Authentication


OpenShift Container Platform 4.3

Configuring user authentication, encryption, and access controls for users and services

Red Hat OpenShift Documentation Team

Abstract

This document provides instructions for defining identity providers in OpenShift Container Platform . It also discusses how to configure encryption and role-based access control to secure the cluster.

Chapter 1. Understanding authentication

For users to interact with OpenShift Container Platform, they must first authenticate to the cluster. The authentication layer identifies the user associated with requests to the OpenShift Container Platform API. The authorization layer then uses information about the requesting user to determine if the request is allowed.

As an administrator, you can configure authentication for OpenShift Container Platform.

1.1. Users

A user in OpenShift Container Platform is an entity that can make requests to the OpenShift Container Platform API. An OpenShift Container Platform user object represents an actor which can be granted permissions in the system by adding roles to them or to their groups. Typically, this represents the account of a developer or administrator that is interacting with OpenShift Container Platform.

Several types of users can exist:

Regular users

This is the way most interactive OpenShift Container Platform users are represented. Regular users are created automatically in the system upon first login or can be created via the API. Regular users are represented with the User object. Examples: joe alice

System users

Many of these are created automatically when the infrastructure is defined, mainly for the purpose of enabling the infrastructure to interact with the API securely. They include a cluster administrator (with access to everything), a per-node user, users for use by routers and registries, and various others. Finally, there is an anonymous system user that is used by default for unauthenticated requests. Examples: system:admin system:openshift-registry system:node:node1.example.com

Service accounts

These are special system users associated with projects; some are created automatically when the project is first created, while project administrators can create more for the purpose of defining access to the contents of each project. Service accounts are represented with the ServiceAccount object. Examples: system:serviceaccount:default:deployer system:serviceaccount:foo:builder

Each user must authenticate in some way in order to access OpenShift Container Platform. API requests with no authentication or invalid authentication are authenticated as requests by the anonymous system user. Once authenticated, policy determines what the user is authorized to do.

1.2. Groups

A user can be assigned to one or more groups, each of which represent a certain set of users. Groups are useful when managing authorization policies to grant permissions to multiple users at once, for example allowing access to objects within a project, versus granting them to users individually.

In addition to explicitly defined groups, there are also system groups, or virtual groups, that are automatically provisioned by the cluster.

The following default virtual groups are most important:

Virtual groupDescription

system:authenticated

Automatically associated with all authenticated users.

system:authenticated:oauth

Automatically associated with all users authenticated with an OAuth access token.

system:unauthenticated

Automatically associated with all unauthenticated users.

1.3. API authentication

Requests to the OpenShift Container Platform API are authenticated using the following methods:

OAuth Access Tokens
  • Obtained from the OpenShift Container Platform OAuth server using the <namespace_route>/oauth/authorize and <namespace_route>/oauth/token endpoints.
  • Sent as an Authorization: Bearer…​ header.
  • Sent as a websocket subprotocol header in the form base64url.bearer.authorization.k8s.io.<base64url-encoded-token> for websocket requests.
X.509 Client Certificates
  • Requires an HTTPS connection to the API server.
  • Verified by the API server against a trusted certificate authority bundle.
  • The API server creates and distributes certificates to controllers to authenticate themselves.

Any request with an invalid access token or an invalid certificate is rejected by the authentication layer with a 401 error.

If no access token or certificate is presented, the authentication layer assigns the system:anonymous virtual user and the system:unauthenticated virtual group to the request. This allows the authorization layer to determine which requests, if any, an anonymous user is allowed to make.

1.3.1. OpenShift Container Platform OAuth server

The OpenShift Container Platform master includes a built-in OAuth server. Users obtain OAuth access tokens to authenticate themselves to the API.

When a person requests a new OAuth token, the OAuth server uses the configured identity provider to determine the identity of the person making the request.

It then determines what user that identity maps to, creates an access token for that user, and returns the token for use.

1.3.1.1. OAuth token requests

Every request for an OAuth token must specify the OAuth client that will receive and use the token. The following OAuth clients are automatically created when starting the OpenShift Container Platform API:

OAuth ClientUsage

openshift-browser-client

Requests tokens at <namespace_route>/oauth/token/request with a user-agent that can handle interactive logins.

openshift-challenging-client

Requests tokens with a user-agent that can handle WWW-Authenticate challenges.

Note

<namespace_route> refers to the namespace’s route. This is found by running the following command.

oc get route oauth-openshift -n openshift-authentication -o json | jq .spec.host

All requests for OAuth tokens involve a request to <namespace_route>/oauth/authorize. Most authentication integrations place an authenticating proxy in front of this endpoint, or configure OpenShift Container Platform to validate credentials against a backing identity provider. Requests to <namespace_route>/oauth/authorize can come from user-agents that cannot display interactive login pages, such as the CLI. Therefore, OpenShift Container Platform supports authenticating using a WWW-Authenticate challenge in addition to interactive login flows.

If an authenticating proxy is placed in front of the <namespace_route>/oauth/authorize endpoint, it sends unauthenticated, non-browser user-agents WWW-Authenticate challenges rather than displaying an interactive login page or redirecting to an interactive login flow.

Note

To prevent cross-site request forgery (CSRF) attacks against browser clients, only send Basic authentication challenges with if a X-CSRF-Token header is on the request. Clients that expect to receive Basic WWW-Authenticate challenges must set this header to a non-empty value.

If the authenticating proxy cannot support WWW-Authenticate challenges, or if OpenShift Container Platform is configured to use an identity provider that does not support WWW-Authenticate challenges, you must use a browser to manually obtain a token from <namespace_route>/oauth/token/request.

1.3.1.2. API impersonation

You can configure a request to the OpenShift Container Platform API to act as though it originated from another user. For more information, see User impersonation in the Kubernetes documentation.

1.3.1.3. Authentication metrics for Prometheus

OpenShift Container Platform captures the following Prometheus system metrics during authentication attempts:

  • openshift_auth_basic_password_count counts the number of oc login user name and password attempts.
  • openshift_auth_basic_password_count_result counts the number of oc login user name and password attempts by result, success or error.
  • openshift_auth_form_password_count counts the number of web console login attempts.
  • openshift_auth_form_password_count_result counts the number of web console login attempts by result, success or error.
  • openshift_auth_password_total counts the total number of oc login and web console login attempts.

Chapter 2. Certificate types and descriptions

2.1. Certificate validation

OpenShift Container Platform monitors certificates for proper validity, for the cluster certificates it issues and manages. The OpenShift Container Platform alerting framework has rules to help identify when a certificate issue is about to occur. These rules consist of the following checks:

  • API server client certificate expiration is less than five minutes.

2.2. User-provided certificates for the API server

Purpose

The API server is accessible by clients external to the cluster at api.<cluster_name>.<base_domain>. You might want clients to access the API server at a different host name or without the need to distribute the cluster-managed certificate authority (CA) certificates to the clients. The administrator must set a custom default certificate to be used by the API server when serving content.

Location

The user-provided certificates must be provided in a kubernetes.io/tls type Secret in the openshift-config namespace. Update the API server cluster configuration, the apiserver/cluster resource, to enable the use of the user-provided certificate.

Management

User-provided certificates are managed by the user.

Expiration

User-provided certificates are managed by the user.

Customization

Update the secret containing the user-managed certificate as needed.

2.3. Proxy certificates

Purpose

Proxy certificates allow users to specify one or more custom certificate authority (CA) certificates used by platform components when making egress connections.

The trustedCA field of the Proxy object is a reference to a ConfigMap that contains a user-provided trusted certificate authority (CA) bundle. This bundle is merged with the Red Hat Enterprise Linux CoreOS (RHCOS) trust bundle and injected into the trust store of platform components that make egress HTTPS calls. For example, image-registry-operator calls an external image registry to download images. If trustedCA is not specified, only the RHCOS trust bundle is used for proxied HTTPS connections. Provide custom CA certificates to the RHCOS trust bundle if you want to use your own certificate infrastructure.

The trustedCA field should only be consumed by a proxy validator. The validator is responsible for reading the certificate bundle from required key ca-bundle.crt and copying it to a ConfigMap named trusted-ca-bundle in the openshift-config-managed namespace. The namespace for the ConfigMap referenced by trustedCA is openshift-config:

apiVersion: v1
	kind: ConfigMap
 metadata:
	name: user-ca-bundle
	namespace: openshift-config
	data:
	  ca-bundle.crt: |
    -----BEGIN CERTIFICATE-----
    Custom CA certificate bundle.
    -----END CERTIFICATE-----
Managing proxy certificates during installation

The additionalTrustBundle value of the installer configuration is used to specify any proxy-trusted CA certificates during installation. For example:

$ cat install-config.yaml
. . .
proxy:
  httpProxy: http://<HTTP_PROXY>
  httpsProxy: https://<HTTPS_PROXY>
additionalTrustBundle: |
    -----BEGIN CERTIFICATE-----
   <MY_HTTPS_PROXY_TRUSTED_CA_CERT>
    -----END CERTIFICATE-----
. . .
Location

The user-provided trust bundle is represented as a ConfigMap. The ConfigMap is mounted into the file system of platform components that make egress HTTPS calls. Typically, Operators mount the ConfigMap to /etc/pki/ca-trust/extracted/pem/tls-ca-bundle.pem, but this is not required by the proxy. A proxy can modify or inspect the HTTPS connection. In either case, the proxy must generate and sign a new certificate for the connection.

Complete proxy support means connecting to the specified proxy and trusting any signatures it has generated. Therefore, it is necessary to let the user specify a trusted root, such that any certificate chain connected to that trusted root is also trusted.

If using the RHCOS trust bundle, place CA certificates in /etc/pki/ca-trust/source/anchors.

See Using shared system certificates in the Red Hat Enterprise Linux documentation for more information.

Expiration

The user sets the expiration term of the user-provided trust bundle.

The default expiration term is defined by the CA certificate itself. It is up to the CA administrator to configure this for the certificate before it can be used by OpenShift Container Platform or RHCOS.

Note

Red Hat does not monitor for when CAs expire. However, due to the long life of CAs, this is generally not an issue. However, you might need to periodically update the trust bundle.

Services

By default, all platform components that make egress HTTPS calls will use the RHCOS trust bundle. If trustedCA is defined, it will also be used.

Any service that is running on the RHCOS node is able to use the trust bundle of the node.

Management

These certificates are managed by the system and not the user.

Customization

Updating the user-provided trust bundle consists of either:

  • updating the PEM-encoded certificates in the ConfigMap referenced by trustedCA, or
  • creating a ConfigMap in the namespace openshift-config that contains the new trust bundle and updating trustedCA to reference the name of the new ConfigMap.

The mechanism for writing CA certificates to the RHCOS trust bundle is exactly the same as writing any other file to RHCOS, which is done through the use of MachineConfigs. When the Machine Config Operator (MCO) applies the new MachineConfig that contains the new CA certificates, the node is rebooted. During the next boot, the service coreos-update-ca-trust.service runs on the RHCOS nodes, which automatically update the trust bundle with the new CA certificates. For example:

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: worker
  name: 50-examplecorp-ca-cert
spec:
  config:
    ignition:
      version: 2.2.0
    storage:
      files:
      - contents:
          source: data:text/plain;charset=utf-8;base64,LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUVORENDQXh5Z0F3SUJBZ0lKQU51bkkwRDY2MmNuTUEwR0NTcUdTSWIzRFFFQkN3VUFNSUdsTVFzd0NRWUQKV1FRR0V3SlZVekVYTUJVR0ExVUVDQXdPVG05eWRHZ2dRMkZ5YjJ4cGJtRXhFREFPQmdOVkJBY01CMUpoYkdWcApBMmd4RmpBVUJnTlZCQW9NRFZKbFpDQklZWFFzSUVsdVl5NHhFekFSQmdOVkJBc01DbEpsWkNCSVlYUWdTVlF4Ckh6QVpCZ05WQkFNTUVsSmxaQ0JJWVhRZ1NWUWdVbTl2ZENCRFFURWhNQjhHQ1NxR1NJYjNEUUVKQVJZU2FXNW0KWGpDQnBURUxNQWtHQTFVRUJoTUNWVk14RnpBVkJnTlZCQWdNRGs1dmNuUm9JRU5oY205c2FXNWhNUkF3RGdZRApXUVFIREFkU1lXeGxhV2RvTVJZd0ZBWURWUVFLREExU1pXUWdTR0YwTENCSmJtTXVNUk13RVFZRFZRUUxEQXBTCkFXUWdTR0YwSUVsVU1Sc3dHUVlEVlFRRERCSlNaV1FnU0dGMElFbFVJRkp2YjNRZ1EwRXhJVEFmQmdrcWhraUcKMHcwQkNRRVdFbWx1Wm05elpXTkFjbVZrYUdGMExtTnZiVENDQVNJd0RRWUpLb1pJaHZjTkFRRUJCUUFEZ2dFUApCRENDQVFvQ2dnRUJBTFF0OU9KUWg2R0M1TFQxZzgwcU5oMHU1MEJRNHNaL3laOGFFVHh0KzVsblBWWDZNSEt6CmQvaTdsRHFUZlRjZkxMMm55VUJkMmZRRGsxQjBmeHJza2hHSUlaM2lmUDFQczRsdFRrdjhoUlNvYjNWdE5xU28KSHhrS2Z2RDJQS2pUUHhEUFdZeXJ1eTlpckxaaW9NZmZpM2kvZ0N1dDBaV3RBeU8zTVZINXFXRi9lbkt3Z1BFUwpZOXBvK1RkQ3ZSQi9SVU9iQmFNNzYxRWNyTFNNMUdxSE51ZVNmcW5obzNBakxRNmRCblBXbG82MzhabTFWZWJLCkNFTHloa0xXTVNGa0t3RG1uZTBqUTAyWTRnMDc1dkNLdkNzQ0F3RUFBYU5qTUdFd0hRWURWUjBPQkJZRUZIN1IKNXlDK1VlaElJUGV1TDhacXczUHpiZ2NaTUI4R0ExVWRJd1FZTUJhQUZIN1I0eUMrVWVoSUlQZXVMOFpxdzNQegpjZ2NaTUE4R0ExVWRFd0VCL3dRRk1BTUJBZjh3RGdZRFZSMFBBUUgvQkFRREFnR0dNQTBHQ1NxR1NJYjNEUUVCCkR3VUFBNElCQVFCRE52RDJWbTlzQTVBOUFsT0pSOCtlbjVYejloWGN4SkI1cGh4Y1pROGpGb0cwNFZzaHZkMGUKTUVuVXJNY2ZGZ0laNG5qTUtUUUNNNFpGVVBBaWV5THg0ZjUySHVEb3BwM2U1SnlJTWZXK0tGY05JcEt3Q3NhawpwU29LdElVT3NVSks3cUJWWnhjckl5ZVFWMnFjWU9lWmh0UzV3QnFJd09BaEZ3bENFVDdaZTU4UUhtUzQ4c2xqCjVlVGtSaml2QWxFeHJGektjbGpDNGF4S1Fsbk92VkF6eitHbTMyVTB4UEJGNEJ5ZVBWeENKVUh3MVRzeVRtZWwKU3hORXA3eUhvWGN3bitmWG5hK3Q1SldoMWd4VVp0eTMKLS0tLS1FTkQgQ0VSVElGSUNBVEUtLS0tLQo=
        filesystem: root
        mode: 0644
        path: /etc/pki/ca-trust/source/anchors/examplecorp-ca.crt

The trust store of machines must also support updating the trust store of nodes.

Renewal

There are no Operators that can auto-renew certificates on the RHCOS nodes.

Note

Red Hat does not monitor for when CAs expire. However, due to the long life of CAs, this is generally not an issue. However, you might need to periodically update the trust bundle.

2.4. Service CA certificates

Purpose

service-ca is an Operator that creates a self-signed CA when an OpenShift Container Platform cluster is deployed.

Expiration

A custom expiration term is not supported. The self-signed CA is stored in a secret with qualified name service-ca/signing-key in fields tls.crt (certificate(s)), tls.key (private key), and ca-bundle.crt (CA bundle).

Other services can request a service serving certificate by annotating a service resource with service.beta.openshift.io/serving-cert-secret-name: <secret name>. In response, the Operator generates a new certificate, as tls.crt, and private key, as tls.key to the named secret. The certificate is valid for two years.

Other services can request that the CA bundle for the service CA be injected into APIService or ConfigMap resources by annotating with service.beta.openshift.io/inject-cabundle: true to support validating certificates generated from the service CA. In response, the Operator writes its current CA bundle to the CABundle field of APIService or as service-ca.crt to a ConfigMap.

As of OpenShift Container Platform 4.3.5, automated rotation is supported and is backported to some 4.2.z and 4.3.z releases. For any release supporting automated rotation, the service CA is valid for 26 months and is automatically refreshed when there is less than 13 months validity left. If necessary, you can manually refresh the service CA.

The service CA expiration of 26 months is longer than the expected upgrade interval for a supported OpenShift Container Platform cluster, such that non-control plane consumers of service CA certificates will be refreshed after CA rotation and prior to the expiration of the pre-rotation CA.

Warning

A manually-rotated service CA does not maintain trust with the previous service CA. You might experience a temporary service disruption until the Pods in the cluster are restarted, which ensures that Pods are using service serving certificates issued by the new service CA.

Management

These certificates are managed by the system and not the user.

Services

Services that use service CA certificates include:

  • cluster-autoscaler-operator
  • cluster-monitoring-operator
  • cluster-authentication-operator
  • cluster-image-registry-operator
  • cluster-ingress-operator
  • cluster-kube-apiserver-operator
  • cluster-kube-controller-manager-operator
  • cluster-kube-scheduler-operator
  • cluster-networking-operator
  • cluster-openshift-apiserver-operator
  • cluster-openshift-controller-manager-operator
  • cluster-samples-operator
  • cluster-svcat-apiserver-operator
  • cluster-svcat-controller-manager-operator
  • machine-config-operator
  • console-operator
  • insights-operator
  • machine-api-operator
  • operator-lifecycle-manager

This is not a comprehensive list.

2.5. Node certificates

Purpose

Node certificates are signed by the cluster; they come from a certificate authority (CA) that is generated by the bootstrap process. Once the cluster is installed, the node certificates are auto-rotated.

Management

These certificates are managed by the system and not the user.

2.6. Bootstrap certificates

Purpose

The kubelet, in OpenShift Container Platform 4 and later, uses the bootstrap certificate located in /etc/kubernetes/kubeconfig to initially bootstrap. This is followed by the bootstrap initialization process and authorization of the kubelet to create a CSR.

In that process, the kubelet generates a CSR while communicating over the bootstrap channel. The controller manager signs the CSR, resulting in a certificate that the kubelet manages.

Management

These certificates are managed by the system and not the user.

Expiration

This bootstrap CA is valid for 10 years.

The kubelet-managed certificate is valid for one year and rotates automatically at around the 80 percent mark of that one year.

Customization

You cannot customize the bootstrap certificates.

2.7. etcd certificates

Purpose

etcd certificates are signed by the etcd-signer; they come from a certificate authority (CA) that is generated by the bootstrap process.

Location
  • CA certificates:

    • etcd CA certificate: /etc/ssl/etcd/ca.crt
    • etcd metric CA certificate: /etc/ssl/etcd/metric-ca.crt
  • Server certificates: /etc/ssl/etcd/system:etcd-server
  • Client certificates: <api_server_pod_directory>/secrets/etcd-client/
  • Peer certificates: /etc/ssl/etcd/system:etcd-peer
  • Metric certificates: /etc/ssl/etcd/metric-signer
Expiration

The CA certificates are valid for 10 years. The peer, client, and server certificates are valid for three years.

Management

These certificates are managed by the system and not the user.

Services

etcd certificates are used for encrypted communication between etcd member peers, as well as encrypted client traffic. The following certificates are generated and used by etcd and other processes that communicate with etcd:

  • Peer certificates: Used for communication between etcd members.
  • Client certificates: Used for encrypted server-client communication. Client certificates are currently used by the API server only, and no other service should connect to etcd directly except for the proxy. Client secrets (etcd-client, etcd-metric-client, etcd-metric-signer, and etcd-signer) are added to the openshift-config, openshift-monitoring, and openshift-kube-apiserver namespaces.
  • Server certificates: Used by the etcd server for authenticating client requests.
  • Metric certificates: All metric consumers connect to proxy with metric-client certificates.

2.8. OLM certificates

Management

All certificates for OpenShift Lifecycle Manager (OLM) components (olm-operator, catalog-operator, packageserver, and marketplace-operator) are managed by the system.

Operators installed via OLM can have certificates generated for them if they are providing API services. packageserver is one example.

Certificates in the openshift-operator-lifecycle-manager namespace are managed by OLM with the exception of certificates used by Operators that require a validating or mutating webhook.

Operators that install validating or mutating webhooks must currently manage those certificates themselves. They do not require the user to manage the certificates.

OLM will not update the certificates of Operators that it manages in proxy environments. These certificates must be managed by the user via the subscription config.

2.9. User-provided certificates for default ingress

Purpose

Applications are usually exposed at <route_name>.apps.<cluster_name>.<base_domain>. The <cluster_name> and <base_domain> come from the installation config file. <route_name> is the host field of the route, if specified, or the route name. For example, hello-openshift-default.apps.username.devcluster.openshift.com. hello-openshift is the name of the route and the route is in the default namespace. You might want clients to access the applications without the need to distribute the cluster-managed CA certificates to the clients. The administrator must set a custom default certificate when serving application content.

Warning

The Ingress Operator generates a default certificate for an Ingress Controller to serve as a placeholder until you configure a custom default certificate. Do not use operator-generated default certificates in production clusters.

Location

The user-provided certificates must be provided in a kubernetes.io/tls type Secret in the openshift-config namespace. Update the ingresscontroller.operator/default resource in the openshift-ingress-operator namespace to enable the use of the user-provided certificate.

Management

User-provided certificates are managed by the user.

Expiration

User-provided certificates are managed by the user.

Services

Applications deployed on the cluster use user-provided certificates for default ingress.

Customization

Update the secret containing the user-managed certificate as needed.

2.10. Ingress certificates

Purpose

The Ingress Operator uses certificates for:

  • Securing access to metrics for Prometheus.
  • Securing access to routes.

Location

To secure access to Ingress Operator and Ingress Controller metrics, the Ingress Operator uses service serving certificates. The Operator requests a certificate from the service-ca controller for its own metrics, and the service-ca controller puts the certificate in a secret named metrics-tls in the openshift-ingress-operator namespace. Additionally, the Ingress Operator requests a certificate for each Ingress Controller, and the service-ca controller puts the certificate in a secret named router-metrics-certs-<name>, where <name> is the name of the Ingress Controller, in the openshift-ingress namespace.

Each Ingress Controller has a default certificate that it uses for secured routes that do not specify their own certificates. Unless you specify a custom certificate, the Operator uses a self-signed certificate by default. The Operator uses its own self-signed signing certificate to sign any default certificate that it generates. The Operator generates this signing certificate and puts it in a secret named router-ca in the openshift-ingress-operator namespace. When the Operator generates a default certificate, it puts the default certificate in a secret named router-certs-<name> (where <name> is the name of the Ingress Controller) in the openshift-ingress namespace.

Warning

The Ingress Operator generates a default certificate for an Ingress Controller to serve as a placeholder until you configure a custom default certificate. Do not use Operator-generated default certificates in production clusters.

Workflow

Figure 2.1. Custom certificate workflow

Figure 2.2. Default certificate workflow

20 An empty defaultCertificate field causes the Ingress Operator to use its self-signed CA to generate a serving certificate for the specified domain.

20 The default CA certificate and key generated by the Ingress Operator. Used to sign Operator-generated default serving certificates.

20 In the default workflow, the wildcard default serving certificate, created by the Ingress Operator and signed using the generated default CA certificate. In the custom workflow, this is the user-provided certificate.

20 The router deployment. Uses the certificate in secrets/router-certs-default as its default front-end server certificate.

20 In the default workflow, the contents of the wildcard default serving certificate (public and private parts) are copied here to enable OAuth integration. In the custom workflow, this is the user-provided certificate.

20 Transitional resource containing the certificate (public part) of the Operator-generated default CA certificate; read by OAuth and the web console to establish trust. This object will be removed in a future release.

20 The public (certificate) part of the default serving certificate. Replaces the configmaps/router-ca resource.

20 The user updates the cluster proxy configuration with the CA certificate that signed the ingresscontroller serving certificate. This enables components like auth, console, and the registry to trust the serving certificate.

20 The cluster-wide trusted CA bundle containing the combined Red Hat Enterprise Linux CoreOS (RHCOS) and user-provided CA bundles or an RHCOS-only bundle if a user bundle is not provided.

20 The custom CA certificate bundle, which instructs other components (for example, auth and console) to trust an ingresscontroller configured with a custom certificate.

20 The trustedCA field is used to reference the user-provided CA bundle.

20 The Cluster Network Operator injects the trusted CA bundle into the proxy-ca ConfigMap.

20 OpenShift Container Platform 4.3 and earlier versions use router-ca.

Expiration

The expiration terms for the Ingress Operator’s certificates are as follows:

  • The expiration date for metrics certificates that the service-ca controller creates is two years after the date of creation.
  • The expiration date for the Operator’s signing certificate is two years after the date of creation.
  • The expiration date for default certificates that the Operator generates is two years after the date of creation.

You cannot specify custom expiration terms on certificates that the Ingress Operator or service-ca controller creates.

You cannot specify expiration terms when installing OpenShift Container Platform for certificates that the Ingress Operator or service-ca controller creates.

Services

Prometheus uses the certificates that secure metrics.

The Ingress Operator uses its signing certificate to sign default certificates that it generates for Ingress Controllers for which you do not set custom default certificates.

Cluster components that use secured routes may use the default Ingress Controller’s default certificate.

Ingress to the cluster via a secured route uses the default certificate of the Ingress Controller by which the route is accessed unless the route specifies its own certificate.

Management

Ingress certificates are managed by the user. See Replacing the default ingress certificate for more information.

Renewal

The service-ca controller automatically rotates the certificates that it issues. However, it is possible to use oc delete secret <secret> to manually rotate service serving certificates.

The Ingress Operator does not rotate its own signing certificate or the default certificates that it generates. Operator-generated default certificates are intended as placeholders for custom default certificates that you configure.

Chapter 3. Monitoring and cluster logging Operator component certificates

Monitoring components secure their traffic with service CA certificates. These certificates are valid for 2 years and are replaced automatically on rotation of the service CA, which is every 13 months.

If the certificate lives in the openshift-monitoring or openshift-logging namespace, it is system managed and rotated automatically.

Management

These certificates are managed by the system and not the user.

Chapter 4. Control plane certificates

Location

Control plane certificates are included in these namespaces:

  • openshift-config-managed
  • openshift-kube-apiserver
  • openshift-kube-apiserver-operator
  • openshift-kube-controller-manager
  • openshift-kube-controller-manager-operator
  • openshift-kube-scheduler

Management

Control plane certificates are managed by the system and rotated automatically.

In the rare case that your control plane certificates expired, see Recovering from expired control plane certificates

Chapter 5. Configuring the internal OAuth server

5.1. OpenShift Container Platform OAuth server

The OpenShift Container Platform master includes a built-in OAuth server. Users obtain OAuth access tokens to authenticate themselves to the API.

When a person requests a new OAuth token, the OAuth server uses the configured identity provider to determine the identity of the person making the request.

It then determines what user that identity maps to, creates an access token for that user, and returns the token for use.

5.2. OAuth token request flows and responses

The OAuth server supports standard authorization code grant and the implicit grant OAuth authorization flows.

When requesting an OAuth token using the implicit grant flow (response_type=token) with a client_id configured to request WWW-Authenticate challenges (like openshift-challenging-client), these are the possible server responses from /oauth/authorize, and how they should be handled:

StatusContentClient response

302

Location header containing an access_token parameter in the URL fragment (RFC 4.2.2)

Use the access_token value as the OAuth token

302

Location header containing an error query parameter (RFC 4.1.2.1)

Fail, optionally surfacing the error (and optional error_description) query values to the user

302

Other Location header

Follow the redirect, and process the result using these rules

401

WWW-Authenticate header present

Respond to challenge if type is recognized (e.g. Basic, Negotiate, etc), resubmit request, and process the result using these rules

401

WWW-Authenticate header missing

No challenge authentication is possible. Fail and show response body (which might contain links or details on alternate methods to obtain an OAuth token)

Other

Other

Fail, optionally surfacing response body to the user

5.3. Options for the internal OAuth server

Several configuration options are available for the internal OAuth server.

5.3.1. OAuth token duration options

The internal OAuth server generates two kinds of tokens:

Access tokens

Longer-lived tokens that grant access to the API.

Authorize codes

Short-lived tokens whose only use is to be exchanged for an access token.

You can configure the default duration for both types of token. If necessary, you can override the duration of the access token by using an OAuthClient object definition.

5.3.2. OAuth grant options

When the OAuth server receives token requests for a client to which the user has not previously granted permission, the action that the OAuth server takes is dependent on the OAuth client’s grant strategy.

The OAuth client requesting token must provide its own grant strategy.

You can apply the following default methods:

auto

Auto-approve the grant and retry the request.

prompt

Prompt the user to approve or deny the grant.

5.4. Configuring the internal OAuth server’s token duration

You can configure default options for the internal OAuth server’s token duration.

Important

By default, tokens are only valid for 24 hours. Existing sessions expire after this time elapses.

If the default time is insufficient, then this can be modified using the following procedure.

Procedure

  1. Create a configuration file that contains the token duration options. The following file sets this to 48 hours, twice the default.

    apiVersion: config.openshift.io/v1
    kind: OAuth
    metadata:
      name: cluster
    spec:
      tokenConfig:
        accessTokenMaxAgeSeconds: 172800 1
    1
    Set accessTokenMaxAgeSeconds to control the lifetime of access tokens. The default lifetime is 24 hours, or 86400 seconds. This attribute cannot be negative.
  2. Apply the new configuration file:

    Note

    Because you update the existing OAuth server, you must use the oc apply command to apply the change.

    $ oc apply -f </path/to/file.yaml>
  3. Confirm that the changes are in effect:

    $ oc describe oauth.config.openshift.io/cluster
    ...
    Spec:
      Token Config:
        Access Token Max Age Seconds:  172800
    ...

5.5. Register an additional OAuth client

If you need an additional OAuth client to manage authentication for your OpenShift Container Platform cluster, you can register one.

Procedure

  • To register additional OAuth clients:

    $ oc create -f <(echo '
    kind: OAuthClient
    apiVersion: oauth.openshift.io/v1
    metadata:
     name: demo 1
    secret: "..." 2
    redirectURIs:
     - "http://www.example.com/" 3
    grantMethod: prompt 4
    ')
    1
    The name of the OAuth client is used as the client_id parameter when making requests to <namespace_route>/oauth/authorize and <namespace_route>/oauth/token.
    2
    The secret is used as the client_secret parameter when making requests to <namespace_route>/oauth/token.
    3
    The redirect_uri parameter specified in requests to <namespace_route>/oauth/authorize and <namespace_route>/oauth/token must be equal to or prefixed by one of the URIs listed in the redirectURIs parameter value.
    4
    The grantMethod is used to determine what action to take when this client requests tokens and has not yet been granted access by the user. Specify auto to automatically approve the grant and retry the request, or prompt to prompt the user to approve or deny the grant.

5.6. OAuth server metadata

Applications running in OpenShift Container Platform might have to discover information about the built-in OAuth server. For example, they might have to discover what the address of the <namespace_route> is without manual configuration. To aid in this, OpenShift Container Platform implements the IETF OAuth 2.0 Authorization Server Metadata draft specification.

Thus, any application running inside the cluster can issue a GET request to https://openshift.default.svc/.well-known/oauth-authorization-server to fetch the following information:

{
  "issuer": "https://<namespace_route>", 1
  "authorization_endpoint": "https://<namespace_route>/oauth/authorize", 2
  "token_endpoint": "https://<namespace_route>/oauth/token", 3
  "scopes_supported": [ 4
    "user:full",
    "user:info",
    "user:check-access",
    "user:list-scoped-projects",
    "user:list-projects"
  ],
  "response_types_supported": [ 5
    "code",
    "token"
  ],
  "grant_types_supported": [ 6
    "authorization_code",
    "implicit"
  ],
  "code_challenge_methods_supported": [ 7
    "plain",
    "S256"
  ]
}
1
The authorization server’s issuer identifier, which is a URL that uses the https scheme and has no query or fragment components. This is the location where .well-known RFC 5785 resources containing information about the authorization server are published.
2
URL of the authorization server’s authorization endpoint. See RFC 6749.
3
URL of the authorization server’s token endpoint. See RFC 6749.
4
JSON array containing a list of the OAuth 2.0 RFC 6749 scope values that this authorization server supports. Note that not all supported scope values are advertised.
5
JSON array containing a list of the OAuth 2.0 response_type values that this authorization server supports. The array values used are the same as those used with the response_types parameter defined by "OAuth 2.0 Dynamic Client Registration Protocol" in RFC 7591.
6
JSON array containing a list of the OAuth 2.0 grant type values that this authorization server supports. The array values used are the same as those used with the grant_types parameter defined by OAuth 2.0 Dynamic Client Registration Protocol in RFC 7591.
7
JSON array containing a list of PKCE RFC 7636 code challenge methods supported by this authorization server. Code challenge method values are used in the code_challenge_method parameter defined in Section 4.3 of RFC 7636. The valid code challenge method values are those registered in the IANA PKCE Code Challenge Methods registry. See IANA OAuth Parameters.

5.7. Troubleshooting OAuth API events

In some cases the API server returns an unexpected condition error message that is difficult to debug without direct access to the API master log. The underlying reason for the error is purposely obscured in order to avoid providing an unauthenticated user with information about the server’s state.

A subset of these errors is related to service account OAuth configuration issues. These issues are captured in events that can be viewed by non-administrator users. When encountering an unexpected condition server error during OAuth, run oc get events to view these events under ServiceAccount.

The following example warns of a service account that is missing a proper OAuth redirect URI:

$ oc get events | grep ServiceAccount
1m         1m          1         proxy                    ServiceAccount                                  Warning   NoSAOAuthRedirectURIs   service-account-oauth-client-getter   system:serviceaccount:myproject:proxy has no redirectURIs; set serviceaccounts.openshift.io/oauth-redirecturi.<some-value>=<redirect> or create a dynamic URI using serviceaccounts.openshift.io/oauth-redirectreference.<some-value>=<reference>

Running oc describe sa/<service-account-name> reports any OAuth events associated with the given service account name.

$ oc describe sa/proxy | grep -A5 Events
Events:
  FirstSeen     LastSeen        Count   From                                    SubObjectPath   Type            Reason                  Message
  ---------     --------        -----   ----                                    -------------   --------        ------                  -------
  3m            3m              1       service-account-oauth-client-getter                     Warning         NoSAOAuthRedirectURIs   system:serviceaccount:myproject:proxy has no redirectURIs; set serviceaccounts.openshift.io/oauth-redirecturi.<some-value>=<redirect> or create a dynamic URI using serviceaccounts.openshift.io/oauth-redirectreference.<some-value>=<reference>

The following is a list of the possible event errors:

No redirect URI annotations or an invalid URI is specified

Reason                  Message
NoSAOAuthRedirectURIs   system:serviceaccount:myproject:proxy has no redirectURIs; set serviceaccounts.openshift.io/oauth-redirecturi.<some-value>=<redirect> or create a dynamic URI using serviceaccounts.openshift.io/oauth-redirectreference.<some-value>=<reference>

Invalid route specified

Reason                  Message
NoSAOAuthRedirectURIs   [routes.route.openshift.io "<name>" not found, system:serviceaccount:myproject:proxy has no redirectURIs; set serviceaccounts.openshift.io/oauth-redirecturi.<some-value>=<redirect> or create a dynamic URI using serviceaccounts.openshift.io/oauth-redirectreference.<some-value>=<reference>]

Invalid reference type specified

Reason                  Message
NoSAOAuthRedirectURIs   [no kind "<name>" is registered for version "v1", system:serviceaccount:myproject:proxy has no redirectURIs; set serviceaccounts.openshift.io/oauth-redirecturi.<some-value>=<redirect> or create a dynamic URI using serviceaccounts.openshift.io/oauth-redirectreference.<some-value>=<reference>]

Missing SA tokens

Reason                  Message
NoSAOAuthTokens         system:serviceaccount:myproject:proxy has no tokens

Chapter 6. Understanding identity provider configuration

The OpenShift Container Platform master includes a built-in OAuth server. Developers and administrators obtain OAuth access tokens to authenticate themselves to the API.

As an administrator, you can configure OAuth to specify an identity provider after you install your cluster.

6.1. About identity providers in OpenShift Container Platform

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must create a Custom Resource (CR) that describes that identity provider and add it to the cluster.

Note

OpenShift Container Platform user names containing /, :, and % are not supported.

6.2. Supported identity providers

You can configure the following types of identity providers:

Identity providerDescription

HTPasswd

Configure the htpasswd identity provider to validate user names and passwords against a flat file generated using htpasswd.

Keystone

Configure the keystone identity provider to integrate your OpenShift Container Platform cluster with Keystone to enable shared authentication with an OpenStack Keystone v3 server configured to store users in an internal database.

LDAP

Configure the ldap identity provider to validate user names and passwords against an LDAPv3 server, using simple bind authentication.

Basic authentication

Configure a basic-authentication identity provider for users to log in to OpenShift Container Platform with credentials validated against a remote identity provider. Basic authentication is a generic backend integration mechanism.

Request header

Configure a request-header identity provider to identify users from request header values, such as X-Remote-User. It is typically used in combination with an authenticating proxy, which sets the request header value.

GitHub or GitHub Enterprise

Configure a github identity provider to validate user names and passwords against GitHub or GitHub Enterprise’s OAuth authentication server.

GitLab

Configure a gitlab identity provider to use GitLab.com or any other GitLab instance as an identity provider.

Google

Configure a google identity provider using Google’s OpenID Connect integration.

OpenID Connect

Configure an oidc identity provider to integrate with an OpenID Connect identity provider using an Authorization Code Flow.

Once an identity provider has been defined, you can use RBAC to define and apply permissions.

6.3. Removing the kubeadmin user

After you define an identity provider and create a new cluster-admin user, you can remove the kubeadmin to improve cluster security.

Warning

If you follow this procedure before another user is a cluster-admin, then OpenShift Container Platform must be reinstalled. It is not possible to undo this command.

Prerequisites

  • You must have configured at least one identity provider.
  • You must have added the cluster-admin role to a user.
  • You must be logged in as an administrator.

Procedure

  • Remove the kubeadmin secrets:

    $ oc delete secrets kubeadmin -n kube-system

6.4. Identity provider parameters

The following parameters are common to all identity providers:

ParameterDescription

name

The provider name is prefixed to provider user names to form an identity name.

mappingMethod

Defines how new identities are mapped to users when they log in. Enter one of the following values:

claim
The default value. Provisions a user with the identity’s preferred user name. Fails if a user with that user name is already mapped to another identity.
lookup
Looks up an existing identity, user identity mapping, and user, but does not automatically provision users or identities. This allows cluster administrators to set up identities and users manually, or using an external process. Using this method requires you to manually provision users.
generate
Provisions a user with the identity’s preferred user name. If a user with the preferred user name is already mapped to an existing identity, a unique user name is generated. For example, myuser2. This method should not be used in combination with external processes that require exact matches between OpenShift Container Platform user names and identity provider user names, such as LDAP group sync.
add
Provisions a user with the identity’s preferred user name. If a user with that user name already exists, the identity is mapped to the existing user, adding to any existing identity mappings for the user. Required when multiple identity providers are configured that identify the same set of users and map to the same user names.
Note

When adding or changing identity providers, you can map identities from the new provider to existing users by setting the mappingMethod parameter to add.

6.5. Sample identity provider CR

The following Custom Resource (CR) shows the parameters and default values that you use to configure an identity provider. This example uses the HTPasswd identity provider.

Sample identity provider CR

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
  name: cluster
spec:
  identityProviders:
  - name: my_identity_provider 1
    mappingMethod: claim 2
    type: HTPasswd
    htpasswd:
      fileData:
        name: htpass-secret 3

1
This provider name is prefixed to provider user names to form an identity name.
2
Controls how mappings are established between this provider’s identities and user objects.
3
An existing secret containing a file generated using htpasswd.

Chapter 7. Configuring identity providers

7.1. Configuring an HTPasswd identity provider

7.1.1. About identity providers in OpenShift Container Platform

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must create a Custom Resource (CR) that describes that identity provider and add it to the cluster.

Note

OpenShift Container Platform user names containing /, :, and % are not supported.

To define an HTPasswd identity provider you must perform the following steps:

7.1.2. Creating an HTPasswd file using Linux

To use the HTPasswd identity provider, you must generate a flat file that contains the user names and passwords for your cluster by using htpasswd.

Prerequisites

  • Have access to the htpasswd utility. On Red Hat Enterprise Linux this is available by installing the httpd-tools package.

Procedure

  1. Create or update your flat file with a user name and hashed password:

    $ htpasswd -c -B -b </path/to/users.htpasswd> <user_name> <password>

    The command generates a hashed version of the password.

    For example:

    $ htpasswd -c -B -b users.htpasswd user1 MyPassword!
    
    Adding password for user user1
  2. Continue to add or update credentials to the file:

    $ htpasswd -B -b </path/to/users.htpasswd> <user_name> <password>

7.1.3. Creating an HTPasswd file using Windows

To use the HTPasswd identity provider, you must generate a flat file that contains the user names and passwords for your cluster by using htpasswd.

Prerequisites

  • Have access to htpasswd.exe. This file is included in the \bin directory of many Apache httpd distributions.

Procedure

  1. Create or update your flat file with a user name and hashed password:

    > htpasswd.exe -c -B -b <\path\to\users.htpasswd> <user_name> <password>

    The command generates a hashed version of the password.

    For example:

    > htpasswd.exe -c -B -b users.htpasswd user1 MyPassword!
    
    Adding password for user user1
  2. Continue to add or update credentials to the file:

    > htpasswd.exe -b <\path\to\users.htpasswd> <user_name> <password>

7.1.4. Creating the HTPasswd Secret

To use the HTPasswd identity provider, you must define a secret that contains the HTPasswd user file.

Prerequisites

  • Create an HTPasswd file.

Procedure

  • Create an OpenShift Container Platform Secret that contains the HTPasswd users file.

    $ oc create secret generic htpass-secret --from-file=htpasswd=</path/to/users.htpasswd> -n openshift-config
    Note

    The secret key containing the users file for the --from-file argument must be named htpasswd, as shown in the above command.

7.1.5. Sample HTPasswd CR

The following Custom Resource (CR) shows the parameters and acceptable values for an HTPasswd identity provider.

HTPasswd CR

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
  name: cluster
spec:
  identityProviders:
  - name: my_htpasswd_provider 1
    mappingMethod: claim 2
    type: HTPasswd
    htpasswd:
      fileData:
        name: htpass-secret 3

1
This provider name is prefixed to provider user names to form an identity name.
2
Controls how mappings are established between this provider’s identities and user objects.
3
An existing secret containing a file generated using htpasswd.

7.1.6. Adding an identity provider to your clusters

After you install your cluster, add an identity provider to it so your users can authenticate.

Prerequisites

  • Create an OpenShift Container Platform cluster.
  • Create the Custom Resource (CR) for your identity providers.
  • You must be logged in as an administrator.

Procedure

  1. Apply the defined CR:

    $ oc apply -f </path/to/CR>
    Note

    If a CR does not exist, oc apply creates a new CR and might trigger the following warning: Warning: oc apply should be used on resources created by either oc create --save-config or oc apply. In this case you can safely ignore this warning.

  2. Log in to the cluster as a user from your identity provider, entering the password when prompted.

    $ oc login -u <username>
  3. Confirm that the user logged in successfully, and display the user name.

    $ oc whoami

7.1.7. Updating users for an HTPasswd identity provider

You can add or remove users from an existing HTPasswd identity provider.

Prerequisites

  • You have created a secret that contains the HTPasswd user file. This procedure assumes that it is named htpass-secret.
  • You have configured an HTPasswd identity provider. This procedure assumes that it is named my_htpasswd_provider.
  • You have access to the htpasswd utility. On Red Hat Enterprise Linux this is available by installing the httpd-tools package.
  • You have cluster administrator privileges.

Procedure

  1. Retrieve the HTPasswd file from the htpass-secret secret and save the file to your file system:

    $ oc get secret htpass-secret -ojsonpath={.data.htpasswd} -n openshift-config | base64 -d > users.htpasswd
  2. Add or remove users from the users.htpasswd file.

    • To add a new user:

      $ htpasswd -bB users.htpasswd <username> <password>
      Adding password for user <username>
    • To remove an existing user:

      $ htpasswd -D users.htpasswd <username>
      Deleting password for user <username>
  3. Replace the htpass-secret secret with the updated users in the users.htpasswd file:

    $ oc create secret generic htpass-secret --from-file=htpasswd=users.htpasswd --dry-run -o yaml -n openshift-config | oc replace -f -
  4. If you removed one or more users, you must additionally remove existing resources for each user.

    1. Delete the user:

      $ oc delete user <username>
      user.user.openshift.io "<username>" deleted

      Be sure to remove the user, otherwise the user can continue using their token as long as it has not expired.

    2. Delete the identity for the user:

      $ oc delete identity my_htpasswd_provider:<username>
      identity.user.openshift.io "my_htpasswd_provider:<username>" deleted

7.1.8. Configuring identity providers using the web console

Configure your identity provider (IDP) through the web console instead of the CLI.

Prerequisites

  • You must be logged in to the web console as a cluster administrator.

Procedure

  1. Navigate to AdministrationCluster Settings.
  2. Under the Global Configuration tab, click OAuth.
  3. Under the Identity Providers section, select your identity provider from the Add drop-down menu.
Note

You can specify multiple IDPs through the web console without overwriting existing IDPs.

7.2. Configuring a Keystone identity provider

Configure the keystone identity provider to integrate your OpenShift Container Platform cluster with Keystone to enable shared authentication with an OpenStack Keystone v3 server configured to store users in an internal database. This configuration allows users to log in to OpenShift Container Platform with their Keystone credentials.

Keystone is an OpenStack project that provides identity, token, catalog, and policy services.

You can configure the integration with Keystone so that the new OpenShift Container Platform users are based on either the Keystone user names or unique Keystone IDs. With both methods, users log in by entering their Keystone user name and password. Basing the OpenShift Container Platform users off of the Keystone ID is more secure. If you delete a Keystone user and create a new Keystone user with that user name, the new user might have access to the old user’s resources.

7.2.1. About identity providers in OpenShift Container Platform

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must create a Custom Resource (CR) that describes that identity provider and add it to the cluster.

Note

OpenShift Container Platform user names containing /, :, and % are not supported.

7.2.2. Creating the Secret

Identity providers use OpenShift Container Platform Secrets in the openshift-config namespace to contain the client secret, client certificates, and keys.

  • You can define an OpenShift Container Platform Secret containing a string by using the following command.

    $ oc create secret generic <secret_name> --from-literal=clientSecret=<secret> -n openshift-config
  • You can define an OpenShift Container Platform Secret containing the contents of a file, such as a certificate file, by using the following command.

    $ oc create secret generic <secret_name> --from-file=/path/to/file -n openshift-config

7.2.3. Creating a ConfigMap

Identity providers use OpenShift Container Platform ConfigMaps in the openshift-config namespace to contain the certificate authority bundle. These are primarily used to contain certificate bundles needed by the identity provider.

  • Define an OpenShift Container Platform ConfigMap containing the certificate authority by using the following command. The certificate authority must be stored in the ca.crt key of the ConfigMap.

    $ oc create configmap ca-config-map --from-file=ca.crt=/path/to/ca -n openshift-config

7.2.4. Sample Keystone CR

The following Custom Resource (CR) shows the parameters and acceptable values for a Keystone identity provider.

Keystone CR

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
  name: cluster
spec:
  identityProviders:
  - name: keystoneidp 1
    mappingMethod: claim 2
    type: Keystone
    keystone:
      domainName: default 3
      url: https://keystone.example.com:5000 4
      ca: 5
        name: ca-config-map
      tlsClientCert: 6
        name: client-cert-secret
      tlsClientKey: 7
        name: client-key-secret

1
This provider name is prefixed to provider user names to form an identity name.
2
Controls how mappings are established between this provider’s identities and user objects.
3
Keystone domain name. In Keystone, usernames are domain-specific. Only a single domain is supported.
4
The URL to use to connect to the Keystone server (required). This must use https.
5
Optional: Reference to an OpenShift Container Platform ConfigMap containing the PEM-encoded certificate authority bundle to use in validating server certificates for the configured URL.
6
Optional: Reference to an OpenShift Container Platform Secret containing the client certificate to present when making requests to the configured URL.
7
Reference to an OpenShift Container Platform Secret containing the key for the client certificate. Required if tlsClientCert is specified.

7.2.5. Adding an identity provider to your clusters

After you install your cluster, add an identity provider to it so your users can authenticate.

Prerequisites

  • Create an OpenShift Container Platform cluster.
  • Create the Custom Resource (CR) for your identity providers.
  • You must be logged in as an administrator.

Procedure

  1. Apply the defined CR:

    $ oc apply -f </path/to/CR>
    Note

    If a CR does not exist, oc apply creates a new CR and might trigger the following warning: Warning: oc apply should be used on resources created by either oc create --save-config or oc apply. In this case you can safely ignore this warning.

  2. Log in to the cluster as a user from your identity provider, entering the password when prompted.

    $ oc login -u <username>
  3. Confirm that the user logged in successfully, and display the user name.

    $ oc whoami

7.3. Configuring an LDAP identity provider

Configure the ldap identity provider to validate user names and passwords against an LDAPv3 server, using simple bind authentication.

7.3.1. About identity providers in OpenShift Container Platform

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must create a Custom Resource (CR) that describes that identity provider and add it to the cluster.

Note

OpenShift Container Platform user names containing /, :, and % are not supported.

7.3.2. About LDAP authentication

During authentication, the LDAP directory is searched for an entry that matches the provided user name. If a single unique match is found, a simple bind is attempted using the distinguished name (DN) of the entry plus the provided password.

These are the steps taken:

  1. Generate a search filter by combining the attribute and filter in the configured url with the user-provided user name.
  2. Search the directory using the generated filter. If the search does not return exactly one entry, deny access.
  3. Attempt to bind to the LDAP server using the DN of the entry retrieved from the search, and the user-provided password.
  4. If the bind is unsuccessful, deny access.
  5. If the bind is successful, build an identity using the configured attributes as the identity, email address, display name, and preferred user name.

The configured url is an RFC 2255 URL, which specifies the LDAP host and search parameters to use. The syntax of the URL is:

ldap://host:port/basedn?attribute?scope?filter

For this URL:

URL ComponentDescription

ldap

For regular LDAP, use the string ldap. For secure LDAP (LDAPS), use ldaps instead.

host:port

The name and port of the LDAP server. Defaults to localhost:389 for ldap and localhost:636 for LDAPS.

basedn

The DN of the branch of the directory where all searches should start from. At the very least, this must be the top of your directory tree, but it could also specify a subtree in the directory.

attribute

The attribute to search for. Although RFC 2255 allows a comma-separated list of attributes, only the first attribute will be used, no matter how many are provided. If no attributes are provided, the default is to use uid. It is recommended to choose an attribute that will be unique across all entries in the subtree you will be using.

scope

The scope of the search. Can be either one or sub. If the scope is not provided, the default is to use a scope of sub.

filter

A valid LDAP search filter. If not provided, defaults to (objectClass=*)

Important

If you are using an insecure LDAP connection (ldap:// or port 389), then you must check the Insecure option in the configuration wizard.

When doing searches, the attribute, filter, and provided user name are combined to create a search filter that looks like:

(&(<filter>)(<attribute>=<username>))

For example, consider a URL of:

ldap://ldap.example.com/o=Acme?cn?sub?(enabled=true)

When a client attempts to connect using a user name of bob, the resulting search filter will be (&(enabled=true)(cn=bob)).

If the LDAP directory requires authentication to search, specify a bindDN and bindPassword to use to perform the entry search.

7.3.3. Creating the LDAP Secret

To use the identity provider, you must define an OpenShift Container Platform Secret that contains the bindPassword.

  • Define an OpenShift Container Platform Secret that contains the bindPassword.

    $ oc create secret generic ldap-secret --from-literal=bindPassword=<secret> -n openshift-config
    Note

    The secret key containing the bindPassword for the --from-literal argument must be called bindPassword, as shown in the above command.

7.3.4. Creating a ConfigMap

Identity providers use OpenShift Container Platform ConfigMaps in the openshift-config namespace to contain the certificate authority bundle. These are primarily used to contain certificate bundles needed by the identity provider.

  • Define an OpenShift Container Platform ConfigMap containing the certificate authority by using the following command. The certificate authority must be stored in the ca.crt key of the ConfigMap.

    $ oc create configmap ca-config-map --from-file=ca.crt=/path/to/ca -n openshift-config

7.3.5. Sample LDAP CR

The following Custom Resource (CR) shows the parameters and acceptable values for an LDAP identity provider.

LDAP CR

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
  name: cluster
spec:
  identityProviders:
  - name: ldapidp 1
    mappingMethod: claim 2
    type: LDAP
    ldap:
      attributes:
        id: 3
        - dn
        email: 4
        - mail
        name: 5
        - cn
        preferredUsername: 6
        - uid
      bindDN: "" 7
      bindPassword: 8
        name: ldap-secret
      ca: 9
        name: ca-config-map
      insecure: false 10
      url: "ldap://ldap.example.com/ou=users,dc=acme,dc=com?uid" 11

1
This provider name is prefixed to the returned user ID to form an identity name.
2
Controls how mappings are established between this provider’s identities and user objects.
3
List of attributes to use as the identity. First non-empty attribute is used. At least one attribute is required. If none of the listed attribute have a value, authentication fails. Defined attributes are retrieved as raw, allowing for binary values to be used.
4
List of attributes to use as the email address. First non-empty attribute is used.
5
List of attributes to use as the display name. First non-empty attribute is used.
6
List of attributes to use as the preferred user name when provisioning a user for this identity. First non-empty attribute is used.
7
Optional DN to use to bind during the search phase. Must be set if bindPassword is defined.
8
Optional reference to an OpenShift Container Platform Secret containing the bind password. Must be set if bindDN is defined.
9
Optional: Reference to an OpenShift Container Platform ConfigMap containing the PEM-encoded certificate authority bundle to use in validating server certificates for the configured URL. Only used when insecure is false.
10
When true, no TLS connection is made to the server. When false, ldaps:// URLs connect using TLS, and ldap:// URLs are upgraded to TLS. This should be set to false when ldaps:// URLs are in use, as these URLs always attempt to connect using TLS.
11
An RFC 2255 URL which specifies the LDAP host and search parameters to use.
Note

To whitelist users for an LDAP integration, use the lookup mapping method. Before a login from LDAP would be allowed, a cluster administrator must create an identity and user object for each LDAP user.

7.3.6. Adding an identity provider to your clusters

After you install your cluster, add an identity provider to it so your users can authenticate.

Prerequisites

  • Create an OpenShift Container Platform cluster.
  • Create the Custom Resource (CR) for your identity providers.
  • You must be logged in as an administrator.

Procedure

  1. Apply the defined CR:

    $ oc apply -f </path/to/CR>
    Note

    If a CR does not exist, oc apply creates a new CR and might trigger the following warning: Warning: oc apply should be used on resources created by either oc create --save-config or oc apply. In this case you can safely ignore this warning.

  2. Log in to the cluster as a user from your identity provider, entering the password when prompted.

    $ oc login -u <username>
  3. Confirm that the user logged in successfully, and display the user name.

    $ oc whoami

7.4. Configuring an basic authentication identity provider

Configure a basic-authentication identity provider for users to log in to OpenShift Container Platform with credentials validated against a remote identity provider. Basic authentication is a generic backend integration mechanism.

7.4.1. About identity providers in OpenShift Container Platform

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must create a Custom Resource (CR) that describes that identity provider and add it to the cluster.

Note

OpenShift Container Platform user names containing /, :, and % are not supported.

7.4.2. About basic authentication

Basic authentication is a generic backend integration mechanism that allows users to log in to OpenShift Container Platform with credentials validated against a remote identity provider.

Because basic authentication is generic, you can use this identity provider for advanced authentication configurations.

Important

Basic authentication must use an HTTPS connection to the remote server to prevent potential snooping of the user ID and password and man-in-the-middle attacks.

With basic authentication configured, users send their user name and password to OpenShift Container Platform, which then validates those credentials against a remote server by making a server-to-server request, passing the credentials as a basic authentication header. This requires users to send their credentials to OpenShift Container Platform during login.

Note

This only works for user name/password login mechanisms, and OpenShift Container Platform must be able to make network requests to the remote authentication server.

User names and passwords are validated against a remote URL that is protected by basic authentication and returns JSON.

A 401 response indicates failed authentication.

A non-200 status, or the presence of a non-empty "error" key, indicates an error:

{"error":"Error message"}

A 200 status with a sub (subject) key indicates success:

{"sub":"userid"} 1
1
The subject must be unique to the authenticated user and must not be able to be modified.

A successful response can optionally provide additional data, such as:

  • A display name using the name key. For example:

    {"sub":"userid", "name": "User Name", ...}
  • An email address using the email key. For example:

    {"sub":"userid", "email":"user@example.com", ...}
  • A preferred user name using the preferred_username key. This is useful when the unique, unchangeable subject is a database key or UID, and a more human-readable name exists. This is used as a hint when provisioning the OpenShift Container Platform user for the authenticated identity. For example:

    {"sub":"014fbff9a07c", "preferred_username":"bob", ...}

7.4.3. Creating the Secret

Identity providers use OpenShift Container Platform Secrets in the openshift-config namespace to contain the client secret, client certificates, and keys.

  • You can define an OpenShift Container Platform Secret containing a string by using the following command.

    $ oc create secret generic <secret_name> --from-literal=clientSecret=<secret> -n openshift-config
  • You can define an OpenShift Container Platform Secret containing the contents of a file, such as a certificate file, by using the following command.

    $ oc create secret generic <secret_name> --from-file=/path/to/file -n openshift-config

7.4.4. Creating a ConfigMap

Identity providers use OpenShift Container Platform ConfigMaps in the openshift-config namespace to contain the certificate authority bundle. These are primarily used to contain certificate bundles needed by the identity provider.

  • Define an OpenShift Container Platform ConfigMap containing the certificate authority by using the following command. The certificate authority must be stored in the ca.crt key of the ConfigMap.

    $ oc create configmap ca-config-map --from-file=ca.crt=/path/to/ca -n openshift-config

7.4.5. Sample basic authentication CR

The following Custom Resource (CR) shows the parameters and acceptable values for an basic authentication identity provider.

Basic authentication CR

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
  name: cluster
spec:
  identityProviders:
  - name: basicidp 1
    mappingMethod: claim 2
    type: BasicAuth
    basicAuth:
      url: https://www.example.com/remote-idp 3
      ca: 4
        name: ca-config-map
      tlsClientCert: 5
        name: client-cert-secret
      tlsClientKey: 6
        name: client-key-secret

1
This provider name is prefixed to the returned user ID to form an identity name.
2
Controls how mappings are established between this provider’s identities and user objects.
3
URL accepting credentials in Basic authentication headers.
4
Optional: Reference to an OpenShift Container Platform ConfigMap containing the PEM-encoded certificate authority bundle to use in validating server certificates for the configured URL.
5
Optional: Reference to an OpenShift Container Platform Secret containing the client certificate to present when making requests to the configured URL.
6
Reference to an OpenShift Container Platform Secret containing the key for the client certificate. Required if tlsClientCert is specified.

7.4.6. Adding an identity provider to your clusters

After you install your cluster, add an identity provider to it so your users can authenticate.

Prerequisites

  • Create an OpenShift Container Platform cluster.
  • Create the Custom Resource (CR) for your identity providers.
  • You must be logged in as an administrator.

Procedure

  1. Apply the defined CR:

    $ oc apply -f </path/to/CR>
    Note

    If a CR does not exist, oc apply creates a new CR and might trigger the following warning: Warning: oc apply should be used on resources created by either oc create --save-config or oc apply. In this case you can safely ignore this warning.

  2. Log in to the cluster as a user from your identity provider, entering the password when prompted.

    $ oc login -u <username>
  3. Confirm that the user logged in successfully, and display the user name.

    $ oc whoami

7.4.7. Example Apache HTTPD configuration for basic identity providers

The basic identify provider (IDP) configuration in OpenShift Container Platform 4 requires that the IDP server respond with JSON for success and failures. You can use CGI scripting in Apache HTTPD to accomplish this. This section provides examples.

/etc/httpd/conf.d/login.conf

<VirtualHost *:443>
  # CGI Scripts in here
  DocumentRoot /var/www/cgi-bin

  # SSL Directives
  SSLEngine on
  SSLCipherSuite PROFILE=SYSTEM
  SSLProxyCipherSuite PROFILE=SYSTEM
  SSLCertificateFile /etc/pki/tls/certs/localhost.crt
  SSLCertificateKeyFile /etc/pki/tls/private/localhost.key

  # Configure HTTPD to execute scripts
  ScriptAlias /basic /var/www/cgi-bin

  # Handles a failed login attempt
  ErrorDocument 401 /basic/fail.cgi

  # Handles authentication
  <Location /basic/login.cgi>
    AuthType Basic
    AuthName "Please Log In"
    AuthBasicProvider file
    AuthUserFile /etc/httpd/conf/passwords
    Require valid-user
  </Location>
</VirtualHost>

/var/www/cgi-bin/login.cgi

#!/bin/bash
echo "Content-Type: application/json"
echo ""
echo '{"sub":"userid", "name":"'$REMOTE_USER'"}'
exit 0

/var/www/cgi-bin/fail.cgi

#!/bin/bash
echo "Content-Type: application/json"
echo ""
echo '{"error": "Login failure"}'
exit 0

7.4.7.1. File requirements

These are the requirements for the files you create on an Apache HTTPD web server:

  • login.cgi and fail.cgi must be executable (chmod +x).
  • login.cgi and fail.cgi must have proper SELinux contexts if SELinux is enabled: restorecon -RFv /var/www/cgi-bin, or ensure that the context is httpd_sys_script_exec_t using ls -laZ.
  • login.cgi is only executed if your user successfully logs in per Require and Auth directives.
  • fail.cgi is executed if the user fails to log in, resulting in an HTTP 401 response.

7.4.8. Basic authentication troubleshooting

The most common issue relates to network connectivity to the backend server. For simple debugging, run curl commands on the master. To test for a successful login, replace the <user> and <password> in the following example command with valid credentials. To test an invalid login, replace them with false credentials.

curl --cacert /path/to/ca.crt --cert /path/to/client.crt --key /path/to/client.key -u <user>:<password> -v https://www.example.com/remote-idp

Successful responses

A 200 status with a sub (subject) key indicates success:

{"sub":"userid"}

The subject must be unique to the authenticated user, and must not be able to be modified.

A successful response can optionally provide additional data, such as:

  • A display name using the name key:

    {"sub":"userid", "name": "User Name", ...}
  • An email address using the email key:

    {"sub":"userid", "email":"user@example.com", ...}
  • A preferred user name using the preferred_username key:

    {"sub":"014fbff9a07c", "preferred_username":"bob", ...}

    The preferred_username key is useful when the unique, unchangeable subject is a database key or UID, and a more human-readable name exists. This is used as a hint when provisioning the OpenShift Container Platform user for the authenticated identity.

Failed responses

  • A 401 response indicates failed authentication.
  • A non-200 status or the presence of a non-empty "error" key indicates an error: {"error":"Error message"}

7.5. Configuring a request header identity provider

Configure a request-header identity provider to identify users from request header values, such as X-Remote-User. It is typically used in combination with an authenticating proxy, which sets the request header value.

7.5.1. About identity providers in OpenShift Container Platform

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must create a Custom Resource (CR) that describes that identity provider and add it to the cluster.

Note

OpenShift Container Platform user names containing /, :, and % are not supported.

7.5.2. About request header authentication

A request header identity provider identifies users from request header values, such as X-Remote-User. It is typically used in combination with an authenticating proxy, which sets the request header value.

Note

You can also use the request header identity provider for advanced configurations such as the community-supported SAML authentication. Note that this solution is not supported by Red Hat.

For users to authenticate using this identity provider, they must access https://<namespace_route>/oauth/authorize (and subpaths) via an authenticating proxy. To accomplish this, configure the OAuth server to redirect unauthenticated requests for OAuth tokens to the proxy endpoint that proxies to https://<namespace_route>/oauth/authorize.

To redirect unauthenticated requests from clients expecting browser-based login flows:

  • Set the provider.loginURL parameter to the authenticating proxy URL that will authenticate interactive clients and then proxy the request to https://<namespace_route>/oauth/authorize.

To redirect unauthenticated requests from clients expecting WWW-Authenticate challenges:

  • Set the provider.challengeURL parameter to the authenticating proxy URL that will authenticate clients expecting WWW-Authenticate challenges and then proxy the request to https://<namespace_route>/oauth/authorize.

The provider.challengeURL and provider.loginURL parameters can include the following tokens in the query portion of the URL:

  • ${url} is replaced with the current URL, escaped to be safe in a query parameter.

    For example: https://www.example.com/sso-login?then=${url}

  • ${query} is replaced with the current query string, unescaped.

    For example: https://www.example.com/auth-proxy/oauth/authorize?${query}

Important

As of OpenShift Container Platform 4.1, your proxy must support mutual TLS.

7.5.2.1. SSPI connection support on Microsoft Windows
Important

Using SSPI connection support on Microsoft Windows is a Technology Preview feature. Technology Preview features are not supported with Red Hat production service level agreements (SLAs), might not be functionally complete, and Red Hat does not recommend to use them for production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information on Red Hat Technology Preview features support scope, see https://access.redhat.com/support/offerings/techpreview/.

oc supports the Security Support Provider Interface (SSPI) to allow for SSO flows on Microsft Windows. If you use the request header identity provider with a GSSAPI-enabled proxy to connect an Active Directory server to OpenShift Container Platform, users can automatically authenticate to OpenShift Container Platform by using the oc command line interface from a domain-joined Microsoft Windows computer.

7.5.3. Creating a ConfigMap

Identity providers use OpenShift Container Platform ConfigMaps in the openshift-config namespace to contain the certificate authority bundle. These are primarily used to contain certificate bundles needed by the identity provider.

  • Define an OpenShift Container Platform ConfigMap containing the certificate authority by using the following command. The certificate authority must be stored in the ca.crt key of the ConfigMap.

    $ oc create configmap ca-config-map --from-file=ca.crt=/path/to/ca -n openshift-config

7.5.4. Sample request header CR

The following Custom Resource (CR) shows the parameters and acceptable values for a request header identity provider.

Request header CR

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
  name: cluster
spec:
  identityProviders:
  - name: requestheaderidp 1
    mappingMethod: claim 2
    type: RequestHeader
    requestHeader:
      challengeURL: "https://www.example.com/challenging-proxy/oauth/authorize?${query}" 3
      loginURL: "https://www.example.com/login-proxy/oauth/authorize?${query}" 4
      ca: 5
        name: ca-config-map
      clientCommonNames: 6
      - my-auth-proxy
      headers: 7
      - X-Remote-User
      - SSO-User
      emailHeaders: 8
      - X-Remote-User-Email
      nameHeaders: 9
      - X-Remote-User-Display-Name
      preferredUsernameHeaders: 10
      - X-Remote-User-Login

1
This provider name is prefixed to the user name in the request header to form an identity name.
2
Controls how mappings are established between this provider’s identities and user objects.
3
Optional: URL to redirect unauthenticated /oauth/authorize requests to, that will authenticate browser-based clients and then proxy their request to https://<namespace_route>/oauth/authorize. The URL that proxies to https://<namespace_route>/oauth/authorize must end with /authorize (with no trailing slash), and also proxy subpaths, in order for OAuth approval flows to work properly. ${url} is replaced with the current URL, escaped to be safe in a query parameter. ${query} is replaced with the current query string. If this attribute is not defined, then loginURL must be used.
4
Optional: URL to redirect unauthenticated /oauth/authorize requests to, that will authenticate clients which expect WWW-Authenticate challenges, and then proxy them to https://<namespace_route>/oauth/authorize. ${url} is replaced with the current URL, escaped to be safe in a query parameter. ${query} is replaced with the current query string. If this attribute is not defined, then challengeURL must be used.
5
Reference to an OpenShift Container Platform ConfigMap containing a PEM-encoded certificate bundle. Used as a trust anchor to validate the TLS certificates presented by the remote server.
Important

As of OpenShift Container Platform 4.1, the ca field is required for this identity provider. This means that your proxy must support mutual TLS.

6
Optional: list of common names (cn). If set, a valid client certificate with a Common Name (cn) in the specified list must be presented before the request headers are checked for user names. If empty, any Common Name is allowed. Can only be used in combination with ca.
7
Header names to check, in order, for the user identity. The first header containing a value is used as the identity. Required, case-insensitive.
8
Header names to check, in order, for an email address. The first header containing a value is used as the email address. Optional, case-insensitive.
9
Header names to check, in order, for a display name. The first header containing a value is used as the display name. Optional, case-insensitive.
10
Header names to check, in order, for a preferred user name, if different than the immutable identity determined from the headers specified in headers. The first header containing a value is used as the preferred user name when provisioning. Optional, case-insensitive.

7.5.5. Adding an identity provider to your clusters

After you install your cluster, add an identity provider to it so your users can authenticate.

Prerequisites

  • Create an OpenShift Container Platform cluster.
  • Create the Custom Resource (CR) for your identity providers.
  • You must be logged in as an administrator.

Procedure

  1. Apply the defined CR:

    $ oc apply -f </path/to/CR>
    Note

    If a CR does not exist, oc apply creates a new CR and might trigger the following warning: Warning: oc apply should be used on resources created by either oc create --save-config or oc apply. In this case you can safely ignore this warning.

  2. Log in to the cluster as a user from your identity provider, entering the password when prompted.

    $ oc login -u <username>
  3. Confirm that the user logged in successfully, and display the user name.

    $ oc whoami

7.5.6. Example Apache authentication configuration using request header

This example configures an Apache authentication proxy for the OpenShift Container Platform using the request header identity provider.

Custom proxy configuration

Using the mod_auth_gssapi module is a popular way to configure the Apache authentication proxy using the request header identity provider; however, it is not required. Other proxies can easily be used if the following requirements are met:

  • Block the X-Remote-User header from client requests to prevent spoofing.
  • Enforce client certificate authentication in the RequestHeaderIdentityProvider configuration.
  • Require the X-Csrf-Token header be set for all authentication requests using the challenge flow.
  • Make sure only the /oauth/authorize endpoint and its subpaths are proxied; redirects must be rewritten to allow the backend server to send the client to the correct location.
  • The URL that proxies to https://<namespace_route>/oauth/authorize must end with /authorize with no trailing slash. For example, https://proxy.example.com/login-proxy/authorize?…​ must proxy to https://<namespace_route>/oauth/authorize?…​.
  • Subpaths of the URL that proxies to https://<namespace_route>/oauth/authorize must proxy to subpaths of https://<namespace_route>/oauth/authorize. For example, https://proxy.example.com/login-proxy/authorize/approve?…​ must proxy to https://<namespace_route>/oauth/authorize/approve?…​.
Note

The https://<namespace_route> address is the Route to the OAuth server and can be obtained by running oc get route -n openshift-authentication.

Configuring Apache authentication using request header

This example uses the mod_auth_gssapi module to configure an Apache authentication proxy using the request header identity provider.

Prerequisites

  • Obtain the mod_auth_gssapi module from the Optional channel. You must have the following packages installed on your local machine:

    • httpd
    • mod_ssl
    • mod_session
    • apr-util-openssl
    • mod_auth_gssapi
  • Generate a CA for validating requests that submit the trusted header. Define an OpenShift Container Platform ConfigMap containing the CA. This is done by running:

    $ oc create configmap ca-config-map --from-file=ca.crt=/path/to/ca -n openshift-config

    The CA must be stored in the ca.crt key of the ConfigMap.

  • Generate a client certificate for the proxy. You can generate this certificate by using any x509 certificate tooling. The client certificate must be signed by the CA you generated for validating requests that submit the trusted header.
  • Create the Custom Resource (CR) for your identity providers.

Procedure

This proxy uses a client certificate to connect to the OAuth server, which is configured to trust the X-Remote-User header.

  1. Create the certificate for the Apache configuration. The certificate that you specify as the SSLProxyMachineCertificateFile parameter value is the proxy’s client certificate that is used to authenticate the proxy to the server. It must use TLS Web Client Authentication as the extended key type.
  2. Create the Apache configuration. Use the following template to provide your required settings and values:

    Important

    Carefully review the template and customize its contents to fit your environment.

    LoadModule request_module modules/mod_request.so
    LoadModule auth_gssapi_module modules/mod_auth_gssapi.so
    # Some Apache configurations might require these modules.
    # LoadModule auth_form_module modules/mod_auth_form.so
    # LoadModule session_module modules/mod_session.so
    
    # Nothing needs to be served over HTTP.  This virtual host simply redirects to
    # HTTPS.
    <VirtualHost *:80>
      DocumentRoot /var/www/html
      RewriteEngine              On
      RewriteRule     ^(.*)$     https://%{HTTP_HOST}$1 [R,L]
    </VirtualHost>
    
    <VirtualHost *:443>
      # This needs to match the certificates you generated.  See the CN and X509v3
      # Subject Alternative Name in the output of:
      # openssl x509 -text -in /etc/pki/tls/certs/localhost.crt
      ServerName www.example.com
    
      DocumentRoot /var/www/html
      SSLEngine on
      SSLCertificateFile /etc/pki/tls/certs/localhost.crt
      SSLCertificateKeyFile /etc/pki/tls/private/localhost.key
      SSLCACertificateFile /etc/pki/CA/certs/ca.crt
    
      SSLProxyEngine on
      SSLProxyCACertificateFile /etc/pki/CA/certs/ca.crt
      # It is critical to enforce client certificates. Otherwise, requests can
      # spoof the X-Remote-User header by accessing the /oauth/authorize endpoint
      # directly.
      SSLProxyMachineCertificateFile /etc/pki/tls/certs/authproxy.pem
    
      # To use the challenging-proxy, an X-Csrf-Token must be present.
      RewriteCond %{REQUEST_URI} ^/challenging-proxy
      RewriteCond %{HTTP:X-Csrf-Token} ^$ [NC]
      RewriteRule ^.* - [F,L]
    
      <Location /challenging-proxy/oauth/authorize>
          # Insert your backend server name/ip here.
          ProxyPass https://<namespace_route>/oauth/authorize
          AuthName "SSO Login"
          # For Kerberos
          AuthType GSSAPI
          Require valid-user
          RequestHeader set X-Remote-User %{REMOTE_USER}s
    
          GssapiCredStore keytab:/etc/httpd/protected/auth-proxy.keytab
          # Enable the following if you want to allow users to fallback
          # to password based authentication when they do not have a client
          # configured to perform kerberos authentication.
          GssapiBasicAuth On
    
          # For ldap:
          # AuthBasicProvider ldap
          # AuthLDAPURL "ldap://ldap.example.com:389/ou=People,dc=my-domain,dc=com?uid?sub?(objectClass=*)"
        </Location>
    
        <Location /login-proxy/oauth/authorize>
        # Insert your backend server name/ip here.
        ProxyPass https://<namespace_route>/oauth/authorize
    
          AuthName "SSO Login"
          AuthType GSSAPI
          Require valid-user
          RequestHeader set X-Remote-User %{REMOTE_USER}s env=REMOTE_USER
    
          GssapiCredStore keytab:/etc/httpd/protected/auth-proxy.keytab
          # Enable the following if you want to allow users to fallback
          # to password based authentication when they do not have a client
          # configured to perform kerberos authentication.
          GssapiBasicAuth On
    
          ErrorDocument 401 /login.html
        </Location>
    
    </VirtualHost>
    
    RequestHeader unset X-Remote-User
    Note

    The https://<namespace_route> address is the Route to the OAuth server and can be obtained by running oc get route -n openshift-authentication.

  3. Update the identityProviders stanza in the Custom Resource (CR):

    identityProviders:
      - name: requestheaderidp
        type: RequestHeader
        requestHeader:
          challengeURL: "https://<namespace_route>/challenging-proxy/oauth/authorize?${query}"
          loginURL: "https://<namespace_route>/login-proxy/oauth/authorize?${query}"
          ca:
            name: ca-config-map
            clientCommonNames:
            - my-auth-proxy
            headers:
            - X-Remote-User
  4. Verify the configuration.

    1. Confirm that you can bypass the proxy by requesting a token by supplying the correct client certificate and header:

      # curl -L -k -H "X-Remote-User: joe" \
         --cert /etc/pki/tls/certs/authproxy.pem \
         https://<namespace_route>/oauth/token/request
    2. Confirm that requests that do not supply the client certificate fail by requesting a token without the certificate:

      # curl -L -k -H "X-Remote-User: joe" \
         https://<namespace_route>/oauth/token/request
    3. Confirm that the challengeURL redirect is active:

      # curl -k -v -H 'X-Csrf-Token: 1' \
         https://<namespace_route>/oauth/authorize?client_id=openshift-challenging-client&response_type=token

      Copy the challengeURL redirect to use in the next step.

    4. Run this command to show a 401 response with a WWW-Authenticate basic challenge, a negotiate challenge, or both challenges:

      # curl -k -v -H 'X-Csrf-Token: 1' \
         <challengeURL_redirect + query>
    5. Test logging in to the OpenShift CLI (oc) with and without using a Kerberos ticket:

      1. If you generated a Kerberos ticket by using kinit, destroy it:

        # kdestroy -c cache_name 1
        1
        Make sure to provide the name of your Kerberos cache.
      2. Log in to the oc tool by using your Kerberos credentials:

        # oc login

        Enter your Kerberos user name and password at the prompt.

      3. Log out of the oc tool:

        # oc logout
      4. Use your Kerberos credentials to get a ticket:

        # kinit

        Enter your Kerberos user name and password at the prompt.

      5. Confirm that you can log in to the oc tool:

        # oc login

        If your configuration is correct, you are logged in without entering separate credentials.

7.6. Configuring a GitHub or GitHub Enterprise identity provider

Configure a github identity provider to validate user names and passwords against GitHub or GitHub Enterprise’s OAuth authentication server. OAuth facilitates a token exchange flow between OpenShift Container Platform and GitHub or GitHub Enterprise.

You can use the GitHub integration to connect to either GitHub or GitHub Enterprise. For GitHub Enterprise integrations, you must provide the hostname of your instance and can optionally provide a ca certificate bundle to use in requests to the server.

Note

The following steps apply to both GitHub and GitHub Enterprise unless noted.

Configuring GitHub authentication allows users to log in to OpenShift Container Platform with their GitHub credentials. To prevent anyone with any GitHub user ID from logging in to your OpenShift Container Platform cluster, you can restrict access to only those in specific GitHub organizations.

7.6.1. About identity providers in OpenShift Container Platform

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must create a Custom Resource (CR) that describes that identity provider and add it to the cluster.

Note

OpenShift Container Platform user names containing /, :, and % are not supported.

7.6.2. Registering a GitHub application

To use GitHub or GitHub Enterprise as an identity provider, you must register an application to use.

Procedure

  1. Register an application on GitHub:

  2. Enter an application name, for example My OpenShift Install.
  3. Enter a homepage URL, such as https://oauth-openshift.apps.<cluster-name>.<cluster-domain>.
  4. Optional: Enter an application description.
  5. Enter the authorization callback URL, where the end of the URL contains the identity provider name:

    https://oauth-openshift.apps.<cluster-name>.<cluster-domain>/oauth2callback/<idp-provider-name>

    For example:

    https://oauth-openshift.apps.example-openshift-cluster.com/oauth2callback/github/
  6. Click Register application. GitHub provides a Client ID and a Client Secret. You need these values to complete the identity provider configuration.

7.6.3. Creating the Secret

Identity providers use OpenShift Container Platform Secrets in the openshift-config namespace to contain the client secret, client certificates, and keys.

  • You can define an OpenShift Container Platform Secret containing a string by using the following command.

    $ oc create secret generic <secret_name> --from-literal=clientSecret=<secret> -n openshift-config
  • You can define an OpenShift Container Platform Secret containing the contents of a file, such as a certificate file, by using the following command.

    $ oc create secret generic <secret_name> --from-file=/path/to/file -n openshift-config

7.6.4. Creating a ConfigMap

Identity providers use OpenShift Container Platform ConfigMaps in the openshift-config namespace to contain the certificate authority bundle. These are primarily used to contain certificate bundles needed by the identity provider.

  • Define an OpenShift Container Platform ConfigMap containing the certificate authority by using the following command. The certificate authority must be stored in the ca.crt key of the ConfigMap.

    $ oc create configmap ca-config-map --from-file=ca.crt=/path/to/ca -n openshift-config

7.6.5. Sample GitHub CR

The following Custom Resource (CR) shows the parameters and acceptable values for a GitHub identity provider.

GitHub CR

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
  name: cluster
spec:
  identityProviders:
  - name: githubidp 1
    mappingMethod: claim 2
    type: GitHub
    github:
      ca: 3
        name: ca-config-map
      clientID: {...} 4
      clientSecret: 5
        name: github-secret
      hostname: ... 6
      organizations: 7
      - myorganization1
      - myorganization2
      teams: 8
      - myorganization1/team-a
      - myorganization2/team-b

1
This provider name is prefixed to the GitHub numeric user ID to form an identity name. It is also used to build the callback URL.
2
Controls how mappings are established between this provider’s identities and user objects.
3
Optional: Reference to an OpenShift Container Platform ConfigMap containing the PEM-encoded certificate authority bundle to use in validating server certificates for the configured URL. Only for use in GitHub Enterprise with a non-publicly trusted root certificate.
4
The client ID of a registered GitHub OAuth application. The application must be configured with a callback URL of https://oauth-openshift.apps.<cluster-name>.<cluster-domain>/oauth2callback/<idp-provider-name>.
5
Reference to an OpenShift Container Platform Secret containing the client secret issued by GitHub.
6
For GitHub Enterprise, you must provide the host name of your instance, such as example.com. This value must match the GitHub Enterprise hostname value in in the /setup/settings file and cannot include a port number. If this value is not set, then either teams or organizations must be defined. For GitHub, omit this parameter.
7
The list of organizations. Either the organizations or teams field must be set unless the hostname field is set, or if mappingMethod is set to lookup. Cannot be used in combination with the teams field.
8
The list of teams. Either the teams or organizations field must be set unless the hostname field is set, or if mappingMethod is set to lookup. Cannot be used in combination with the organizations field.
Note

If organizations or teams is specified, only GitHub users that are members of at least one of the listed organizations will be allowed to log in. If the GitHub OAuth application configured in clientID is not owned by the organization, an organization owner must grant third-party access in order to use this option. This can be done during the first GitHub login by the organization’s administrator, or from the GitHub organization settings.

7.6.6. Adding an identity provider to your clusters

After you install your cluster, add an identity provider to it so your users can authenticate.

Prerequisites

  • Create an OpenShift Container Platform cluster.
  • Create the Custom Resource (CR) for your identity providers.
  • You must be logged in as an administrator.

Procedure

  1. Apply the defined CR:

    $ oc apply -f </path/to/CR>
    Note

    If a CR does not exist, oc apply creates a new CR and might trigger the following warning: Warning: oc apply should be used on resources created by either oc create --save-config or oc apply. In this case you can safely ignore this warning.

  2. Obtain a token from the OAuth server.

    As long as the kubeadmin user has been removed, the oc login command provides instructions on how to access a web page where you can retrieve the token.

    You can also access this page from the web console by navigating to (?) HelpCommand Line ToolsCopy Login Command.

  3. Log in to the cluster, passing in the token to authenticate.

    $ oc login --token=<token>
    Note

    This identity provider does not support logging in with a user name and password.

  4. Confirm that the user logged in successfully, and display the user name.

    $ oc whoami

7.7. Configuring a GitLab identity provider

Configure a gitlab identity provider to use GitLab.com or any other GitLab instance as an identity provider. If you use GitLab version 7.7.0 to 11.0, you connect using the OAuth integration. If you use GitLab version 11.1 or later, you can use OpenID Connect (OIDC) to connect instead of OAuth.

7.7.1. About identity providers in OpenShift Container Platform

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must create a Custom Resource (CR) that describes that identity provider and add it to the cluster.

Note

OpenShift Container Platform user names containing /, :, and % are not supported.

7.7.2. Creating the Secret

Identity providers use OpenShift Container Platform Secrets in the openshift-config namespace to contain the client secret, client certificates, and keys.

  • You can define an OpenShift Container Platform Secret containing a string by using the following command.

    $ oc create secret generic <secret_name> --from-literal=clientSecret=<secret> -n openshift-config
  • You can define an OpenShift Container Platform Secret containing the contents of a file, such as a certificate file, by using the following command.

    $ oc create secret generic <secret_name> --from-file=/path/to/file -n openshift-config

7.7.3. Creating a ConfigMap

Identity providers use OpenShift Container Platform ConfigMaps in the openshift-config namespace to contain the certificate authority bundle. These are primarily used to contain certificate bundles needed by the identity provider.

  • Define an OpenShift Container Platform ConfigMap containing the certificate authority by using the following command. The certificate authority must be stored in the ca.crt key of the ConfigMap.

    $ oc create configmap ca-config-map --from-file=ca.crt=/path/to/ca -n openshift-config

7.7.4. Sample GitLab CR

The following Custom Resource (CR) shows the parameters and acceptable values for a GitLab identity provider.

GitLab CR

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
  name: cluster
spec:
  identityProviders:
  - name: gitlabidp 1
    mappingMethod: claim 2
    type: GitLab
    gitlab:
      clientID: {...} 3
      clientSecret: 4
        name: gitlab-secret
      url: https://gitlab.com 5
      ca: 6
        name: ca-config-map

1
This provider name is prefixed to the GitLab numeric user ID to form an identity name. It is also used to build the callback URL.
2
Controls how mappings are established between this provider’s identities and user objects.
3
The client ID of a registered GitLab OAuth application. The application must be configured with a callback URL of https://oauth-openshift.apps.<cluster-name>.<cluster-domain>/oauth2callback/<idp-provider-name>.
4
Reference to an OpenShift Container Platform Secret containing the client secret issued by GitLab.
5
The host URL of a GitLab provider. This could either be https://gitlab.com/ or any other self hosted instance of GitLab.
6
Optional: Reference to an OpenShift Container Platform ConfigMap containing the PEM-encoded certificate authority bundle to use in validating server certificates for the configured URL.

7.7.5. Adding an identity provider to your clusters

After you install your cluster, add an identity provider to it so your users can authenticate.

Prerequisites

  • Create an OpenShift Container Platform cluster.
  • Create the Custom Resource (CR) for your identity providers.
  • You must be logged in as an administrator.

Procedure

  1. Apply the defined CR:

    $ oc apply -f </path/to/CR>
    Note

    If a CR does not exist, oc apply creates a new CR and might trigger the following warning: Warning: oc apply should be used on resources created by either oc create --save-config or oc apply. In this case you can safely ignore this warning.

  2. Log in to the cluster as a user from your identity provider, entering the password when prompted.

    $ oc login -u <username>
  3. Confirm that the user logged in successfully, and display the user name.

    $ oc whoami

7.8. Configuring a Google identity provider

Configure a google identity provider using Google’s OpenID Connect integration.

Note

Using Google as an identity provider requires users to get a token using <master>/oauth/token/request to use with command-line tools.

Warning

Using Google as an identity provider allows any Google user to authenticate to your server. You can limit authentication to members of a specific hosted domain with the hostedDomain configuration attribute.

7.8.1. About identity providers in OpenShift Container Platform

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must create a Custom Resource (CR) that describes that identity provider and add it to the cluster.

Note

OpenShift Container Platform user names containing /, :, and % are not supported.

7.8.2. Creating the Secret

Identity providers use OpenShift Container Platform Secrets in the openshift-config namespace to contain the client secret, client certificates, and keys.

  • You can define an OpenShift Container Platform Secret containing a string by using the following command.

    $ oc create secret generic <secret_name> --from-literal=clientSecret=<secret> -n openshift-config
  • You can define an OpenShift Container Platform Secret containing the contents of a file, such as a certificate file, by using the following command.

    $ oc create secret generic <secret_name> --from-file=/path/to/file -n openshift-config

7.8.3. Sample Google CR

The following Custom Resource (CR) shows the parameters and acceptable values for a Google identity provider.

Google CR

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
  name: cluster
spec:
  identityProviders:
  - name: googleidp 1
    mappingMethod: claim 2
    type: Google
    google:
      clientID: {...} 3
      clientSecret: 4
        name: google-secret
      hostedDomain: "example.com" 5

1
This provider name is prefixed to the Google numeric user ID to form an identity name. It is also used to build the redirect URL.
2
Controls how mappings are established between this provider’s identities and user objects.
3
The client ID of a registered Google project. The project must be configured with a redirect URI of https://oauth-openshift.apps.<cluster-name>.<cluster-domain>/oauth2callback/<idp-provider-name>.
4
Reference to an OpenShift Container Platform Secret containing the client secret issued by Google.
5
A hosted domain used to restrict sign-in accounts. Optional if the lookup mappingMethod is used. If empty, any Google account is allowed to authenticate.

7.8.4. Adding an identity provider to your clusters

After you install your cluster, add an identity provider to it so your users can authenticate.

Prerequisites

  • Create an OpenShift Container Platform cluster.
  • Create the Custom Resource (CR) for your identity providers.
  • You must be logged in as an administrator.

Procedure

  1. Apply the defined CR:

    $ oc apply -f </path/to/CR>
    Note

    If a CR does not exist, oc apply creates a new CR and might trigger the following warning: Warning: oc apply should be used on resources created by either oc create --save-config or oc apply. In this case you can safely ignore this warning.

  2. Obtain a token from the OAuth server.

    As long as the kubeadmin user has been removed, the oc login command provides instructions on how to access a web page where you can retrieve the token.

    You can also access this page from the web console by navigating to (?) HelpCommand Line ToolsCopy Login Command.

  3. Log in to the cluster, passing in the token to authenticate.

    $ oc login --token=<token>
    Note

    This identity provider does not support logging in with a user name and password.

  4. Confirm that the user logged in successfully, and display the user name.

    $ oc whoami

7.9. Configuring a OpenID Connect identity provider

Configure an oidc identity provider to integrate with an OpenID Connect identity provider using an Authorization Code Flow.

You can configure Red Hat Single Sign-On as an OpenID Connect identity provider for OpenShift Container Platform.

Important

The Authentication Operator in OpenShift Container Platform requires that the configured OpenID Connect identity provider implements the OpenID Connect Discovery specification.

Note

ID Token and UserInfo decryptions are not supported.

By default, the openid scope is requested. If required, extra scopes can be specified in the extraScopes field.

Claims are read from the JWT id_token returned from the OpenID identity provider and, if specified, from the JSON returned by the UserInfo URL.

At least one claim must be configured to use as the user’s identity. The standard identity claim is sub.

You can also indicate which claims to use as the user’s preferred user name, display name, and email address. If multiple claims are specified, the first one with a non-empty value is used. The standard claims are:

sub

Short for "subject identifier." The remote identity for the user at the issuer.

preferred_username

The preferred user name when provisioning a user. A shorthand name that the user wants to be referred to as, such as janedoe. Typically a value that corresponding to the user’s login or username in the authentication system, such as username or email.

email

Email address.

name

Display name.

See the OpenID claims documentation for more information.

Note

Using an OpenID Connect identity provider requires users to get a token using <master>/oauth/token/request to use with command-line tools.

7.9.1. About identity providers in OpenShift Container Platform

By default, only a kubeadmin user exists on your cluster. To specify an identity provider, you must create a Custom Resource (CR) that describes that identity provider and add it to the cluster.

Note

OpenShift Container Platform user names containing /, :, and % are not supported.

7.9.2. Creating the Secret

Identity providers use OpenShift Container Platform Secrets in the openshift-config namespace to contain the client secret, client certificates, and keys.

  • You can define an OpenShift Container Platform Secret containing a string by using the following command.

    $ oc create secret generic <secret_name> --from-literal=clientSecret=<secret> -n openshift-config
  • You can define an OpenShift Container Platform Secret containing the contents of a file, such as a certificate file, by using the following command.

    $ oc create secret generic <secret_name> --from-file=/path/to/file -n openshift-config

7.9.3. Creating a ConfigMap

Identity providers use OpenShift Container Platform ConfigMaps in the openshift-config namespace to contain the certificate authority bundle. These are primarily used to contain certificate bundles needed by the identity provider.

  • Define an OpenShift Container Platform ConfigMap containing the certificate authority by using the following command. The certificate authority must be stored in the ca.crt key of the ConfigMap.

    $ oc create configmap ca-config-map --from-file=ca.crt=/path/to/ca -n openshift-config

7.9.4. Sample OpenID Connect CRs

The following Custom Resources (CRs) show the parameters and acceptable values for an OpenID Connect identity provider.

If you must specify a custom certificate bundle, extra scopes, extra authorization request parameters, or a userInfo URL, use the full OpenID Connect CR.

Standard OpenID Connect CR

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
  name: cluster
spec:
  identityProviders:
  - name: oidcidp 1
    mappingMethod: claim 2
    type: OpenID
    openID:
      clientID: ... 3
      clientSecret: 4
        name: idp-secret
      claims: 5
        preferredUsername:
        - preferred_username
        name:
        - name
        email:
        - email
      issuer: https://www.idp-issuer.com 6

1
This provider name is prefixed to the value of the identity claim to form an identity name. It is also used to build the redirect URL.
2
Controls how mappings are established between this provider’s identities and user objects.
3
The client ID of a client registered with the OpenID provider. The client must be allowed to redirect to https://oauth-openshift.apps.<cluster_name>.<cluster_domain>/oauth2callback/<idp_provider_name>.
4
Reference to an OpenShift Container Platform Secret containing the client secret.
5
List of claims to use as the identity. First non-empty claim is used. At least one claim is required. If none of the listed claims have a value, authentication fails. For example, this uses the value of the sub claim in the returned id_token as the user’s identity.
6
Issuer Identifier described in the OpenID spec. Must use https without query or fragment component.

Full OpenID Connect CR

apiVersion: config.openshift.io/v1
kind: OAuth
metadata:
  name: cluster
spec:
  identityProviders:
  - name: oidcidp
    mappingMethod: claim
    type: OpenID
    openID:
      clientID: ...
      clientSecret:
        name: idp-secret
      ca: 1
        name: ca-config-map
      extraScopes: 2
      - email
      - profile
      extraAuthorizeParameters: 3
        include_granted_scopes: "true"
      claims:
        preferredUsername: 4
        - preferred_username
        - email
        name: 5
        - nickname
        - given_name
        - name
        email: 6
        - custom_email_claim
        - email
      issuer: https://www.idp-issuer.com

1
Optional: Reference to an OpenShift Container Platform ConfigMap containing the PEM-encoded certificate authority bundle to use in validating server certificates for the configured URL.
2
Optional list of scopes to request, in addition to the openid scope, during the authorization token request.
3
Optional map of extra parameters to add to the authorization token request.
4
List of claims to use as the preferred user name when provisioning a user for this identity. First non-empty claim is used.
5
List of claims to use as the display name. First non-empty claim is used.
6
List of claims to use as the email address. First non-empty claim is used.

7.9.5. Adding an identity provider to your clusters

After you install your cluster, add an identity provider to it so your users can authenticate.

Prerequisites

  • Create an OpenShift Container Platform cluster.
  • Create the Custom Resource (CR) for your identity providers.
  • You must be logged in as an administrator.

Procedure

  1. Apply the defined CR:

    $ oc apply -f </path/to/CR>
    Note

    If a CR does not exist, oc apply creates a new CR and might trigger the following warning: Warning: oc apply should be used on resources created by either oc create --save-config or oc apply. In this case you can safely ignore this warning.

  2. Obtain a token from the OAuth server.

    As long as the kubeadmin user has been removed, the oc login command provides instructions on how to access a web page where you can retrieve the token.

    You can also access this page from the web console by navigating to (?) HelpCommand Line ToolsCopy Login Command.

  3. Log in to the cluster, passing in the token to authenticate.

    $ oc login --token=<token>
    Note

    This identity provider does not support logging in with a user name and password.

  4. Confirm that the user logged in successfully, and display the user name.

    $ oc whoami

7.9.6. Configuring identity providers using the web console

Configure your identity provider (IDP) through the web console instead of the CLI.

Prerequisites

  • You must be logged in to the web console as a cluster administrator.

Procedure

  1. Navigate to AdministrationCluster Settings.
  2. Under the Global Configuration tab, click OAuth.
  3. Under the Identity Providers section, select your identity provider from the Add drop-down menu.
Note

You can specify multiple IDPs through the web console without overwriting existing IDPs.

Chapter 8. Configuring certificates

8.1. Replacing the default ingress certificate

8.1.1. Understanding the default ingress certificate

By default OpenShift Container Platform uses the Ingress Operator to create an internal CA and issue a wildcard certificate that is valid for applications under the .apps sub-domain. Both the web console and CLI use this certificate as well.

The internal infrastructure CA certificates are self-signed. While this process might be perceived as bad practice by some security or PKI teams, any risk here is minimal. The only clients that implicitly trust these certificates are other components within the cluster. Replacing the default wildcard certificate with one that is issued by a public CA already included in the CA bundle as provided by the container userspace allows external clients to connect securely to applications running under the .apps sub-domain.

8.1.2. Replacing the default ingress certificate

You can replace the default ingress certificate for all applications under the .apps subdomain. After you replace the certificate, all applications, including the web console and CLI, will have encryption provided by specified certificate.

Prerequisites

  • You must have a wildcard certificate for the fully qualified .apps subdomain and its corresponding private key. Each should be in a separate PEM format file.
  • The private key must be unencrypted. If your key is encrypted, decrypt it before importing it into OpenShift Container Platform.
  • The certificate must include the subjectAltName extension showing *.apps.<clustername>.<domain>.
  • The certificate file can contain one or more certificates in a chain. The wildcard certificate must be the first certificate in the file. It can then be followed with any intermediate certificates, and the file should end with the root CA certificate.
  • Copy the root CA certificate into an additional PEM format file.

Procedure

  1. Create a ConfigMap that includes only the root CA certificate used to sign the wildcard certificate:

    $ oc create configmap custom-ca \
         --from-file=ca-bundle.crt=</path/to/example-ca.crt> \1
         -n openshift-config
    1
    </path/to/example-ca.crt> is the path to the root CA certificate file on your local file system.
  2. Update the cluster-wide proxy configuration with the newly created ConfigMap:

    $ oc patch proxy/cluster \
         --type=merge \
         --patch='{"spec":{"trustedCA":{"name":"custom-ca"}}}'
  3. Create a secret that contains the wildcard certificate chain and key:

    $ oc create secret tls <secret> \1
         --cert=</path/to/cert.crt> \2
         --key=</path/to/cert.key> \3
         -n openshift-ingress
    1
    <secret> is the name of the secret that will contain the certificate chain and private key.
    2
    </path/to/cert.crt> is the path to the certificate chain on your local file system.
    3
    </path/to/cert.key> is the path to the private key associated with this certificate.
  4. Update the Ingress Controller configuration with the newly created secret:

    $ oc patch ingresscontroller.operator default \
         --type=merge -p \
         '{"spec":{"defaultCertificate": {"name": "<secret>"}}}' \1
         -n openshift-ingress-operator
    1
    Replace <secret> with the name used for the secret in the previous step.

8.2. Adding API server certificates

The default API server certificate is issued by an internal OpenShift Container Platform cluster CA. Clients outside of the cluster will not be able to verify the API server’s certificate by default. This certificate can be replaced by one that is issued by a CA that clients trust.

8.2.1. Add an API server named certificate

The default API server certificate is issued by an internal OpenShift Container Platform cluster CA. You can add one or more alternative certificates that the API server will return based on the fully qualified domain name (FQDN) requested by the client, for example when a reverse proxy or load balancer is used.

Prerequisites

  • You must have a certificate for the FQDN and its corresponding private key. Each should be in a separate PEM format file.
  • The private key must be unencrypted. If your key is encrypted, decrypt it before importing it into OpenShift Container Platform.
  • The certificate must include the subjectAltName extension showing the FQDN.
  • The certificate file can contain one or more certificates in a chain. The certificate for the API server FQDN must be the first certificate in the file. It can then be followed with any intermediate certificates, and the file should end with the root CA certificate.
Warning

Do not provide a named certificate for the internal load balancer (host name api-int.<cluster_name>.<base_domain>). Doing so will leave your cluster in a degraded state.

Procedure

  1. Create a secret that contains the certificate chain and private key in the openshift-config namespace.

    $ oc create secret tls <secret> \1
         --cert=</path/to/cert.crt> \2
         --key=</path/to/cert.key> \3
         -n openshift-config
    1
    <secret> is the name of the secret that will contain the certificate chain and private key.
    2
    </path/to/cert.crt> is the path to the certificate chain on your local file system.
    3
    </path/to/cert.key> is the path to the private key associated with this certificate.
  2. Update the API server to reference the created secret.

    $ oc patch apiserver cluster \
         --type=merge -p \
         '{"spec":{"servingCerts": {"namedCertificates":
         [{"names": ["<FQDN>"], 1
         "servingCertificate": {"name": "<secret>"}}]}}}' 2
    1
    Replace <FQDN> with the FQDN that the API server should provide the certificate for.
    2
    Replace <secret> with the name used for the secret in the previous step.
  3. Examine the apiserver/cluster object and confirm the secret is now referenced.

    $ oc get apiserver cluster -o yaml
    ...
    spec:
      servingCerts:
        namedCertificates:
        - names:
          - <FQDN>
          servingCertificate:
            name: <secret>
    ...

8.3. Securing service traffic using service serving certificate secrets

8.3.1. Understanding service serving certificates

Service serving certificates are intended to support complex middleware applications that require encryption. These certificates are issued as TLS web server certificates.

The service-ca controller uses the x509.SHA256WithRSA signature algorithm to generate service certificates.

The generated certificate and key are in PEM format, stored in tls.crt and tls.key respectively, within a created secret. The certificate and key are automatically replaced when they get close to expiration.

The service CA certificate, which issues the service certificates, is valid for 26 months and is automatically rotated when there is less than six months validity left. After rotation, the previous service CA configuration is still trusted until its expiration. This allows a grace period for all affected services to refresh their key material before the expiration. If you do not upgrade your cluster during this grace period, which restarts services and refreshes their key material, you might need to manually restart services to avoid failures after the previous service CA expires.

Note

You can use the following command to manually restart all Pods in the cluster. Be aware that running this command causes a service interruption, because it deletes every running Pod in every namespace. These Pods will automatically restart after they are deleted.

$ for I in $(oc get ns -o jsonpath='{range .items[*]} {.metadata.name}{"\n"} {end}'); \
      do oc delete pods --all -n $I; \
      sleep 1; \
      done

8.3.2. Add a service certificate

To secure communication to your service, generate a signed serving certificate and key pair into a secret in the same namespace as the service.

Important

The generated certificate is only valid for the internal service DNS name <service.name>.<service.namespace>.svc, and are only valid for internal communications.

Prerequisites:

  • You must have a service defined.

Procedure

  1. Annotate the service with service.beta.openshift.io/serving-cert-secret-name.

    $ oc annotate service <service-name> \1
         service.beta.openshift.io/serving-cert-secret-name=<secret-name> 2
    1
    Replace <service-name> with the name of the service to secure.
    2
    <secret-name> will be the name of the generated secret containing the certificate and key pair. For convenience, it is recommended that this be the same as <service-name>.

    For instance, use the following command to annotate the service foo:

    $ oc annotate service foo service.beta.openshift.io/serving-cert-secret-name=foo
  2. Examine the service to confirm the annotations are present.

    $ oc describe service <service-name>
    ...
    Annotations:              service.beta.openshift.io/serving-cert-secret-name: <service-name>
                              service.beta.openshift.io/serving-cert-signed-by: openshift-service-serving-signer@1556850837
    ...
  3. After the cluster generates a secret for your service, your PodSpec can mount it, and the Pod will run after it becomes available.

8.3.3. Add a service certificate to a ConfigMap

A Pod can access the service CA certificate by mounting a ConfigMap that is annotated with service.beta.openshift.io/inject-cabundle=true. Once annotated, the cluster automatically injects the service CA certificate into the service-ca.crt key on the ConfigMap. Access to this CA certificate allows TLS clients to verify connections to services using service serving certificates.

Important

After adding this annotation to a ConfigMap all existing data in it is deleted. It is recommended to use a separate ConfigMap to contain the service-ca.crt, instead of using the same ConfigMap that stores your Pod’s configuration.

Procedure

  1. Annotate the ConfigMap with service.beta.openshift.io/inject-cabundle=true.

    $ oc annotate configmap <configmap-name> \1
         service.beta.openshift.io/inject-cabundle=true
    1
    Replace <configmap-name> with the name of the ConfigMap to annotate.
    Note

    Explicitly referencing the service-ca.crt key in a volumeMount will prevent a Pod from starting until the ConfigMap has been injected with the CA bundle.

    For instance, to annotate the ConfigMap foo the following command would be used:

    $ oc annotate configmap foo service.beta.openshift.io/inject-cabundle=true
  2. View the ConfigMap to ensure the certificate has been generated. This appears as a service-ca.crt in the YAML output.

    $ oc get configmap <configmap-name> -o yaml
    apiVersion: v1
    data:
      service-ca.crt: |
        -----BEGIN CERTIFICATE-----
    ...

8.3.4. Manually rotate the generated service certificate

You can rotate the service certificate by deleting the associated secret. Deleting the secret results in a new one being automatically created, resulting in a new certificate.

Prerequisites

  • A secret containing the certificate and key pair must have been generated for the service.

Procedure

  1. Examine the service to determine the secret containing the certificate. This is found in the serving-cert-secret-name annotation, as seen below.

    $ oc describe service <service-name>
    ...
    service.beta.openshift.io/serving-cert-secret-name: <secret>
    ...
  2. Delete the generated secret for the service. This process will automatically recreate the secret.

    $ oc delete secret <secret> 1
    1
    Replace <secret> with the name of the secret from the previous step.
  3. Confirm that the certificate has been recreated by obtaining the new secret and examining the AGE.

    $ oc get secret <service-name>
    
    NAME              TYPE                DATA   AGE
    <service.name>    kubernetes.io/tls   2      1s

8.3.5. Manually rotate the service CA certificate

The service CA is valid for 26 months and is automatically refreshed when there is less than six months validity left.

If necessary, you can manually refresh the service CA by using the following procedure.

Warning

A manually-rotated service CA does not maintain trust with the previous service CA. You might experience a temporary service disruption until the Pods in the cluster are restarted, which ensures that Pods are using service serving certificates issued by the new service CA.

Prerequisites

  • You must be logged in as a cluster admin.

Procedure

  1. View the expiration date of the current service CA certificate by using the following command.

    $ oc get secrets/signing-key -n openshift-service-ca \
         -o template='{{index .data "tls.crt"}}' \
         | base64 -d \
         | openssl x509 -noout -enddate
  2. Manually rotate the service CA. This process generates a new service CA which will be used to sign the new service certificates.

    $ oc delete secret/signing-key -n openshift-service-ca
  3. To apply the new certificates to all services, restart all the Pods in your cluster. This command ensures that all services use the updated certificates.

    $ for I in $(oc get ns -o jsonpath='{range .items[*]} {.metadata.name}{"\n"} {end}'); \
          do oc delete pods --all -n $I; \
          sleep 1; \
          done
    Warning

    This command will cause a service interruption, as it goes through and deletes every running pod in every namespace. These pods will automatically restart after they are deleted.

Chapter 9. Using RBAC to define and apply permissions

9.1. RBAC overview

Role-based access control (RBAC) objects determine whether a user is allowed to perform a given action within a project.

Cluster administrators can use the cluster roles and bindings to control who has various access levels to the OpenShift Container Platform platform itself and all projects.

Developers can use local roles and bindings to control who has access to their projects. Note that authorization is a separate step from authentication, which is more about determining the identity of who is taking the action.

Authorization is managed using:

Rules

Sets of permitted verbs on a set of objects. For example, whether a user or service account can create pods.

Roles

Collections of rules. You can associate, or bind, users and groups to multiple roles.

Bindings

Associations between users and/or groups with a role.

There are two levels of RBAC roles and bindings that control authorization:

Cluster RBAC

Roles and bindings that are applicable across all projects. Cluster roles exist cluster-wide, and cluster role bindings can reference only cluster roles.

Local RBAC

Roles and bindings that are scoped to a given project. While local roles exist only in a single project, local role bindings can reference both cluster and local roles.

A cluster role binding is a binding that exists at the cluster level. A role binding exists at the project level. The cluster role view must be bound to a user using a local role binding for that user to view the project. Create local roles only if a cluster role does not provide the set of permissions needed for a particular situation.

This two-level hierarchy allows reuse across multiple projects through the cluster roles while allowing customization inside of individual projects through local roles.

During evaluation, both the cluster role bindings and the local role bindings are used. For example:

  1. Cluster-wide "allow" rules are checked.
  2. Locally-bound "allow" rules are checked.
  3. Deny by default.

9.1.1. Default cluster roles

OpenShift Container Platform includes a set of default cluster roles that you can bind to users and groups cluster-wide or locally. You can manually modify the default cluster roles, if required, but you must take extra steps each time you restart a master node.

Default Cluster RoleDescription

admin

A project manager. If used in a local binding, an admin has rights to view any resource in the project and modify any resource in the project except for quota.

basic-user

A user that can get basic information about projects and users.

cluster-admin

A super-user that can perform any action in any project. When bound to a user with a local binding, they have full control over quota and every action on every resource in the project.

cluster-status

A user that can get basic cluster status information.

edit

A user that can modify most objects in a project but does not have the power to view or modify roles or bindings.

self-provisioner

A user that can create their own projects.

view

A user who cannot make any modifications, but can see most objects in a project. They cannot view or modify roles or bindings.

Be mindful of the difference between local and cluster bindings. For example, if you bind the cluster-admin role to a user by using a local role binding, it might appear that this user has the privileges of a cluster administrator. This is not the case. Binding the cluster-admin to a user in a project grants super administrator privileges for only that project to the user. That user has the permissions of the cluster role admin, plus a few additional permissions like the ability to edit rate limits, for that project. This binding can be confusing via the web console UI, which does not list cluster role bindings that are bound to true cluster administrators. However, it does list local role bindings that you can use to locally bind cluster-admin.

The relationships between cluster roles, local roles, cluster role bindings, local role bindings, users, groups and service accounts are illustrated below.

OpenShift Container Platform RBAC

9.1.2. Evaluating authorization

OpenShift Container Platform evaluates authorization by using:

Identity
The user name and list of groups that the user belongs to.
Action

The action you perform. In most cases, this consists of:

  • Project: The project you access. A project is a Kubernetes namespace with additional annotations that allows a community of users to organize and manage their content in isolation from other communities.
  • Verb : The action itself: get, list, create, update, delete, deletecollection, or watch.
  • Resource Name: The API endpoint that you access.
Bindings
The full list of bindings, the associations between users or groups with a role.

OpenShift Container Platform evaluates authorization by using the following steps:

  1. The identity and the project-scoped action is used to find all bindings that apply to the user or their groups.
  2. Bindings are used to locate all the roles that apply.
  3. Roles are used to find all the rules that apply.
  4. The action is checked against each rule to find a match.
  5. If no matching rule is found, the action is then denied by default.
Tip

Remember that users and groups can be associated with, or bound to, multiple roles at the same time.

Project administrators can use the CLI to view local roles and bindings, including a matrix of the verbs and resources each are associated with.

Important

The cluster role bound to the project administrator is limited in a project through a local binding. It is not bound cluster-wide like the cluster roles granted to the cluster-admin or system:admin.

Cluster roles are roles defined at the cluster level but can be bound either at the cluster level or at the project level.

9.1.2.1. Cluster Role Aggregation

The default admin, edit, view, and cluster-reader cluster roles support cluster role aggregation, where the cluster rules for each role are dynamically updated as new rules are created. This feature is relevant only if you extend the Kubernetes API by creating custom resources.

9.2. Projects and namespaces

A Kubernetes namespace provides a mechanism to scope resources in a cluster. The Kubernetes documentation has more information on namespaces.

Namespaces provide a unique scope for:

  • Named resources to avoid basic naming collisions.
  • Delegated management authority to trusted users.
  • The ability to limit community resource consumption.

Most objects in the system are scoped by namespace, but some are excepted and have no namespace, including nodes and users.

A project is a Kubernetes namespace with additional annotations and is the central vehicle by which access to resources for regular users is managed. A project allows a community of users to organize and manage their content in isolation from other communities. Users must be given access to projects by administrators, or if allowed to create projects, automatically have access to their own projects.

Projects can have a separate name, displayName, and description.

  • The mandatory name is a unique identifier for the project and is most visible when using the CLI tools or API. The maximum name length is 63 characters.
  • The optional displayName is how the project is displayed in the web console (defaults to name).
  • The optional description can be a more detailed description of the project and is also visible in the web console.

Each project scopes its own set of:

Objects

Pods, services, replication controllers, etc.

Policies

Rules for which users can or cannot perform actions on objects.

Constraints

Quotas for each kind of object that can be limited.

Service accounts

Service accounts act automatically with designated access to objects in the project.

Cluster administrators can create projects and delegate administrative rights for the project to any member of the user community. Cluster administrators can also allow developers to create their own projects.

Developers and administrators can interact with projects the CLI or the web console.

9.3. Default projects

OpenShift Container Platform comes with a number of default projects, and projects starting with openshift- are the most essential to users. These projects host master components that run as pods and other infrastructure components. The pods created in these namespaces that have a critical pod annotation are considered critical, and the have guaranteed admission by kubelet. Pods created for master components in these namespaces are already marked as critical.

9.4. Viewing cluster roles and bindings

You can use the oc CLI to view cluster roles and bindings by using the oc describe command.

Prerequisites

  • Install the oc CLI.
  • Obtain permission to view the cluster roles and bindings.

Users with the cluster-admin default cluster role bound cluster-wide can perform any action on any resource, including viewing cluster roles and bindings.

Procedure

  1. To view the cluster roles and their associated rule sets:

    $ oc describe clusterrole.rbac
    Name:         admin
    Labels:       kubernetes.io/bootstrapping=rbac-defaults
    Annotations:  rbac.authorization.kubernetes.io/autoupdate: true
    PolicyRule:
      Resources                                                  Non-Resource URLs  Resource Names  Verbs
      ---------                                                  -----------------  --------------  -----
      .packages.apps.redhat.com                                  []                 []              [* create update patch delete get list watch]
      imagestreams                                               []                 []              [create delete deletecollection get list patch update watch create get list watch]
      imagestreams.image.openshift.io                            []                 []              [create delete deletecollection get list patch update watch create get list watch]
      secrets                                                    []                 []              [create delete deletecollection get list patch update watch get list watch create delete deletecollection patch update]
      buildconfigs/webhooks                                      []                 []              [create delete deletecollection get list patch update watch get list watch]
      buildconfigs                                               []                 []              [create delete deletecollection get list patch update watch get list watch]
      buildlogs                                                  []                 []              [create delete deletecollection get list patch update watch get list watch]
      deploymentconfigs/scale                                    []                 []              [create delete deletecollection get list patch update watch get list watch]
      deploymentconfigs                                          []                 []              [create delete deletecollection get list patch update watch get list watch]
      imagestreamimages                                          []                 []              [create delete deletecollection get list patch update watch get list watch]
      imagestreammappings                                        []                 []              [create delete deletecollection get list patch update watch get list watch]
      imagestreamtags                                            []                 []              [create delete deletecollection get list patch update watch get list watch]
      processedtemplates                                         []                 []              [create delete deletecollection get list patch update watch get list watch]
      routes                                                     []                 []              [create delete deletecollection get list patch update watch get list watch]
      templateconfigs                                            []                 []              [create delete deletecollection get list patch update watch get list watch]
      templateinstances                                          []                 []              [create delete deletecollection get list patch update watch get list watch]
      templates                                                  []                 []              [create delete deletecollection get list patch update watch get list watch]
      deploymentconfigs.apps.openshift.io/scale                  []                 []              [create delete deletecollection get list patch update watch get list watch]
      deploymentconfigs.apps.openshift.io                        []                 []              [create delete deletecollection get list patch update watch get list watch]
      buildconfigs.build.openshift.io/webhooks                   []                 []              [create delete deletecollection get list patch update watch get list watch]
      buildconfigs.build.openshift.io                            []                 []              [create delete deletecollection get list patch update watch get list watch]
      buildlogs.build.openshift.io                               []                 []              [create delete deletecollection get list patch update watch get list watch]
      imagestreamimages.image.openshift.io                       []                 []              [create delete deletecollection get list patch update watch get list watch]
      imagestreammappings.image.openshift.io                     []                 []              [create delete deletecollection get list patch update watch get list watch]
      imagestreamtags.image.openshift.io                         []                 []              [create delete deletecollection get list patch update watch get list watch]
      routes.route.openshift.io                                  []                 []              [create delete deletecollection get list patch update watch get list watch]
      processedtemplates.template.openshift.io                   []                 []              [create delete deletecollection get list patch update watch get list watch]
      templateconfigs.template.openshift.io                      []                 []              [create delete deletecollection get list patch update watch get list watch]
      templateinstances.template.openshift.io                    []                 []              [create delete deletecollection get list patch update watch get list watch]
      templates.template.openshift.io                            []                 []              [create delete deletecollection get list patch update watch get list watch]
      serviceaccounts                                            []                 []              [create delete deletecollection get list patch update watch impersonate create delete deletecollection patch update get list watch]
      imagestreams/secrets                                       []                 []              [create delete deletecollection get list patch update watch]
      rolebindings                                               []                 []              [create delete deletecollection get list patch update watch]
      roles                                                      []                 []              [create delete deletecollection get list patch update watch]
      rolebindings.authorization.openshift.io                    []                 []              [create delete deletecollection get list patch update watch]
      roles.authorization.openshift.io                           []                 []              [create delete deletecollection get list patch update watch]
      imagestreams.image.openshift.io/secrets                    []                 []              [create delete deletecollection get list patch update watch]
      rolebindings.rbac.authorization.k8s.io                     []                 []              [create delete deletecollection get list patch update watch]
      roles.rbac.authorization.k8s.io                            []                 []              [create delete deletecollection get list patch update watch]
      networkpolicies.extensions                                 []                 []              [create delete deletecollection patch update create delete deletecollection get list patch update watch get list watch]
      networkpolicies.networking.k8s.io                          []                 []              [create delete deletecollection patch update create delete deletecollection get list patch update watch get list watch]
      configmaps                                                 []                 []              [create delete deletecollection patch update get list watch]
      endpoints                                                  []                 []              [create delete deletecollection patch update get list watch]
      persistentvolumeclaims                                     []                 []              [create delete deletecollection patch update get list watch]
      pods                                                       []                 []              [create delete deletecollection patch update get list watch]
      replicationcontrollers/scale                               []                 []              [create delete deletecollection patch update get list watch]
      replicationcontrollers                                     []                 []              [create delete deletecollection patch update get list watch]
      services                                                   []                 []              [create delete deletecollection patch update get list watch]
      daemonsets.apps                                            []                 []              [create delete deletecollection patch update get list watch]
      deployments.apps/scale                                     []                 []              [create delete deletecollection patch update get list watch]
      deployments.apps                                           []                 []              [create delete deletecollection patch update get list watch]
      replicasets.apps/scale                                     []                 []              [create delete deletecollection patch update get list watch]
      replicasets.apps                                           []                 []              [create delete deletecollection patch update get list watch]
      statefulsets.apps/scale                                    []                 []              [create delete deletecollection patch update get list watch]
      statefulsets.apps                                          []                 []              [create delete deletecollection patch update get list watch]
      horizontalpodautoscalers.autoscaling                       []                 []              [create delete deletecollection patch update get list watch]
      cronjobs.batch                                             []                 []              [create delete deletecollection patch update get list watch]
      jobs.batch                                                 []                 []              [create delete deletecollection patch update get list watch]
      daemonsets.extensions                                      []                 []              [create delete deletecollection patch update get list watch]
      deployments.extensions/scale                               []                 []              [create delete deletecollection patch update get list watch]
      deployments.extensions                                     []                 []              [create delete deletecollection patch update get list watch]
      ingresses.extensions                                       []                 []              [create delete deletecollection patch update get list watch]
      replicasets.extensions/scale                               []                 []              [create delete deletecollection patch update get list watch]
      replicasets.extensions                                     []                 []              [create delete deletecollection patch update get list watch]
      replicationcontrollers.extensions/scale                    []                 []              [create delete deletecollection patch update get list watch]
      poddisruptionbudgets.policy                                []                 []              [create delete deletecollection patch update get list watch]
      deployments.apps/rollback                                  []                 []              [create delete deletecollection patch update]
      deployments.extensions/rollback                            []                 []              [create delete deletecollection patch update]
      catalogsources.operators.coreos.com                        []                 []              [create update patch delete get list watch]
      clusterserviceversions.operators.coreos.com                []                 []              [create update patch delete get list watch]
      installplans.operators.coreos.com                          []                 []              [create update patch delete get list watch]
      packagemanifests.operators.coreos.com                      []                 []              [create update patch delete get list watch]
      subscriptions.operators.coreos.com                         []                 []              [create update patch delete get list watch]
      buildconfigs/instantiate                                   []                 []              [create]
      buildconfigs/instantiatebinary                             []                 []              [create]
      builds/clone                                               []                 []              [create]
      deploymentconfigrollbacks                                  []                 []              [create]
      deploymentconfigs/instantiate                              []                 []              [create]
      deploymentconfigs/rollback                                 []                 []              [create]
      imagestreamimports                                         []                 []              [create]
      localresourceaccessreviews                                 []                 []              [create]
      localsubjectaccessreviews                                  []                 []              [create]
      podsecuritypolicyreviews                                   []                 []              [create]
      podsecuritypolicyselfsubjectreviews                        []                 []              [create]
      podsecuritypolicysubjectreviews                            []                 []              [create]
      resourceaccessreviews                                      []                 []              [create]
      routes/custom-host                                         []                 []              [create]
      subjectaccessreviews                                       []                 []              [create]
      subjectrulesreviews                                        []                 []              [create]
      deploymentconfigrollbacks.apps.openshift.io                []                 []              [create]
      deploymentconfigs.apps.openshift.io/instantiate            []                 []              [create]
      deploymentconfigs.apps.openshift.io/rollback               []                 []              [create]
      localsubjectaccessreviews.authorization.k8s.io             []                 []              [create]
      localresourceaccessreviews.authorization.openshift.io      []                 []              [create]
      localsubjectaccessreviews.authorization.openshift.io       []                 []              [create]
      resourceaccessreviews.authorization.openshift.io           []                 []              [create]
      subjectaccessreviews.authorization.openshift.io            []                 []              [create]
      subjectrulesreviews.authorization.openshift.io             []                 []              [create]
      buildconfigs.build.openshift.io/instantiate                []                 []              [create]
      buildconfigs.build.openshift.io/instantiatebinary          []                 []              [create]
      builds.build.openshift.io/clone                            []                 []              [create]
      imagestreamimports.image.openshift.io                      []                 []              [create]
      routes.route.openshift.io/custom-host                      []                 []              [create]
      podsecuritypolicyreviews.security.openshift.io             []                 []              [create]
      podsecuritypolicyselfsubjectreviews.security.openshift.io  []                 []              [create]
      podsecuritypolicysubjectreviews.security.openshift.io      []                 []              [create]
      jenkins.build.openshift.io                                 []                 []              [edit view view admin edit view]
      builds                                                     []                 []              [get create delete deletecollection get list patch update watch get list watch]
      builds.build.openshift.io                                  []                 []              [get create delete deletecollection get list patch update watch get list watch]
      projects                                                   []                 []              [get delete get delete get patch update]
      projects.project.openshift.io                              []                 []              [get delete get delete get patch update]
      namespaces                                                 []                 []              [get get list watch]
      pods/attach                                                []                 []              [get list watch create delete deletecollection patch update]
      pods/exec                                                  []                 []              [get list watch create delete deletecollection patch update]
      pods/portforward                                           []                 []              [get list watch create delete deletecollection patch update]
      pods/proxy                                                 []                 []              [get list watch create delete deletecollection patch update]
      services/proxy                                             []                 []              [get list watch create delete deletecollection patch update]
      routes/status                                              []                 []              [get list watch update]
      routes.route.openshift.io/status                           []                 []              [get list watch update]
      appliedclusterresourcequotas                               []                 []              [get list watch]
      bindings                                                   []                 []              [get list watch]
      builds/log                                                 []                 []              [get list watch]
      deploymentconfigs/log                                      []                 []              [get list watch]
      deploymentconfigs/status                                   []                 []              [get list watch]
      events                                                     []                 []              [get list watch]
      imagestreams/status                                        []                 []              [get list watch]
      limitranges                                                []                 []              [get list watch]
      namespaces/status                                          []                 []              [get list watch]
      pods/log                                                   []                 []              [get list watch]
      pods/status                                                []                 []              [get list watch]
      replicationcontrollers/status                              []                 []              [get list watch]
      resourcequotas/status                                      []                 []              [get list watch]
      resourcequotas                                             []                 []              [get list watch]
      resourcequotausages                                        []                 []              [get list watch]
      rolebindingrestrictions                                    []                 []              [get list watch]
      deploymentconfigs.apps.openshift.io/log                    []                 []              [get list watch]
      deploymentconfigs.apps.openshift.io/status                 []                 []              [get list watch]
      controllerrevisions.apps                                   []                 []              [get list watch]
      rolebindingrestrictions.authorization.openshift.io         []                 []              [get list watch]
      builds.build.openshift.io/log                              []                 []              [get list watch]
      imagestreams.image.openshift.io/status                     []                 []              [get list watch]
      appliedclusterresourcequotas.quota.openshift.io            []                 []              [get list watch]
      imagestreams/layers                                        []                 []              [get update get]
      imagestreams.image.openshift.io/layers                     []                 []              [get update get]
      builds/details                                             []                 []              [update]
      builds.build.openshift.io/details                          []                 []              [update]
    
    
    Name:         basic-user
    Labels:       <none>
    Annotations:  openshift.io/description: A user that can get basic information about projects.
    	              rbac.authorization.kubernetes.io/autoupdate: true
    PolicyRule:
    	Resources                                           Non-Resource URLs  Resource Names  Verbs
    	  ---------                                           -----------------  --------------  -----
    	  selfsubjectrulesreviews                             []                 []              [create]
    	  selfsubjectaccessreviews.authorization.k8s.io       []                 []              [create]
    	  selfsubjectrulesreviews.authorization.openshift.io  []                 []              [create]
    	  clusterroles.rbac.authorization.k8s.io              []                 []              [get list watch]
    	  clusterroles                                        []                 []              [get list]
    	  clusterroles.authorization.openshift.io             []                 []              [get list]
    	  storageclasses.storage.k8s.io                       []                 []              [get list]
    	  users                                               []                 [~]             [get]
    	  users.user.openshift.io                             []                 [~]             [get]
    	  projects                                            []                 []              [list watch]
    	  projects.project.openshift.io                       []                 []              [list watch]
    	  projectrequests                                     []                 []              [list]
    	  projectrequests.project.openshift.io                []                 []              [list]
    
    Name:         cluster-admin
    Labels:       kubernetes.io/bootstrapping=rbac-defaults
    Annotations:  rbac.authorization.kubernetes.io/autoupdate: true
    PolicyRule:
    Resources  Non-Resource URLs  Resource Names  Verbs
    ---------  -----------------  --------------  -----
    *.*        []                 []              [*]
               [*]                []              [*]
    
    ...
  2. To view the current set of cluster role bindings, which shows the users and groups that are bound to various roles:

    $ oc describe clusterrolebinding.rbac
    Name:         alertmanager-main
    Labels:       <none>
    Annotations:  <none>
    Role:
      Kind:  ClusterRole
      Name:  alertmanager-main
    Subjects:
      Kind            Name               Namespace
      ----            ----               ---------
      ServiceAccount  alertmanager-main  openshift-monitoring
    
    
    Name:         basic-users
    Labels:       <none>
    Annotations:  rbac.authorization.kubernetes.io/autoupdate: true
    Role:
      Kind:  ClusterRole
      Name:  basic-user
    Subjects:
      Kind   Name                  Namespace
      ----   ----                  ---------
      Group  system:authenticated
    
    
    Name:         cloud-credential-operator-rolebinding
    Labels:       <none>
    Annotations:  <none>
    Role:
      Kind:  ClusterRole
      Name:  cloud-credential-operator-role
    Subjects:
      Kind            Name     Namespace
      ----            ----     ---------
      ServiceAccount  default  openshift-cloud-credential-operator
    
    
    Name:         cluster-admin
    Labels:       kubernetes.io/bootstrapping=rbac-defaults
    Annotations:  rbac.authorization.kubernetes.io/autoupdate: true
    Role:
      Kind:  ClusterRole
      Name:  cluster-admin
    Subjects:
      Kind   Name            Namespace
      ----   ----            ---------
      Group  system:masters
    
    
    Name:         cluster-admins
    Labels:       <none>
    Annotations:  rbac.authorization.kubernetes.io/autoupdate: true
    Role:
      Kind:  ClusterRole
      Name:  cluster-admin
    Subjects:
      Kind   Name                   Namespace
      ----   ----                   ---------
      Group  system:cluster-admins
      User   system:admin
    
    
    Name:         cluster-api-manager-rolebinding
    Labels:       <none>
    Annotations:  <none>
    Role:
      Kind:  ClusterRole
      Name:  cluster-api-manager-role
    Subjects:
      Kind            Name     Namespace
      ----            ----     ---------
      ServiceAccount  default  openshift-machine-api
    
    ...

9.5. Viewing local roles and bindings

You can use the oc CLI to view local roles and bindings by using the oc describe command.

Prerequisites

  • Install the oc CLI.
  • Obtain permission to view the local roles and bindings:

    • Users with the cluster-admin default cluster role bound cluster-wide can perform any action on any resource, including viewing local roles and bindings.
    • Users with the admin default cluster role bound locally can view and manage roles and bindings in that project.

Procedure

  1. To view the current set of local role bindings, which show the users and groups that are bound to various roles for the current project:

    $ oc describe rolebinding.rbac
  2. To view the local role bindings for a different project, add the -n flag to the command:

    $ oc describe rolebinding.rbac -n joe-project
    Name:         admin
    Labels:       <none>
    Annotations:  <none>
    Role:
      Kind:  ClusterRole
      Name:  admin
    Subjects:
      Kind  Name        Namespace
      ----  ----        ---------
      User  kube:admin
    
    
    Name:         system:deployers
    Labels:       <none>
    Annotations:  openshift.io/description:
                    Allows deploymentconfigs in this namespace to rollout pods in
                    this namespace.  It is auto-managed by a controller; remove
                    subjects to disa...
    Role:
      Kind:  ClusterRole
      Name:  system:deployer
    Subjects:
      Kind            Name      Namespace
      ----            ----      ---------
      ServiceAccount  deployer  joe-project
    
    
    Name:         system:image-builders
    Labels:       <none>
    Annotations:  openshift.io/description:
                    Allows builds in this namespace to push images to this
                    namespace.  It is auto-managed by a controller; remove subjects
                    to disable.
    Role:
      Kind:  ClusterRole
      Name:  system:image-builder
    Subjects:
      Kind            Name     Namespace
      ----            ----     ---------
      ServiceAccount  builder  joe-project
    
    
    Name:         system:image-pullers
    Labels:       <none>
    Annotations:  openshift.io/description:
                    Allows all pods in this namespace to pull images from this
                    namespace.  It is auto-managed by a controller; remove subjects
                    to disable.
    Role:
      Kind:  ClusterRole
      Name:  system:image-puller
    Subjects:
      Kind   Name                                Namespace
      ----   ----                                ---------
      Group  system:serviceaccounts:joe-project

9.6. Adding roles to users

You can use the oc adm administrator CLI to manage the roles and bindings.

Binding, or adding, a role to users or groups gives the user or group the access that is granted by the role. You can add and remove roles to and from users and groups using oc adm policy commands.

You can bind any of the default cluster roles to local users or groups in your project.

Procedure

  1. Add a role to a user in a specific project:

    $ oc adm policy add-role-to-user <role> <user> -n <project>

    For example, you can add the admin role to the alice user in joe project by running:

    $ oc adm policy add-role-to-user admin alice -n joe
  2. View the local role bindings and verify the addition in the output:

    $ oc describe rolebinding.rbac -n <project>

    For example, to view the local role bindings for the joe project:

    $ oc describe rolebinding.rbac -n joe
    Name:         admin
    Labels:       <none>
    Annotations:  <none>
    Role:
      Kind:  ClusterRole
      Name:  admin
    Subjects:
      Kind  Name        Namespace
      ----  ----        ---------
      User  kube:admin
    
    
    Name:         admin-0
    Labels:       <none>
    Annotations:  <none>
    Role:
      Kind:  ClusterRole
      Name:  admin
    Subjects:
      Kind  Name   Namespace
      ----  ----   ---------
      User  alice 1
    
    
    Name:         system:deployers
    Labels:       <none>
    Annotations:  openshift.io/description:
                    Allows deploymentconfigs in this namespace to rollout pods in
                    this namespace.  It is auto-managed by a controller; remove
                    subjects to disa...
    Role:
      Kind:  ClusterRole
      Name:  system:deployer
    Subjects:
      Kind            Name      Namespace
      ----            ----      ---------
      ServiceAccount  deployer  joe
    
    
    Name:         system:image-builders
    Labels:       <none>
    Annotations:  openshift.io/description:
                    Allows builds in this namespace to push images to this
                    namespace.  It is auto-managed by a controller; remove subjects
                    to disable.
    Role:
      Kind:  ClusterRole
      Name:  system:image-builder
    Subjects:
      Kind            Name     Namespace
      ----            ----     ---------
      ServiceAccount  builder  joe
    
    
    Name:         system:image-pullers
    Labels:       <none>
    Annotations:  openshift.io/description:
                    Allows all pods in this namespace to pull images from this
                    namespace.  It is auto-managed by a controller; remove subjects
                    to disable.
    Role:
      Kind:  ClusterRole
      Name:  system:image-puller
    Subjects:
      Kind   Name                                Namespace
      ----   ----                                ---------
      Group  system:serviceaccounts:joe
    1
    The alice user has been added to the admins RoleBinding.

9.7. Creating a local role

You can create a local role for a project and then bind it to a user.

Procedure

  1. To create a local role for a project, run the following command:

    $ oc create role <name> --verb=<verb> --resource=<resource> -n <project>

    In this command, specify:

    • <name>, the local role’s name
    • <verb>, a comma-separated list of the verbs to apply to the role
    • <resource>, the resources that the role applies to
    • <project>, the project name

    For example, to create a local role that allows a user to view pods in the blue project, run the following command:

    $ oc create role podview --verb=get --resource=pod -n blue
  2. To bind the new role to a user, run the following command:

    $ oc adm policy add-role-to-user podview user2 --role-namespace=blue -n blue

9.8. Creating a cluster role

You can create a cluster role.

Procedure

  1. To create a cluster role, run the following command:

    $ oc create clusterrole <name> --verb=<verb> --resource=<resource>

    In this command, specify:

    • <name>, the local role’s name
    • <verb>, a comma-separated list of the verbs to apply to the role
    • <resource>, the resources that the role applies to

      For example, to create a cluster role that allows a user to view pods, run the following command:

      $ oc create clusterrole podviewonly --verb=get --resource=pod

9.9. Local role binding commands

When you manage a user or group’s associated roles for local role bindings using the following operations, a project may be specified with the -n flag. If it is not specified, then the current project is used.

You can use the following commands for local RBAC management.

Table 9.1. Local role binding operations
CommandDescription

$ oc adm policy who-can <verb> <resource>

Indicates which users can perform an action on a resource.

$ oc adm policy add-role-to-user <role> <username>

Binds a specified role to specified users in the current project.

$ oc adm policy remove-role-from-user <role> <username>

Removes a given role from specified users in the current project.

$ oc adm policy remove-user <username>

Removes specified users and all of their roles in the current project.

$ oc adm policy add-role-to-group <role> <groupname>

Binds a given role to specified groups in the current project.

$ oc adm policy remove-role-from-group <role> <groupname>

Removes a given role from specified groups in the current project.

$ oc adm policy remove-group <groupname>

Removes specified groups and all of their roles in the current project.

9.10. Cluster role binding commands

You can also manage cluster role bindings using the following operations. The -n flag is not used for these operations because cluster role bindings use non-namespaced resources.

Table 9.2. Cluster role binding operations
CommandDescription

$ oc adm policy add-cluster-role-to-user <role> <username>

Binds a given role to specified users for all projects in the cluster.

$ oc adm policy remove-cluster-role-from-user <role> <username>

Removes a given role from specified users for all projects in the cluster.

$ oc adm policy add-cluster-role-to-group <role> <groupname>

Binds a given role to specified groups for all projects in the cluster.

$ oc adm policy remove-cluster-role-from-group <role> <groupname>

Removes a given role from specified groups for all projects in the cluster.

9.11. Creating a cluster admin

The cluster-admin role is required to perform administrator level tasks on the OpenShift Container Platform cluster, such as modifying cluster resources.

Prerequisites

  • You must have created a user to define as the cluster admin.

Procedure

  • Define the user as a cluster admin:

    $ oc adm policy add-cluster-role-to-user cluster-admin <user>

Chapter 10. Removing the kubeadmin user

10.1. The kubeadmin user

OpenShift Container Platform creates a cluster administrator, kubeadmin, after the installation process completes.

This user has the cluster-admin role automatically applied and is treated as the root user for the cluster. The password is dynamically generated and unique to your OpenShift Container Platform environment. After installation completes the password is provided in the installation program’s output. For example:

INFO Install complete!
INFO Run 'export KUBECONFIG=<your working directory>/auth/kubeconfig' to manage the cluster with 'oc', the OpenShift CLI.
INFO The cluster is ready when 'oc login -u kubeadmin -p <provided>' succeeds (wait a few minutes).
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.demo1.openshift4-beta-abcorp.com
INFO Login to the console with user: kubeadmin, password: <provided>

10.2. Removing the kubeadmin user

After you define an identity provider and create a new cluster-admin user, you can remove the kubeadmin to improve cluster security.

Warning

If you follow this procedure before another user is a cluster-admin, then OpenShift Container Platform must be reinstalled. It is not possible to undo this command.

Prerequisites

  • You must have configured at least one identity provider.
  • You must have added the cluster-admin role to a user.
  • You must be logged in as an administrator.

Procedure

  • Remove the kubeadmin secrets:

    $ oc delete secrets kubeadmin -n kube-system

Chapter 11. Configuring the user agent

11.1. About the user agent

OpenShift Container Platform implements a user agent that can be used to prevent an application developer’s CLI accessing the OpenShift Container Platform API. If a client uses a particular library or binary file, they cannot access the OpenShift Container Platform API.

You construct user agents for the OpenShift Container Platform CLI from a set of values within OpenShift Container Platform:

<command>/<version> (<platform>/<architecture>) <client>/<git_commit>

For example, when:

  • <command> = oc
  • <version> = The client version. For example, v4.3.0. Requests made against the Kubernetes API at /api receive the Kubernetes version, while requests made against the OpenShift Container Platform API at /oapi receive the OpenShift Container Platform version (as specified by oc version)
  • <platform> = linux
  • <architecture> = amd64
  • <client> = openshift, or kubernetes depending on if the request is made against the Kubernetes API at /api, or the OpenShift Container Platform API at /oapi
  • <git_commit> = The Git commit of the client version (for example, f034127)

the user agent is:

oc/v3.3.0 (linux/amd64) openshift/f034127

11.2. Configuring the user agent

As an administrator, you can prevent clients from accessing the API with the userAgentMatching configuration setting of a master configuration.

Procedure

  • Modify the master configuration file to include the user agent configuration. For example, the following user agent denies the Kubernetes 1.2 client binary, OKD 1.1.3 binary, and the POST and PUT httpVerbs:

    policyConfig:
      userAgentMatchingConfig:
        defaultRejectionMessage: "Your client is too old.  Go to https://example.org to update it."
        deniedClients:
        - regex: '\w+/v(?:(?:1\.1\.1)|(?:1\.0\.1)) \(.+/.+\) openshift/\w{7}'
        - regex: '\w+/v(?:1\.1\.3) \(.+/.+\) openshift/\w{7}'
          httpVerbs:
          - POST
          - PUT
        - regex: '\w+/v1\.2\.0 \(.+/.+\) kubernetes/\w{7}'
          httpVerbs:
          - POST
          - PUT
        requiredClients: null

    The following example denies clients that do not exactly match an expected client:

    policyConfig:
      userAgentMatchingConfig:
        defaultRejectionMessage: "Your client is too old.  Go to https://example.org to update it."
        deniedClients: []
        requiredClients:
        - regex: '\w+/v1\.1\.3 \(.+/.+\) openshift/\w{7}'
        - regex: '\w+/v1\.2\.0 \(.+/.+\) kubernetes/\w{7}'
          httpVerbs:
          - POST
          - PUT

Chapter 12. Understanding and creating service accounts

12.1. Service accounts overview

A service account is an OpenShift Container Platform account that allows a component to directly access the API. Service accounts are API objects that exist within each project. Service accounts provide a flexible way to control API access without sharing a regular user’s credentials.

When you use the OpenShift Container Platform CLI or web console, your API token authenticates you to the API. You can associate a component with a service account so that they can access the API without using a regular user’s credentials. For example, service accounts can allow:

  • Replication controllers to make API calls to create or delete pods.
  • Applications inside containers to make API calls for discovery purposes.
  • External applications to make API calls for monitoring or integration purposes.

Each service account’s user name is derived from its project and name:

system:serviceaccount:<project>:<name>

Every service account is also a member of two groups:

system:serviceaccounts
Includes all service accounts in the system.
system:serviceaccounts:<project>
Includes all service accounts in the specified project.

Each service account automatically contains two secrets:

  • An API token
  • Credentials for the OpenShift Container Registry

The generated API token and registry credentials do not expire, but you can revoke them by deleting the secret. When you delete the secret, a new one is automatically generated to take its place.

12.2. Creating service accounts

You can create a service account in a project and grant it permissions by binding it to a role.

Procedure

  1. Optional: To view the service accounts in the current project:

    $ oc get sa
    
    NAME       SECRETS   AGE
    builder    2         2d
    default    2         2d
    deployer   2         2d
  2. To create a new service account in the current project:

    $ oc create sa <service_account_name> 1
    
    serviceaccount "robot" created
    1
    To create a service account in a different project, specify -n <project_name>.
  3. Optional: View the secrets for the service account:

    $ oc describe sa robot
    Name:		robot
    Namespace:	project1
    Labels:		<none>
    Annotations:	<none>
    
    Image pull secrets:	robot-dockercfg-qzbhb
    
    Mountable secrets: 	robot-token-f4khf
                       	robot-dockercfg-qzbhb
    
    Tokens:            	robot-token-f4khf
                       	robot-token-z8h44

12.3. Examples of granting roles to service accounts

You can grant roles to service accounts in the same way that you grant roles to a regular user account.

  • You can modify the service accounts for the current project. For example, to add the view role to the robot service account in the top-secret project:

    $ oc policy add-role-to-user view system:serviceaccount:top-secret:robot
  • You can also grant access to a specific service account in a project. For example, from the project to which the service account belongs, use the -z flag and specify the <serviceaccount_name>

    $ oc policy add-role-to-user <role_name> -z <serviceaccount_name>
    Important

    If you want to grant access to a specific service account in a project, use the -z flag. Using this flag helps prevent typos and ensures that access is granted to only the specified service account.

  • To modify a different namespace, you can use the -n option to indicate the project namespace it applies to, as shown in the following examples.

    • For example, to allow all service accounts in all projects to view resources in the top-secret project:

      $ oc policy add-role-to-group view system:serviceaccounts -n top-secret
    • To allow all service accounts in the managers project to edit resources in the top-secret project:

      $ oc policy add-role-to-group edit system:serviceaccounts:managers -n top-secret

Chapter 13. Using service accounts in applications

13.1. Service accounts overview

A service account is an OpenShift Container Platform account that allows a component to directly access the API. Service accounts are API objects that exist within each project. Service accounts provide a flexible way to control API access without sharing a regular user’s credentials.

When you use the OpenShift Container Platform CLI or web console, your API token authenticates you to the API. You can associate a component with a service account so that they can access the API without using a regular user’s credentials. For example, service accounts can allow:

  • Replication controllers to make API calls to create or delete pods.
  • Applications inside containers to make API calls for discovery purposes.
  • External applications to make API calls for monitoring or integration purposes.

Each service account’s user name is derived from its project and name:

system:serviceaccount:<project>:<name>

Every service account is also a member of two groups:

system:serviceaccounts
Includes all service accounts in the system.
system:serviceaccounts:<project>
Includes all service accounts in the specified project.

Each service account automatically contains two secrets:

  • An API token
  • Credentials for the OpenShift Container Registry

The generated API token and registry credentials do not expire, but you can revoke them by deleting the secret. When you delete the secret, a new one is automatically generated to take its place.

13.2. Default service accounts

Your OpenShift Container Platform cluster contains default service accounts for cluster management and generates more service accounts for each project.

13.2.1. Default cluster service accounts

Several infrastructure controllers run using service account credentials. The following service accounts are created in the OpenShift Container Platform infrastructure project (openshift-infra) at server start, and given the following roles cluster-wide:

Service AccountDescription

replication-controller

Assigned the system:replication-controller role

deployment-controller

Assigned the system:deployment-controller role

build-controller

Assigned the system:build-controller role. Additionally, the build-controller service account is included in the privileged Security Context Constraint in order to create privileged build pods.

13.2.2. Default project service accounts and roles

Three service accounts are automatically created in each project:

Service AccountUsage

builder

Used by build pods. It is given the system:image-builder role, which allows pushing images to any imagestream in the project using the internal Docker registry.

deployer

Used by deployment pods and given the system:deployer role, which allows viewing and modifying replication controllers and pods in the project.

default

Used to run all other pods unless they specify a different service account.

All service accounts in a project are given the system:image-puller role, which allows pulling images from any imagestream in the project using the internal container image registry.

13.3. Creating service accounts

You can create a service account in a project and grant it permissions by binding it to a role.

Procedure

  1. Optional: To view the service accounts in the current project:

    $ oc get sa
    
    NAME       SECRETS   AGE
    builder    2         2d
    default    2         2d
    deployer   2         2d
  2. To create a new service account in the current project:

    $ oc create sa <service_account_name> 1
    
    serviceaccount "robot" created
    1
    To create a service account in a different project, specify -n <project_name>.
  3. Optional: View the secrets for the service account:

    $ oc describe sa robot
    Name:		robot
    Namespace:	project1
    Labels:		<none>
    Annotations:	<none>
    
    Image pull secrets:	robot-dockercfg-qzbhb
    
    Mountable secrets: 	robot-token-f4khf
                       	robot-dockercfg-qzbhb
    
    Tokens:            	robot-token-f4khf
                       	robot-token-z8h44

13.4. Using a service account’s credentials externally

You can distribute a service account’s token to external applications that must authenticate to the API.

In order to pull an image, the authenticated user must have get rights on the requested imagestreams/layers. In order to push an image, the authenticated user must have update rights on the requested imagestreams/layers.

By default, all service accounts in a project have rights to pull any image in the same project, and the builder service account has rights to push any image in the same project.

Procedure

  1. View the service account’s API token:

    $ oc describe secret <secret-name>

    For example:

    $ oc describe secret robot-token-uzkbh -n top-secret
    
    Name:		robot-token-uzkbh
    Labels:		<none>
    Annotations:	kubernetes.io/service-account.name=robot,kubernetes.io/service-account.uid=49f19e2e-16c6-11e5-afdc-3c970e4b7ffe
    
    Type:	kubernetes.io/service-account-token
    
    Data
    
    token:	eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9...
  2. Log in using the token that you obtained:

    $ oc login --token=eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9...
    
    Logged into "https://server:8443" as "system:serviceaccount:top-secret:robot" using the token provided.
    
    You don't have any projects. You can try to create a new project, by running
    
        $ oc new-project <projectname>
  3. Confirm that you logged in as the service account:

    $ oc whoami
    
    system:serviceaccount:top-secret:robot

Chapter 14. Using a service account as an OAuth client

14.1. Service accounts as OAuth clients

You can use a service account as a constrained form of OAuth client. Service accounts can request only a subset of scopes that allow access to some basic user information and role-based power inside of the service account’s own namespace:

  • user:info
  • user:check-access
  • role:<any_role>:<serviceaccount_namespace>
  • role:<any_role>:<serviceaccount_namespace>:!

When using a service account as an OAuth client:

  • client_id is system:serviceaccount:<serviceaccount_namespace>:<serviceaccount_name>.
  • client_secret can be any of the API tokens for that service account. For example:

    $ oc sa get-token <serviceaccount_name>
  • To get WWW-Authenticate challenges, set an serviceaccounts.openshift.io/oauth-want-challenges annotation on the service account to true.
  • redirect_uri must match an annotation on the service account.

14.1.1. Redirect URIs for Service Accounts as OAuth Clients

Annotation keys must have the prefix serviceaccounts.openshift.io/oauth-redirecturi. or serviceaccounts.openshift.io/oauth-redirectreference. such as:

serviceaccounts.openshift.io/oauth-redirecturi.<name>

In its simplest form, the annotation can be used to directly specify valid redirect URIs. For example:

"serviceaccounts.openshift.io/oauth-redirecturi.first":  "https://example.com"
"serviceaccounts.openshift.io/oauth-redirecturi.second": "https://other.com"

The first and second postfixes in the above example are used to separate the two valid redirect URIs.

In more complex configurations, static redirect URIs may not be enough. For example, perhaps you want all Ingresses for a route to be considered valid. This is where dynamic redirect URIs via the serviceaccounts.openshift.io/oauth-redirectreference. prefix come into play.

For example:

"serviceaccounts.openshift.io/oauth-redirectreference.first": "{\"kind\":\"OAuthRedirectReference\",\"apiVersion\":\"v1\",\"reference\":{\"kind\":\"Route\",\"name\":\"jenkins\"}}"

Since the value for this annotation contains serialized JSON data, it is easier to see in an expanded format:

{
  "kind": "OAuthRedirectReference",
  "apiVersion": "v1",
  "reference": {
    "kind": "Route",
    "name": "jenkins"
  }
}

Now you can see that an OAuthRedirectReference allows us to reference the route named jenkins. Thus, all Ingresses for that route will now be considered valid. The full specification for an OAuthRedirectReference is:

{
  "kind": "OAuthRedirectReference",
  "apiVersion": "v1",
  "reference": {
    "kind": ..., 1
    "name": ..., 2
    "group": ... 3
  }
}
1
kind refers to the type of the object being referenced. Currently, only route is supported.
2
name refers to the name of the object. The object must be in the same namespace as the service account.
3
group refers to the group of the object. Leave this blank, as the group for a route is the empty string.

Both annotation prefixes can be combined to override the data provided by the reference object. For example:

"serviceaccounts.openshift.io/oauth-redirecturi.first":  "custompath"
"serviceaccounts.openshift.io/oauth-redirectreference.first": "{\"kind\":\"OAuthRedirectReference\",\"apiVersion\":\"v1\",\"reference\":{\"kind\":\"Route\",\"name\":\"jenkins\"}}"

The first postfix is used to tie the annotations together. Assuming that the jenkins route had an Ingress of https://example.com, now https://example.com/custompath is considered valid, but https://example.com is not. The format for partially supplying override data is as follows:

TypeSyntax

Scheme

"https://"

Hostname

"//website.com"

Port

"//:8000"

Path

"examplepath"

Note

Specifying a host name override will replace the host name data from the referenced object, which is not likely to be desired behavior.

Any combination of the above syntax can be combined using the following format:

<scheme:>//<hostname><:port>/<path>

The same object can be referenced more than once for more flexibility:

"serviceaccounts.openshift.io/oauth-redirecturi.first":  "custompath"
"serviceaccounts.openshift.io/oauth-redirectreference.first": "{\"kind\":\"OAuthRedirectReference\",\"apiVersion\":\"v1\",\"reference\":{\"kind\":\"Route\",\"name\":\"jenkins\"}}"
"serviceaccounts.openshift.io/oauth-redirecturi.second":  "//:8000"
"serviceaccounts.openshift.io/oauth-redirectreference.second": "{\"kind\":\"OAuthRedirectReference\",\"apiVersion\":\"v1\",\"reference\":{\"kind\":\"Route\",\"name\":\"jenkins\"}}"

Assuming that the route named jenkins has an Ingress of https://example.com, then both https://example.com:8000 and https://example.com/custompath are considered valid.

Static and dynamic annotations can be used at the same time to achieve the desired behavior:

"serviceaccounts.openshift.io/oauth-redirectreference.first": "{\"kind\":\"OAuthRedirectReference\",\"apiVersion\":\"v1\",\"reference\":{\"kind\":\"Route\",\"name\":\"jenkins\"}}"
"serviceaccounts.openshift.io/oauth-redirecturi.second": "https://other.com"

Chapter 15. Scoping tokens

15.1. About scoping tokens

You can created scoped tokens to delegate some of your permissions to another user or service account. For example, a project administrator might want to delegate the power to create pods.

A scoped token is a token that identifies as a given user but is limited to certain actions by its scope. Only a user with the cluster-admin role can create scoped tokens.

Scopes are evaluated by converting the set of scopes for a token into a set of PolicyRules. Then, the request is matched against those rules. The request attributes must match at least one of the scope rules to be passed to the "normal" authorizer for further authorization checks.

15.1.1. User scopes

User scopes are focused on getting information about a given user. They are intent-based, so the rules are automatically created for you:

  • user:full - Allows full read/write access to the API with all of the user’s permissions.
  • user:info - Allows read-only access to information about the user, such as name and groups.
  • user:check-access - Allows access to self-localsubjectaccessreviews and self-subjectaccessreviews. These are the variables where you pass an empty user and groups in your request object.
  • user:list-projects - Allows read-only access to list the projects the user has access to.

15.1.2. Role scope

The role scope allows you to have the same level of access as a given role filtered by namespace.

  • role:<cluster-role name>:<namespace or * for all> - Limits the scope to the rules specified by the cluster-role, but only in the specified namespace .

    Note

    Caveat: This prevents escalating access. Even if the role allows access to resources like secrets, rolebindings, and roles, this scope will deny access to those resources. This helps prevent unexpected escalations. Many people do not think of a role like edit as being an escalating role, but with access to a secret it is.

  • role:<cluster-role name>:<namespace or * for all>:! - This is similar to the example above, except that including the bang causes this scope to allow escalating access.

Chapter 16. Managing Security Context Constraints

16.1. About Security Context Constraints

Similar to the way that RBAC resources control user access, administrators can use Security Context Constraints (SCCs) to control permissions for pods. These permissions include actions that a pod, a collection of containers, can perform and what resources it can access. You can use SCCs to define a set of conditions that a pod must run with in order to be accepted into the system.

SCCs allow an administrator to control:

  • Whether a pod can run privileged containers.
  • The capabilities that a container can request.
  • The use of host directories as volumes.
  • The SELinux context of the container.
  • The container user ID.
  • The use of host namespaces and networking.
  • The allocation of an FSGroup that owns the pod’s volumes.
  • The configuration of allowable supplemental groups.
  • Whether a container requires the use of a read only root file system.
  • The usage of volume types.
  • The configuration of allowable seccomp profiles.

Docker has a default list of capabilities that are allowed for each container of a pod. The containers use the capabilities from this default list, but pod manifest authors can alter it by requesting additional capabilities or removing some of the default behaviors. Use the allowedCapabilities, defaultAddCapabilities, and requiredDropCapabilities parameters to control such requests from the pods and to dictate which capabilities can be requested, which ones must be added to each container, and which ones must be forbidden.

The cluster contains eight default SCCs:

  • anyuid
  • hostaccess
  • hostmount-anyuid
  • hostnetwork

    Warning

    If additional workloads are run on master hosts, use caution when providing access to hostnetwork. A workload that runs hostnetwork on a master host is effectively root on the cluster and must be trusted accordingly.

  • node-exporter
  • nonroot
  • privileged
  • restricted
Important

Do not modify the default SCCs. Customizing the default SCCs can lead to issues when OpenShift Container Platform is upgraded. Instead, create new SCCs.

The privileged SCC allows:

  • Users to run privileged pods
  • Pods to mount host directories as volumes
  • Pods to run as any user
  • Pods to run with any MCS label
  • Pods to use the host’s IPC namespace
  • Pods to use the host’s PID namespace
  • Pods to use any FSGroup
  • Pods to use any supplemental group
  • Pods to use any seccomp profiles
  • Pods to request any capabilities

The restricted SCC:

  • Ensures that pods cannot run as privileged.
  • Ensures that pods cannot mount host directory volumes.
  • Requires that a pod run as a user in a pre-allocated range of UIDs.
  • Requires that a pod run with a pre-allocated MCS label.
  • Allows pods to use any FSGroup.
  • Allows pods to use any supplemental group.
Note

For more information about each SCC, see the kubernetes.io/description annotation available on the SCC.

SCCs are composed of settings and strategies that control the security features a pod has access to. These settings fall into three categories:

Controlled by a boolean

Fields of this type default to the most restrictive value. For example, AllowPrivilegedContainer is always set to false if unspecified.

Controlled by an allowable set

Fields of this type are checked against the set to ensure their value is allowed.

Controlled by a strategy

Items that have a strategy to generate a value provide:

  • A mechanism to generate the value, and
  • A mechanism to ensure that a specified value falls into the set of allowable values.

16.1.1. SCC Strategies

RunAsUser

  1. MustRunAs - Requires a runAsUser to be configured. Uses the configured runAsUser as the default. Validates against the configured runAsUser.
  2. MustRunAsRange - Requires minimum and maximum values to be defined if not using pre-allocated values. Uses the minimum as the default. Validates against the entire allowable range.
  3. MustRunAsNonRoot - Requires that the pod be submitted with a non-zero runAsUser or have the USER directive defined in the image. No default provided.
  4. RunAsAny - No default provided. Allows any runAsUser to be specified.

SELinuxContext

  1. MustRunAs - Requires seLinuxOptions to be configured if not using pre-allocated values. Uses seLinuxOptions as the default. Validates against seLinuxOptions.
  2. RunAsAny - No default provided. Allows any seLinuxOptions to be specified.

SupplementalGroups

  1. MustRunAs - Requires at least one range to be specified if not using pre-allocated values. Uses the minimum value of the first range as the default. Validates against all ranges.
  2. RunAsAny - No default provided. Allows any supplementalGroups to be specified.

FSGroup

  1. MustRunAs - Requires at least one range to be specified if not using pre-allocated values. Uses the minimum value of the first range as the default. Validates against the first ID in the first range.
  2. RunAsAny - No default provided. Allows any fsGroup ID to be specified.

16.1.2. Controlling volumes

The usage of specific volume types can be controlled by setting the volumes field of the SCC. The allowable values of this field correspond to the volume sources that are defined when creating a volume:

The recommended minimum set of allowed volumes for new SCCs are configMap, downwardAPI, emptyDir, persistentVolumeClaim, secret, and projected.

Note

The list of allowable volume types is not exhaustive because new types are added with each release of OpenShift Container Platform.

Note

For backwards compatibility, the usage of allowHostDirVolumePlugin overrides settings in the volumes field. For example, if allowHostDirVolumePlugin is set to false but allowed in the volumes field, then the hostPath value will be removed from volumes.

16.1.3. Admission

Admission control with SCCs allows for control over the creation of resources based on the capabilities granted to a user.

In terms of the SCCs, this means that an admission controller can inspect the user information made available in the context to retrieve an appropriate set of SCCs. Doing so ensures the pod is authorized to make requests about its operating environment or to generate a set of constraints to apply to the pod.

The set of SCCs that admission uses to authorize a pod are determined by the user identity and groups that the user belongs to. Additionally, if the pod specifies a service account, the set of allowable SCCs includes any constraints accessible to the service account.

Admission uses the following approach to create the final security context for the pod:

  1. Retrieve all SCCs available for use.
  2. Generate field values for security context settings that were not specified on the request.
  3. Validate the final settings against the available constraints.

If a matching set of constraints is found, then the pod is accepted. If the request cannot be matched to an SCC, the pod is rejected.

A pod must validate every field against the SCC. The following are examples for just two of the fields that must be validated:

Note

These examples are in the context of a strategy using the preallocated values.

A FSGroup SCC strategy of MustRunAs

If the pod defines a fsGroup ID, then that ID must equal the default fsGroup ID. Otherwise, the pod is not validated by that SCC and the next SCC is evaluated.

If the SecurityContextConstraints.fsGroup field has value RunAsAny and the pod specification omits the Pod.spec.securityContext.fsGroup, then this field is considered valid. Note that it is possible that during validation, other SCC settings will reject other pod fields and thus cause the pod to fail.

A SupplementalGroups SCC strategy of MustRunAs

If the pod specification defines one or more supplementalGroups IDs, then the pod’s IDs must equal one of the IDs in the namespace’s openshift.io/sa.scc.supplemental-groups annotation. Otherwise, the pod is not validated by that SCC and the next SCC is evaluated.

If the SecurityContextConstraints.supplementalGroups field has value RunAsAny and the pod specification omits the Pod.spec.securityContext.supplementalGroups, then this field is considered valid. Note that it is possible that during validation, other SCC settings will reject other pod fields and thus cause the pod to fail.

16.1.4. SCC prioritization

SCCs have a priority field that affects the ordering when attempting to validate a request by the admission controller. A higher priority SCC is moved to the front of the set when sorting. When the complete set of available SCCs are determined they are ordered by:

  1. Highest priority first, nil is considered a 0 priority
  2. If priorities are equal, the SCCs will be sorted from most restrictive to least restrictive
  3. If both priorities and restrictions are equal the SCCs will be sorted by name

By default, the anyuid SCC granted to cluster administrators is given priority in their SCC set. This allows cluster administrators to run pods as any user by without specifying a RunAsUser on the pod’s SecurityContext. The administrator may still specify a RunAsUser if they wish.

16.2. About pre-allocated Security Context Constraints values

The admission controller is aware of certain conditions in the Security Context Constraints (SCCs) that trigger it to look up pre-allocated values from a namespace and populate the SCC before processing the pod. Each SCC strategy is evaluated independently of other strategies, with the pre-allocated values, where allowed, for each policy aggregated with pod specification values to make the final values for the various IDs defined in the running pod.

The following SCCs cause the admission controller to look for pre-allocated values when no ranges are defined in the pod specification:

  1. A RunAsUser strategy of MustRunAsRange with no minimum or maximum set. Admission looks for the openshift.io/sa.scc.uid-range annotation to populate range fields.
  2. An SELinuxContext strategy of MustRunAs with no level set. Admission looks for the openshift.io/sa.scc.mcs annotation to populate the level.
  3. A FSGroup strategy of MustRunAs. Admission looks for the openshift.io/sa.scc.supplemental-groups annotation.
  4. A SupplementalGroups strategy of MustRunAs. Admission looks for the openshift.io/sa.scc.supplemental-groups annotation.

During the generation phase, the security context provider uses default values for any parameter values that are not specifically set in the pod. Default values are based on the selected strategy:

  1. RunAsAny and MustRunAsNonRoot strategies do not provide default values. If the pod needs a parameter value, such as a group ID, you must define the value in the pod specification.
  2. MustRunAs (single value) strategies provide a default value that is always used. For example, for group IDs, even if the pod specification defines its own ID value, the namespace’s default parameter value also appears in the pod’s groups.
  3. MustRunAsRange and MustRunAs (range-based) strategies provide the minimum value of the range. As with a single value MustRunAs strategy, the namespace’s default parameter value appears in the running pod. If a range-based strategy is configurable with multiple ranges, it provides the minimum value of the first configured range.
Note

FSGroup and SupplementalGroups strategies fall back to the openshift.io/sa.scc.uid-range annotation if the openshift.io/sa.scc.supplemental-groups annotation does not exist on the namespace. If neither exists, the SCC is not created.

Note

By default, the annotation-based FSGroup strategy configures itself with a single range based on the minimum value for the annotation. For example, if your annotation reads 1/3, the FSGroup strategy configures itself with a minimum and maximum value of 1. If you want to allow more groups to be accepted for the FSGroup field, you can configure a custom SCC that does not use the annotation.

Note

The openshift.io/sa.scc.supplemental-groups annotation accepts a comma-delimited list of blocks in the format of <start>/<length or <start>-<end>. The openshift.io/sa.scc.uid-range annotation accepts only a single block.

16.3. Example Security Context Constraints

The following examples show the Security Context Constraint (SCC) format and annotations:

Annotated priviledged SCC

allowHostDirVolumePlugin: true
allowHostIPC: true
allowHostNetwork: true
allowHostPID: true
allowHostPorts: true
allowPrivilegedContainer: true
allowedCapabilities: 1
- '*'
apiVersion: security.openshift.io/v1
defaultAddCapabilities: [] 2
fsGroup: 3
  type: RunAsAny
groups: 4
- system:cluster-admins
- system:nodes
kind: SecurityContextConstraints
metadata:
  annotations:
    kubernetes.io/description: 'privileged allows access to all privileged and host
      features and the ability to run as any user, any group, any fsGroup, and with
      any SELinux context.  WARNING: this is the most relaxed SCC and should be used
      only for cluster administration. Grant with caution.'
  creationTimestamp: null
  name: privileged
priority: null
readOnlyRootFilesystem: false
requiredDropCapabilities: [] 5
runAsUser: 6
  type: RunAsAny
seLinuxContext: 7
  type: RunAsAny
seccompProfiles:
- '*'
supplementalGroups: 8
  type: RunAsAny
users: 9
- system:serviceaccount:default:registry
- system:serviceaccount:default:router
- system:serviceaccount:openshift-infra:build-controller
volumes:
- '*'

1
A list of capabilities that a pod can request. An empty list means that none of capabilities can be requested while the special symbol * allows any capabilities.
2
A list of additional capabilities that are added to any pod.
3
The FSGroup strategy, which dictates the allowable values for the Security Context.
4
The groups that can access this SCC.
5
A list of capabilities that are be dropped from a pod.
6
The runAsUser strategy type, which dictates the allowable values for the Security Context.
7
The seLinuxContext strategy type, which dictates the allowable values for the Security Context.
8
The supplementalGroups strategy, which dictates the allowable supplemental groups for the Security Context.
9
The users who can access this SCC.

The users and groups fields on the SCC control which users can access the SCC. By default, cluster administrators, nodes, and the build controller are granted access to the privileged SCC. All authenticated users are granted access to the restricted SCC.

Without explicit runAsUser setting

apiVersion: v1
kind: Pod
metadata:
  name: security-context-demo
spec:
  securityContext: 1
  containers:
  - name: sec-ctx-demo
    image: gcr.io/google-samples/node-hello:1.0

1
When a container or pod does not request a user ID under which it should be run, the effective UID depends on the SCC that emits this pod. Because restricted SCC is granted to all authenticated users by default, it will be available to all users and service accounts and used in most cases. The restricted SCC uses MustRunAsRange strategy for constraining and defaulting the possible values of the securityContext.runAsUser field. The admission plug-in will look for the openshift.io/sa.scc.uid-range annotation on the current project to populate range fields, as it does not provide this range. In the end, a container will have runAsUser equal to the first value of the range that is hard to predict because every project has different ranges.

With explicit runAsUser setting

apiVersion: v1
kind: Pod
metadata:
  name: security-context-demo
spec:
  securityContext:
    runAsUser: 1000 1
  containers:
    - name: sec-ctx-demo
      image: gcr.io/google-samples/node-hello:1.0

1
A container or pod that requests a specific user ID will be accepted by OpenShift Container Platform only when a service account or a user is granted access to a SCC that allows such a user ID. The SCC can allow arbitrary IDs, an ID that falls into a range, or the exact user ID specific to the request.

This configuration is valid for SELinux, fsGroup, and Supplemental Groups.

16.4. Creating Security Context Constraints

You can create a Security Context Constraint (SCC) by using the CLI.

Prerequisites

  • You must install the oc command line.
  • Your account must have cluster-admin privileges to create SCCs.

Procedure

  1. Define the SCC in a JSON or YAML file:

    Security Context Constraint Object Definition

    kind: SecurityContextConstraints
    apiVersion: security.openshift.io/v1
    metadata:
      name: scc-admin
    allowPrivilegedContainer: true
    runAsUser:
      type: RunAsAny
    seLinuxContext:
      type: RunAsAny
    fsGroup:
      type: RunAsAny
    supplementalGroups:
      type: RunAsAny
    users:
    - my-admin-user
    groups:
    - my-admin-group

    Optionally, you can add drop capabilities to an SCC by setting the requiredDropCapabilities field with the desired values. Any specified capabilities will be dropped from the container. For example, to create an SCC with the KILL, MKNOD, and SYS_CHROOT required drop capabilities, add the following to the SCC object:

    requiredDropCapabilities:
    - KILL
    - MKNOD
    - SYS_CHROOT

    You can see the list of possible values in the Docker documentation.

    Tip

    Because capabilities are passed to the Docker, you can use a special ALL value to drop all possible capabilities.

  2. Then, run oc create passing the file to create it:

    $ oc create -f scc_admin.yaml
    securitycontextconstraints "scc-admin" created
  3. Verify that the SCC was created:

    $ oc get scc scc-admin
    NAME        PRIV      CAPS      SELINUX    RUNASUSER   FSGROUP    SUPGROUP   PRIORITY   READONLYROOTFS   VOLUMES
    scc-admin   true      []        RunAsAny   RunAsAny    RunAsAny   RunAsAny   <none>     false            [awsElasticBlockStore azureDisk azureFile cephFS cinder configMap downwardAPI emptyDir fc flexVolume flocker gcePersistentDisk gitRepo glusterfs iscsi nfs persistentVolumeClaim photonPersistentDisk quobyte rbd secret vsphere]

16.5. Role-based access to Security Context Constraints

You can specify SCCs as resources that are handled by RBAC. This allows you to scope access to your SCCs to a certain project or to the entire cluster. Assigning users, groups, or service accounts directly to an SCC retains cluster-wide scope.

Note

You cannot assign a SCC to pods created in one of the default namespaces: default, kube-system, kube-public, openshift-node, openshift-infra, openshift. These namespaces should not be used for running pods or services.

To include access to SCCs for your role, specify the scc resource when creating a role.

$ oc create role <role-name> --verb=use --resource=scc --resource-name=<scc-name> -n <namespace>

This results in the following role definition:

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
...
  name: role-name 1
  namespace: namespace 2
...
rules:
- apiGroups:
  - security.openshift.io 3
  resourceNames:
  - scc-name 4
  resources:
  - securitycontextconstraints 5
  verbs: 6
  - use
1
The role’s name.
2
Namespace of the defined role. Defaults to default if not specified.
3
The API group that includes the SecurityContextConstraint resource. Automatically defined when scc is specified as a resource.
4
An example name for an SCC you want to have access.
5
Name of the resource group that allows users to specify SCC names in the resourceNames field.
6
A list of verbs to apply to the role.

A local or cluster role with such a rule allows the subjects that are bound to it with a RoleBinding or a ClusterRoleBinding to use the user-defined SCC called scc-name.

Note

Because RBAC is designed to prevent escalation, even project administrators will be unable to grant access to an SCC. By defualt, they are not allowed to use the verb use on SCC resources, including the restricted SCC.

16.6. Security Context Constraints reference commands

You can manage SCCs in your instance as normal API objects using the CLI.

Note

You must have cluster-admin privileges to manage SCCs.

Important

Do not modify the default SCCs. Customizing the default SCCs can lead to issues when upgrading. Instead, create new SCCs.

16.6.1. Listing SCCs

To get a current list of SCCs:

$ oc get scc

NAME               PRIV    CAPS   SELINUX     RUNASUSER          FSGROUP     SUPGROUP    PRIORITY   READONLYROOTFS   VOLUMES
anyuid             false   []     MustRunAs   RunAsAny           RunAsAny    RunAsAny    10         false            [configMap downwardAPI emptyDir persistentVolumeClaim projected secret]
hostaccess         false   []     MustRunAs   MustRunAsRange     MustRunAs   RunAsAny    <none>     false            [configMap downwardAPI emptyDir hostPath persistentVolumeClaim projected secret]
hostmount-anyuid   false   []     MustRunAs   RunAsAny           RunAsAny    RunAsAny    <none>     false            [configMap downwardAPI emptyDir hostPath nfs persistentVolumeClaim projected secret]
hostnetwork        false   []     MustRunAs   MustRunAsRange     MustRunAs   MustRunAs   <none>     false            [configMap downwardAPI emptyDir persistentVolumeClaim projected secret]
node-exporter      false   []     RunAsAny    RunAsAny           RunAsAny    RunAsAny    <none>     false            [*]
nonroot            false   []     MustRunAs   MustRunAsNonRoot   RunAsAny    RunAsAny    <none>     false            [configMap downwardAPI emptyDir persistentVolumeClaim projected secret]
privileged         true    [*]    RunAsAny    RunAsAny           RunAsAny    RunAsAny    <none>     false            [*]
restricted         false   []     MustRunAs   MustRunAsRange     MustRunAs   RunAsAny    <none>     false            [configMap downwardAPI emptyDir persistentVolumeClaim projected secret]

16.6.2. Examining an SCC

You can view information about a particular SCC, including which users, service accounts, and groups the SCC is applied to.

For example, to examine the restricted SCC:

$ oc describe scc restricted
Name:					restricted
Priority:				<none>
Access:
  Users:				<none> 1
  Groups:				system:authenticated 2
Settings:
  Allow Privileged:			false
  Default Add Capabilities:		<none>
  Required Drop Capabilities:		KILL,MKNOD,SYS_CHROOT,SETUID,SETGID
  Allowed Capabilities:			<none>
  Allowed Seccomp Profiles:		<none>
  Allowed Volume Types:			configMap,downwardAPI,emptyDir,persistentVolumeClaim,projected,secret
  Allow Host Network:			false
  Allow Host Ports:			false
  Allow Host PID:			false
  Allow Host IPC:			false
  Read Only Root Filesystem:		false
  Run As User Strategy: MustRunAsRange
    UID:				<none>
    UID Range Min:			<none>
    UID Range Max:			<none>
  SELinux Context Strategy: MustRunAs
    User:				<none>
    Role:				<none>
    Type:				<none>
    Level:				<none>
  FSGroup Strategy: MustRunAs
    Ranges:				<none>
  Supplemental Groups Strategy: RunAsAny
    Ranges:				<none>
1
Lists which users and service accounts the SCC is applied to.
2
Lists which groups the SCC is applied to.
Note

To preserve customized SCCs during upgrades, do not edit settings on the default SCCs.

16.6.3. Deleting an SCC

To delete an SCC:

$ oc delete scc <scc_name>
Note

If you delete a default SCC, it will regenerate when you restart the cluster.

16.6.4. Updating an SCC

To update an existing SCC:

$ oc edit scc <scc_name>
Note

To preserve customized SCCs during upgrades, do not edit settings on the default SCCs.

Chapter 17. Impersonating the system:admin user

17.1. API impersonation

You can configure a request to the OpenShift Container Platform API to act as though it originated from another user. For more information, see User impersonation in the Kubernetes documentation.

17.2. Impersonating the system:admin user

You can grant a user permission to impersonate system:admin, which grants them cluster administrator permissions.

Procedure

  • To grant a user permission to impersonate system:admin, run the following command:

    $ oc create clusterrolebinding <any_valid_name> --clusterrole=sudoer --user=<username>

17.3. Impersonating the system:admin group

When a system:admin user is granted cluster administration permissions through a group, you must include the --as=<user> --as-group=<group1> --as-group=<group2> parameters in the command to impersonate the associated groups.

Procedure

  • To grant a user permission to impersonate a system:admin by impersonating the associated cluster administration groups, run the following command:

    $ oc create clusterrolebinding <any_valid_name> --clusterrole=sudoer --as=<user> \
    --as-group=<group1> --as-group=<group2>

Chapter 18. Syncing LDAP groups

As an administrator, you can use groups to manage users, change their permissions, and enhance collaboration. Your organization may have already created user groups and stored them in an LDAP server. OpenShift Container Platform can sync those LDAP records with internal OpenShift Container Platform records, enabling you to manage your groups in one place. OpenShift Container Platform currently supports group sync with LDAP servers using three common schemas for defining group membership: RFC 2307, Active Directory, and augmented Active Directory.

For more information on configuring LDAP, see Configuring an LDAP identity provider.

Note

You must have cluster-admin privileges to sync groups.

18.1. About configuring LDAP sync

Before you can run LDAP sync, you need a sync configuration file. This file contains the following LDAP client configuration details:

  • Configuration for connecting to your LDAP server.
  • Sync configuration options that are dependent on the schema used in your LDAP server.
  • An administrator-defined list of name mappings that maps OpenShift Container Platform group names to groups in your LDAP server.

The format of the configuration file depends upon the schema you are using: RFC 2307, Active Directory, or augmented Active Directory.

LDAP client configuration
The LDAP client configuration section of the configuration defines the connections to your LDAP server.

The LDAP client configuration section of the configuration defines the connections to your LDAP server.

LDAP client configuration

url: ldap://10.0.0.0:389 1
bindDN: cn=admin,dc=example,dc=com 2
bindPassword: password 3
insecure: false 4
ca: my-ldap-ca-bundle.crt 5

1
The connection protocol, IP address of the LDAP server hosting your database, and the port to connect to, formatted as scheme://host:port.
2
Optional distinguished name (DN) to use as the Bind DN. OpenShift Container Platform uses this if elevated privilege is required to retrieve entries for the sync operation.
3
Optional password to use to bind. OpenShift Container Platform uses this if elevated privilege is necessary to retrieve entries for the sync operation. This value may also be provided in an environment variable, external file, or encrypted file.
4
When false, secure LDAP (ldaps://) URLs connect using TLS, and insecure LDAP (ldap://) URLs are upgraded to TLS. When true, no TLS connection is made to the server unless you specify an ldaps:// URL, in which case URLs still attempt to connect by using TLS.
5
The certificate bundle to use for validating server certificates for the configured URL. If empty, OpenShift Container Platform uses system-trusted roots. This only applies if insecure is set to false.
LDAP query definition
Sync configurations consist of LDAP query definitions for the entries that are required for synchronization. The specific definition of an LDAP query depends on the schema used to store membership information in the LDAP server.

LDAP query definition

baseDN: ou=users,dc=example,dc=com 1
scope: sub 2
derefAliases: never 3
timeout: 0 4
filter: (objectClass=inetOrgPerson) 5
pageSize: 0 6

1
The distinguished name (DN) of the branch of the directory where all searches will start from. It is required that you specify the top of your directory tree, but you can also specify a subtree in the directory.
2
The scope of the search. Valid values are base, one, or sub. If this is left undefined, then a scope of sub is assumed. Descriptions of the scope options can be found in the table below.
3
The behavior of the search with respect to aliases in the LDAP tree. Valid values are never, search, base, or always. If this is left undefined, then the default is to always dereference aliases. Descriptions of the dereferencing behaviors can be found in the table below.
4
The time limit allowed for the search by the client, in seconds. A value of 0 imposes no client-side limit.
5
A valid LDAP search filter. If this is left undefined, then the default is (objectClass=*).
6
The optional maximum size of response pages from the server, measured in LDAP entries. If set to 0, no size restrictions will be made on pages of responses. Setting paging sizes is necessary when queries return more entries than the client or server allow by default.
Table 18.1. LDAP search scope options
LDAP search scopeDescription

base

Only consider the object specified by the base DN given for the query.

one

Consider all of the objects on the same level in the tree as the base DN for the query.

sub

Consider the entire subtree rooted at the base DN given for the query.

Table 18.2. LDAP dereferencing behaviors
Dereferencing behaviorDescription

never

Never dereference any aliases found in the LDAP tree.

search

Only dereference aliases found while searching.

base

Only dereference aliases while finding the base object.

always

Always dereference all aliases found in the LDAP tree.

User-defined name mapping
A user-defined name mapping explicitly maps the names of OpenShift Container Platform groups to unique identifiers that find groups on your LDAP server. The mapping uses normal YAML syntax. A user-defined mapping can contain an entry for every group in your LDAP server or only a subset of those groups. If there are groups on the LDAP server that do not have a user-defined name mapping, the default behavior during sync is to use the attribute specified as the OpenShift Container Platform group’s name.

User-defined name mapping

groupUIDNameMapping:
  "cn=group1,ou=groups,dc=example,dc=com": firstgroup
  "cn=group2,ou=groups,dc=example,dc=com": secondgroup
  "cn=group3,ou=groups,dc=example,dc=com": thirdgroup

18.1.1. About the RFC 2307 configuration file

The RFC 2307 schema requires you to provide an LDAP query definition for both user and group entries, as well as the attributes with which to represent them in the internal OpenShift Container Platform records.

For clarity, the group you create in OpenShift Container Platform should use attributes other than the distinguished name whenever possible for user- or administrator-facing fields. For example, identify the users of an OpenShift Container Platform group by their e-mail, and use the name of the group as the common name. The following configuration file creates these relationships:

Note

If using user-defined name mappings, your configuration file will differ.

LDAP sync configuration that uses RFC 2307 schema: rfc2307_config.yaml

kind: LDAPSyncConfig
apiVersion: v1
url: ldap://LDAP_SERVICE_IP:389 1
insecure: false 2
rfc2307:
    groupsQuery:
        baseDN: "ou=groups,dc=example,dc=com"
        scope: sub
        derefAliases: never
        pageSize: 0
    groupUIDAttribute: dn 3
    groupNameAttributes: [ cn ] 4
    groupMembershipAttributes: [ member ] 5
    usersQuery:
        baseDN: "ou=users,dc=example,dc=com"
        scope: sub
        derefAliases: never
        pageSize: 0
    userUIDAttribute: dn 6
    userNameAttributes: [ mail ] 7
    tolerateMemberNotFoundErrors: false
    tolerateMemberOutOfScopeErrors: false

1
The IP address and host of the LDAP server where this group’s record is stored.
2
When false, secure LDAP (ldaps://) URLs connect using TLS, and insecure LDAP (ldap://) URLs are upgraded to TLS. When true, no TLS connection is made to the server unless you specify an ldaps:// URL, in which case URLs still attempt to connect by using TLS.
3
The attribute that uniquely identifies a group on the LDAP server. You cannot specify groupsQuery filters when using DN for groupUIDAttribute. For fine-grained filtering, use the whitelist / blacklist method.
4
The attribute to use as the name of the group.
5
The attribute on the group that stores the membership information.
6
The attribute that uniquely identifies a user on the LDAP server. You cannot specify usersQuery filters when using DN for userUIDAttribute. For fine-grained filtering, use the whitelist / blacklist method.
7
The attribute to use as the name of the user in the OpenShift Container Platform group record.

18.1.2. About the Active Directory configuration file

The Active Directory schema requires you to provide an LDAP query definition for user entries, as well as the attributes to represent them with in the internal OpenShift Container Platform group records.

For clarity, the group you create in OpenShift Container Platform should use attributes other than the distinguished name whenever possible for user- or administrator-facing fields. For example, identify the users of an OpenShift Container Platform group by their e-mail, but define the name of the group by the name of the group on the LDAP server. The following configuration file creates these relationships:

LDAP sync configuration that uses Active Directory schema: active_directory_config.yaml

kind: LDAPSyncConfig
apiVersion: v1
url: ldap://LDAP_SERVICE_IP:389
activeDirectory:
    usersQuery:
        baseDN: "ou=users,dc=example,dc=com"
        scope: sub
        derefAliases: never
        filter: (objectclass=inetOrgPerson)
        pageSize: 0
    userNameAttributes: [ mail ] 1
    groupMembershipAttributes: [ memberOf ] 2

1
The attribute to use as the name of the user in the OpenShift Container Platform group record.
2
The attribute on the user that stores the membership information.

18.1.3. About the augmented Active Directory configuration file

The augmented Active Directory schema requires you to provide an LDAP query definition for both user entries and group entries, as well as the attributes with which to represent them in the internal OpenShift Container Platform group records.

For clarity, the group you create in OpenShift Container Platform should use attributes other than the distinguished name whenever possible for user- or administrator-facing fields. For example, identify the users of an OpenShift Container Platform group by their e-mail, and use the name of the group as the common name. The following configuration file creates these relationships.

LDAP sync configuration that uses augmented Active Directory schema: augmented_active_directory_config.yaml

kind: LDAPSyncConfig
apiVersion: v1
url: ldap://LDAP_SERVICE_IP:389
augmentedActiveDirectory:
    groupsQuery:
        baseDN: "ou=groups,dc=example,dc=com"
        scope: sub
        derefAliases: never
        pageSize: 0
    groupUIDAttribute: dn 1
    groupNameAttributes: [ cn ] 2
    usersQuery:
        baseDN: "ou=users,dc=example,dc=com"
        scope: sub
        derefAliases: never
        filter: (objectclass=inetOrgPerson)
        pageSize: 0
    userNameAttributes: [ mail ] 3
    groupMembershipAttributes: [ memberOf ] 4

1
The attribute that uniquely identifies a group on the LDAP server. You cannot specify groupsQuery filters when using DN for groupUIDAttribute. For fine-grained filtering, use the whitelist / blacklist method.
2
The attribute to use as the name of the group.
3
The attribute to use as the name of the user in the OpenShift Container Platform group record.
4
The attribute on the user that stores the membership information.

18.2. Running LDAP sync

Once you have created a sync configuration file, you can begin to sync. OpenShift Container Platform allows administrators to perform a number of different sync types with the same server.

18.2.1. Syncing the LDAP server with OpenShift Container Platform

You can sync all groups from the LDAP server with OpenShift Container Platform.

Prerequisites

  • Create a sync configuration file.

Procedure

  1. To sync all groups from the LDAP server with OpenShift Container Platform:

    $ oc adm groups sync --sync-config=config.yaml --confirm
    Note

    By default, all group synchronization operations are dry-run, so you must set the --confirm flag on the oc adm groups sync command in order to make changes to OpenShift Container Platform group records.

18.2.2. Syncing OpenShift Container Platform groups with the LDAP server

You can sync all groups already in OpenShift Container Platform that correspond to groups in the LDAP server specified in the configuration file.

Prerequisites

  • Create a sync configuration file.

Procedure

  1. To sync OpenShift Container Platform groups with the LDAP server:

    $ oc adm groups sync --type=openshift --sync-config=config.yaml --confirm
    Note

    By default, all group synchronization operations are dry-run, so you must set the --confirm flag on the oc adm groups sync command in order to make changes to OpenShift Container Platform group records.

18.2.3. Syncing subgroups from the LDAP server with OpenShift Container Platform

You can sync a subset of LDAP groups with OpenShift Container Platform using whitelist files, blacklist files, or both.

Note

You can use any combination of blacklist files, whitelist files, or whitelist literals. Whitelist and blacklist files must contain one unique group identifier per line, and you can include whitelist literals directly in the command itself. These guidelines apply to groups found on LDAP servers as well as groups already present in OpenShift Container Platform.

Prerequisite

  • Create a sync configuration file.

Procedure

  1. To sync a subset of LDAP groups with OpenShift Container Platform, use any the following commands:

    $ oc adm groups sync --whitelist=<whitelist_file> \
                       --sync-config=config.yaml    \
                       --confirm
    $ oc adm groups sync --blacklist=<blacklist_file> \
                       --sync-config=config.yaml    \
                       --confirm
    $ oc adm groups sync <group_unique_identifier>    \
                       --sync-config=config.yaml    \
                       --confirm
    $ oc adm groups sync <group_unique_identifier>    \
                       --whitelist=<whitelist_file> \
                       --blacklist=<blacklist_file> \
                       --sync-config=config.yaml    \
                       --confirm
    $ oc adm groups sync --type=openshift             \
                       --whitelist=<whitelist_file> \
                       --sync-config=config.yaml    \
                       --confirm
    Note

    By default, all group synchronization operations are dry-run, so you must set the --confirm flag on the oc adm groups sync command in order to make changes to OpenShift Container Platform group records.

18.3. Running a group pruning job

An administrator can also choose to remove groups from OpenShift Container Platform records if the records on the LDAP server that created them are no longer present. The prune job will accept the same sync configuration file and whitelists or blacklists as used for the sync job.

For example:

$ oc adm prune groups --sync-config=/path/to/ldap-sync-config.yaml --confirm
$ oc adm prune groups --whitelist=/path/to/whitelist.txt --sync-config=/path/to/ldap-sync-config.yaml --confirm
$ oc adm prune groups --blacklist=/path/to/blacklist.txt --sync-config=/path/to/ldap-sync-config.yaml --confirm

18.4. LDAP group sync examples

This section contains examples for the RFC 2307, Active Directory, and augmented Active Directory schemas.

Note

These examples assume that all users are direct members of their respective groups. Specifically, no groups have other groups as members. See the Nested Membership Sync Example for information on how to sync nested groups.

18.4.1. Syncing groups using the RFC 2307 schema

For the RFC 2307 schema, the following examples synchronize a group named admins that has two members: Jane and Jim. The examples explain:

  • How the group and users are added to the LDAP server.
  • What the resulting group record in OpenShift Container Platform will be after synchronization.
Note

These examples assume that all users are direct members of their respective groups. Specifically, no groups have other groups as members. See the Nested Membership Sync Example for information on how to sync nested groups.

In the RFC 2307 schema, both users (Jane and Jim) and groups exist on the LDAP server as first-class entries, and group membership is stored in attributes on the group. The following snippet of ldif defines the users and group for this schema:

LDAP entries that use RFC 2307 schema: rfc2307.ldif

  dn: ou=users,dc=example,dc=com
  objectClass: organizationalUnit
  ou: users
  dn: cn=Jane,ou=users,dc=example,dc=com
  objectClass: person
  objectClass: organizationalPerson
  objectClass: inetOrgPerson
  cn: Jane
  sn: Smith
  displayName: Jane Smith
  mail: jane.smith@example.com
  dn: cn=Jim,ou=users,dc=example,dc=com
  objectClass: person
  objectClass: organizationalPerson
  objectClass: inetOrgPerson
  cn: Jim
  sn: Adams
  displayName: Jim Adams
  mail: jim.adams@example.com
  dn: ou=groups,dc=example,dc=com
  objectClass: organizationalUnit
  ou: groups
  dn: cn=admins,ou=groups,dc=example,dc=com 1
  objectClass: groupOfNames
  cn: admins
  owner: cn=admin,dc=example,dc=com
  description: System Administrators
  member: cn=Jane,ou=users,dc=example,dc=com 2
  member: cn=Jim,ou=users,dc=example,dc=com

1
The group is a first-class entry in the LDAP server.
2
Members of a group are listed with an identifying reference as attributes on the group.

Prerequisites

  • Create the configuration file.

Procedure

  1. Run the sync with the rfc2307_config.yaml file:

    $ oc adm groups sync --sync-config=rfc2307_config.yaml --confirm

    OpenShift Container Platform creates the following group record as a result of the above sync operation:

    OpenShift Container Platform group created by using the rfc2307_config.yaml file

    apiVersion: user.openshift.io/v1
    kind: Group
    metadata:
      annotations:
        openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400 1
        openshift.io/ldap.uid: cn=admins,ou=groups,dc=example,dc=com 2
        openshift.io/ldap.url: LDAP_SERVER_IP:389 3
      creationTimestamp:
      name: admins 4
    users: 5
    - jane.smith@example.com
    - jim.adams@example.com

    1
    The last time this OpenShift Container Platform group was synchronized with the LDAP server, in ISO 6801 format.
    2
    The unique identifier for the group on the LDAP server.
    3
    The IP address and host of the LDAP server where this group’s record is stored.
    4
    The name of the group as specified by the sync file.
    5
    The users that are members of the group, named as specified by the sync file.

18.4.2. Syncing groups using the RFC2307 schema with user-defined name mappings

When syncing groups with user-defined name mappings, the configuration file changes to contain these mappings as shown below.

LDAP sync configuration that uses RFC 2307 schema with user-defined name mappings: rfc2307_config_user_defined.yaml

kind: LDAPSyncConfig
apiVersion: v1
groupUIDNameMapping:
  "cn=admins,ou=groups,dc=example,dc=com": Administrators 1
rfc2307:
    groupsQuery:
        baseDN: "ou=groups,dc=example,dc=com"
        scope: sub
        derefAliases: never
        pageSize: 0
    groupUIDAttribute: dn 2
    groupNameAttributes: [ cn ] 3
    groupMembershipAttributes: [ member ]
    usersQuery:
        baseDN: "ou=users,dc=example,dc=com"
        scope: sub
        derefAliases: never
        pageSize: 0
    userUIDAttribute: dn 4
    userNameAttributes: [ mail ]
    tolerateMemberNotFoundErrors: false
    tolerateMemberOutOfScopeErrors: false

1
The user-defined name mapping.
2
The unique identifier attribute that is used for the keys in the user-defined name mapping. You cannot specify groupsQuery filters when using DN for groupUIDAttribute. For fine-grained filtering, use the whitelist / blacklist method.
3
The attribute to name OpenShift Container Platform groups with if their unique identifier is not in the user-defined name mapping.
4
The attribute that uniquely identifies a user on the LDAP server. You cannot specify usersQuery filters when using DN for userUIDAttribute. For fine-grained filtering, use the whitelist / blacklist method.

Prerequisites

  • Create the configuration file.

Procedure

  1. Run the sync with the rfc2307_config_user_defined.yaml file:

    $ oc adm groups sync --sync-config=rfc2307_config_user_defined.yaml --confirm

    OpenShift Container Platform creates the following group record as a result of the above sync operation:

    OpenShift Container Platform group created by using the rfc2307_config_user_defined.yaml file

    apiVersion: user.openshift.io/v1
    kind: Group
    metadata:
      annotations:
        openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400
        openshift.io/ldap.uid: cn=admins,ou=groups,dc=example,dc=com
        openshift.io/ldap.url: LDAP_SERVER_IP:389
      creationTimestamp:
      name: Administrators 1
    users:
    - jane.smith@example.com
    - jim.adams@example.com

    1
    The name of the group as specified by the user-defined name mapping.

18.4.3. Syncing groups using RFC 2307 with user-defined error tolerances

By default, if the groups being synced contain members whose entries are outside of the scope defined in the member query, the group sync fails with an error:

Error determining LDAP group membership for "<group>": membership lookup for user "<user>" in group "<group>" failed because of "search for entry with dn="<user-dn>" would search outside of the base dn specified (dn="<base-dn>")".

This often indicates a misconfigured baseDN in the usersQuery field. However, in cases where the baseDN intentionally does not contain some of the members of the group, setting tolerateMemberOutOfScopeErrors: true allows the group sync to continue. Out of scope members will be ignored.

Similarly, when the group sync process fails to locate a member for a group, it fails outright with errors:

Error determining LDAP group membership for "<group>": membership lookup for user "<user>" in group "<group>" failed because of "search for entry with base dn="<user-dn>" refers to a non-existent entry".
Error determining LDAP group membership for "<group>": membership lookup for user "<user>" in group "<group>" failed because of "search for entry with base dn="<user-dn>" and filter "<filter>" did not return any results".

This often indicates a misconfigured usersQuery field. However, in cases where the group contains member entries that are known to be missing, setting tolerateMemberNotFoundErrors: true allows the group sync to continue. Problematic members will be ignored.

Warning

Enabling error tolerances for the LDAP group sync causes the sync process to ignore problematic member entries. If the LDAP group sync is not configured correctly, this could result in synced OpenShift Container Platform groups missing members.

LDAP entries that use RFC 2307 schema with problematic group membership: rfc2307_problematic_users.ldif

  dn: ou=users,dc=example,dc=com
  objectClass: organizationalUnit
  ou: users
  dn: cn=Jane,ou=users,dc=example,dc=com
  objectClass: person
  objectClass: organizationalPerson
  objectClass: inetOrgPerson
  cn: Jane
  sn: Smith
  displayName: Jane Smith
  mail: jane.smith@example.com
  dn: cn=Jim,ou=users,dc=example,dc=com
  objectClass: person
  objectClass: organizationalPerson
  objectClass: inetOrgPerson
  cn: Jim
  sn: Adams
  displayName: Jim Adams
  mail: jim.adams@example.com
  dn: ou=groups,dc=example,dc=com
  objectClass: organizationalUnit
  ou: groups
  dn: cn=admins,ou=groups,dc=example,dc=com
  objectClass: groupOfNames
  cn: admins
  owner: cn=admin,dc=example,dc=com
  description: System Administrators
  member: cn=Jane,ou=users,dc=example,dc=com
  member: cn=Jim,ou=users,dc=example,dc=com
  member: cn=INVALID,ou=users,dc=example,dc=com 1
  member: cn=Jim,ou=OUTOFSCOPE,dc=example,dc=com 2

1
A member that does not exist on the LDAP server.
2
A member that may exist, but is not under the baseDN in the user query for the sync job.

In order to tolerate the errors in the above example, the following additions to your sync configuration file must be made:

LDAP sync configuration that uses RFC 2307 schema tolerating errors: rfc2307_config_tolerating.yaml

kind: LDAPSyncConfig
apiVersion: v1
url: ldap://LDAP_SERVICE_IP:389
rfc2307:
    groupsQuery:
        baseDN: "ou=groups,dc=example,dc=com"
        scope: sub
        derefAliases: never
    groupUIDAttribute: dn
    groupNameAttributes: [ cn ]
    groupMembershipAttributes: [ member ]
    usersQuery:
        baseDN: "ou=users,dc=example,dc=com"
        scope: sub
        derefAliases: never
    userUIDAttribute: dn 1
    userNameAttributes: [ mail ]
    tolerateMemberNotFoundErrors: true 2
    tolerateMemberOutOfScopeErrors: true 3

1
The attribute that uniquely identifies a user on the LDAP server. You cannot specify usersQuery filters when using DN for userUIDAttribute. For fine-grained filtering, use the whitelist / blacklist method.
2
When true, the sync job tolerates groups for which some members were not found, and members whose LDAP entries are not found are ignored. The default behavior for the sync job is to fail if a member of a group is not found.
3
When true, the sync job tolerates groups for which some members are outside the user scope given in the usersQuery base DN, and members outside the member query scope are ignored. The default behavior for the sync job is to fail if a member of a group is out of scope.

Prerequisites

  • Create the configuration file.

Procedure

  1. Run the sync with the rfc2307_config_tolerating.yaml file:

    $ oc adm groups sync --sync-config=rfc2307_config_tolerating.yaml --confirm

    OpenShift Container Platform creates the following group record as a result of the above sync operation:

    OpenShift Container Platform group created by using the rfc2307_config.yaml file

    apiVersion: user.openshift.io/v1
    kind: Group
    metadata:
      annotations:
        openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400
        openshift.io/ldap.uid: cn=admins,ou=groups,dc=example,dc=com
        openshift.io/ldap.url: LDAP_SERVER_IP:389
      creationTimestamp:
      name: admins
    users: 1
    - jane.smith@example.com
    - jim.adams@example.com

    1
    The users that are members of the group, as specified by the sync file. Members for which lookup encountered tolerated errors are absent.

18.4.4. Syncing groups using the Active Directory schema

In the Active Directory schema, both users (Jane and Jim) exist in the LDAP server as first-class entries, and group membership is stored in attributes on the user. The following snippet of ldif defines the users and group for this schema:

LDAP entries that use Active Directory schema: active_directory.ldif

dn: ou=users,dc=example,dc=com
objectClass: organizationalUnit
ou: users

dn: cn=Jane,ou=users,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: testPerson
cn: Jane
sn: Smith
displayName: Jane Smith
mail: jane.smith@example.com
memberOf: admins 1

dn: cn=Jim,ou=users,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: testPerson
cn: Jim
sn: Adams
displayName: Jim Adams
mail: jim.adams@example.com
memberOf: admins

1
The user’s group memberships are listed as attributes on the user, and the group does not exist as an entry on the server. The memberOf attribute does not have to be a literal attribute on the user; in some LDAP servers, it is created during search and returned to the client, but not committed to the database.

Prerequisites

  • Create the configuration file.

Procedure

  1. Run the sync with the active_directory_config.yaml file:

    $ oc adm groups sync --sync-config=active_directory_config.yaml --confirm

    OpenShift Container Platform creates the following group record as a result of the above sync operation:

    OpenShift Container Platform group created by using the active_directory_config.yaml file

    apiVersion: user.openshift.io/v1
    kind: Group
    metadata:
      annotations:
        openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400 1
        openshift.io/ldap.uid: admins 2
        openshift.io/ldap.url: LDAP_SERVER_IP:389 3
      creationTimestamp:
      name: admins 4
    users: 5
    - jane.smith@example.com
    - jim.adams@example.com

    1
    The last time this OpenShift Container Platform group was synchronized with the LDAP server, in ISO 6801 format.
    2
    The unique identifier for the group on the LDAP server.
    3
    The IP address and host of the LDAP server where this group’s record is stored.
    4
    The name of the group as listed in the LDAP server.
    5
    The users that are members of the group, named as specified by the sync file.

18.4.5. Syncing groups using the augmented Active Directory schema

In the augmented Active Directory schema, both users (Jane and Jim) and groups exist in the LDAP server as first-class entries, and group membership is stored in attributes on the user. The following snippet of ldif defines the users and group for this schema:

LDAP entries that use augmented Active Directory schema: augmented_active_directory.ldif

dn: ou=users,dc=example,dc=com
objectClass: organizationalUnit
ou: users

dn: cn=Jane,ou=users,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: testPerson
cn: Jane
sn: Smith
displayName: Jane Smith
mail: jane.smith@example.com
memberOf: cn=admins,ou=groups,dc=example,dc=com 1

dn: cn=Jim,ou=users,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: testPerson
cn: Jim
sn: Adams
displayName: Jim Adams
mail: jim.adams@example.com
memberOf: cn=admins,ou=groups,dc=example,dc=com

dn: ou=groups,dc=example,dc=com
objectClass: organizationalUnit
ou: groups

dn: cn=admins,ou=groups,dc=example,dc=com 2
objectClass: groupOfNames
cn: admins
owner: cn=admin,dc=example,dc=com
description: System Administrators
member: cn=Jane,ou=users,dc=example,dc=com
member: cn=Jim,ou=users,dc=example,dc=com

1
The user’s group memberships are listed as attributes on the user.
2
The group is a first-class entry on the LDAP server.

Prerequisites

  • Create the configuration file.

Procedure

  1. Run the sync with the augmented_active_directory_config.yaml file:

    $ oc adm groups sync --sync-config=augmented_active_directory_config.yaml --confirm

    OpenShift Container Platform creates the following group record as a result of the above sync operation:

    OpenShift group created by using the augmented_active_directory_config.yaml file

    apiVersion: user.openshift.io/v1
    kind: Group
    metadata:
      annotations:
        openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400 1
        openshift.io/ldap.uid: cn=admins,ou=groups,dc=example,dc=com 2
        openshift.io/ldap.url: LDAP_SERVER_IP:389 3
      creationTimestamp:
      name: admins 4
    users: 5
    - jane.smith@example.com
    - jim.adams@example.com

    1
    The last time this OpenShift Container Platform group was synchronized with the LDAP server, in ISO 6801 format.
    2
    The unique identifier for the group on the LDAP server.
    3
    The IP address and host of the LDAP server where this group’s record is stored.
    4
    The name of the group as specified by the sync file.
    5
    The users that are members of the group, named as specified by the sync file.
18.4.5.1. LDAP nested membership sync example

Groups in OpenShift Container Platform do not nest. The LDAP server must flatten group membership before the data can be consumed. Microsoft’s Active Directory Server supports this feature via the LDAP_MATCHING_RULE_IN_CHAIN rule, which has the OID 1.2.840.113556.1.4.1941. Furthermore, only explicitly whitelisted groups can be synced when using this matching rule.

This section has an example for the augmented Active Directory schema, which synchronizes a group named admins that has one user Jane and one group otheradmins as members. The otheradmins group has one user member: Jim. This example explains:

  • How the group and users are added to the LDAP server.
  • What the LDAP sync configuration file looks like.
  • What the resulting group record in OpenShift Container Platform will be after synchronization.

In the augmented Active Directory schema, both users (Jane and Jim) and groups exist in the LDAP server as first-class entries, and group membership is stored in attributes on the user or the group. The following snippet of ldif defines the users and groups for this schema:

LDAP entries that use augmented Active Directory schema with nested members: augmented_active_directory_nested.ldif

dn: ou=users,dc=example,dc=com
objectClass: organizationalUnit
ou: users

dn: cn=Jane,ou=users,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: testPerson
cn: Jane
sn: Smith
displayName: Jane Smith
mail: jane.smith@example.com
memberOf: cn=admins,ou=groups,dc=example,dc=com 1

dn: cn=Jim,ou=users,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: testPerson
cn: Jim
sn: Adams
displayName: Jim Adams
mail: jim.adams@example.com
memberOf: cn=otheradmins,ou=groups,dc=example,dc=com 2

dn: ou=groups,dc=example,dc=com
objectClass: organizationalUnit
ou: groups

dn: cn=admins,ou=groups,dc=example,dc=com 3
objectClass: group
cn: admins
owner: cn=admin,dc=example,dc=com
description: System Administrators
member: cn=Jane,ou=users,dc=example,dc=com
member: cn=otheradmins,ou=groups,dc=example,dc=com

dn: cn=otheradmins,ou=groups,dc=example,dc=com 4
objectClass: group
cn: otheradmins
owner: cn=admin,dc=example,dc=com
description: Other System Administrators
memberOf: cn=admins,ou=groups,dc=example,dc=com 5 6
member: cn=Jim,ou=users,dc=example,dc=com

1 2 5
The user’s and group’s memberships are listed as attributes on the object.
3 4
The groups are first-class entries on the LDAP server.
6
The otheradmins group is a member of the admins group.

When syncing nested groups with Active Directory, you must provide an LDAP query definition for both user entries and group entries, as well as the attributes with which to represent them in the internal OpenShift Container Platform group records. Furthermore, certain changes are required in this configuration:

  • The oc adm groups sync command must explicitly whitelist groups.
  • The user’s groupMembershipAttributes must include "memberOf:1.2.840.113556.1.4.1941:" to comply with the LDAP_MATCHING_RULE_IN_CHAIN rule.
  • The groupUIDAttribute must be set to dn.
  • The groupsQuery:

    • Must not set filter.
    • Must set a valid derefAliases.
    • Should not set baseDN as that value is ignored.
    • Should not set scope as that value is ignored.

For clarity, the group you create in OpenShift Container Platform should use attributes other than the distinguished name whenever possible for user- or administrator-facing fields. For example, identify the users of an OpenShift Container Platform group by their e-mail, and use the name of the group as the common name. The following configuration file creates these relationships:

LDAP sync configuration that uses augmented Active Directory schema with nested members: augmented_active_directory_config_nested.yaml

kind: LDAPSyncConfig
apiVersion: v1
url: ldap://LDAP_SERVICE_IP:389
augmentedActiveDirectory:
    groupsQuery: 1
        derefAliases: never
        pageSize: 0
    groupUIDAttribute: dn 2
    groupNameAttributes: [ cn ] 3
    usersQuery:
        baseDN: "ou=users,dc=example,dc=com"
        scope: sub
        derefAliases: never
        filter: (objectclass=inetOrgPerson)
        pageSize: 0
    userNameAttributes: [ mail ] 4
    groupMembershipAttributes: [ "memberOf:1.2.840.113556.1.4.1941:" ] 5

1
groupsQuery filters cannot be specified. The groupsQuery base DN and scope values are ignored. groupsQuery must set a valid derefAliases.
2
The attribute that uniquely identifies a group on the LDAP server. It must be set to dn.
3
The attribute to use as the name of the group.
4
The attribute to use as the name of the user in the OpenShift Container Platform group record. mail or sAMAccountName are preferred choices in most installations.
5
The attribute on the user that stores the membership information. Note the use of LDAP_MATCHING_RULE_IN_CHAIN.

Prerequisites

  • Create the configuration file.

Procedure

  1. Run the sync with the augmented_active_directory_config_nested.yaml file:

    $ oc adm groups sync \
        'cn=admins,ou=groups,dc=example,dc=com' \
        --sync-config=augmented_active_directory_config_nested.yaml \
        --confirm
    Note

    You must explicitly whitelist the cn=admins,ou=groups,dc=example,dc=com group.

    OpenShift Container Platform creates the following group record as a result of the above sync operation:

OpenShift group created by using the augmented_active_directory_config_nested.yaml file

apiVersion: user.openshift.io/v1
kind: Group
metadata:
  annotations:
    openshift.io/ldap.sync-time: 2015-10-13T10:08:38-0400 1
    openshift.io/ldap.uid: cn=admins,ou=groups,dc=example,dc=com 2
    openshift.io/ldap.url: LDAP_SERVER_IP:389 3
  creationTimestamp:
  name: admins 4
users: 5
- jane.smith@example.com
- jim.adams@example.com

1
The last time this OpenShift Container Platform group was synchronized with the LDAP server, in ISO 6801 format.
2
The unique identifier for the group on the LDAP server.
3
The IP address and host of the LDAP server where this group’s record is stored.
4
The name of the group as specified by the sync file.
5
The users that are members of the group, named as specified by the sync file. Note that members of nested groups are included since the group membership was flattened by the Microsoft Active Directory Server.

18.5. LDAP sync configuration specification

The object specification for the configuration file is below. Note that the different schema objects have different fields. For example, v1.ActiveDirectoryConfig has no groupsQuery field whereas v1.RFC2307Config and v1.AugmentedActiveDirectoryConfig both do.

Important

There is no support for binary attributes. All attribute data coming from the LDAP server must be in the format of a UTF-8 encoded string. For example, never use a binary attribute, such as objectGUID, as an ID attribute. You must use string attributes, such as sAMAccountName or userPrincipalName, instead.

18.5.1. v1.LDAPSyncConfig

LDAPSyncConfig holds the necessary configuration options to define an LDAP group sync.

NameDescriptionSchema

kind

String value representing the REST resource this object represents. Servers may infer this from the endpoint the client submits requests to. Cannot be updated. In CamelCase. More info: https://github.com/kubernetes/community/blob/master/contributors/devel/sig-architecture/api-conventions.md#types-kinds

string

apiVersion

Defines the versioned schema of this representation of an object. Servers should convert recognized schemas to the latest internal value, and may reject unrecognized values. More info: https://github.com/kubernetes/community/blob/master/contributors/devel/sig-architecture/api-conventions.md#resources

string

url

Host is the scheme, host and port of the LDAP server to connect to: scheme://host:port

string

bindDN

Optional DN to bind to the LDAP server with.

string

bindPassword

Optional password to bind with during the search phase.

v1.StringSource

insecure

If true, indicates the connection should not use TLS. If false, ldaps:// URLs connect using TLS, and ldap:// URLs are upgraded to a TLS connection using StartTLS as specified in https://tools.ietf.org/html/rfc2830. If you set insecure to true and use a ldaps:// URL scheme, URLs still attempt to make a TLS connection using the specified ca.

boolean

ca

Optional trusted certificate authority bundle to use when making requests to the server. If empty, the default system roots are used.

string

groupUIDNameMapping

Optional direct mapping of LDAP group UIDs to OpenShift Container Platform group names.

object

rfc2307

Holds the configuration for extracting data from an LDAP server set up in a fashion similar to RFC2307: first-class group and user entries, with group membership determined by a multi-valued attribute on the group entry listing its members.

v1.RFC2307Config

activeDirectory

Holds the configuration for extracting data from an LDAP server set up in a fashion similar to that used in Active Directory: first-class user entries, with group membership determined by a multi-valued attribute on members listing groups they are a member of.

v1.ActiveDirectoryConfig

augmentedActiveDirectory

Holds the configuration for extracting data from an LDAP server set up in a fashion similar to that used in Active Directory as described above, with one addition: first-class group entries exist and are used to hold metadata but not group membership.

v1.AugmentedActiveDirectoryConfig

18.5.2. v1.StringSource

StringSource allows specifying a string inline, or externally via environment variable or file. When it contains only a string value, it marshals to a simple JSON string.

NameDescriptionSchema

value

Specifies the cleartext value, or an encrypted value if keyFile is specified.

string

env

Specifies an environment variable containing the cleartext value, or an encrypted value if the keyFile is specified.

string

file

References a file containing the cleartext value, or an encrypted value if a keyFile is specified.

string

keyFile

References a file containing the key to use to decrypt the value.

string

18.5.3. v1.LDAPQuery

LDAPQuery holds the options necessary to build an LDAP query.

NameDescriptionSchema

baseDN

DN of the branch of the directory where all searches should start from.

string

scope

The optional scope of the search. Can be base: only the base object, one: all objects on the base level, sub: the entire subtree. Defaults to sub if not set.

string

derefAliases

The optional behavior of the search with regards to alisases. Can be never: never dereference aliases, search: only dereference in searching, base: only dereference in finding the base object, always: always dereference. Defaults to always if not set.

string

timeout

Holds the limit of time in seconds that any request to the server can remain outstanding before the wait for a response is given up. If this is 0, no client-side limit is imposed.

integer

filter

A valid LDAP search filter that retrieves all relevant entries from the LDAP server with the base DN.

string

pageSize

Maximum preferred page size, measured in LDAP entries. A page size of 0 means no paging will be done.

integer

18.5.4. v1.RFC2307Config

RFC2307Config holds the necessary configuration options to define how an LDAP group sync interacts with an LDAP server using the RFC2307 schema.

NameDescriptionSchema

groupsQuery

Holds the template for an LDAP query that returns group entries.

v1.LDAPQuery

groupUIDAttribute

Defines which attribute on an LDAP group entry will be interpreted as its unique identifier. (ldapGroupUID)

string

groupNameAttributes

Defines which attributes on an LDAP group entry will be interpreted as its name to use for an OpenShift Container Platform group.

string array

groupMembershipAttributes

Defines which attributes on an LDAP group entry will be interpreted as its members. The values contained in those attributes must be queryable by your UserUIDAttribute.

string array

usersQuery

Holds the template for an LDAP query that returns user entries.

v1.LDAPQuery

userUIDAttribute

Defines which attribute on an LDAP user entry will be interpreted as its unique identifier. It must correspond to values that will be found from the GroupMembershipAttributes.

string

userNameAttributes

Defines which attributes on an LDAP user entry will be used, in order, as its OpenShift Container Platform user name. The first attribute with a non-empty value is used. This should match your PreferredUsername setting for your LDAPPasswordIdentityProvider. The attribute to use as the name of the user in the OpenShift Container Platform group record. mail or sAMAccountName are preferred choices in most installations.

string array

tolerateMemberNotFoundErrors

Determines the behavior of the LDAP sync job when missing user entries are encountered. If true, an LDAP query for users that does not find any will be tolerated and an only and error will be logged. If false, the LDAP sync job will fail if a query for users doesn’t find any. The default value is false. Misconfigured LDAP sync jobs with this flag set to true can cause group membership to be removed, so it is recommended to use this flag with caution.

boolean

tolerateMemberOutOfScopeErrors

Determines the behavior of the LDAP sync job when out-of-scope user entries are encountered. If true, an LDAP query for a user that falls outside of the base DN given for the all user query will be tolerated and only an error will be logged. If false, the LDAP sync job will fail if a user query would search outside of the base DN specified by the all user query. Misconfigured LDAP sync jobs with this flag set to true can result in groups missing users, so it is recommended to use this flag with caution.

boolean

18.5.5. v1.ActiveDirectoryConfig

ActiveDirectoryConfig holds the necessary configuration options to define how an LDAP group sync interacts with an LDAP server using the Active Directory schema.

NameDescriptionSchema

usersQuery

Holds the template for an LDAP query that returns user entries.

v1.LDAPQuery

userNameAttributes

Defines which attributes on an LDAP user entry will be interpreted as its OpenShift Container Platform user name. The attribute to use as the name of the user in the OpenShift Container Platform group record. mail or sAMAccountName are preferred choices in most installations.

string array

groupMembershipAttributes

Defines which attributes on an LDAP user entry will be interpreted as the groups it is a member of.

string array

18.5.6. v1.AugmentedActiveDirectoryConfig

AugmentedActiveDirectoryConfig holds the necessary configuration options to define how an LDAP group sync interacts with an LDAP server using the augmented Active Directory schema.

NameDescriptionSchema

usersQuery

Holds the template for an LDAP query that returns user entries.

v1.LDAPQuery

userNameAttributes

Defines which attributes on an LDAP user entry will be interpreted as its OpenShift Container Platform user name. The attribute to use as the name of the user in the OpenShift Container Platform group record. mail or sAMAccountName are preferred choices in most installations.

string array

groupMembershipAttributes

Defines which attributes on an LDAP user entry will be interpreted as the groups it is a member of.

string array

groupsQuery

Holds the template for an LDAP query that returns group entries.

v1.LDAPQuery

groupUIDAttribute

Defines which attribute on an LDAP group entry will be interpreted as its unique identifier. (ldapGroupUID)

string

groupNameAttributes

Defines which attributes on an LDAP group entry will be interpreted as its name to use for an OpenShift Container Platform group.

string array

Chapter 19. Allowing JavaScript-based access to the API server from additional hosts

19.1. Allowing JavaScript-based access to the API server from additional hosts

The default OpenShift Container Platform configuration only allows the OpenShift web console to send requests to the API server.

If you need to access the API server or OAuth server from a JavaScript application using a different host name, you can configure additional host names to allow.

Prerequisites

  • Access to the cluster as a user with the cluster-admin role.

Procedure

  1. Edit the API servers resource:

    $ oc edit apiserver.config.openshift.io cluster
  2. Add the additionalCORSAllowedOrigins field under the spec section and specify one or more additional host names:

    apiVersion: config.openshift.io/v1
    kind: APIServer
    metadata:
      annotations:
        release.openshift.io/create-only: "true"
      creationTimestamp: "2019-07-11T17:35:37Z"
      generation: 1
      name: cluster
      resourceVersion: "907"
      selfLink: /apis/config.openshift.io/v1/apiservers/cluster
      uid: 4b45a8dd-a402-11e9-91ec-0219944e0696
    spec:
      additionalCORSAllowedOrigins:
      - (?i)//my\.subdomain\.domain\.com(:|\z) 1
    1
    The host name is specified as a Golang regular expression that matches against CORS headers from HTTP requests against the API server and OAuth server.
    Note

    This example uses the following syntax:

    • The (?i) makes it case-insensitive.
    • The // pins to the beginning of the domain and matches the double slash following http: or https:.
    • The \. escapes dots in the domain name.
    • The (:|\z) matches the end of the domain name (\z) or a port separator (:).
  3. Save the file to apply the changes.

Chapter 20. Encrypting etcd data

20.1. About etcd encryption

By default, etcd data is not encrypted in OpenShift Container Platform. You can enable etcd encryption for your cluster to provide an additional layer of data security. For example, it can help protect the loss of sensitive data if an etcd backup is exposed to the incorrect parties.

When you enable etcd encryption, the following OpenShift API server and Kubernetes API server resources are encrypted:

  • Secrets
  • ConfigMaps
  • Routes
  • OAuth access tokens
  • OAuth authorize tokens

When you enable etcd encryption, encryption keys are created. These keys are rotated on a weekly basis. You must have these keys in order to restore from an etcd backup.

20.2. Enabling etcd encryption

You can enable etcd encryption to encrypt sensitive resources in your cluster.

Warning

It is not recommended to take a backup of etcd until the initial encryption process is complete. If the encryption process has not completed, the backup might be only partially encrypted.

Prerequisites

  • Access to the cluster as a user with the cluster-admin role.

Procedure

  1. Modify the API server object:

    $ oc edit apiserver
  2. Set the encryption field type to aescbc:

    spec:
      encryption:
        type: aescbc 1
    1
    The aescbc type means that AES-CBC with PKCS#7 padding and a 32 byte key is used to perform the encryption.
  3. Save the file to apply the changes.

    The encryption process starts. It can take 20 minutes or longer for this process to complete, depending on the size of your cluster.

  4. Verify that etcd encryption was successful.

    1. Review the Encrypted status condition for the OpenShift API server to verify that its resources were successfully encrypted:

      $ oc get openshiftapiserver -o=jsonpath='{range .items[0].status.conditions[?(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

      The output shows EncryptionCompleted upon successful encryption:

      EncryptionCompleted
      All resources encrypted: routes.route.openshift.io, oauthaccesstokens.oauth.openshift.io, oauthauthorizetokens.oauth.openshift.io

      If the output shows EncryptionInProgress, this means that encryption is still in progress. Wait a few minutes and try again.

    2. Review the Encrypted status condition for the Kubernetes API server to verify that its resources were successfully encrypted:

      $ oc get kubeapiserver -o=jsonpath='{range .items[0].status.conditions[?(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

      The output shows EncryptionCompleted upon successful encryption:

      EncryptionCompleted
      All resources encrypted: secrets, configmaps

      If the output shows EncryptionInProgress, this means that encryption is still in progress. Wait a few minutes and try again.

20.3. Disabling etcd encryption

You can disable encryption of etcd data in your cluster.

Prerequisites

  • Access to the cluster as a user with the cluster-admin role.

Procedure

  1. Modify the API server object:

    $ oc edit apiserver
  2. Set the encryption field type to identity:

    spec:
      encryption:
        type: identity 1
    1
    The identity type is the default value and means that no encryption is performed.
  3. Save the file to apply the changes.

    The decryption process starts. It can take 20 minutes or longer for this process to complete, depending on the size of your cluster.

  4. Verify that etcd decryption was successful.

    1. Review the Encrypted status condition for the OpenShift API server to verify that its resources were successfully decrypted:

      $ oc get openshiftapiserver -o=jsonpath='{range .items[0].status.conditions[?(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

      The output shows DecryptionCompleted upon successful decryption:

      DecryptionCompleted
      Encryption mode set to identity and everything is decrypted

      If the output shows DecryptionInProgress, this means that decryption is still in progress. Wait a few minutes and try again.

    2. Review the Encrypted status condition for the Kubernetes API server to verify that its resources were successfully decrypted:

      $ oc get kubeapiserver -o=jsonpath='{range .items[0].status.conditions[?(@.type=="Encrypted")]}{.reason}{"\n"}{.message}{"\n"}'

      The output shows DecryptionCompleted upon successful decryption:

      DecryptionCompleted
      Encryption mode set to identity and everything is decrypted

      If the output shows DecryptionInProgress, this means that decryption is still in progress. Wait a few minutes and try again.

Legal Notice

Copyright © 2024 Red Hat, Inc.

OpenShift documentation is licensed under the Apache License 2.0 (https://www.apache.org/licenses/LICENSE-2.0).

Modified versions must remove all Red Hat trademarks.

Portions adapted from https://github.com/kubernetes-incubator/service-catalog/ with modifications by Red Hat.

Red Hat, Red Hat Enterprise Linux, the Red Hat logo, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.

MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.

Node.js® is an official trademark of Joyent. Red Hat Software Collections is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack® Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation’s permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Red Hat logoGithubRedditYoutubeTwitter

Learn

Try, buy, & sell

Communities

About Red Hat Documentation

We help Red Hat users innovate and achieve their goals with our products and services with content they can trust.

Making open source more inclusive

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. For more details, see the Red Hat Blog.

About Red Hat

We deliver hardened solutions that make it easier for enterprises to work across platforms and environments, from the core datacenter to the network edge.

© 2024 Red Hat, Inc.