheManager.getCache(protoBufCacheName).put("book.proto", Files.readString(proto));

      // Obtain the 'books' remote cache
      RemoteCache<Object, Object> remoteCache = remoteCacheManager.getCache("books");

      // Add some Books
      Book book1 = new Book("Infinispan in Action", "Learn Infinispan with using it", 2015);
      Book book2 = new Book("Cloud-Native Applications with Java and Quarkus", "Build robust and reliable cloud applications", 2019);

      remoteCache.put(1, book1);
      remoteCache.put(2, book2);

      // Execute a full-text query
      Query<Book> query = remoteCache.query("FROM book_sample.Book WHERE title:'java'");

      List<Book> list = query.execute().list(); // Voila! We have our book back from the cache!
   }
}

3.2. Querying ProtoStream common types

Perform Ickle queries on caches that store data as ProtoStream common types such as BigInteger and BigDecimal.

Procedure

  1. Add indexing annotations to your class, as in the following example:

    @Indexed
    public class CalculusIndexed {
        @Basic
        @ProtoField(value = 1)
        public BigInteger getPurchases() {
          return purchases;
        }
    
        @Decimal // the scale is 2 by default
        @ProtoField(value = 2)
        public BigDecimal getProspect() {
          return prospect;
        }
    }
  2. Set the dependsOn attribute to CommonTypes.class to indicate that the generated Protobuf schema can reference and use CommonTypes types such as BigInteger and BigDecimal:

    @ProtoSchema(includeClasses = CalculusIndexed.class, dependsOn = CommonTypes.class,
         schemaFilePath = "/protostream", schemaFileName = "calculus-indexed.proto",
         schemaPackageName = "lab.indexed")
    public interface CalculusIndexedSchema extends GeneratedSchema {
    }
  3. Perform queries:

    Query<Product> query = cache.query("from lab.indexed.CalculusIndexed c where c.purchases > 9");
    QueryResult<Product> result = query.execute();
    // play with the result
    
    query = cache.query("from lab.indexed.CalculusIndexed c where c.prospect = 2.2");
    result = query.execute();
    // play with the result

Additional resources

3.3. Querying caches from Data Grid Console and CLI

Data Grid Console and the Data Grid Command Line Interface (CLI) let you query indexed and non-indexed remote caches. You can also use any HTTP client to index and query caches via the REST API.

This procedure explains how to index and query a remote cache that stores Person instances.

Prerequisites

  • Have at least one running Data Grid Server instance.
  • Have Data Grid credentials with create permissions.

Procedure

  1. Add indexing annotations to your Protobuf schema, as in the following example:

    package org.infinispan.example;
    
    /* @Indexed */
    message Person {
    
        /* @Basic */
        optional int32 id = 1;
    
        /* @Keyword(projectable = true) */
        required string name = 2;
    
        /* @Keyword(projectable = true) */
        required string surname = 3;
    
        /* @Basic(projectable = true, sortable = true) */
        optional int32 age = 6;
    
    }

    From the Data Grid CLI, use the schema command with the --upload= argument as follows:

    schema --upload=person.proto person.proto
  2. Create a cache named people that uses ProtoStream encoding and configures Data Grid to index entities declared in your Protobuf schema.

    The following cache indexes the Person entity from the previous step:

    <distributed-cache name="people">
      <encoding media-type="application/x-protostream"/>
      <indexing>
        <indexed-entities>
          <indexed-entity>org.infinispan.example.Person</indexed-entity>
        </indexed-entities>
      </indexing>
    </distributed-cache>

    From the CLI, use the create cache command with the --file= argument as follows:

    create cache --file=people.xml people
  3. Add entries to the cache.

    To query a remote cache, it needs to contain some data. For this example procedure, create entries that use the following JSON values:

    PersonOne

    {
      "_type":"org.infinispan.example.Person",
      "id":1,
      "name":"Person",
      "surname":"One",
      "age":44
    }

    PersonTwo

    {
      "_type":"org.infinispan.example.Person",
      "id":2,
      "name":"Person",
      "surname":"Two",
      "age":27
    }

    PersonThree

    {
      "_type":"org.infinispan.example.Person",
      "id":3,
      "name":"Person",
      "surname":"Three",
      "age":35
    }

    From the CLI, use the put command with the --file= argument to add each entry, as follows:

    put --encoding=application/json --file=personone.json personone
    Tip

    From Data Grid Console, you must select Custom Type for the Value content type field when you add values in JSON format with custom types .

  4. Query your remote cache.

    From the CLI, use the query command from the context of the remote cache.

    query "from org.infinispan.example.Person p WHERE p.name='Person' ORDER BY p.age ASC"

    The query returns all entries with a name that matches Person by age in ascending order.

Additional resources

3.4. Using analyzers with remote caches

Analyzers convert input data into terms that you can index and query. You specify analyzer definitions with the @Text annotation in your Java classes or directly in Protobuf schema.

Procedure

  1. Annotate the property with the @Text annotation to indicate that its value is analyzed.
  2. Use the analyzer attribute to specify the desired analyzer that you want to use for indexing and searching.

Protobuf schema

/* @Indexed */
message TestEntity {

    /* @Keyword(projectable = true) */
    optional string id = 1;

    /* @Text(projectable = true, analyzer = "simple") */
    optional string name = 2;
}

Java classes

@Text(projectable = true, analyzer = "whitespace")
@ProtoField(value = 1)
private String id;

@Text(projectable = true, analyzer = "simple")
@ProtoField(value = 2)
private String description;

3.4.1. Default analyzer definitions

Data Grid provides a set of default analyzer definitions.

DefinitionDescription

standard

Splits text fields into tokens, treating whitespace and punctuation as delimiters.

simple

Tokenizes input streams by delimiting at non-letters and then converting all letters to lowercase characters. Whitespace and non-letters are discarded.

whitespace

Splits text streams on whitespace and returns sequences of non-whitespace characters as tokens.

keyword

Treats entire text fields as single tokens.

stemmer

Stems English words using the Snowball Porter filter.

ngram

Generates n-gram tokens that are 3 grams in size by default.

filename

Splits text fields into larger size tokens than the standard analyzer, treating whitespace as a delimiter and converts all letters to lowercase characters.

lowercase

Converts all the letters of the text to lowercase characters, the text is not tokenized (normalizer).

These analyzer definitions are based on Apache Lucene. For more information about tokenizers, filters, and CharFilters, see the Apache Lucene documentation.

Additional resources

3.4.2. Creating custom analyzer definitions

Create custom analyzer definitions and add them to your Data Grid Server installations.

Prerequisites

  • Stop Data Grid Server if it is running.

    Data Grid Server loads classes at startup only.

Procedure

  1. Implement the ProgrammaticSearchMappingProvider API.
  2. Package your implementation in a JAR with the fully qualified class (FQN) in the following file:

    META-INF/services/org.infinispan.query.spi.ProgrammaticSearchMappingProvider
  3. Copy your JAR file to the server/lib directory of your Data Grid Server installation.
  4. Start Data Grid Server.

ProgrammaticSearchMappingProvider example

import org.apache.lucene.analysis.core.LowerCaseFilterFactory;
import org.apache.lucene.analysis.core.StopFilterFactory;
import org.apache.lucene.analysis.standard.StandardFilterFactory;
import org.apache.lucene.analysis.standard.StandardTokenizerFactory;
import org.hibernate.search.cfg.SearchMapping;
import org.infinispan.Cache;
import org.infinispan.query.spi.ProgrammaticSearchMappingProvider;

public final class MyAnalyzerProvider implements ProgrammaticSearchMappingProvider {

   @Override
   public void defineMappings(Cache cache, SearchMapping searchMapping) {
      searchMapping
            .analyzerDef("standard-with-stop", StandardTokenizerFactory.class)
               .filter(StandardFilterFactory.class)
               .filter(LowerCaseFilterFactory.class)
               .filter(StopFilterFactory.class);
   }
}

3.5. Queries by keys

If a key of a cache entry has an indexed type, it is possible to index the key fields as well the the value fields, so that also the formers could be used in the Ickle queries.

This can be done specifying the fully qualified name of the ProtocolBuffer message type to use as key type in the keyEntity attribute of the @Indexed annotation.

Note

This feature is at the moment available only with indexed remote queries.

Specify the keyEntity of an indexed entity

import org.infinispan.api.annotations.indexing.Basic;
import org.infinispan.api.annotations.indexing.Indexed;
import org.infinispan.api.annotations.indexing.Text;
import org.infinispan.protostream.GeneratedSchema;
import org.infinispan.protostream.annotations.ProtoFactory;
import org.infinispan.protostream.annotations.ProtoField;
import org.infinispan.protostream.annotations.ProtoSchema;

@Indexed(keyEntity = "model.StructureKey")
public class Structure {

   private final String code;
   private final String description;
   private final Integer value;

   @ProtoFactory
   public Structure(String code, String description, Integer value) {
      this.code = code;
      this.description = description;
      this.value = value;
   }

   @ProtoField(1)
   @Basic
   public String getCode() {
      return code;
   }

   @ProtoField(2)
   @Text
   public String getDescription() {
      return description;
   }

   @ProtoField(3)
   @Basic
   public Integer getValue() {
      return value;
   }

   @ProtoSchema(includeClasses = { Structure.class, StructureKey.class }, schemaPackageName = "model")
   public interface StructureSchema extends GeneratedSchema {
      StructureSchema INSTANCE = new StructureSchemaImpl();
   }
}

Define the key entity and its indexed fields

import org.infinispan.api.annotations.indexing.Basic;
import org.infinispan.api.annotations.indexing.Indexed;
import org.infinispan.api.annotations.indexing.Keyword;
import org.infinispan.protostream.annotations.ProtoFactory;
import org.infinispan.protostream.annotations.ProtoField;

@Indexed
public class StructureKey {

   private String zone;
   private Integer row;
   private Integer column;

   @ProtoFactory
   public StructureKey(String zone, Integer row, Integer column) {
      this.zone = zone;
      this.row = row;
      this.column = column;
   }

   @Keyword(projectable = true, sortable = true)
   @ProtoField(1)
   public String getZone() {
      return zone;
   }

   @Basic(projectable = true, sortable = true)
   @ProtoField(2)
   public Integer getRow() {
      return row;
   }

   @Basic(projectable = true, sortable = true)
   @ProtoField(3)
   public Integer getColumn() {
      return column;
   }
}

3.5.1. Key property name

By default, the key fields will be targeted using the property named key.

Use key properties in the Ickle queries

select s.key.column from model.Structure s where s.key.zone = 'z7'

If the value already has a property named key, the definition of the key entity could create a naming conflict with the properties. For this reason but also in general, it is possible to change the name to assign as a prefix for the property keys changing the attribute keyPropertyName of the @Indexed annotation.

3.5.2. Key include depth

Since the entity key can have embedded entities we can limit the depth for the embedded entity fields that will be indexed changing the attribute keyIncludeDepth.

The default for this value is 3.

Red Hat logoGithubRedditYoutubeTwitter

Lernen

Testen, kaufen und verkaufen

Communitys

Über Red Hat Dokumentation

Wir helfen Red Hat Benutzern, mit unseren Produkten und Diensten innovativ zu sein und ihre Ziele zu erreichen – mit Inhalten, denen sie vertrauen können.

Mehr Inklusion in Open Source

Red Hat hat sich verpflichtet, problematische Sprache in unserem Code, unserer Dokumentation und unseren Web-Eigenschaften zu ersetzen. Weitere Einzelheiten finden Sie in Red Hat Blog.

Über Red Hat

Wir liefern gehärtete Lösungen, die es Unternehmen leichter machen, plattform- und umgebungsübergreifend zu arbeiten, vom zentralen Rechenzentrum bis zum Netzwerkrand.

© 2024 Red Hat, Inc.