Chapter 2. vLLM server usage
vllm [-h] [-v] {chat,complete,serve,bench,collect-env,run-batch}
$ vllm [-h] [-v] {chat,complete,serve,bench,collect-env,run-batch}
- chat
- Generate chat completions via the running API server.
- complete
- Generate text completions based on the given prompt via the running API server.
- serve
- Start the vLLM OpenAI Compatible API server.
- bench
- vLLM bench subcommand.
- collect-env
- Start collecting environment information.
- run-batch
- Run batch prompts and write results to file.
2.1. vllm serve arguments Copy linkLink copied to clipboard!
vllm serve
launches a local server that loads and serves the language model.
2.1.1. JSON CLI arguments Copy linkLink copied to clipboard!
-
--json-arg '{"key1": "value1", "key2": {"key3": "value2"}}'
-
--json-arg.key1 value1 --json-arg.key2.key3 value2
Additionally, list elements can be passed individually using +
:
-
--json-arg '{"key4": ["value3", "value4", "value5"]}'
-
--json-arg.key4+ value3 --json-arg.key4+='value4,value5'
2.1.2. Options Copy linkLink copied to clipboard!
2.1.2.1. --headless Copy linkLink copied to clipboard!
Run in headless mode. See multi-node data parallel documentation for more details.
Default: False
2.1.2.2. --api-server-count, -asc Copy linkLink copied to clipboard!
How many API server processes to run.
Default: 1
2.1.2.3. --config Copy linkLink copied to clipboard!
Read CLI options from a config file. Must be a YAML with the following options: https://docs.vllm.ai/en/latest/configuration/serve_args.html
Default: None
2.1.2.4. --disable-log-stats Copy linkLink copied to clipboard!
Disable logging statistics.
Default: False
2.1.2.5. --enable-log-requests, --no-enable-log-requests Copy linkLink copied to clipboard!
Enable logging requests.
Default: False
2.1.2.6. --disable-log-requests, --no-disable-log-requests Copy linkLink copied to clipboard!
This argument is deprecated.
Disable logging requests.
Default: True
2.1.3. Frontend Copy linkLink copied to clipboard!
Arguments for the OpenAI-compatible frontend server.
2.1.3.1. --host Copy linkLink copied to clipboard!
Host name.
Default: None
2.1.3.2. --port Copy linkLink copied to clipboard!
Port number.
Default: 8000
2.1.3.3. --uds Copy linkLink copied to clipboard!
Unix domain socket path. If set, host and port arguments are ignored.
Default: None
2.1.3.4. --uvicorn-log-level Copy linkLink copied to clipboard!
Possible choices: critical
, debug
, error
, info
, trace
, warning
Log level for uvicorn.
Default: info
2.1.3.5. --disable-uvicorn-access-log, --no-disable-uvicorn-access-log Copy linkLink copied to clipboard!
Disable uvicorn access log.
Default: False
2.1.3.6. --allow-credentials, --no-allow-credentials Copy linkLink copied to clipboard!
Allow credentials.
Default: False
2.1.3.7. --allowed-origins Copy linkLink copied to clipboard!
Allowed origins.
Default: ['*']
2.1.3.8. --allowed-methods Copy linkLink copied to clipboard!
Allowed methods.
Default: ['*']
2.1.3.9. --allowed-headers Copy linkLink copied to clipboard!
Allowed headers.
Default: ['*']
2.1.3.10. --api-key Copy linkLink copied to clipboard!
If provided, the server will require one of these keys to be presented in the header.
Default: None
2.1.3.11. --lora-modules Copy linkLink copied to clipboard!
LoRA modules configurations in either 'name=path'
format or JSON format or JSON list format. Example (old format): 'name=path'
Example (new format): {"name": "name", "path": "lora_path", "base_model_name": "id"}
Default: None
2.1.3.12. --chat-template Copy linkLink copied to clipboard!
The file path to the chat template, or the template in single-line form for the specified model.
Default: None
2.1.3.13. --chat-template-content-format Copy linkLink copied to clipboard!
Possible choices: auto
, openai
, string
The format to render message content within a chat template.
-
"string" will render the content as a string. Example:
"Hello World"
-
"openai" will render the content as a list of dictionaries, similar to OpenAI schema. Example:
[{"type": "text", "text": "Hello world!"}]
Default: auto
2.1.3.14. --trust-request-chat-template, --no-trust-request-chat-template Copy linkLink copied to clipboard!
Whether to trust the chat template provided in the request. If False, the server will always use the chat template specified by --chat-template
or the ones from tokenizer.
Default: False
2.1.3.15. --response-role Copy linkLink copied to clipboard!
The role name to return if request.add_generation_prompt=true
.
Default: assistant
2.1.3.16. --ssl-keyfile Copy linkLink copied to clipboard!
The file path to the SSL key file.
Default: None
2.1.3.17. --ssl-certfile Copy linkLink copied to clipboard!
The file path to the SSL cert file.
Default: None
2.1.3.18. --ssl-ca-certs Copy linkLink copied to clipboard!
The CA certificates file.
Default: None
2.1.3.19. --enable-ssl-refresh, --no-enable-ssl-refresh Copy linkLink copied to clipboard!
Refresh SSL Context when SSL certificate files change
Default: False
2.1.3.20. --ssl-cert-reqs Copy linkLink copied to clipboard!
Whether client certificate is required (see stdlib ssl module’s).
Default: 0
2.1.3.21. --root-path Copy linkLink copied to clipboard!
FastAPI root_path when app is behind a path based routing proxy.
Default: None
2.1.3.22. --middleware Copy linkLink copied to clipboard!
Additional ASGI middleware to apply to the app. We accept multiple --middleware arguments. The value should be an import path. If a function is provided, vLLM will add it to the server using @app.middleware('http')
. If a class is provided, vLLM will add it to the server using app.add_middleware()
.
Default: []
2.1.3.23. --return-tokens-as-token-ids, --no-return-tokens-as-token-ids Copy linkLink copied to clipboard!
When --max-logprobs
is specified, represents single tokens as strings of the form 'token_id:{token_id}' so that tokens that are not JSON-encodable can be identified.
Default: False
2.1.3.24. --disable-frontend-multiprocessing, --no-disable-frontend-multiprocessing Copy linkLink copied to clipboard!
If specified, will run the OpenAI frontend server in the same process as the model serving engine.
Default: False
2.1.3.25. --enable-request-id-headers, --no-enable-request-id-headers Copy linkLink copied to clipboard!
If specified, API server will add X-Request-Id header to responses.
Default: False
2.1.3.26. --enable-auto-tool-choice, --no-enable-auto-tool-choice Copy linkLink copied to clipboard!
Enable auto tool choice for supported models. Use --tool-call-parser
to specify which parser to use.
Default: False
2.1.3.27. --exclude-tools-when-tool-choice-none, --no-exclude-tools-when-tool-choice-none Copy linkLink copied to clipboard!
If specified, exclude tool definitions in prompts when tool_choice='none'.
Default: False
2.1.3.28. --tool-call-parser Copy linkLink copied to clipboard!
Select the tool call parser depending on the model that you’re using. This is used to parse the model-generated tool call into OpenAI API format. Required for --enable-auto-tool-choice
. You can choose any option from the built-in parsers or register a plugin via --tool-parser-plugin
.
Default: None
2.1.3.29. --tool-parser-plugin Copy linkLink copied to clipboard!
Special the tool parser plugin write to parse the model-generated tool into OpenAI API format, the name register in this plugin can be used in --tool-call-parser
.
Default: ``
2.1.3.30. --tool-server Copy linkLink copied to clipboard!
Comma-separated list of host:port pairs (IPv4, IPv6, or hostname). Examples: 127.0.0.1:8000, [::1]:8000, localhost:1234. Or demo
for demo purpose.
Default: None
2.1.3.31. --log-config-file Copy linkLink copied to clipboard!
Path to logging config JSON file for both vllm and uvicorn
Default: None
2.1.3.32. --max-log-len Copy linkLink copied to clipboard!
Max number of prompt characters or prompt ID numbers being printed in log. The default of None means unlimited.
Default: None
2.1.3.33. --disable-fastapi-docs, --no-disable-fastapi-docs Copy linkLink copied to clipboard!
Disable FastAPI’s OpenAPI schema, Swagger UI, and ReDoc endpoint.
Default: False
2.1.3.34. --enable-prompt-tokens-details, --no-enable-prompt-tokens-details Copy linkLink copied to clipboard!
If set to True, enable prompt_tokens_details in usage.
Default: False
2.1.3.35. --enable-server-load-tracking, --no-enable-server-load-tracking Copy linkLink copied to clipboard!
If set to True, enable tracking server_load_metrics in the app state.
Default: False
2.1.3.36. --enable-force-include-usage, --no-enable-force-include-usage Copy linkLink copied to clipboard!
If set to True, including usage on every request.
Default: False
2.1.3.37. --enable-tokenizer-info-endpoint, --no-enable-tokenizer-info-endpoint Copy linkLink copied to clipboard!
Enable the /get_tokenizer_info endpoint. May expose chat templates and other tokenizer configuration.
Default: False
2.1.3.38. --enable-log-outputs, --no-enable-log-outputs Copy linkLink copied to clipboard!
If True, log model outputs (generations). Requires --enable-log-requests.
Default: False
2.1.3.39. --h11-max-incomplete-event-size Copy linkLink copied to clipboard!
Maximum size (bytes) of an incomplete HTTP event (header or body) for h11 parser. Helps mitigate header abuse.
Default: 4194304
(4 MB)
2.1.3.40. --h11-max-header-count Copy linkLink copied to clipboard!
Maximum number of HTTP headers allowed in a request for h11 parser. Helps mitigate header abuse.s
Default: 256
2.1.3.41. --log-error-stack, --no-log-error-stack Copy linkLink copied to clipboard!
If set to True, log the stack trace of error responses
Default: False
2.1.4. ModelConfig Copy linkLink copied to clipboard!
Configuration for the model.
2.1.4.1. --model Copy linkLink copied to clipboard!
Name or path of the Hugging Face model to use. It is also used as the content for model_name
tag in metrics output when served_model_name
is not specified.
Default: Qwen/Qwen3-0.6B
2.1.4.2. --runner Copy linkLink copied to clipboard!
Possible choices: auto
, draft
, generate
, pooling
The type of model runner to use. Each vLLM instance only supports one model runner, even if the same model can be used for multiple types.
Default: auto
2.1.4.3. --convert Copy linkLink copied to clipboard!
Possible choices: auto
, classify
, embed
, none
, reward
Convert the model using adapters defined in [vllm.model_executor.models.adapters][]. The most common use case is to adapt a text generation model to be used for pooling tasks.
Default: auto
2.1.4.4. --task Copy linkLink copied to clipboard!
Possible choices: auto
, classify
, draft
, embed
, embedding
, generate
, reward
, score
, transcription
, None
This argument is deprecated.
The task to use the model for. If the model supports more than one model runner, this is used to select which model runner to run.
Note that the model may support other tasks using the same model runner.
Default: None
2.1.4.5. --tokenizer Copy linkLink copied to clipboard!
Name or path of the Hugging Face tokenizer to use. If unspecified, model name or path will be used.
Default: None
2.1.4.6. --tokenizer-mode Copy linkLink copied to clipboard!
Possible choices: auto
, custom
, mistral
, slow
Tokenizer mode:
- "auto" will use the fast tokenizer if available.
- "slow" will always use the slow tokenizer.
-
"mistral" will always use the tokenizer from
mistral_common
. - "custom" will use --tokenizer to select the preregistered tokenizer.
Default: auto
2.1.4.7. --trust-remote-code, --no-trust-remote-code Copy linkLink copied to clipboard!
Trust remote code (e.g., from HuggingFace) when downloading the model and tokenizer.
Default: False
2.1.4.8. --dtype Copy linkLink copied to clipboard!
Possible choices: auto
, bfloat16
, float
, float16
, float32
, half
Data type for model weights and activations:
- "auto" will use FP16 precision for FP32 and FP16 models, and BF16 precision for BF16 models.
- "half" for FP16. Recommended for AWQ quantization.
- "float16" is the same as "half".
- "bfloat16" for a balance between precision and range.
- "float" is shorthand for FP32 precision.
- "float32" for FP32 precision.
Default: auto
2.1.4.9. --seed Copy linkLink copied to clipboard!
Random seed for reproducibility. Initialized to None in V0, but initialized to 0 in V1.
Default: None
2.1.4.10. --hf-config-path Copy linkLink copied to clipboard!
Name or path of the Hugging Face config to use. If unspecified, model name or path will be used.
Default: None
2.1.4.11. --allowed-local-media-path Copy linkLink copied to clipboard!
Allowing API requests to read local images or videos from directories specified by the server file system. This is a security risk. Should only be enabled in trusted environments.
Default: ``
2.1.4.12. --allowed-media-domains Copy linkLink copied to clipboard!
If set, only media URLs that belong to this domain can be used for multi-modal inputs.
Default: None
2.1.4.13. --revision Copy linkLink copied to clipboard!
The specific model version to use. It can be a branch name, a tag name, or a commit id. If unspecified, will use the default version.
Default: None
2.1.4.14. --code-revision Copy linkLink copied to clipboard!
The specific revision to use for the model code on the Hugging Face Hub. It can be a branch name, a tag name, or a commit id. If unspecified, will use the default version.
Default: None
2.1.4.15. --rope-scaling Copy linkLink copied to clipboard!
RoPE scaling configuration. For example, {"rope_type":"dynamic","factor":2.0}
.
Should either be a valid JSON string or JSON keys passed individually.
Default: {}
2.1.4.16. --rope-theta Copy linkLink copied to clipboard!
RoPE theta. Use with rope_scaling
. In some cases, changing the RoPE theta improves the performance of the scaled model.
Default: None
2.1.4.17. --tokenizer-revision Copy linkLink copied to clipboard!
The specific revision to use for the tokenizer on the Hugging Face Hub. It can be a branch name, a tag name, or a commit id. If unspecified, will use the default version.
Default: None
2.1.4.18. --max-model-len Copy linkLink copied to clipboard!
Model context length (prompt and output). If unspecified, will be automatically derived from the model config.
When passing via --max-model-len
, supports k/m/g/K/M/G in human-readable format. Examples:
- 1k -> 1000
- 1K -> 1024
- 25.6k -> 25,600
Parse human-readable integers like '1k', '2M', etc. Including decimal values with decimal multipliers.
Examples: - '1k' -> 1,000 - '1K' -> 1,024 - '25.6k' -> 25,600
Examples:
- '1k' -> 1,000
- '1K' -> 1,024
- '25.6k' -> 25,600
Default: None
2.1.4.19. --quantization, -q Copy linkLink copied to clipboard!
Method used to quantize the weights. If None
, we first check the quantization_config
attribute in the model config file. If that is None
, we assume the model weights are not quantized and use dtype
to determine the data type of the weights.
Default: None
2.1.4.20. --enforce-eager, --no-enforce-eager Copy linkLink copied to clipboard!
Whether to always use eager-mode PyTorch. If True, we will disable CUDA graph and always execute the model in eager mode. If False, we will use CUDA graph and eager execution in hybrid for maximal performance and flexibility.
Default: False
2.1.4.21. --max-logprobs Copy linkLink copied to clipboard!
Maximum number of log probabilities to return when logprobs
is specified in SamplingParams
. The default value comes the default for the OpenAI Chat Completions API. -1 means no cap, i.e. all (output_length * vocab_size) logprobs are allowed to be returned and it may cause OOM.
Default: 20
2.1.4.22. --logprobs-mode Copy linkLink copied to clipboard!
Possible choices: processed_logits
, processed_logprobs
, raw_logits
, raw_logprobs
Indicates the content returned in the logprobs and prompt_logprobs. Supported mode: 1) raw_logprobs, 2) processed_logprobs, 3) raw_logits, 4) processed_logits. Raw means the values before applying any logit processors, like bad words. Processed means the values after applying all processors, including temperature and top_k/top_p.
Default: raw_logprobs
2.1.4.23. --disable-sliding-window, --no-disable-sliding-window Copy linkLink copied to clipboard!
Whether to disable sliding window. If True, we will disable the sliding window functionality of the model, capping to sliding window size. If the model does not support sliding window, this argument is ignored.
Default: False
2.1.4.24. --disable-cascade-attn, --no-disable-cascade-attn Copy linkLink copied to clipboard!
Disable cascade attention for V1. While cascade attention does not change the mathematical correctness, disabling it could be useful for preventing potential numerical issues. Note that even if this is set to False, cascade attention will be only used when the heuristic tells that it’s beneficial.
Default: False
2.1.4.25. --skip-tokenizer-init, --no-skip-tokenizer-init Copy linkLink copied to clipboard!
Skip initialization of tokenizer and detokenizer. Expects valid prompt_token_ids
and None
for prompt from the input. The generated output will contain token ids.
Default: False
2.1.4.26. --enable-prompt-embeds, --no-enable-prompt-embeds Copy linkLink copied to clipboard!
If True
, enables passing text embeddings as inputs via the prompt_embeds
key. Note that enabling this will double the time required for graph compilation.
Default: False
2.1.4.27. --served-model-name Copy linkLink copied to clipboard!
The model name(s) used in the API. If multiple names are provided, the server will respond to any of the provided names. The model name in the model field of a response will be the first name in this list. If not specified, the model name will be the same as the --model
argument. Noted that this name(s) will also be used in model_name
tag content of prometheus metrics, if multiple names provided, metrics tag will take the first one.
Default: None
2.1.4.28. --config-format Copy linkLink copied to clipboard!
Possible choices: auto
, hf
, mistral
The format of the model config to load:
- "auto" will try to load the config in hf format if available else it will try to load in mistral format.
- "hf" will load the config in hf format.
- "mistral" will load the config in mistral format.
Default: auto
2.1.4.29. --hf-token Copy linkLink copied to clipboard!
The token to use as HTTP bearer authorization for remote files . If True
, will use the token generated when running huggingface-cli login
(stored in ~/.huggingface
).
Default: None
2.1.4.30. --hf-overrides Copy linkLink copied to clipboard!
If a dictionary, contains arguments to be forwarded to the Hugging Face config. If a callable, it is called to update the HuggingFace config.
Default: {}
2.1.4.31. --pooler-config Copy linkLink copied to clipboard!
Pooler config which controls the behaviour of output pooling in pooling models.
Should either be a valid JSON string or JSON keys passed individually.
Default: None
2.1.4.32. --override-pooler-config Copy linkLink copied to clipboard!
This argument is deprecated.
Use pooler_config
instead. This field will be removed in v0.12.0 or v1.0.0, whichever is sooner.
Should either be a valid JSON string or JSON keys passed individually.
Default: None
2.1.4.33. --logits-processor-pattern Copy linkLink copied to clipboard!
Optional regex pattern specifying valid logits processor qualified names that can be passed with the logits_processors
extra completion argument. Defaults to None
, which allows no processors.
Default: None
2.1.4.34. --generation-config Copy linkLink copied to clipboard!
The folder path to the generation config. Defaults to "auto"
, the generation config will be loaded from model path. If set to "vllm"
, no generation config is loaded, vLLM defaults will be used. If set to a folder path, the generation config will be loaded from the specified folder path. If max_new_tokens
is specified in generation config, then it sets a server-wide limit on the number of output tokens for all requests.
Default: auto
2.1.4.35. --override-generation-config Copy linkLink copied to clipboard!
Overrides or sets generation config. For example, {"temperature": 0.5}
. If used with --generation-config auto
, the override parameters will be merged with the default config from the model. If used with --generation-config vllm
, only the override parameters are used.
Should either be a valid JSON string or JSON keys passed individually.
Default: {}
2.1.4.36. --enable-sleep-mode, --no-enable-sleep-mode Copy linkLink copied to clipboard!
Enable sleep mode for the engine (only CUDA platform is supported).
Default: False
2.1.4.37. --model-impl Copy linkLink copied to clipboard!
Possible choices: auto
, terratorch
, transformers
, vllm
Which implementation of the model to use:
- "auto" will try to use the vLLM implementation, if it exists, and fall back to the Transformers implementation if no vLLM implementation is available.
- "vllm" will use the vLLM model implementation.
- "transformers" will use the Transformers model implementation.
- "terratorch" will use the TerraTorch model implementation.
Default: auto
2.1.4.38. --override-attention-dtype Copy linkLink copied to clipboard!
Override dtype for attention
Default: None
2.1.4.39. --logits-processors Copy linkLink copied to clipboard!
One or more logits processors' fully-qualified class names or class definitions
Default: None
2.1.4.40. --io-processor-plugin Copy linkLink copied to clipboard!
IOProcessor plugin name to load at model startup
Default: None
2.1.5. LoadConfig Copy linkLink copied to clipboard!
Configuration for loading the model weights.
2.1.5.1. --load-format Copy linkLink copied to clipboard!
The format of the model weights to load:
- "auto" will try to load the weights in the safetensors format and fall back to the pytorch bin format if safetensors format is not available.
- "pt" will load the weights in the pytorch bin format.
- "safetensors" will load the weights in the safetensors format.
- "npcache" will load the weights in pytorch format and store a numpy cache to speed up the loading.
- "dummy" will initialize the weights with random values, which is mainly for profiling.
- "tensorizer" will use CoreWeave’s tensorizer library for fast weight loading. See the Tensorize vLLM Model script in the Examples section for more information.
- "runai_streamer" will load the Safetensors weights using Run:ai Model Streamer.
- "bitsandbytes" will load the weights using bitsandbytes quantization.
- "sharded_state" will load weights from pre-sharded checkpoint files, supporting efficient loading of tensor-parallel models.
- "gguf" will load weights from GGUF format files (details specified in https://github.com/ggml-org/ggml/blob/master/docs/gguf.md).
- "mistral" will load weights from consolidated safetensors files used by Mistral models.
- Other custom values can be supported via plugins.
Default: auto
2.1.5.2. --download-dir Copy linkLink copied to clipboard!
Directory to download and load the weights, default to the default cache directory of Hugging Face.
Default: None
2.1.5.3. --safetensors-load-strategy Copy linkLink copied to clipboard!
Specifies the loading strategy for safetensors weights.
- "lazy" (default): Weights are memory-mapped from the file. This enables on-demand loading and is highly efficient for models on local storage.
- "eager": The entire file is read into CPU memory upfront before loading. This is recommended for models on network filesystems (e.g., Lustre, NFS) as it avoids inefficient random reads, significantly speeding up model initialization. However, it uses more CPU RAM.
Default: lazy
2.1.5.4. --model-loader-extra-config Copy linkLink copied to clipboard!
Extra config for model loader. This will be passed to the model loader corresponding to the chosen load_format.
Default: {}
2.1.5.5. --ignore-patterns Copy linkLink copied to clipboard!
The list of patterns to ignore when loading the model. Default to "original/*/" to avoid repeated loading of llama’s checkpoints.
Default: None
2.1.5.6. --use-tqdm-on-load, --no-use-tqdm-on-load Copy linkLink copied to clipboard!
Whether to enable tqdm for showing progress bar when loading model weights.
Default: True
2.1.5.7. --pt-load-map-location Copy linkLink copied to clipboard!
pt_load_map_location: the map location for loading pytorch checkpoint, to support loading checkpoints can only be loaded on certain devices like "cuda", this is equivalent to {"": "cuda"}. Another supported format is mapping from different devices like from GPU 1 to GPU 0: {"cuda:1": "cuda:0"}. Note that when passed from command line, the strings in dictionary needs to be double quoted for json parsing. For more details, see original doc for map_location
in https://pytorch.org/docs/stable/generated/torch.load.html
Default: cpu
2.1.6. StructuredOutputsConfig Copy linkLink copied to clipboard!
Dataclass which contains structured outputs config for the engine.
2.1.6.1. --reasoning-parser Copy linkLink copied to clipboard!
Possible choices: deepseek_r1
, glm45
, openai_gptoss
, granite
, hunyuan_a13b
, mistral
, qwen3
, seed_oss
, step3
Select the reasoning parser depending on the model that you’re using. This is used to parse the reasoning content into OpenAI API format.
Default: ``
2.1.6.2. --guided-decoding-backend Copy linkLink copied to clipboard!
This argument is deprecated.
--guided-decoding-backend will be removed in v0.12.0.
Default: None
2.1.6.3. --guided-decoding-disable-fallback Copy linkLink copied to clipboard!
This argument is deprecated.
--guided-decoding-disable-fallback will be removed in v0.12.0.
Default: None
2.1.6.4. --guided-decoding-disable-any-whitespace Copy linkLink copied to clipboard!
This argument is deprecated.
--guided-decoding-disable-any-whitespace will be removed in v0.12.0.
Default: None
2.1.6.5. --guided-decoding-disable-additional-properties Copy linkLink copied to clipboard!
This argument is deprecated.
--guided-decoding-disable-additional-properties will be removed in v0.12.0.
Default: None
2.1.7. ParallelConfig Copy linkLink copied to clipboard!
Configuration for the distributed execution.
2.1.7.1. --distributed-executor-backend Copy linkLink copied to clipboard!
Possible choices: external_launcher
, mp
, ray
, uni
Backend to use for distributed model workers, either "ray" or "mp" (multiprocessing). If the product of pipeline_parallel_size and tensor_parallel_size is less than or equal to the number of GPUs available, "mp" will be used to keep processing on a single host. Otherwise, this will default to "ray" if Ray is installed and fail otherwise. Note that tpu only support Ray for distributed inference.
Default: None
2.1.7.2. --pipeline-parallel-size, -pp Copy linkLink copied to clipboard!
Number of pipeline parallel groups.
Default: 1
2.1.7.3. --tensor-parallel-size, -tp Copy linkLink copied to clipboard!
Number of tensor parallel groups.
Default: 1
2.1.7.4. --decode-context-parallel-size, -dcp Copy linkLink copied to clipboard!
Number of decode context parallel groups, because the world size does not change by dcp, it simply reuse the GPUs of TP group, and tp_size needs to be divisible by dcp_size.
Default: 1
2.1.7.5. --data-parallel-size, -dp Copy linkLink copied to clipboard!
Number of data parallel groups. MoE layers will be sharded according to the product of the tensor parallel size and data parallel size.
Default: 1
2.1.7.6. --data-parallel-rank, -dpn Copy linkLink copied to clipboard!
Data parallel rank of this instance. When set, enables external load balancer mode.
Default: None
2.1.7.7. --data-parallel-start-rank, -dpr Copy linkLink copied to clipboard!
Starting data parallel rank for secondary nodes.
Default: None
2.1.7.8. --data-parallel-size-local, -dpl Copy linkLink copied to clipboard!
Number of data parallel replicas to run on this node.
Default: None
2.1.7.9. --data-parallel-address, -dpa Copy linkLink copied to clipboard!
Address of data parallel cluster head-node.
Default: None
2.1.7.10. --data-parallel-rpc-port, -dpp Copy linkLink copied to clipboard!
Port for data parallel RPC communication.
Default: None
2.1.7.11. --data-parallel-backend, -dpb Copy linkLink copied to clipboard!
Backend for data parallel, either "mp" or "ray".
Default: mp
2.1.7.12. --data-parallel-hybrid-lb, --no-data-parallel-hybrid-lb Copy linkLink copied to clipboard!
Whether to use "hybrid" DP LB mode. Applies only to online serving and when data_parallel_size > 0. Enables running an AsyncLLM and API server on a "per-node" basis where vLLM load balances between local data parallel ranks, but an external LB balances between vLLM nodes/replicas. Set explicitly in conjunction with --data-parallel-start-rank.
Default: False
2.1.7.13. --enable-expert-parallel, --no-enable-expert-parallel Copy linkLink copied to clipboard!
Use expert parallelism instead of tensor parallelism for MoE layers.
Default: False
2.1.7.14. --enable-dbo, --no-enable-dbo Copy linkLink copied to clipboard!
Enable dual batch overlap for the model executor.
Default: False
2.1.7.15. --dbo-decode-token-threshold Copy linkLink copied to clipboard!
The threshold for dual batch overlap for batches only containing decodes. If the number of tokens in the request is greater than this threshold, microbatching will be used. Otherwise, the request will be processed in a single batch.
Default: 32
2.1.7.16. --dbo-prefill-token-threshold Copy linkLink copied to clipboard!
The threshold for dual batch overlap for batches that contain one or more prefills. If the number of tokens in the request is greater than this threshold, microbatching will be used. Otherwise, the request will be processed in a single batch.
Default: 512
2.1.7.17. --enable-eplb, --no-enable-eplb Copy linkLink copied to clipboard!
Enable expert parallelism load balancing for MoE layers.
Default: False
2.1.7.18. --eplb-config Copy linkLink copied to clipboard!
Expert parallelism configuration.
Should either be a valid JSON string or JSON keys passed individually.
Default: EPLBConfig(window_size=1000, step_interval=3000, num_redundant_experts=0, log_balancedness=False)
2.1.7.19. --expert-placement-strategy Copy linkLink copied to clipboard!
Possible choices: linear
, round_robin
The expert placement strategy for MoE layers:
- "linear": Experts are placed in a contiguous manner. For example, with 4 experts and 2 ranks, rank 0 will have experts [0, 1] and rank 1 will have experts [2, 3].
- "round_robin": Experts are placed in a round-robin manner. For example, with 4 experts and 2 ranks, rank 0 will have experts [0, 2] and rank 1 will have experts [1, 3]. This strategy can help improve load balancing for grouped expert models with no redundant experts.
Default: linear
2.1.7.20. --num-redundant-experts Copy linkLink copied to clipboard!
This argument is deprecated.
--num-redundant-experts will be removed in v0.12.0.
Default: None
2.1.7.21. --eplb-window-size Copy linkLink copied to clipboard!
This argument is deprecated.
--eplb-window-size will be removed in v0.12.0.
Default: None
2.1.7.22. --eplb-step-interval Copy linkLink copied to clipboard!
This argument is deprecated.
--eplb-step-interval will be removed in v0.12.0.
Default: None
2.1.7.23. --eplb-log-balancedness, --no-eplb-log-balancedness Copy linkLink copied to clipboard!
This argument is deprecated.
--eplb-log-balancedness will be removed in v0.12.0.
Default: None
2.1.7.24. --max-parallel-loading-workers Copy linkLink copied to clipboard!
Maximum number of parallel loading workers when loading model sequentially in multiple batches. To avoid RAM OOM when using tensor parallel and large models.
Default: None
2.1.7.25. --ray-workers-use-nsight, --no-ray-workers-use-nsight Copy linkLink copied to clipboard!
Whether to profile Ray workers with nsight, see https://docs.ray.io/en/latest/ray-observability/user-guides/profiling.html#profiling-nsight-profiler.
Default: False
2.1.7.26. --disable-custom-all-reduce, --no-disable-custom-all-reduce Copy linkLink copied to clipboard!
Disable the custom all-reduce kernel and fall back to NCCL.
Default: False
2.1.7.27. --worker-cls Copy linkLink copied to clipboard!
The full name of the worker class to use. If "auto", the worker class will be determined based on the platform.
Default: auto
2.1.7.28. --worker-extension-cls Copy linkLink copied to clipboard!
The full name of the worker extension class to use. The worker extension class is dynamically inherited by the worker class. This is used to inject new attributes and methods to the worker class for use in collective_rpc calls.
Default: ``
2.1.7.29. --enable-multimodal-encoder-data-parallel Copy linkLink copied to clipboard!
Default: False
2.1.8. CacheConfig Copy linkLink copied to clipboard!
Configuration for the KV cache.
2.1.8.1. --block-size Copy linkLink copied to clipboard!
Possible choices: 1
, 8
, 16
, 32
, 64
, 128
Size of a contiguous cache block in number of tokens. On CUDA devices, only block sizes up to 32 are supported.
This config has no static default. If left unspecified by the user, it will be set in Platform.check_and_update_config()
based on the current platform.
Default: None
2.1.8.2. --gpu-memory-utilization Copy linkLink copied to clipboard!
The fraction of GPU memory to be used for the model executor, which can range from 0 to 1. For example, a value of 0.5 would imply 50%% GPU memory utilization. If unspecified, will use the default value of 0.9. This is a per-instance limit, and only applies to the current vLLM instance. It does not matter if you have another vLLM instance running on the same GPU. For example, if you have two vLLM instances running on the same GPU, you can set the GPU memory utilization to 0.5 for each instance.
Default: 0.9
2.1.8.3. --kv-cache-memory-bytes Copy linkLink copied to clipboard!
Size of KV Cache per GPU in bytes. By default, this is set to None and vllm can automatically infer the kv cache size based on gpu_memory_utilization. However, users may want to manually specify the kv cache memory size. kv_cache_memory_bytes allows more fine-grain control of how much memory gets used when compared with using gpu_memory_memory_utilization. Note that kv_cache_memory_bytes (when not-None) ignores gpu_memory_utilization
Parse human-readable integers like '1k', '2M', etc. Including decimal values with decimal multipliers.
Examples: - '1k' -> 1,000 - '1K' -> 1,024 - '25.6k' -> 25,600
Examples:
- '1k' -> 1,000
- '1K' -> 1,024
- '25.6k' -> 25,600
Default: None
2.1.8.4. --swap-space Copy linkLink copied to clipboard!
Size of the CPU swap space per GPU (in GiB).
Default: 4
2.1.8.5. --kv-cache-dtype Copy linkLink copied to clipboard!
Possible choices: auto
, bfloat16
, fp8
, fp8_e4m3
, fp8_e5m2
, fp8_inc
Data type for kv cache storage. If "auto", will use model data type. CUDA 11.8+ supports fp8 (=fp8_e4m3) and fp8_e5m2. ROCm (AMD GPU) supports fp8 (=fp8_e4m3). Intel Gaudi (HPU) supports fp8 (using fp8_inc). Some models (namely DeepSeekV3.2) default to fp8, set to bfloat16 to use bfloat16 instead, this is an invalid option for models that do not default to fp8.
Default: auto
2.1.8.6. --num-gpu-blocks-override Copy linkLink copied to clipboard!
Number of GPU blocks to use. This overrides the profiled num_gpu_blocks
if specified. Does nothing if None
. Used for testing preemption.
Default: None
2.1.8.7. --enable-prefix-caching, --no-enable-prefix-caching Copy linkLink copied to clipboard!
Whether to enable prefix caching. Enabled by default for V1.
Default: None
2.1.8.8. --prefix-caching-hash-algo Copy linkLink copied to clipboard!
Possible choices: sha256
, sha256_cbor
Set the hash algorithm for prefix caching:
- "sha256" uses Pickle for object serialization before hashing.
- "sha256_cbor" provides a reproducible, cross-language compatible hash. It serializes objects using canonical CBOR and hashes them with SHA-256.
Default: sha256
2.1.8.9. --cpu-offload-gb Copy linkLink copied to clipboard!
The space in GiB to offload to CPU, per GPU. Default is 0, which means no offloading. Intuitively, this argument can be seen as a virtual way to increase the GPU memory size. For example, if you have one 24 GB GPU and set this to 10, virtually you can think of it as a 34 GB GPU. Then you can load a 13B model with BF16 weight, which requires at least 26GB GPU memory. Note that this requires fast CPU-GPU interconnect, as part of the model is loaded from CPU memory to GPU memory on the fly in each model forward pass.
Default: 0
2.1.8.10. --calculate-kv-scales, --no-calculate-kv-scales Copy linkLink copied to clipboard!
This enables dynamic calculation of k_scale
and v_scale
when kv_cache_dtype is fp8. If False
, the scales will be loaded from the model checkpoint if available. Otherwise, the scales will default to 1.0.
Default: False
2.1.8.11. --kv-sharing-fast-prefill, --no-kv-sharing-fast-prefill Copy linkLink copied to clipboard!
This feature is work in progress and no prefill optimization takes place with this flag enabled currently.
In some KV sharing setups, e.g. YOCO (https://arxiv.org/abs/2405.05254), some layers can skip tokens corresponding to prefill. This flag enables attention metadata for eligible layers to be overridden with metadata necessary for implementing this optimization in some models (e.g. Gemma3n)
Default: False
2.1.8.12. --mamba-cache-dtype Copy linkLink copied to clipboard!
Possible choices: auto
, float32
The data type to use for the Mamba cache (both the conv as well as the ssm state). If set to 'auto', the data type will be inferred from the model config.
Default: auto
2.1.8.13. --mamba-ssm-cache-dtype Copy linkLink copied to clipboard!
Possible choices: auto
, float32
The data type to use for the Mamba cache (ssm state only, conv state will still be controlled by mamba_cache_dtype). If set to 'auto', the data type for the ssm state will be determined by mamba_cache_dtype.
Default: auto
2.1.9. MultiModalConfig Copy linkLink copied to clipboard!
Controls the behavior of multimodal models.
2.1.9.1. --limit-mm-per-prompt Copy linkLink copied to clipboard!
The maximum number of input items allowed per prompt for each modality. Defaults to 1 (V0) or 999 (V1) for each modality.
For example, to allow up to 16 images and 2 videos per prompt: {"image": 16, "video": 2}
Should either be a valid JSON string or JSON keys passed individually.
Default: {}
2.1.9.2. --media-io-kwargs Copy linkLink copied to clipboard!
Additional args passed to process media inputs, keyed by modalities. For example, to set num_frames for video, set --media-io-kwargs '{"video": {"num_frames": 40} }'
Should either be a valid JSON string or JSON keys passed individually.
Default: {}
2.1.9.3. --mm-processor-kwargs Copy linkLink copied to clipboard!
Arguments to be forwarded to the model’s processor for multi-modal data, e.g., image processor. Overrides for the multi-modal processor obtained from transformers.AutoProcessor.from_pretrained
.
The available overrides depend on the model that is being run.
For example, for Phi-3-Vision: {"num_crops": 4}
.
Should either be a valid JSON string or JSON keys passed individually.
Default: None
2.1.9.4. --mm-processor-cache-gb Copy linkLink copied to clipboard!
The size (in GiB) of the multi-modal processor cache, which is used to avoid re-processing past multi-modal inputs.
This cache is duplicated for each API process and engine core process, resulting in a total memory usage of mm_processor_cache_gb * (api_server_count + data_parallel_size)
.
Set to 0
to disable this cache completely (not recommended).
Default: 4
2.1.9.5. --disable-mm-preprocessor-cache Copy linkLink copied to clipboard!
Default: False
2.1.9.6. --mm-processor-cache-type Copy linkLink copied to clipboard!
Possible choices: lru
, shm
Type of cache to use for the multi-modal preprocessor/mapper. If shm
, use shared memory FIFO cache. If lru
, use mirrored LRU cache.
Default: lru
2.1.9.7. --mm-shm-cache-max-object-size-mb Copy linkLink copied to clipboard!
Size limit (in MiB) for each object stored in the multi-modal processor shared memory cache. Only effective when mm_processor_cache_type
is "shm"
.
Default: 128
2.1.9.8. --mm-encoder-tp-mode Copy linkLink copied to clipboard!
Possible choices: data
, weights
Indicates how to optimize multi-modal encoder inference using tensor parallelism (TP).
-
"weights"
: Within the same vLLM engine, split the weights of each layer across TP ranks. (default TP behavior) -
"data"
: Within the same vLLM engine, split the batched input data across TP ranks to process the data in parallel, while hosting the full weights on each TP rank. This batch-level DP is not to be confused with API request-level DP (which is controlled by--data-parallel-size
). This is only supported on a per-model basis and falls back to"weights"
if the encoder does not support DP.
Default: weights
2.1.9.9. --interleave-mm-strings, --no-interleave-mm-strings Copy linkLink copied to clipboard!
Enable fully interleaved support for multimodal prompts, while using --chat-template-content-format=string.
Default: False
2.1.9.10. --skip-mm-profiling, --no-skip-mm-profiling Copy linkLink copied to clipboard!
When enabled, skips multimodal memory profiling and only profiles with language backbone model during engine initialization.
This reduces engine startup time but shifts the responsibility to users for estimating the peak memory usage of the activation of multimodal encoder and embedding cache.
Default: False
2.1.9.11. --video-pruning-rate Copy linkLink copied to clipboard!
Sets pruning rate for video pruning via Efficient Video Sampling. Value sits in range [0;1) and determines fraction of media tokens from each video to be pruned.
Default: None
2.1.10. LoRAConfig Copy linkLink copied to clipboard!
Configuration for LoRA.
2.1.10.1. --enable-lora, --no-enable-lora Copy linkLink copied to clipboard!
If True, enable handling of LoRA adapters.
Default: None
2.1.10.2. --enable-lora-bias, --no-enable-lora-bias Copy linkLink copied to clipboard!
This argument is deprecated.
Enable bias for LoRA adapters. This option will be removed in v0.12.0.
Default: False
2.1.10.3. --max-loras Copy linkLink copied to clipboard!
Max number of LoRAs in a single batch.
Default: 1
2.1.10.4. --max-lora-rank Copy linkLink copied to clipboard!
Max LoRA rank.
Default: 16
2.1.10.5. --lora-extra-vocab-size Copy linkLink copied to clipboard!
(Deprecated) Maximum size of extra vocabulary that can be present in a LoRA adapter. Will be removed in v0.12.0.
Default: 256
2.1.10.6. --lora-dtype Copy linkLink copied to clipboard!
Possible choices: auto
, bfloat16
, float16
Data type for LoRA. If auto, will default to base model dtype.
Default: auto
2.1.10.7. --max-cpu-loras Copy linkLink copied to clipboard!
Maximum number of LoRAs to store in CPU memory. Must be >= than max_loras
.
Default: None
2.1.10.8. --fully-sharded-loras, --no-fully-sharded-loras Copy linkLink copied to clipboard!
By default, only half of the LoRA computation is sharded with tensor parallelism. Enabling this will use the fully sharded layers. At high sequence length, max rank or tensor parallel size, this is likely faster.
Default: False
2.1.10.9. --default-mm-loras Copy linkLink copied to clipboard!
Dictionary mapping specific modalities to LoRA model paths; this field is only applicable to multimodal models and should be leveraged when a model always expects a LoRA to be active when a given modality is present. Note that currently, if a request provides multiple additional modalities, each of which have their own LoRA, we do NOT apply default_mm_loras because we currently only support one lora adapter per prompt. When run in offline mode, the lora IDs for n modalities will be automatically assigned to 1-n with the names of the modalities in alphabetic order.
Should either be a valid JSON string or JSON keys passed individually.
Default: None
2.1.11. ObservabilityConfig Copy linkLink copied to clipboard!
Configuration for observability - metrics and tracing.
2.1.11.2. --otlp-traces-endpoint Copy linkLink copied to clipboard!
Target URL to which OpenTelemetry traces will be sent.
Default: None
2.1.11.3. --collect-detailed-traces Copy linkLink copied to clipboard!
Possible choices: all
, model
, worker
, None
, model,worker
, model,all
, worker,model
, worker,all
, all,model
, all,worker
It makes sense to set this only if --otlp-traces-endpoint
is set. If set, it will collect detailed traces for the specified modules. This involves use of possibly costly and or blocking operations and hence might have a performance impact.
Note that collecting detailed timing information for each request can be expensive.
Default: None
2.1.12. SchedulerConfig Copy linkLink copied to clipboard!
Scheduler configuration.
2.1.12.1. --max-num-batched-tokens Copy linkLink copied to clipboard!
Maximum number of tokens to be processed in a single iteration.
This config has no static default. If left unspecified by the user, it will be set in EngineArgs.create_engine_config
based on the usage context.
Parse human-readable integers like '1k', '2M', etc. Including decimal values with decimal multipliers.
Examples: - '1k' -> 1,000 - '1K' -> 1,024 - '25.6k' -> 25,600
Examples:
- '1k' -> 1,000
- '1K' -> 1,024
- '25.6k' -> 25,600
Default: None
2.1.12.2. --max-num-seqs Copy linkLink copied to clipboard!
Maximum number of sequences to be processed in a single iteration.
This config has no static default. If left unspecified by the user, it will be set in EngineArgs.create_engine_config
based on the usage context.
Default: None
2.1.12.3. --max-num-partial-prefills Copy linkLink copied to clipboard!
For chunked prefill, the maximum number of sequences that can be partially prefilled concurrently.
Default: 1
2.1.12.4. --max-long-partial-prefills Copy linkLink copied to clipboard!
For chunked prefill, the maximum number of prompts longer than long_prefill_token_threshold that will be prefilled concurrently. Setting this less than max_num_partial_prefills will allow shorter prompts to jump the queue in front of longer prompts in some cases, improving latency.
Default: 1
2.1.12.5. --cuda-graph-sizes Copy linkLink copied to clipboard!
Cuda graph capture sizes
- if none provided, then default set to [min(max_num_seqs * 2, 512)]
- if one value is provided, then the capture list would follow the pattern: [1, 2, 4] + [i for i in range(8, cuda_graph_sizes + 1, 8)]
- more than one value (e.g. 1 2 128) is provided, then the capture list will follow the provided list.
Default: []
2.1.12.6. --long-prefill-token-threshold Copy linkLink copied to clipboard!
For chunked prefill, a request is considered long if the prompt is longer than this number of tokens.
Default: 0
2.1.12.7. --num-lookahead-slots Copy linkLink copied to clipboard!
The number of slots to allocate per sequence per step, beyond the known token ids. This is used in speculative decoding to store KV activations of tokens which may or may not be accepted.
This will be replaced by speculative config in the future; it is present to enable correctness tests until then.
Default: 0
2.1.12.8. --scheduling-policy Copy linkLink copied to clipboard!
Possible choices: fcfs
, priority
The scheduling policy to use:
- "fcfs" means first come first served, i.e. requests are handled in order of arrival.
- "priority" means requests are handled based on given priority (lower value means earlier handling) and time of arrival deciding any ties).
Default: fcfs
2.1.12.9. --enable-chunked-prefill, --no-enable-chunked-prefill Copy linkLink copied to clipboard!
If True, prefill requests can be chunked based on the remaining max_num_batched_tokens.
Default: None
2.1.12.10. --disable-chunked-mm-input, --no-disable-chunked-mm-input Copy linkLink copied to clipboard!
If set to true and chunked prefill is enabled, we do not want to partially schedule a multimodal item. Only used in V1 This ensures that if a request has a mixed prompt (like text tokens TTTT followed by image tokens IIIIIIIIII) where only some image tokens can be scheduled (like TTTTIIIII, leaving IIIII), it will be scheduled as TTTT in one step and IIIIIIIIII in the next.
Default: False
2.1.12.11. --scheduler-cls Copy linkLink copied to clipboard!
The scheduler class to use. "vllm.core.scheduler.Scheduler" is the default scheduler. Can be a class directly or the path to a class of form "mod.custom_class".
Default: vllm.core.scheduler.Scheduler
2.1.12.12. --disable-hybrid-kv-cache-manager, --no-disable-hybrid-kv-cache-manager Copy linkLink copied to clipboard!
If set to True, KV cache manager will allocate the same size of KV cache for all attention layers even if there are multiple type of attention layers like full attention and sliding window attention.
Default: False
2.1.12.13. --async-scheduling, --no-async-scheduling Copy linkLink copied to clipboard!
This is an experimental feature.
If set to True, perform async scheduling. This may help reduce the CPU overheads, leading to better latency and throughput. However, async scheduling is currently not supported with some features such as structured outputs, speculative decoding, and pipeline parallelism.
Default: False
2.1.13. VllmConfig Copy linkLink copied to clipboard!
Dataclass which contains all vllm-related configuration. This simplifies passing around the distinct configurations in the codebase.
2.1.13.1. --speculative-config Copy linkLink copied to clipboard!
Speculative decoding configuration.
Should either be a valid JSON string or JSON keys passed individually.
Default: None
2.1.13.2. --kv-transfer-config Copy linkLink copied to clipboard!
The configurations for distributed KV cache transfer.
Should either be a valid JSON string or JSON keys passed individually.
Default: None
2.1.13.3. --kv-events-config Copy linkLink copied to clipboard!
The configurations for event publishing.
Should either be a valid JSON string or JSON keys passed individually.
Default: None
2.1.13.4. --compilation-config, -O Copy linkLink copied to clipboard!
torch.compile
and cudagraph capture configuration for the model.
As a shorthand, -O<n>
can be used to directly specify the compilation level n
: -O3
is equivalent to -O.level=3
(same as -O='{"level":3}'
). Currently, -O <n>and -O=<n>are supported as well but this will likely be removed in favor of clearer -O<n>syntax in the future.</n></n></n>
level 0 is the default level without any optimization. level 1 and 2 are for internal testing only. level 3 is the recommended level for production, also default in V1.
You can specify the full compilation config like so: {"level": 3, "cudagraph_capture_sizes": [1, 2, 4, 8]}
Should either be a valid JSON string or JSON keys passed individually.
Default:
2.1.13.5. --additional-config Copy linkLink copied to clipboard!
Additional config for specified platform. Different platforms may support different configs. Make sure the configs are valid for the platform you are using. Contents must be hashable.
Default: {}
2.1.13.6. --structured-outputs-config Copy linkLink copied to clipboard!
Structured outputs configuration.
Should either be a valid JSON string or JSON keys passed individually.
Default:
2.2. vllm chat arguments Copy linkLink copied to clipboard!
Generate chat completions with the running API server.
vllm chat [options]
$ vllm chat [options]
- --api-key API_KEY
OpenAI API key. If provided, this API key overrides the API key set in the environment variables.
Default: None
- --model-name MODEL_NAME
The model name used in prompt completion, defaults to the first model in list models API call.
Default: None
- --system-prompt SYSTEM_PROMPT
The system prompt to be added to the chat template, used for models that support system prompts.
Default: None
- --url URL
URL of the running OpenAI-compatible RESTful API server
Default:
http://localhost:8000/v1
- -q MESSAGE, --quick MESSAGE
Send a single prompt as
MESSAGE
and print the response, then exit.Default: None
2.3. vllm complete arguments Copy linkLink copied to clipboard!
Generate text completions based on the given prompt with the running API server.
vllm complete [options]
$ vllm complete [options]
- --api-key API_KEY
API key for OpenAI services. If provided, this API key overrides the API key set in the environment variables.
Default: None
- --model-name MODEL_NAME
The model name used in prompt completion, defaults to the first model in list models API call.
Default: None
- --url URL
URL of the running OpenAI-compatible RESTful API server
Default:
http://localhost:8000/v1
- -q PROMPT, --quick PROMPT
Send a single prompt and print the completion output, then exit.
Default: None
2.4. vllm bench arguments Copy linkLink copied to clipboard!
Benchmark online serving throughput.
vllm bench [options]
$ vllm bench [options]
- bench
Positional arguments:
-
latency
- Benchmarks the latency of a single batch of requests. -
serve
- Benchmarks the online serving throughput. -
throughput
- Benchmarks offline inference throughput.
-
2.5. vllm collect-env arguments Copy linkLink copied to clipboard!
Collect environment information.
vllm collect-env
$ vllm collect-env
2.6. vllm run-batch arguments Copy linkLink copied to clipboard!
Run batch inference jobs for the specified model.
vllm run-batch
$ vllm run-batch
- --disable-log-requests
Disable logging requests.
Default: False
- --disable-log-stats
Disable logging statistics.
Default: False
- --enable-metrics
Enables Prometheus metrics.
Default: False
- --enable-prompt-tokens-details
Enables
prompt_tokens_details
in usage when set to True.Default: False
- --max-log-len MAX_LOG_LEN
Maximum number of prompt characters or prompt ID numbers printed in the log.
Default: Unlimited
- --output-tmp-dir OUTPUT_TMP_DIR
The directory to store the output file before uploading it to the output URL.
Default: None
- --port PORT
Port number for the Prometheus metrics server. Only needed if
enable-metrics
is set.Default: 8000
- --response-role RESPONSE_ROLE
The role name to return if
request.add_generation_prompt=True
.Default: assistant
- --url URL
Prometheus metrics server URL. Only required if
enable-metrics
is set).Default: 0.0.0.0
- --use-v2-block-manager
DEPRECATED. Block manager v1 has been removed.
SelfAttnBlockSpaceManager
(block manager v2) is now the default. Setting--use-v2-block-manager
flag to True or False has no effect on vLLM behavior.Default: True
- -i INPUT_FILE, --input-file INPUT_FILE
The path or URL to a single input file. Supports local file paths and HTTP or HTTPS. If a URL is specified, the file should be available using HTTP GET.
Default: None
- -o OUTPUT_FILE, --output-file OUTPUT_FILE
The path or URL to a single output file. Supports local file paths and HTTP or HTTPS. If a URL is specified, the file should be available using HTTP PUT.
Default: None