Dieser Inhalt ist in der von Ihnen ausgewählten Sprache nicht verfügbar.
4.3. Profiling
4.3.1. Counting Function Calls Made
#! /usr/bin/env stap # The following line command will probe all the functions # in kernel's memory management code: # # stap functioncallcount.stp "*@mm/*.c" probe kernel.function(@1).call { # probe functions listed on commandline called[probefunc()] <<< 1 # add a count efficiently } global called probe end { foreach (fn in called-) # Sort by call count (in decreasing order) # (fn+ in called) # Sort by function name printf("%s %d\n", fn, @count(called[fn])) exit() }
timer.ms()
). The output of functioncallcount.stp contains the name of the function called and how many times it was called during the sample time (in alphabetical order). Example 4.10, “functioncallcount.stp Sample Output” contains an excerpt from the output of stap countcalls.stp "*@mm/*.c"
:
Example 4.10. functioncallcount.stp Sample Output
[...] __vma_link 97 __vma_link_file 66 __vma_link_list 97 __vma_link_rb 97 __xchg 103 add_page_to_active_list 102 add_page_to_inactive_list 19 add_to_page_cache 19 add_to_page_cache_lru 7 all_vm_events 6 alloc_pages_node 4630 alloc_slabmgmt 67 anon_vma_alloc 62 anon_vma_free 62 anon_vma_lock 66 anon_vma_prepare 98 anon_vma_unlink 97 anon_vma_unlock 66 arch_get_unmapped_area_topdown 94 arch_get_unmapped_exec_area 3 arch_unmap_area_topdown 97 atomic_add 2 atomic_add_negative 97 atomic_dec_and_test 5153 atomic_inc 470 atomic_inc_and_test 1 [...]
4.3.2. Call Graph Tracing
function trace(entry_p) { if(tid() in trace) printf("%s%s%s\n",thread_indent(entry_p), (entry_p>0?"->":"<-"), probefunc()) } global trace probe kernel.function(@1).call { if (execname() == "stapio") next # skip our own helper process trace[tid()] = 1 trace(1) } probe kernel.function(@1).return { trace(-1) delete trace[tid()] } probe kernel.function(@2).call { trace(1) } probe kernel.function(@2).return { trace(-1) } function trace(entry_p) { if(tid() in trace) printf("%s%s%s\n",thread_indent(entry_p), (entry_p>0?"->":"<-"), probefunc()) } global trace probe kernel.function(@1).call { if (execname() == "stapio") next # skip our own helper process trace[tid()] = 1 trace(1) } probe kernel.function(@1).return { trace(-1) delete trace[tid()] } probe kernel.function(@2).call { trace(1) } probe kernel.function(@2).return { trace(-1) }
- A trigger function (
@1
), which enables or disables tracing on a per-thread basis. Tracing in each thread will continue as long as the trigger function has not exited yet. - The kernel function/s whose entry/exit call you'd like to trace (
@2
).
thread_indent()
; as such, its output contains the timestamp, process name, and thread ID of @2
(i.e. the probe function you are tracing). For more information about thread_indent()
, refer to its entry in SystemTap Functions.
stap para-callgraph.stp sys_read '*@fs/*.c'
:
Example 4.11. para-callgraph-simple.stp Sample Output
[...] 0 klogd(1391):->sys_read 14 klogd(1391): ->fget_light 22 klogd(1391): <-fget_light 27 klogd(1391): ->vfs_read 35 klogd(1391): ->rw_verify_area 43 klogd(1391): <-rw_verify_area 49 klogd(1391): ->kmsg_read 0 sendmail(1696):->sys_read 17 sendmail(1696): ->fget_light 26 sendmail(1696): <-fget_light 34 sendmail(1696): ->vfs_read 44 sendmail(1696): ->rw_verify_area 52 sendmail(1696): <-rw_verify_area 58 sendmail(1696): ->proc_file_read 70 sendmail(1696): ->loadavg_read_proc 84 sendmail(1696): ->proc_calc_metrics 92 sendmail(1696): <-proc_calc_metrics 95 sendmail(1696): <-loadavg_read_proc 101 sendmail(1696): <-proc_file_read 106 sendmail(1696): ->dnotify_parent 115 sendmail(1696): <-dnotify_parent 119 sendmail(1696): ->inotify_dentry_parent_queue_event 127 sendmail(1696): <-inotify_dentry_parent_queue_event 133 sendmail(1696): ->inotify_inode_queue_event 141 sendmail(1696): <-inotify_inode_queue_event 146 sendmail(1696): <-vfs_read 151 sendmail(1696):<-sys_read
4.3.3. Determining Time Spent in Kernel and User Space
#! /usr/bin/stap probe timer.profile { tid=tid() if (!user_mode()) kticks[tid] <<< 1 else uticks[tid] <<< 1 ticks <<< 1 tids[tid] <<< 1 } global uticks, kticks, ticks global tids probe timer.s(5), end { allticks = @count(ticks) printf ("%5s %7s %7s (of %d ticks)\n", "tid", "%user", "%kernel", allticks) foreach (tid in tids- limit 20) { uscaled = @count(uticks[tid])*10000/allticks kscaled = @count(kticks[tid])*10000/allticks printf ("%5d %3d.%02d%% %3d.%02d%%\n", tid, uscaled/100, uscaled%100, kscaled/100, kscaled%100) } printf("\n") delete uticks delete kticks delete ticks delete tids }
Example 4.12. thread-times.stp Sample Output
tid %user %kernel (of 20002 ticks) 0 0.00% 87.88% 32169 5.24% 0.03% 9815 3.33% 0.36% 9859 0.95% 0.00% 3611 0.56% 0.12% 9861 0.62% 0.01% 11106 0.37% 0.02% 32167 0.08% 0.08% 3897 0.01% 0.08% 3800 0.03% 0.00% 2886 0.02% 0.00% 3243 0.00% 0.01% 3862 0.01% 0.00% 3782 0.00% 0.00% 21767 0.00% 0.00% 2522 0.00% 0.00% 3883 0.00% 0.00% 3775 0.00% 0.00% 3943 0.00% 0.00% 3873 0.00% 0.00%
4.3.4. Monitoring Polling Applications
#! /usr/bin/env stap # Copyright (C) 2009 Red Hat, Inc. # Written by Ulrich Drepper <drepper@redhat.com> # Modified by William Cohen <wcohen@redhat.com> global process, timeout_count, to global poll_timeout, epoll_timeout, select_timeout, itimer_timeout global nanosleep_timeout, futex_timeout, signal_timeout probe syscall.poll, syscall.epoll_wait { if (timeout) to[pid()]=timeout } probe syscall.poll.return { p = pid() if ($return == 0 && to[p] > 0 ) { poll_timeout[p]++ timeout_count[p]++ process[p] = execname() delete to[p] } } probe syscall.epoll_wait.return { p = pid() if ($return == 0 && to[p] > 0 ) { epoll_timeout[p]++ timeout_count[p]++ process[p] = execname() delete to[p] } } probe syscall.select.return { if ($return == 0) { p = pid() select_timeout[p]++ timeout_count[p]++ process[p] = execname() } } probe syscall.futex.return { if (errno_str($return) == "ETIMEDOUT") { p = pid() futex_timeout[p]++ timeout_count[p]++ process[p] = execname() } } probe syscall.nanosleep.return { if ($return == 0) { p = pid() nanosleep_timeout[p]++ timeout_count[p]++ process[p] = execname() } } probe kernel.function("it_real_fn") { p = pid() itimer_timeout[p]++ timeout_count[p]++ process[p] = execname() } probe syscall.rt_sigtimedwait.return { if (errno_str($return) == "EAGAIN") { p = pid() signal_timeout[p]++ timeout_count[p]++ process[p] = execname() } } probe syscall.exit { p = pid() if (p in process) { delete process[p] delete timeout_count[p] delete poll_timeout[p] delete epoll_timeout[p] delete select_timeout[p] delete itimer_timeout[p] delete futex_timeout[p] delete nanosleep_timeout[p] delete signal_timeout[p] } } probe timer.s(1) { ansi_clear_screen() printf (" pid | poll select epoll itimer futex nanosle signal| process\n") foreach (p in timeout_count- limit 20) { printf ("%5d |%7d %7d %7d %7d %7d %7d %7d| %-.38s\n", p, poll_timeout[p], select_timeout[p], epoll_timeout[p], itimer_timeout[p], futex_timeout[p], nanosleep_timeout[p], signal_timeout[p], process[p]) } }
poll
select
epoll
itimer
futex
nanosleep
signal
Example 4.13. timeout.stp Sample Output
uid | poll select epoll itimer futex nanosle signal| process 28937 | 148793 0 0 4727 37288 0 0| firefox 22945 | 0 56949 0 1 0 0 0| scim-bridge 0 | 0 0 0 36414 0 0 0| swapper 4275 | 23140 0 0 1 0 0 0| mixer_applet2 4191 | 0 14405 0 0 0 0 0| scim-launcher 22941 | 7908 1 0 62 0 0 0| gnome-terminal 4261 | 0 0 0 2 0 7622 0| escd 3695 | 0 0 0 0 0 7622 0| gdm-binary 3483 | 0 7206 0 0 0 0 0| dhcdbd 4189 | 6916 0 0 2 0 0 0| scim-panel-gtk 1863 | 5767 0 0 0 0 0 0| iscsid 2562 | 0 2881 0 1 0 1438 0| pcscd 4257 | 4255 0 0 1 0 0 0| gnome-power-man 4278 | 3876 0 0 60 0 0 0| multiload-apple 4083 | 0 1331 0 1728 0 0 0| Xorg 3921 | 1603 0 0 0 0 0 0| gam_server 4248 | 1591 0 0 0 0 0 0| nm-applet 3165 | 0 1441 0 0 0 0 0| xterm 29548 | 0 1440 0 0 0 0 0| httpd 1862 | 0 0 0 0 0 1438 0| iscsid
timer.s()
). The output of functioncallcount.stp contains the name and UID of the top 20 polling applications, along with how many times each application performed each polling system call (over time). Example 4.13, “timeout.stp Sample Output” contains an excerpt of the script:
4.3.5. Tracking Most Frequently Used System Calls
poll
select
epoll
itimer
futex
nanosleep
signal
#! /usr/bin/env stap # # This script continuously lists the top 20 systemcalls in the interval # 5 seconds # global syscalls_count probe syscall.* { syscalls_count[name]++ } function print_systop () { printf ("%25s %10s\n", "SYSCALL", "COUNT") foreach (syscall in syscalls_count- limit 20) { printf("%25s %10d\n", syscall, syscalls_count[syscall]) } delete syscalls_count } probe timer.s(5) { print_systop () printf("--------------------------------------------------------------\n") }
Example 4.14. topsys.stp Sample Output
-------------------------------------------------------------- SYSCALL COUNT gettimeofday 1857 read 1821 ioctl 1568 poll 1033 close 638 open 503 select 455 write 391 writev 335 futex 303 recvmsg 251 socket 137 clock_gettime 124 rt_sigprocmask 121 sendto 120 setitimer 106 stat 90 time 81 sigreturn 72 fstat 66 --------------------------------------------------------------
4.3.6. Tracking System Call Volume Per Process
#! /usr/bin/env stap # Copyright (C) 2006 IBM Corp. # # This file is part of systemtap, and is free software. You can # redistribute it and/or modify it under the terms of the GNU General # Public License (GPL); either version 2, or (at your option) any # later version. # # Print the system call count by process name in descending order. # global syscalls probe begin { print ("Collecting data... Type Ctrl-C to exit and display results\n") } probe syscall.* { syscalls[execname()]++ } probe end { printf ("%-10s %-s\n", "#SysCalls", "Process Name") foreach (proc in syscalls-) printf("%-10d %-s\n", syscalls[proc], proc) }
Example 4.15. topsys.stp Sample Output
Collecting data... Type Ctrl-C to exit and display results #SysCalls Process Name 1577 multiload-apple 692 synergyc 408 pcscd 376 mixer_applet2 299 gnome-terminal 293 Xorg 206 scim-panel-gtk 95 gnome-power-man 90 artsd 85 dhcdbd 84 scim-bridge 78 gnome-screensav 66 scim-launcher [...]
#! /usr/bin/env stap # Copyright (C) 2006 IBM Corp. # # This file is part of systemtap, and is free software. You can # redistribute it and/or modify it under the terms of the GNU General # Public License (GPL); either version 2, or (at your option) any # later version. # # Print the system call count by process ID in descending order. # global syscalls probe begin { print ("Collecting data... Type Ctrl-C to exit and display results\n") } probe syscall.* { syscalls[pid()]++ } probe end { printf ("%-10s %-s\n", "#SysCalls", "PID") foreach (pid in syscalls-) printf("%-10d %-d\n", syscalls[pid], pid) }
timer.s()
probe; for example, to instruct the script to expire after 5 seconds, add the following probe to the script:
probe timer.s(5) { exit() }