Dieser Inhalt ist in der von Ihnen ausgewählten Sprache nicht verfügbar.

Preface


As a data scientist, you can organize your data science work into a single project. A project in OpenShift AI can consist of the following components:

Workbenches
Creating a workbench allows you to work with models in your preferred IDE, such as JupyterLab.
Cluster storage
For projects that require data retention, you can add cluster storage to the project.
Connections
Adding a connection to your project allows you to connect data inputs to your workbenches.
Pipelines
Standardize and automate machine learning workflows to enable you to further enhance and deploy your data science models.
Models and model servers
Deploy a trained data science model to serve intelligent applications. Your model is deployed with an endpoint that allows applications to send requests to the model.
Nach oben
Red Hat logoGithubredditYoutubeTwitter

Lernen

Testen, kaufen und verkaufen

Communitys

Über Red Hat Dokumentation

Wir helfen Red Hat Benutzern, mit unseren Produkten und Diensten innovativ zu sein und ihre Ziele zu erreichen – mit Inhalten, denen sie vertrauen können. Entdecken Sie unsere neuesten Updates.

Mehr Inklusion in Open Source

Red Hat hat sich verpflichtet, problematische Sprache in unserem Code, unserer Dokumentation und unseren Web-Eigenschaften zu ersetzen. Weitere Einzelheiten finden Sie in Red Hat Blog.

Über Red Hat

Wir liefern gehärtete Lösungen, die es Unternehmen leichter machen, plattform- und umgebungsübergreifend zu arbeiten, vom zentralen Rechenzentrum bis zum Netzwerkrand.

Theme

© 2025 Red Hat