Chapter 21. AWS Load Balancer Operator
21.1. AWS Load Balancer Operator release notes
The AWS Load Balancer (ALB) Operator deploys and manages an instance of the AWSLoadBalancerController
resource.
The AWS Load Balancer (ALB) Operator is only supported on the x86_64
architecture.
These release notes track the development of the AWS Load Balancer Operator in OpenShift Container Platform.
For an overview of the AWS Load Balancer Operator, see AWS Load Balancer Operator in OpenShift Container Platform.
AWS Load Balancer Operator currently does not support AWS GovCloud.
21.1.1. AWS Load Balancer Operator 1.1.1
The following advisory is available for the AWS Load Balancer Operator version 1.1.1:
21.1.2. AWS Load Balancer Operator 1.1.0
The AWS Load Balancer Operator version 1.1.0 supports the AWS Load Balancer Controller version 2.4.4.
The following advisory is available for the AWS Load Balancer Operator version 1.1.0:
21.1.2.1. Notable changes
- This release uses the Kubernetes API version 0.27.2.
21.1.2.2. New features
- The AWS Load Balancer Operator now supports a standardized Security Token Service (STS) flow by using the Cloud Credential Operator.
21.1.2.3. Bug fixes
A FIPS-compliant cluster must use TLS version 1.2. Previously, webhooks for the AWS Load Balancer Controller only accepted TLS 1.3 as the minimum version, resulting in an error such as the following on a FIPS-compliant cluster:
remote error: tls: protocol version not supported
Now, the AWS Load Balancer Controller accepts TLS 1.2 as the minimum TLS version, resolving this issue. (OCPBUGS-14846)
21.1.3. AWS Load Balancer Operator 1.0.1
The following advisory is available for the AWS Load Balancer Operator version 1.0.1:
21.1.4. AWS Load Balancer Operator 1.0.0
The AWS Load Balancer Operator is now generally available with this release. The AWS Load Balancer Operator version 1.0.0 supports the AWS Load Balancer Controller version 2.4.4.
The following advisory is available for the AWS Load Balancer Operator version 1.0.0:
The AWS Load Balancer (ALB) Operator version 1.x.x cannot upgrade automatically from the Technology Preview version 0.x.x. To upgrade from an earlier version, you must uninstall the ALB operands and delete the aws-load-balancer-operator
namespace.
21.1.4.1. Notable changes
-
This release uses the new
v1
API version.
21.1.4.2. Bug fixes
- Previously, the controller provisioned by the AWS Load Balancer Operator did not properly use the configuration for the cluster-wide proxy. These settings are now applied appropriately to the controller. (OCPBUGS-4052, OCPBUGS-5295)
21.1.5. Earlier versions
The two earliest versions of the AWS Load Balancer Operator are available as a Technology Preview. These versions should not be used in a production cluster. For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.
The following advisory is available for the AWS Load Balancer Operator version 0.2.0:
The following advisory is available for the AWS Load Balancer Operator version 0.0.1:
21.2. AWS Load Balancer Operator in OpenShift Container Platform
The AWS Load Balancer Operator deploys and manages the AWS Load Balancer Controller. You can install the AWS Load Balancer Operator from OperatorHub by using OpenShift Container Platform web console or CLI.
21.2.1. AWS Load Balancer Operator considerations
Review the following limitations before installing and using the AWS Load Balancer Operator:
- The IP traffic mode only works on AWS Elastic Kubernetes Service (EKS). The AWS Load Balancer Operator disables the IP traffic mode for the AWS Load Balancer Controller. As a result of disabling the IP traffic mode, the AWS Load Balancer Controller cannot use the pod readiness gate.
-
The AWS Load Balancer Operator adds command-line flags such as
--disable-ingress-class-annotation
and--disable-ingress-group-name-annotation
to the AWS Load Balancer Controller. Therefore, the AWS Load Balancer Operator does not allow using thekubernetes.io/ingress.class
andalb.ingress.kubernetes.io/group.name
annotations in theIngress
resource. -
You have configured the AWS Load Balancer Operator so that the SVC type is
NodePort
(notLoadBalancer
orClusterIP
).
21.2.2. AWS Load Balancer Operator
The AWS Load Balancer Operator can tag the public subnets if the kubernetes.io/role/elb
tag is missing. Also, the AWS Load Balancer Operator detects the following information from the underlying AWS cloud:
- The ID of the virtual private cloud (VPC) on which the cluster hosting the Operator is deployed in.
- Public and private subnets of the discovered VPC.
The AWS Load Balancer Operator supports the Kubernetes service resource of type LoadBalancer
by using Network Load Balancer (NLB) with the instance
target type only.
Procedure
You can deploy the AWS Load Balancer Operator on demand from OperatorHub, by creating a
Subscription
object by running the following command:$ oc -n aws-load-balancer-operator get sub aws-load-balancer-operator --template='{{.status.installplan.name}}{{"\n"}}'
Example output
install-zlfbt
Check if the status of an install plan is
Complete
by running the following command:$ oc -n aws-load-balancer-operator get ip <install_plan_name> --template='{{.status.phase}}{{"\n"}}'
Example output
Complete
View the status of the
aws-load-balancer-operator-controller-manager
deployment by running the following command:$ oc get -n aws-load-balancer-operator deployment/aws-load-balancer-operator-controller-manager
Example output
NAME READY UP-TO-DATE AVAILABLE AGE aws-load-balancer-operator-controller-manager 1/1 1 1 23h
21.2.3. AWS Load Balancer Operator logs
You can view the AWS Load Balancer Operator logs by using the oc logs
command.
Procedure
View the logs of the AWS Load Balancer Operator by running the following command:
$ oc logs -n aws-load-balancer-operator deployment/aws-load-balancer-operator-controller-manager -c manager
21.3. Installing the AWS Load Balancer Operator
The AWS Load Balancer Operator deploys and manages the AWS Load Balancer Controller. You can install the AWS Load Balancer Operator from the OperatorHub by using OpenShift Container Platform web console or CLI.
21.3.1. Installing the AWS Load Balancer Operator by using the web console
You can install the AWS Load Balancer Operator by using the web console.
Prerequisites
-
You have logged in to the OpenShift Container Platform web console as a user with
cluster-admin
permissions. - Your cluster is configured with AWS as the platform type and cloud provider.
- If you are using a security token service (STS) or user-provisioned infrastructure, follow the related preparation steps. For example, if you are using AWS Security Token Service, see "Preparing for the AWS Load Balancer Operator on a cluster using the AWS Security Token Service (STS)".
Procedure
-
Navigate to Operators
OperatorHub in the OpenShift Container Platform web console. - Select the AWS Load Balancer Operator. You can use the Filter by keyword text box or use the filter list to search for the AWS Load Balancer Operator from the list of Operators.
-
Select the
aws-load-balancer-operator
namespace. On the Install Operator page, select the following options:
- Update the channel as stable-v1.
- Installation mode as All namespaces on the cluster (default).
-
Installed Namespace as
aws-load-balancer-operator
. If theaws-load-balancer-operator
namespace does not exist, it gets created during the Operator installation. - Select Update approval as Automatic or Manual. By default, the Update approval is set to Automatic. If you select automatic updates, the Operator Lifecycle Manager (OLM) automatically upgrades the running instance of your Operator without any intervention. If you select manual updates, the OLM creates an update request. As a cluster administrator, you must then manually approve that update request to update the Operator updated to the new version.
- Click Install.
Verification
- Verify that the AWS Load Balancer Operator shows the Status as Succeeded on the Installed Operators dashboard.
21.3.2. Installing the AWS Load Balancer Operator by using the CLI
You can install the AWS Load Balancer Operator by using the CLI.
Prerequisites
-
You are logged in to the OpenShift Container Platform web console as a user with
cluster-admin
permissions. - Your cluster is configured with AWS as the platform type and cloud provider.
-
You are logged into the OpenShift CLI (
oc
).
Procedure
Create a
Namespace
object:Create a YAML file that defines the
Namespace
object:Example
namespace.yaml
fileapiVersion: v1 kind: Namespace metadata: name: aws-load-balancer-operator
Create the
Namespace
object by running the following command:$ oc apply -f namespace.yaml
Create an
OperatorGroup
object:Create a YAML file that defines the
OperatorGroup
object:Example
operatorgroup.yaml
fileapiVersion: operators.coreos.com/v1 kind: OperatorGroup metadata: name: aws-lb-operatorgroup namespace: aws-load-balancer-operator spec: upgradeStrategy: Default
Create the
OperatorGroup
object by running the following command:$ oc apply -f operatorgroup.yaml
Create a
Subscription
object:Create a YAML file that defines the
Subscription
object:Example
subscription.yaml
fileapiVersion: operators.coreos.com/v1alpha1 kind: Subscription metadata: name: aws-load-balancer-operator namespace: aws-load-balancer-operator spec: channel: stable-v1 installPlanApproval: Automatic name: aws-load-balancer-operator source: redhat-operators sourceNamespace: openshift-marketplace
Create the
Subscription
object by running the following command:$ oc apply -f subscription.yaml
Verification
Get the name of the install plan from the subscription:
$ oc -n aws-load-balancer-operator \ get subscription aws-load-balancer-operator \ --template='{{.status.installplan.name}}{{"\n"}}'
Check the status of the install plan:
$ oc -n aws-load-balancer-operator \ get ip <install_plan_name> \ --template='{{.status.phase}}{{"\n"}}'
The output must be
Complete
.
21.4. Preparing for the AWS Load Balancer Operator on a cluster using the AWS Security Token Service
You can install the AWS Load Balancer Operator on a cluster that uses STS. Follow these steps to prepare your cluster before installing the Operator.
The AWS Load Balancer Operator relies on the CredentialsRequest
object to bootstrap the Operator and the AWS Load Balancer Controller. The AWS Load Balancer Operator waits until the required secrets are created and available.
21.4.1. Creating an IAM role for the AWS Load Balancer Operator
An additional AWS Identity and Access Management (IAM) role is required to successfully install the AWS Load Balancer Operator on a cluster that uses STS. The IAM role is required to interact with subnets and Virtual Private Clouds (VPCs). The AWS Load Balancer Operator generates the CredentialsRequest
object with the IAM role to bootstrap itself.
You can create the IAM role by using the following options:
-
Using the Cloud Credential Operator utility (
ccoctl
) and a predefinedCredentialsRequest
object. - Using the AWS CLI and predefined AWS manifests.
Use the AWS CLI if your environment does not support the ccoctl
command.
21.4.1.1. Creating an AWS IAM role by using the Cloud Credential Operator utility
You can use the Cloud Credential Operator utility (ccoctl
) to create an AWS IAM role for the AWS Load Balancer Operator. An AWS IAM role is used to interact with subnets and Virtual Private Clouds (VPCs).
Prerequisites
-
You must extract and prepare the
ccoctl
binary.
Procedure
Download the
CredentialsRequest
custom resource (CR) and store it in a directory by running the following command:$ curl --create-dirs -o <credrequests-dir>/operator.yaml https://raw.githubusercontent.com/openshift/aws-load-balancer-operator/main/hack/operator-credentials-request.yaml
Use the
ccoctl
utility to create an AWS IAM role by running the following command:$ ccoctl aws create-iam-roles \ --name <name> \ --region=<aws_region> \ --credentials-requests-dir=<credrequests-dir> \ --identity-provider-arn <oidc-arn>
Example output
2023/09/12 11:38:57 Role arn:aws:iam::777777777777:role/<name>-aws-load-balancer-operator-aws-load-balancer-operator created 1 2023/09/12 11:38:57 Saved credentials configuration to: /home/user/<credrequests-dir>/manifests/aws-load-balancer-operator-aws-load-balancer-operator-credentials.yaml 2023/09/12 11:38:58 Updated Role policy for Role <name>-aws-load-balancer-operator-aws-load-balancer-operator created
- 1
- Note the Amazon Resource Name (ARN) of an AWS IAM role.
NoteThe length of an AWS IAM role name must be less than or equal to 12 characters.
21.4.1.2. Creating an AWS IAM role by using the AWS CLI
You can use the AWS Command Line Interface to create an IAM role for the AWS Load Balancer Operator. The IAM role is used to interact with subnets and Virtual Private Clouds (VPCs).
Prerequisites
-
You must have access to the AWS Command Line Interface (
aws
).
Procedure
Generate a trust policy file by using your identity provider by running the following command:
$ cat <<EOF > albo-operator-trust-policy.json { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Principal": { "Federated": "arn:aws:iam::777777777777:oidc-provider/<oidc-provider-id>" 1 }, "Action": "sts:AssumeRoleWithWebIdentity", "Condition": { "StringEquals": { "<oidc-provider-id>:sub": "system:serviceaccount:aws-load-balancer-operator:aws-load-balancer-operator-controller-manager" 2 } } } ] } EOF
Create the IAM role with the generated trust policy by running the following command:
$ aws iam create-role --role-name albo-operator --assume-role-policy-document file://albo-operator-trust-policy.json
Example output
ROLE arn:aws:iam::777777777777:role/albo-operator 2023-08-02T12:13:22Z 1 ASSUMEROLEPOLICYDOCUMENT 2012-10-17 STATEMENT sts:AssumeRoleWithWebIdentity Allow STRINGEQUALS system:serviceaccount:aws-load-balancer-operator:aws-load-balancer-controller-manager PRINCIPAL arn:aws:iam:777777777777:oidc-provider/<oidc-provider-id>
- 1
- Note the ARN of the created IAM role.
Download the permission policy for the AWS Load Balancer Operator by running the following command:
$ curl -o albo-operator-permission-policy.json https://raw.githubusercontent.com/openshift/aws-load-balancer-operator/main/hack/operator-permission-policy.json
Attach the permission policy for the AWS Load Balancer Controller to the IAM role by running the following command:
$ aws iam put-role-policy --role-name albo-operator --policy-name perms-policy-albo-operator --policy-document file://albo-operator-permission-policy.json
21.4.2. Configuring the ARN role for the AWS Load Balancer Operator
You can configure the Amazon Resource Name (ARN) role for the AWS Load Balancer Operator as an environment variable. You can configure the ARN role by using the CLI.
Prerequisites
-
You have installed the OpenShift CLI (
oc
).
Procedure
Create the
aws-load-balancer-operator
project by running the following command:$ oc new-project aws-load-balancer-operator
Create the
OperatorGroup
object by running the following command:$ cat <<EOF | oc apply -f - apiVersion: operators.coreos.com/v1 kind: OperatorGroup metadata: name: aws-load-balancer-operator namespace: aws-load-balancer-operator spec: targetNamespaces: [] EOF
Create the
Subscription
object by running the following command:$ cat <<EOF | oc apply -f - apiVersion: operators.coreos.com/v1alpha1 kind: Subscription metadata: name: aws-load-balancer-operator namespace: aws-load-balancer-operator spec: channel: stable-v1 name: aws-load-balancer-operator source: redhat-operators sourceNamespace: openshift-marketplace config: env: - name: ROLEARN value: "<role-arn>" 1 EOF
- 1
- Specifies the ARN role to be used in the
CredentialsRequest
to provision the AWS credentials for the AWS Load Balancer Operator.
NoteThe AWS Load Balancer Operator waits until the secret is created before moving to the
Available
status.
21.4.3. Creating an IAM role for the AWS Load Balancer Controller
The CredentialsRequest
object for the AWS Load Balancer Controller must be set with a manually provisioned IAM role.
You can create the IAM role by using the following options:
-
Using the Cloud Credential Operator utility (
ccoctl
) and a predefinedCredentialsRequest
object. - Using the AWS CLI and predefined AWS manifests.
Use the AWS CLI if your environment does not support the ccoctl
command.
21.4.3.1. Creating an AWS IAM role for the controller by using the Cloud Credential Operator utility
You can use the Cloud Credential Operator utility (ccoctl
) to create an AWS IAM role for the AWS Load Balancer Controller. An AWS IAM role is used to interact with subnets and Virtual Private Clouds (VPCs).
Prerequisites
-
You must extract and prepare the
ccoctl
binary.
Procedure
Download the
CredentialsRequest
custom resource (CR) and store it in a directory by running the following command:$ curl --create-dirs -o <credrequests-dir>/controller.yaml https://raw.githubusercontent.com/openshift/aws-load-balancer-operator/main/hack/controller/controller-credentials-request.yaml
Use the
ccoctl
utility to create an AWS IAM role by running the following command:$ ccoctl aws create-iam-roles \ --name <name> \ --region=<aws_region> \ --credentials-requests-dir=<credrequests-dir> \ --identity-provider-arn <oidc-arn>
Example output
2023/09/12 11:38:57 Role arn:aws:iam::777777777777:role/<name>-aws-load-balancer-operator-aws-load-balancer-controller created 1 2023/09/12 11:38:57 Saved credentials configuration to: /home/user/<credrequests-dir>/manifests/aws-load-balancer-operator-aws-load-balancer-controller-credentials.yaml 2023/09/12 11:38:58 Updated Role policy for Role <name>-aws-load-balancer-operator-aws-load-balancer-controller created
- 1
- Note the Amazon Resource Name (ARN) of an AWS IAM role.
NoteThe length of an AWS IAM role name must be less than or equal to 12 characters.
21.4.3.2. Creating an AWS IAM role for the controller by using the AWS CLI
You can use the AWS command line interface to create an AWS IAM role for the AWS Load Balancer Controller. An AWS IAM role is used to interact with subnets and Virtual Private Clouds (VPCs).
Prerequisites
-
You must have access to the AWS command line interface (
aws
).
Procedure
Generate a trust policy file using your identity provider by running the following command:
$ cat <<EOF > albo-controller-trust-policy.json { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Principal": { "Federated": "arn:aws:iam::777777777777:oidc-provider/<oidc-provider-id>" 1 }, "Action": "sts:AssumeRoleWithWebIdentity", "Condition": { "StringEquals": { "<oidc-provider-id>:sub": "system:serviceaccount:aws-load-balancer-operator:aws-load-balancer-controller-cluster" 2 } } } ] } EOF
Create an AWS IAM role with the generated trust policy by running the following command:
$ aws iam create-role --role-name albo-controller --assume-role-policy-document file://albo-controller-trust-policy.json
Example output
ROLE arn:aws:iam::777777777777:role/albo-controller 2023-08-02T12:13:22Z 1 ASSUMEROLEPOLICYDOCUMENT 2012-10-17 STATEMENT sts:AssumeRoleWithWebIdentity Allow STRINGEQUALS system:serviceaccount:aws-load-balancer-operator:aws-load-balancer-controller-cluster PRINCIPAL arn:aws:iam:777777777777:oidc-provider/<oidc-provider-id>
- 1
- Note the ARN of an AWS IAM role.
Download the permission policy for the AWS Load Balancer Controller by running the following command:
$ curl -o albo-controller-permission-policy.json https://raw.githubusercontent.com/openshift/aws-load-balancer-operator/main/assets/iam-policy.json
Attach the permission policy for the AWS Load Balancer Controller to an AWS IAM role by running the following command:
$ aws iam put-role-policy --role-name albo-controller --policy-name perms-policy-albo-controller --policy-document file://albo-controller-permission-policy.json
Create a YAML file that defines the
AWSLoadBalancerController
object:Example
sample-aws-lb-manual-creds.yaml
file:apiVersion: networking.olm.openshift.io/v1 kind: AWSLoadBalancerController 1 metadata: name: cluster 2 spec: credentialsRequestConfig: stsIAMRoleARN: <role-arn> 3
21.4.4. Additional resources
21.5. Creating an instance of the AWS Load Balancer Controller
After installing the AWS Load Balancer Operator, you can create the AWS Load Balancer Controller.
21.5.1. Creating the AWS Load Balancer Controller
You can install only a single instance of the AWSLoadBalancerController
object in a cluster. You can create the AWS Load Balancer Controller by using CLI. The AWS Load Balancer Operator reconciles only the cluster
named resource.
Prerequisites
-
You have created the
echoserver
namespace. -
You have access to the OpenShift CLI (
oc
).
Procedure
Create a YAML file that defines the
AWSLoadBalancerController
object:Example
sample-aws-lb.yaml
fileapiVersion: networking.olm.openshift.io/v1 kind: AWSLoadBalancerController 1 metadata: name: cluster 2 spec: subnetTagging: Auto 3 additionalResourceTags: 4 - key: example.org/security-scope value: staging ingressClass: alb 5 config: replicas: 2 6 enabledAddons: 7 - AWSWAFv2 8
- 1
- Defines the
AWSLoadBalancerController
object. - 2
- Defines the AWS Load Balancer Controller name. This instance name gets added as a suffix to all related resources.
- 3
- Configures the subnet tagging method for the AWS Load Balancer Controller. The following values are valid:
-
Auto
: The AWS Load Balancer Operator determines the subnets that belong to the cluster and tags them appropriately. The Operator cannot determine the role correctly if the internal subnet tags are not present on internal subnet. -
Manual
: You manually tag the subnets that belong to the cluster with the appropriate role tags. Use this option if you installed your cluster on user-provided infrastructure.
-
- 4
- Defines the tags used by the AWS Load Balancer Controller when it provisions AWS resources.
- 5
- Defines the ingress class name. The default value is
alb
. - 6
- Specifies the number of replicas of the AWS Load Balancer Controller.
- 7
- Specifies annotations as an add-on for the AWS Load Balancer Controller.
- 8
- Enables the
alb.ingress.kubernetes.io/wafv2-acl-arn
annotation.
Create the
AWSLoadBalancerController
object by running the following command:$ oc create -f sample-aws-lb.yaml
Create a YAML file that defines the
Deployment
resource:Example
sample-aws-lb.yaml
fileapiVersion: apps/v1 kind: Deployment 1 metadata: name: <echoserver> 2 namespace: echoserver spec: selector: matchLabels: app: echoserver replicas: 3 3 template: metadata: labels: app: echoserver spec: containers: - image: openshift/origin-node command: - "/bin/socat" args: - TCP4-LISTEN:8080,reuseaddr,fork - EXEC:'/bin/bash -c \"printf \\\"HTTP/1.0 200 OK\r\n\r\n\\\"; sed -e \\\"/^\r/q\\\"\"' imagePullPolicy: Always name: echoserver ports: - containerPort: 8080
Create a YAML file that defines the
Service
resource:Example
service-albo.yaml
file:apiVersion: v1 kind: Service 1 metadata: name: <echoserver> 2 namespace: echoserver spec: ports: - port: 80 targetPort: 8080 protocol: TCP type: NodePort selector: app: echoserver
Create a YAML file that defines the
Ingress
resource:Example
ingress-albo.yaml
file:apiVersion: networking.k8s.io/v1 kind: Ingress metadata: name: <name> 1 namespace: echoserver annotations: alb.ingress.kubernetes.io/scheme: internet-facing alb.ingress.kubernetes.io/target-type: instance spec: ingressClassName: alb rules: - http: paths: - path: / pathType: Exact backend: service: name: <echoserver> 2 port: number: 80
Verification
Save the status of the
Ingress
resource in theHOST
variable by running the following command:$ HOST=$(oc get ingress -n echoserver echoserver --template='{{(index .status.loadBalancer.ingress 0).hostname}}')
Verify the status of the
Ingress
resource by running the following command:$ curl $HOST
21.6. Serving multiple ingress resources through a single AWS Load Balancer
You can route the traffic to different services that are part of a single domain through a single AWS Load Balancer. Each Ingress resource provides different endpoints of the domain.
21.6.1. Creating multiple ingress resources through a single AWS Load Balancer
You can route the traffic to multiple ingress resources through a single AWS Load Balancer by using the CLI.
Prerequisites
-
You have an access to the OpenShift CLI (
oc
).
Procedure
Create an
IngressClassParams
resource YAML file, for example,sample-single-lb-params.yaml
, as follows:apiVersion: elbv2.k8s.aws/v1beta1 1 kind: IngressClassParams metadata: name: single-lb-params 2 spec: group: name: single-lb 3
Create the
IngressClassParams
resource by running the following command:$ oc create -f sample-single-lb-params.yaml
Create the
IngressClass
resource YAML file, for example,sample-single-lb-class.yaml
, as follows:apiVersion: networking.k8s.io/v1 1 kind: IngressClass metadata: name: single-lb 2 spec: controller: ingress.k8s.aws/alb 3 parameters: apiGroup: elbv2.k8s.aws 4 kind: IngressClassParams 5 name: single-lb-params 6
- 1
- Defines the API group and version of the
IngressClass
resource. - 2
- Specifies the ingress class name.
- 3
- Defines the controller name. The
ingress.k8s.aws/alb
value denotes that all ingress resources of this class should be managed by the AWS Load Balancer Controller. - 4
- Defines the API group of the
IngressClassParams
resource. - 5
- Defines the resource type of the
IngressClassParams
resource. - 6
- Defines the
IngressClassParams
resource name.
Create the
IngressClass
resource by running the following command:$ oc create -f sample-single-lb-class.yaml
Create the
AWSLoadBalancerController
resource YAML file, for example,sample-single-lb.yaml
, as follows:apiVersion: networking.olm.openshift.io/v1 kind: AWSLoadBalancerController metadata: name: cluster spec: subnetTagging: Auto ingressClass: single-lb 1
- 1
- Defines the name of the
IngressClass
resource.
Create the
AWSLoadBalancerController
resource by running the following command:$ oc create -f sample-single-lb.yaml
Create the
Ingress
resource YAML file, for example,sample-multiple-ingress.yaml
, as follows:apiVersion: networking.k8s.io/v1 kind: Ingress metadata: name: example-1 1 annotations: alb.ingress.kubernetes.io/scheme: internet-facing 2 alb.ingress.kubernetes.io/group.order: "1" 3 alb.ingress.kubernetes.io/target-type: instance 4 spec: ingressClassName: single-lb 5 rules: - host: example.com 6 http: paths: - path: /blog 7 pathType: Prefix backend: service: name: example-1 8 port: number: 80 9 --- apiVersion: networking.k8s.io/v1 kind: Ingress metadata: name: example-2 annotations: alb.ingress.kubernetes.io/scheme: internet-facing alb.ingress.kubernetes.io/group.order: "2" alb.ingress.kubernetes.io/target-type: instance spec: ingressClassName: single-lb rules: - host: example.com http: paths: - path: /store pathType: Prefix backend: service: name: example-2 port: number: 80 --- apiVersion: networking.k8s.io/v1 kind: Ingress metadata: name: example-3 annotations: alb.ingress.kubernetes.io/scheme: internet-facing alb.ingress.kubernetes.io/group.order: "3" alb.ingress.kubernetes.io/target-type: instance spec: ingressClassName: single-lb rules: - host: example.com http: paths: - path: / pathType: Prefix backend: service: name: example-3 port: number: 80
- 1
- Specifies the ingress name.
- 2
- Indicates the load balancer to provision in the public subnet to access the internet.
- 3
- Specifies the order in which the rules from the multiple ingress resources are matched when the request is received at the load balancer.
- 4
- Indicates that the load balancer will target OpenShift Container Platform nodes to reach the service.
- 5
- Specifies the ingress class that belongs to this ingress.
- 6
- Defines a domain name used for request routing.
- 7
- Defines the path that must route to the service.
- 8
- Defines the service name that serves the endpoint configured in the
Ingress
resource. - 9
- Defines the port on the service that serves the endpoint.
Create the
Ingress
resource by running the following command:$ oc create -f sample-multiple-ingress.yaml
21.7. Adding TLS termination
You can add TLS termination on the AWS Load Balancer.
21.7.1. Adding TLS termination on the AWS Load Balancer
You can route the traffic for the domain to pods of a service and add TLS termination on the AWS Load Balancer.
Prerequisites
-
You have an access to the OpenShift CLI (
oc
).
Procedure
Create a YAML file that defines the
AWSLoadBalancerController
resource:Example
add-tls-termination-albc.yaml
fileapiVersion: networking.olm.openshift.io/v1 kind: AWSLoadBalancerController metadata: name: cluster spec: subnetTagging: Auto ingressClass: tls-termination 1
- 1
- Defines the ingress class name. If the ingress class is not present in your cluster the AWS Load Balancer Controller creates one. The AWS Load Balancer Controller reconciles the additional ingress class values if
spec.controller
is set toingress.k8s.aws/alb
.
Create a YAML file that defines the
Ingress
resource:Example
add-tls-termination-ingress.yaml
fileapiVersion: networking.k8s.io/v1 kind: Ingress metadata: name: <example> 1 annotations: alb.ingress.kubernetes.io/scheme: internet-facing 2 alb.ingress.kubernetes.io/certificate-arn: arn:aws:acm:us-west-2:xxxxx 3 spec: ingressClassName: tls-termination 4 rules: - host: <example.com> 5 http: paths: - path: / pathType: Exact backend: service: name: <example-service> 6 port: number: 80
- 1
- Specifies the ingress name.
- 2
- The controller provisions the load balancer for ingress in a public subnet to access the load balancer over the internet.
- 3
- The Amazon Resource Name (ARN) of the certificate that you attach to the load balancer.
- 4
- Defines the ingress class name.
- 5
- Defines the domain for traffic routing.
- 6
- Defines the service for traffic routing.
21.8. Configuring cluster-wide proxy
You can configure the cluster-wide proxy in the AWS Load Balancer Operator. After configuring the cluster-wide proxy, Operator Lifecycle Manager (OLM) automatically updates all the deployments of the Operators with the environment variables such as HTTP_PROXY
, HTTPS_PROXY
, and NO_PROXY
. These variables are populated to the managed controller by the AWS Load Balancer Operator.
21.8.1. Trusting the certificate authority of the cluster-wide proxy
Create the config map to contain the certificate authority (CA) bundle in the
aws-load-balancer-operator
namespace by running the following command:$ oc -n aws-load-balancer-operator create configmap trusted-ca
To inject the trusted CA bundle into the config map, add the
config.openshift.io/inject-trusted-cabundle=true
label to the config map by running the following command:$ oc -n aws-load-balancer-operator label cm trusted-ca config.openshift.io/inject-trusted-cabundle=true
Update the AWS Load Balancer Operator subscription to access the config map in the AWS Load Balancer Operator deployment by running the following command:
$ oc -n aws-load-balancer-operator patch subscription aws-load-balancer-operator --type='merge' -p '{"spec":{"config":{"env":[{"name":"TRUSTED_CA_CONFIGMAP_NAME","value":"trusted-ca"}],"volumes":[{"name":"trusted-ca","configMap":{"name":"trusted-ca"}}],"volumeMounts":[{"name":"trusted-ca","mountPath":"/etc/pki/tls/certs/albo-tls-ca-bundle.crt","subPath":"ca-bundle.crt"}]}}}'
After the AWS Load Balancer Operator is deployed, verify that the CA bundle is added to the
aws-load-balancer-operator-controller-manager
deployment by running the following command:$ oc -n aws-load-balancer-operator exec deploy/aws-load-balancer-operator-controller-manager -c manager -- bash -c "ls -l /etc/pki/tls/certs/albo-tls-ca-bundle.crt; printenv TRUSTED_CA_CONFIGMAP_NAME"
Example output
-rw-r--r--. 1 root 1000690000 5875 Jan 11 12:25 /etc/pki/tls/certs/albo-tls-ca-bundle.crt trusted-ca
Optional: Restart deployment of the AWS Load Balancer Operator every time the config map changes by running the following command:
$ oc -n aws-load-balancer-operator rollout restart deployment/aws-load-balancer-operator-controller-manager