Dieser Inhalt ist in der von Ihnen ausgewählten Sprache nicht verfügbar.
Chapter 3. Event sinks
3.1. Event sinks
When you create an event source, you can specify an event sink where events are sent to from the source. An event sink is an addressable or a callable resource that can receive incoming events from other resources. Knative services, channels, and brokers are all examples of event sinks. There is also a specific Apache Kafka sink type available.
Addressable objects receive and acknowledge an event delivered over HTTP to an address defined in their status.address.url
field. As a special case, the core Kubernetes Service
object also fulfills the addressable interface.
Callable objects are able to receive an event delivered over HTTP and transform the event, returning 0
or 1
new events in the HTTP response. These returned events may be further processed in the same way that events from an external event source are processed.
3.1.1. Knative CLI sink flag
When you create an event source by using the Knative (kn
) CLI, you can specify a sink where events are sent to from that resource by using the --sink
flag. The sink can be any addressable or callable resource that can receive incoming events from other resources.
The following example creates a sink binding that uses a service, http://event-display.svc.cluster.local
, as the sink:
Example command using the sink flag
$ kn source binding create bind-heartbeat \
--namespace sinkbinding-example \
--subject "Job:batch/v1:app=heartbeat-cron" \
--sink http://event-display.svc.cluster.local \ 1
--ce-override "sink=bound"
- 1
svc
inhttp://event-display.svc.cluster.local
determines that the sink is a Knative service. Other default sink prefixes includechannel
, andbroker
.
You can configure which CRs can be used with the --sink
flag for Knative (kn
) CLI commands by Customizing kn
.
3.2. Creating event sinks
When you create an event source, you can specify an event sink where events are sent to from the source. An event sink is an addressable or a callable resource that can receive incoming events from other resources. Knative services, channels, and brokers are all examples of event sinks. There is also a specific Apache Kafka sink type available.
For information about creating resources that can be used as event sinks, see the following documentation:
3.3. Sink for Apache Kafka
Apache Kafka sinks are a type of event sink that are available if a cluster administrator has enabled Apache Kafka on your cluster. You can send events directly from an event source to a Kafka topic by using a Kafka sink.
3.3.1. Creating an Apache Kafka sink by using YAML
You can create a Kafka sink that sends events to a Kafka topic. By default, a Kafka sink uses the binary content mode, which is more efficient than the structured mode. To create a Kafka sink by using YAML, you must create a YAML file that defines a KafkaSink
object, then apply it by using the oc apply
command.
Prerequisites
-
The OpenShift Serverless Operator, Knative Eventing, and the
KnativeKafka
custom resource (CR) are installed on your cluster. - You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.
- You have access to a Red Hat AMQ Streams (Kafka) cluster that produces the Kafka messages you want to import.
-
Install the OpenShift CLI (
oc
).
Procedure
Create a
KafkaSink
object definition as a YAML file:Kafka sink YAML
apiVersion: eventing.knative.dev/v1alpha1 kind: KafkaSink metadata: name: <sink-name> namespace: <namespace> spec: topic: <topic-name> bootstrapServers: - <bootstrap-server>
To create the Kafka sink, apply the
KafkaSink
YAML file:$ oc apply -f <filename>
Configure an event source so that the sink is specified in its spec:
Example of a Kafka sink connected to an API server source
apiVersion: sources.knative.dev/v1alpha2 kind: ApiServerSource metadata: name: <source-name> 1 namespace: <namespace> 2 spec: serviceAccountName: <service-account-name> 3 mode: Resource resources: - apiVersion: v1 kind: Event sink: ref: apiVersion: eventing.knative.dev/v1alpha1 kind: KafkaSink name: <sink-name> 4
3.3.2. Creating an event sink for Apache Kafka by using the OpenShift Container Platform web console
You can create a Kafka sink that sends events to a Kafka topic by using the Developer perspective in the OpenShift Container Platform web console. By default, a Kafka sink uses the binary content mode, which is more efficient than the structured mode.
As a developer, you can create an event sink to receive events from a particular source and send them to a Kafka topic.
Prerequisites
- You have installed the OpenShift Serverless Operator, with Knative Serving, Knative Eventing, and Knative broker for Apache Kafka APIs, from the OperatorHub.
- You have created a Kafka topic in your Kafka environment.
Procedure
- In the Developer perspective, navigate to the +Add view.
- Click Event Sink in the Eventing catalog.
-
Search for
KafkaSink
in the catalog items and click it. - Click Create Event Sink.
In the form view, type the URL of the bootstrap server, which is a combination of host name and port.
- Type the name of the topic to send event data.
- Type the name of the event sink.
- Click Create.
Verification
- In the Developer perspective, navigate to the Topology view.
- Click the created event sink to view its details in the right panel.
3.3.3. Configuring security for Apache Kafka sinks
Transport Layer Security (TLS) is used by Apache Kafka clients and servers to encrypt traffic between Knative and Kafka, as well as for authentication. TLS is the only supported method of traffic encryption for the Knative broker implementation for Apache Kafka.
Simple Authentication and Security Layer (SASL) is used by Apache Kafka for authentication. If you use SASL authentication on your cluster, users must provide credentials to Knative for communicating with the Kafka cluster; otherwise events cannot be produced or consumed.
Prerequisites
-
The OpenShift Serverless Operator, Knative Eventing, and the
KnativeKafka
custom resources (CRs) are installed on your OpenShift Container Platform cluster. -
Kafka sink is enabled in the
KnativeKafka
CR. - You have created a project or have access to a project with the appropriate roles and permissions to create applications and other workloads in OpenShift Container Platform.
-
You have a Kafka cluster CA certificate stored as a
.pem
file. -
You have a Kafka cluster client certificate and a key stored as
.pem
files. -
You have installed the OpenShift (
oc
) CLI. -
You have chosen the SASL mechanism to use, for example,
PLAIN
,SCRAM-SHA-256
, orSCRAM-SHA-512
.
Procedure
Create the certificate files as a secret in the same namespace as your
KafkaSink
object:ImportantCertificates and keys must be in PEM format.
For authentication using SASL without encryption:
$ oc create secret -n <namespace> generic <secret_name> \ --from-literal=protocol=SASL_PLAINTEXT \ --from-literal=sasl.mechanism=<sasl_mechanism> \ --from-literal=user=<username> \ --from-literal=password=<password>
For authentication using SASL and encryption using TLS:
$ oc create secret -n <namespace> generic <secret_name> \ --from-literal=protocol=SASL_SSL \ --from-literal=sasl.mechanism=<sasl_mechanism> \ --from-file=ca.crt=<my_caroot.pem_file_path> \ 1 --from-literal=user=<username> \ --from-literal=password=<password>
- 1
- The
ca.crt
can be omitted to use the system’s root CA set if you are using a public cloud managed Kafka service.
For authentication and encryption using TLS:
$ oc create secret -n <namespace> generic <secret_name> \ --from-literal=protocol=SSL \ --from-file=ca.crt=<my_caroot.pem_file_path> \ 1 --from-file=user.crt=<my_cert.pem_file_path> \ --from-file=user.key=<my_key.pem_file_path>
- 1
- The
ca.crt
can be omitted to use the system’s root CA set if you are using a public cloud managed Kafka service.
Create or modify a
KafkaSink
object and add a reference to your secret in theauth
spec:apiVersion: eventing.knative.dev/v1alpha1 kind: KafkaSink metadata: name: <sink_name> namespace: <namespace> spec: ... auth: secret: ref: name: <secret_name> ...
Apply the
KafkaSink
object:$ oc apply -f <filename>