Chapter 2. Inference serving modelcar container images with AI Inference Server and Podman
Serve and inference a large language model stored in a modelcar container with Podman and Red Hat AI Inference Server running on NVIDIA CUDA AI accelerators. Modelcar containers provide an OCI-compliant method for packaging and distributing language models as container images.
Prerequisites
- You have installed Podman or Docker.
- You are logged in as a user with sudo access.
-
You have access to
registry.redhat.io
and have logged in. - You have created a modelcar container image containing the language model you want to serve and pushed it to a container image registry that you have access to.
You have access to a Linux server with data center grade NVIDIA AI accelerators installed.
For NVIDIA GPUs:
- Install NVIDIA drivers
- Install the NVIDIA Container Toolkit
- If your system has multiple NVIDIA GPUs that use NVSwitch, you must have root access to start Fabric Manager
For more information about supported vLLM quantization schemes for accelerators, see Supported hardware.
Procedure
Open a terminal on your server host, and log in to
registry.redhat.io
:podman login registry.redhat.io
$ podman login registry.redhat.io
Copy to Clipboard Copied! Toggle word wrap Toggle overflow Optional: Log in to the container registry where your modelcar container image is stored. For example:
podman login quay.io
$ podman login quay.io
Copy to Clipboard Copied! Toggle word wrap Toggle overflow Pull the relevant the NVIDIA CUDA image by running the following command:
podman pull registry.redhat.io/rhaiis/vllm-cuda-rhel9:3.2.2
$ podman pull registry.redhat.io/rhaiis/vllm-cuda-rhel9:3.2.2
Copy to Clipboard Copied! Toggle word wrap Toggle overflow If your system has SELinux enabled, configure SELinux to allow device access:
sudo setsebool -P container_use_devices 1
$ sudo setsebool -P container_use_devices 1
Copy to Clipboard Copied! Toggle word wrap Toggle overflow Create a folder that you will later mount as a volume in the container. Adjust the container permissions so that the container can use it.
mkdir -p rhaiis-cache
$ mkdir -p rhaiis-cache
Copy to Clipboard Copied! Toggle word wrap Toggle overflow chmod g+rwX rhaiis-cache
$ chmod g+rwX rhaiis-cache
Copy to Clipboard Copied! Toggle word wrap Toggle overflow Start the AI Inference Server container image. Run the following commands:
For NVIDIA CUDA accelerators, if the host system has multiple GPUs and uses NVSwitch, then start NVIDIA Fabric Manager. To detect if your system is using NVSwitch, first check if files are present in
/proc/driver/nvidia-nvswitch/devices/
, and then start NVIDIA Fabric Manager. Starting NVIDIA Fabric Manager requires root privileges.ls /proc/driver/nvidia-nvswitch/devices/
$ ls /proc/driver/nvidia-nvswitch/devices/
Copy to Clipboard Copied! Toggle word wrap Toggle overflow Example output
0000:0c:09.0 0000:0c:0a.0 0000:0c:0b.0 0000:0c:0c.0 0000:0c:0d.0 0000:0c:0e.0
0000:0c:09.0 0000:0c:0a.0 0000:0c:0b.0 0000:0c:0c.0 0000:0c:0d.0 0000:0c:0e.0
Copy to Clipboard Copied! Toggle word wrap Toggle overflow systemctl start nvidia-fabricmanager
$ systemctl start nvidia-fabricmanager
Copy to Clipboard Copied! Toggle word wrap Toggle overflow ImportantNVIDIA Fabric Manager is only required on systems with multiple GPUs that use NVSwitch. For more information, see NVIDIA Server Architectures.
Check that the Red Hat AI Inference Server container can access NVIDIA GPUs on the host by running the following command:
podman run --rm -it \ --security-opt=label=disable \ --device nvidia.com/gpu=all \ nvcr.io/nvidia/cuda:12.4.1-base-ubi9 \ nvidia-smi
$ podman run --rm -it \ --security-opt=label=disable \ --device nvidia.com/gpu=all \ nvcr.io/nvidia/cuda:12.4.1-base-ubi9 \ nvidia-smi
Copy to Clipboard Copied! Toggle word wrap Toggle overflow Example output
Copy to Clipboard Copied! Toggle word wrap Toggle overflow Start the AI Inference Server container with the modelcar container image mounted:
Copy to Clipboard Copied! Toggle word wrap Toggle overflow - 1
- Required for systems where SELinux is enabled.
--security-opt=label=disable
prevents SELinux from relabeling files in the volume mount. If you choose not to use this argument, your container might not successfully run. - 2
- If you experience an issue with shared memory, increase
--shm-size
to8GB
. - 3
- Maps the host UID to the effective UID of the vLLM process in the container. You can also pass
--user=0
, but this less secure than the--userns
option. Setting--user=0
runs vLLM as root inside the container. - 4
- Prevents Hugging Face Hub from connecting to the internet.
- 5
- Forces the Transformers library to use only the locally mounted model.
- 6
- Mounts the modelcar container directly inside the running
rhaiis/vllm-cuda-rhel9
Red Hat AI Inference Server container. - 7
- Required for systems where SELinux is enabled. On Debian or Ubuntu operating systems, or when using Docker without SELinux, the
:Z
suffix is not available. - 8
- Mounts the model container
/models
folder inside the running AI Inference Server container. - 9
- Set
--tensor-parallel-size
to match the number of GPUs when running the AI Inference Server container on multiple GPUs.
Verification
In a separate tab in your terminal, make a request to the model with the API.
curl -X POST -H "Content-Type: application/json" -d '{
$ curl -X POST -H "Content-Type: application/json" -d '{ "prompt": "What is the capital of Ireland?", "max_tokens": 50 }' http://localhost:8000/v1/completions | jq
Copy to Clipboard Copied! Toggle word wrap Toggle overflow Example output
Copy to Clipboard Copied! Toggle word wrap Toggle overflow