Chapter 3. Deploying OpenShift sandboxed containers on AWS


You can deploy OpenShift sandboxed containers on AWS Cloud Computing Services,

Important

Red Hat OpenShift sandboxed containers on AWS Cloud Computing Services is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features, see Technology Preview Features Support Scope.

You deploy OpenShift sandboxed containers by performing the following steps:

  1. Install the OpenShift sandboxed containers Operator on the OpenShift Container Platform cluster.
  2. Enable ports to allow internal communication with peer pods.
  3. Optional: If you select a custom pod VM image, you must configure a pull secret for the peer pod.
  4. Optional: Select a custom pod VM image.
  5. Create the peer pods config map.
  6. Optional: Customize the Kata agent policy.
  7. Create the KataConfig custom resource.
  8. Optional: Modify the number of virtual machines running on each worker node.
  9. Configure your workload for OpenShift sandboxed containers.

3.1. Prerequisites

  • You have installed Red Hat OpenShift Container Platform 4.16 or later.
  • Your OpenShift Container Platform cluster has at least one worker node.
  • You have enabled ports 15150 and 9000 for communication in the subnet used for worker nodes and the pod virtual machine (VM). The ports enable communication between the Kata shim running on the worker node and the Kata agent running on the pod VM.

You install the OpenShift sandboxed containers Operator by using the command line interface (CLI).

Prerequisites

  • You have access to the cluster as a user with the cluster-admin role.

Procedure

  1. Create an osc-namespace.yaml manifest file:

    apiVersion: v1
    kind: Namespace
    metadata:
      name: openshift-sandboxed-containers-operator
    Copy to Clipboard Toggle word wrap
  2. Create the namespace by running the following command:

    $ oc apply -f osc-namespace.yaml
    Copy to Clipboard Toggle word wrap
  3. Create an osc-operatorgroup.yaml manifest file:

    apiVersion: operators.coreos.com/v1
    kind: OperatorGroup
    metadata:
      name: sandboxed-containers-operator-group
      namespace: openshift-sandboxed-containers-operator
    spec:
      targetNamespaces:
      - openshift-sandboxed-containers-operator
    Copy to Clipboard Toggle word wrap
  4. Create the operator group by running the following command:

    $ oc apply -f osc-operatorgroup.yaml
    Copy to Clipboard Toggle word wrap
  5. Create an osc-subscription.yaml manifest file:

    apiVersion: operators.coreos.com/v1alpha1
    kind: Subscription
    metadata:
      name: sandboxed-containers-operator
      namespace: openshift-sandboxed-containers-operator
    spec:
      channel: stable
      installPlanApproval: Automatic
      name: sandboxed-containers-operator
      source: redhat-operators
      sourceNamespace: openshift-marketplace
      startingCSV: sandboxed-containers-operator.v1.10.1
    Copy to Clipboard Toggle word wrap
  6. Create the subscription by running the following command:

    $ oc apply -f osc-subscription.yaml
    Copy to Clipboard Toggle word wrap
  7. Verify that the Operator is correctly installed by running the following command:

    $ oc get csv -n openshift-sandboxed-containers-operator
    Copy to Clipboard Toggle word wrap

    This command can take several minutes to complete.

  8. Watch the process by running the following command:

    $ watch oc get csv -n openshift-sandboxed-containers-operator
    Copy to Clipboard Toggle word wrap

    Example output

    NAME                             DISPLAY                                  VERSION             REPLACES                   PHASE
    openshift-sandboxed-containers   openshift-sandboxed-containers-operator  1.10.1    1.9.0        Succeeded
    Copy to Clipboard Toggle word wrap

3.3. Enabling ports for AWS

You must enable ports 15150 and 9000 to allow internal communication with peer pods running on AWS.

Prerequisites

  • You have installed the OpenShift sandboxed containers Operator.
  • You have installed the AWS command line tool.
  • You have access to the cluster as a user with the cluster-admin role.

Procedure

  1. Log in to your OpenShift Container Platform cluster and retrieve the instance ID:

    $ INSTANCE_ID=$(oc get nodes -l 'node-role.kubernetes.io/worker' \
      -o jsonpath='{.items[0].spec.providerID}' | sed 's#[^ ]*/##g')
    Copy to Clipboard Toggle word wrap
  2. Retrieve the AWS region:

    $ AWS_REGION=$(oc get infrastructure/cluster -o jsonpath='{.status.platformStatus.aws.region}')
    Copy to Clipboard Toggle word wrap
  3. Retrieve the security group IDs and store them in an array:

    $ AWS_SG_IDS=($(aws ec2 describe-instances --instance-ids ${INSTANCE_ID} \
      --query 'Reservations[*].Instances[*].SecurityGroups[*].GroupId' \
      --output text --region $AWS_REGION))
    Copy to Clipboard Toggle word wrap
  4. For each security group ID, authorize the peer pods shim to access kata-agent communication, and set up the peer pods tunnel:

    $ for AWS_SG_ID in "${AWS_SG_IDS[@]}"; do \
      aws ec2 authorize-security-group-ingress --group-id $AWS_SG_ID --protocol tcp --port 15150 --source-group $AWS_SG_ID --region $AWS_REGION; \
      aws ec2 authorize-security-group-ingress --group-id $AWS_SG_ID --protocol tcp --port 9000 --source-group $AWS_SG_ID --region $AWS_REGION; \
    done
    Copy to Clipboard Toggle word wrap

The ports are now enabled.

3.4. Creating the peer pods config map

You must create the peer pods config map.

Prerequisites

  • You have an Amazon Machine Image (AMI) ID if you are not using the default AMI ID based on your cluster credentials.

Procedure

  1. Obtain the following values from your AWS instance:

    1. Retrieve and record the instance ID:

      $ INSTANCE_ID=$(oc get nodes -l 'node-role.kubernetes.io/worker' \
        -o jsonpath='{.items[0].spec.providerID}' | sed 's#[^ ]*/##g')
      Copy to Clipboard Toggle word wrap

      This is used to retrieve other values for the secret object.

    2. Retrieve and record the AWS region:

      $ AWS_REGION=$(oc get infrastructure/cluster \
        -o jsonpath='{.status.platformStatus.aws.region}') \
        && echo "AWS_REGION: \"$AWS_REGION\""
      Copy to Clipboard Toggle word wrap
    3. Retrieve and record the AWS subnet ID:

      $ AWS_SUBNET_ID=$(aws ec2 describe-instances --instance-ids ${INSTANCE_ID} \
        --query 'Reservations[*].Instances[*].SubnetId' --region ${AWS_REGION} \
          --output text) && echo "AWS_SUBNET_ID: \"$AWS_SUBNET_ID\""
      Copy to Clipboard Toggle word wrap
    4. Retrieve and record the AWS VPC ID:

      $ AWS_VPC_ID=$(aws ec2 describe-instances --instance-ids ${INSTANCE_ID} \
        --query 'Reservations[*].Instances[*].VpcId' --region ${AWS_REGION} \
          --output text) && echo "AWS_VPC_ID: \"$AWS_VPC_ID\""
      Copy to Clipboard Toggle word wrap
    5. Retrieve and record the AWS security group IDs:

      $ AWS_SG_IDS=$(aws ec2 describe-instances --instance-ids ${INSTANCE_ID} \
        --query 'Reservations[*].Instances[*].SecurityGroups[*].GroupId' \
        --region  $AWS_REGION --output json | jq -r '.[][][]' | paste -sd ",") \
          && echo "AWS_SG_IDS: \"$AWS_SG_IDS\""
      Copy to Clipboard Toggle word wrap
  2. Create a peer-pods-cm.yaml manifest file according to the following example:

    apiVersion: v1
    kind: ConfigMap
    metadata:
      name: peer-pods-cm
      namespace: openshift-sandboxed-containers-operator
    data:
      CLOUD_PROVIDER: "aws"
      VXLAN_PORT: "9000"
      PROXY_TIMEOUT: "5m"
      PODVM_INSTANCE_TYPE: "t3.medium"
      PODVM_INSTANCE_TYPES: "t2.small,t2.medium,t3.large"
      PODVM_AMI_ID: "<podvm_ami_id>"
      AWS_REGION: "<aws_region>"
      AWS_SUBNET_ID: "<aws_subnet_id>"
      AWS_VPC_ID: "<aws_vpc_id>"
      AWS_SG_IDS: "<aws_sg_ids>"
      TAGS: "key1=value1,key2=value2"
      PEERPODS_LIMIT_PER_NODE: "10"
      ROOT_VOLUME_SIZE: "6"
      DISABLECVM: "true"
    Copy to Clipboard Toggle word wrap
    PODVM_INSTANCE_TYPE
    Defines the default instance type that is used if the instance type is not defined in the workload object.
    PODVM_INSTANCE_TYPES
    Specify the instance types, without spaces, for creating the pod. You can define smaller instance types for workloads that need less memory and fewer CPUs or larger instance types for larger workloads.
    PODVM_AMI_ID
    This value is populated when you run the KataConfig CR, using an AMI ID based on your cluster credentials. If you create your own AMI, specify the correct AMI ID.
    TAGS
    You can configure custom tags as key:value pairs for pod VM instances to track peer pod costs or to identify peer pods in different clusters.
    PEERPODS_LIMIT_PER_NODE
    You can increase this value to run more peer pods on a node. The default value is 10.
    ROOT_VOLUME_SIZE
    You can increase this value for pods with larger container images. Specify the root volume size in gigabytes for the pod VM. The default and minimum size is 6 GB.
  3. Create the config map by running the following command:

    $ oc create -f peer-pods-cm.yaml
    Copy to Clipboard Toggle word wrap

3.5. Configuring the pull secret for peer pods

To pull pod VM images from a private registry, you must configure the pull secret for peer pods.

Then, you can link the pull secret to the default service account or you can specify the pull secret in the peer pod manifest.

Procedure

  1. Set the NS variable to the namespace where you deploy your peer pods:

    $ NS=<namespace>
    Copy to Clipboard Toggle word wrap
  2. Copy the pull secret to the peer pod namespace:

    $ oc get secret pull-secret -n openshift-config -o yaml \
      | sed "s/namespace: openshift-config/namespace: ${NS}/" \
      | oc apply -n "${NS}" -f -
    Copy to Clipboard Toggle word wrap

    You can use the cluster pull secret, as in this example, or a custom pull secret.

  3. Optional: Link the pull secret to the default service account:

    $ oc secrets link default pull-secret --for=pull -n ${NS}
    Copy to Clipboard Toggle word wrap
  4. Alternatively, add the pull secret to the peer pod manifest:

    apiVersion: v1
    kind: <Pod>
    spec:
      containers:
      - name: <container_name>
        image: <image_name>
      imagePullSecrets:
      - name: pull-secret
    # ...
    Copy to Clipboard Toggle word wrap

3.6. Selecting a custom peer pod VM image

You can select a custom peer pod virtual machine (VM) image, tailored to your workload requirements by adding an annotation to the pod manifest. The custom image overrides the default image specified in the peer pods config map.

Prerequisites

  • You have the ID of a custom pod VM image, which is compatible with your cloud provider or hypervisor.

Procedure

  1. Create a my-pod-manifest.yaml file according to the following example:

    apiVersion: v1
    kind: Pod
    metadata:
      name: my-pod-manifest
      annotations:
        io.katacontainers.config.hypervisor.image: "<custom_image_id>"
    spec:
      runtimeClassName: kata-remote
      containers:
      - name: <example_container>
        image: registry.access.redhat.com/ubi9/ubi:9.3
        command: ["sleep", "36000"]
    Copy to Clipboard Toggle word wrap
  2. Create the pod by running the following command:

    $ oc create -f my-pod-manifest.yaml
    Copy to Clipboard Toggle word wrap

3.7. Customizing the Kata Agent policy

You can customize the Kata Agent policy to override the default policy, which is permissive, for a peer pod. The Kata Agent policy is a security mechanism that controls API requests for peer pods.

Important

You must override the default policy in a production environment.

As a minimum requirement, you must disable ExecProcessRequest to prevent a cluster administrator from accessing sensitive data by running the oc exec command on a peer pod.

You can use the default policy in development and test environments where security is not a concern, for example, in an environment where the control plane can be trusted.

A custom policy replaces the default policy entirely. To modify specific APIs, include the full policy and adjust the relevant rules.

Procedure

  1. Create a custom policy.rego file by modifying the default policy:

    package agent_policy
    
    default AddARPNeighborsRequest := true
    default AddSwapRequest := true
    default CloseStdinRequest := true
    default CopyFileRequest := true
    default CreateContainerRequest := true
    default CreateSandboxRequest := true
    default DestroySandboxRequest := true
    default ExecProcessRequest := true
    default GetMetricsRequest := true
    default GetOOMEventRequest := true
    default GuestDetailsRequest := true
    default ListInterfacesRequest := true
    default ListRoutesRequest := true
    default MemHotplugByProbeRequest := true
    default OnlineCPUMemRequest := true
    default PauseContainerRequest := true
    default PullImageRequest := true
    default ReadStreamRequest := true
    default RemoveContainerRequest := true
    default RemoveStaleVirtiofsShareMountsRequest := true
    default ReseedRandomDevRequest := true
    default ResumeContainerRequest := true
    default SetGuestDateTimeRequest := true
    default SetPolicyRequest := true
    default SignalProcessRequest := true
    default StartContainerRequest := true
    default StartTracingRequest := true
    default StatsContainerRequest := true
    default StopTracingRequest := true
    default TtyWinResizeRequest := true
    default UpdateContainerRequest := true
    default UpdateEphemeralMountsRequest := true
    default UpdateInterfaceRequest := true
    default UpdateRoutesRequest := true
    default WaitProcessRequest := true
    default WriteStreamRequest := true
    Copy to Clipboard Toggle word wrap

    The default policy allows all API calls. Adjust the true or false values to customize the policy further based on your needs.

  2. Convert the policy.rego file to a Base64-encoded string by running the following command:

    $ base64 -w0 policy.rego
    Copy to Clipboard Toggle word wrap

    Record the output.

  3. Add the Base64-encoded policy string to the my-pod.yaml manifest:

    apiVersion: v1
    kind: Pod
    metadata:
      name: my-pod
      annotations:
        io.katacontainers.config.agent.policy: <base64_encoded_policy>
    spec:
      runtimeClassName: kata-remote
      containers:
      - name: <container_name>
        image: registry.access.redhat.com/ubi9/ubi:latest
        command:
        - sleep
        - "36000"
        securityContext:
          privileged: false
          seccompProfile:
            type: RuntimeDefault
    Copy to Clipboard Toggle word wrap
  4. Create the pod by running the following command:

    $ oc create -f my-pod.yaml
    Copy to Clipboard Toggle word wrap

3.8. Creating the KataConfig custom resource

You must create the KataConfig custom resource (CR) to install kata-remote as a runtime class on your worker nodes.

OpenShift sandboxed containers installs kata-remote as a secondary, optional runtime on the cluster and not as the primary runtime.

Creating the KataConfig CR automatically reboots the worker nodes. The reboot can take from 10 to more than 60 minutes. The following factors can increase the reboot time:

  • A large OpenShift Container Platform deployment with a greater number of worker nodes.
  • Activation of the BIOS and Diagnostics utility.
  • Deployment on a hard disk drive rather than an SSD.
  • Deployment on physical nodes such as bare metal, rather than on virtual nodes.
  • A slow CPU and network.

Procedure

  1. Create an example-kataconfig.yaml manifest file according to the following example:

    apiVersion: kataconfiguration.openshift.io/v1
    kind: KataConfig
    metadata:
      name: example-kataconfig
    spec:
      enablePeerPods: true
      logLevel: info
    #  kataConfigPoolSelector:
    #    matchLabels:
    #      <label_key>: '<label_value>' 
    1
    Copy to Clipboard Toggle word wrap
    1
    Optional: If you have applied node labels to install kata-remote on specific nodes, specify the key and value, for example, osc: 'true'.
  2. Create the KataConfig CR by running the following command:

    $ oc apply -f example-kataconfig.yaml
    Copy to Clipboard Toggle word wrap

    The new KataConfig CR is created and installs kata-remote as a runtime class on the worker nodes.

    Wait for the kata-remote installation to complete and the worker nodes to reboot before verifying the installation.

  3. Monitor the installation progress by running the following command:

    $ watch "oc describe kataconfig | sed -n /^Status:/,/^Events/p"
    Copy to Clipboard Toggle word wrap

    When the status of all workers under kataNodes is installed and the condition InProgress is False without specifying a reason, the kata-remote is installed on the cluster.

  4. Verify the daemon set by running the following command:

    $ oc get -n openshift-sandboxed-containers-operator ds/osc-caa-ds
    Copy to Clipboard Toggle word wrap
  5. Verify the runtime classes by running the following command:

    $ oc get runtimeclass
    Copy to Clipboard Toggle word wrap

    Example output

    NAME             HANDLER          AGE
    kata-remote      kata-remote      152m
    Copy to Clipboard Toggle word wrap

3.9. Modifying the number of peer pod VMs per node

You can modify the limit of peer pod virtual machines (VMs) per node by editing the peerpodConfig custom resource (CR).

Procedure

  1. Check the current limit by running the following command:

    $ oc get peerpodconfig peerpodconfig-openshift -n openshift-sandboxed-containers-operator \
      -o jsonpath='{.spec.limit}{"\n"}'
    Copy to Clipboard Toggle word wrap
  2. Specify a new value for the limit key by running the following command:

    $ oc patch peerpodconfig peerpodconfig-openshift -n openshift-sandboxed-containers-operator \
      --type merge --patch '{"spec":{"limit":"<value>"}}'
    Copy to Clipboard Toggle word wrap

3.10. Verifying the pod VM image

After kata-remote is installed on your cluster, the OpenShift sandboxed containers Operator creates a pod VM image, which is used to create peer pods. This process can take a long time because the image is created on the cloud instance. You can verify that the pod VM image was created successfully by checking the config map that you created for the cloud provider.

Procedure

  1. Obtain the config map you created for the peer pods:

    $ oc get configmap peer-pods-cm -n openshift-sandboxed-containers-operator -o yaml
    Copy to Clipboard Toggle word wrap
  2. Check the status stanza of the YAML file.

    If the PODVM_AMI_ID parameter is populated, the pod VM image was created successfully.

Troubleshooting

  1. Retrieve the events log by running the following command:

    $ oc get events -n openshift-sandboxed-containers-operator --field-selector involvedObject.name=osc-podvm-image-creation
    Copy to Clipboard Toggle word wrap
  2. Retrieve the job log by running the following command:

    $ oc logs -n openshift-sandboxed-containers-operator jobs/osc-podvm-image-creation
    Copy to Clipboard Toggle word wrap

If you cannot resolve the issue, submit a Red Hat Support case and attach the output of both logs.

You configure your workload for OpenShift sandboxed containers by setting kata-remote as the runtime class for the following pod-templated objects:

  • Pod objects
  • ReplicaSet objects
  • ReplicationController objects
  • StatefulSet objects
  • Deployment objects
  • DeploymentConfig objects
Important

Do not deploy workloads in an Operator namespace. Create a dedicated namespace for these resources.

You can define whether the workload should be deployed using the default instance type, which you defined in the config map, by adding an annotation to the YAML file.

If you do not want to define the instance type manually, you can add an annotation to use an automatic instance type, based on the memory available.

Prerequisites

  • You have created the KataConfig custom resource (CR).

Procedure

  1. Add spec.runtimeClassName: kata-remote to the manifest of each pod-templated workload object as in the following example:

    apiVersion: v1
    kind: <object>
    # ...
    spec:
      runtimeClassName: kata-remote
    # ...
    Copy to Clipboard Toggle word wrap
  2. Optional: To use a manually defined instance type, add the following annotation with the instance type that you defined in the config map:

    apiVersion: v1
    kind: <object>
    metadata:
      annotations:
        io.katacontainers.config.hypervisor.machine_type: <machine_type>
    # ...
    Copy to Clipboard Toggle word wrap
  3. Optional: To use an automatic instance type, add the following annotations:

    apiVersion: v1
    kind: <Pod>
    metadata:
      annotations:
        io.katacontainers.config.hypervisor.default_vcpus: <vcpus>
        io.katacontainers.config.hypervisor.default_memory: <memory>
    # ...
    Copy to Clipboard Toggle word wrap

    The workload will run on an automatic instance type based on the amount of memory available.

  4. Apply the changes to the workload object by running the following command:

    $ oc apply -f <object.yaml>
    Copy to Clipboard Toggle word wrap

    OpenShift Container Platform creates the workload object and begins scheduling it.

Verification

  • Inspect the spec.runtimeClassName field of a pod-templated object. If the value is kata-remote, then the workload is running on OpenShift sandboxed containers.
Back to top
Red Hat logoGithubredditYoutubeTwitter

Learn

Try, buy, & sell

Communities

About Red Hat Documentation

We help Red Hat users innovate and achieve their goals with our products and services with content they can trust. Explore our recent updates.

Making open source more inclusive

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. For more details, see the Red Hat Blog.

About Red Hat

We deliver hardened solutions that make it easier for enterprises to work across platforms and environments, from the core datacenter to the network edge.

Theme

© 2025 Red Hat