Appendix E. Admin Client configuration parameters


bootstrap.servers

Type: list
Importance: high

A list of host/port pairs to use for establishing the initial connection to the Kafka cluster. The client will make use of all servers irrespective of which servers are specified here for bootstrapping—this list only impacts the initial hosts used to discover the full set of servers. This list should be in the form host1:port1,host2:port2,…​. Since these servers are just used for the initial connection to discover the full cluster membership (which may change dynamically), this list need not contain the full set of servers (you may want more than one, though, in case a server is down).

ssl.key.password

Type: password
Default: null
Importance: high

The password of the private key in the key store file. This is optional for client.

ssl.keystore.location

Type: string
Default: null
Importance: high

The location of the key store file. This is optional for client and can be used for two-way authentication for client.

ssl.keystore.password

Type: password
Default: null
Importance: high

The store password for the key store file. This is optional for client and only needed if ssl.keystore.location is configured.

ssl.truststore.location

Type: string
Default: null
Importance: high

The location of the trust store file.

ssl.truststore.password

Type: password
Default: null
Importance: high

The password for the trust store file. If a password is not set access to the truststore is still available, but integrity checking is disabled.

client.dns.lookup

Type: string
Default: default
Valid Values: [default, use_all_dns_ips, resolve_canonical_bootstrap_servers_only]
Importance: medium

Controls how the client uses DNS lookups.

If set to use_all_dns_ips then, when the lookup returns multiple IP addresses for a hostname, they will all be attempted to connect to before failing the connection. Applies to both bootstrap and advertised servers.

If the value is resolve_canonical_bootstrap_servers_only each entry will be resolved and expanded into a list of canonical names.

client.id

Type: string
Default: ""
Importance: medium

An id string to pass to the server when making requests. The purpose of this is to be able to track the source of requests beyond just ip/port by allowing a logical application name to be included in server-side request logging.

connections.max.idle.ms

Type: long
Default: 300000
Importance: medium

Close idle connections after the number of milliseconds specified by this config.

receive.buffer.bytes

Type: int
Default: 65536
Valid Values: [-1,…​]
Importance: medium

The size of the TCP receive buffer (SO_RCVBUF) to use when reading data. If the value is -1, the OS default will be used.

request.timeout.ms

Type: int
Default: 120000
Valid Values: [0,…​]
Importance: medium

The configuration controls the maximum amount of time the client will wait for the response of a request. If the response is not received before the timeout elapses the client will resend the request if necessary or fail the request if retries are exhausted.

sasl.client.callback.handler.class

Type: class
Default: null
Importance: medium

The fully qualified name of a SASL client callback handler class that implements the AuthenticateCallbackHandler interface.

sasl.jaas.config

Type: password
Default: null
Importance: medium

JAAS login context parameters for SASL connections in the format used by JAAS configuration files. JAAS configuration file format is described here. The format for the value is: ‘loginModuleClass controlFlag (optionName=optionValue)*;’. For brokers, the config must be prefixed with listener prefix and SASL mechanism name in lower-case. For example, listener.name.sasl_ssl.scram-sha-256.sasl.jaas.config=com.example.ScramLoginModule required;.

sasl.kerberos.service.name

Type: string
Default: null
Importance: medium

The Kerberos principal name that Kafka runs as. This can be defined either in Kafka’s JAAS config or in Kafka’s config.

sasl.login.callback.handler.class

Type: class
Default: null
Importance: medium

The fully qualified name of a SASL login callback handler class that implements the AuthenticateCallbackHandler interface. For brokers, login callback handler config must be prefixed with listener prefix and SASL mechanism name in lower-case. For example, listener.name.sasl_ssl.scram-sha-256.sasl.login.callback.handler.class=com.example.CustomScramLoginCallbackHandler.

sasl.login.class

Type: class
Default: null
Importance: medium

The fully qualified name of a class that implements the Login interface. For brokers, login config must be prefixed with listener prefix and SASL mechanism name in lower-case. For example, listener.name.sasl_ssl.scram-sha-256.sasl.login.class=com.example.CustomScramLogin.

sasl.mechanism

Type: string
Default: GSSAPI
Importance: medium

SASL mechanism used for client connections. This may be any mechanism for which a security provider is available. GSSAPI is the default mechanism.

security.protocol

Type: string
Default: PLAINTEXT
Importance: medium

Protocol used to communicate with brokers. Valid values are: PLAINTEXT, SSL, SASL_PLAINTEXT, SASL_SSL.

send.buffer.bytes

Type: int
Default: 131072
Valid Values: [-1,…​]
Importance: medium

The size of the TCP send buffer (SO_SNDBUF) to use when sending data. If the value is -1, the OS default will be used.

ssl.enabled.protocols

Type: list
Default: TLSv1.2,TLSv1.1,TLSv1
Importance: medium

The list of protocols enabled for SSL connections.

ssl.keystore.type

Type: string
Default: JKS
Importance: medium

The file format of the key store file. This is optional for client.

ssl.protocol

Type: string
Default: TLS
Importance: medium

The SSL protocol used to generate the SSLContext. Default setting is TLS, which is fine for most cases. Allowed values in recent JVMs are TLS, TLSv1.1 and TLSv1.2. SSL, SSLv2 and SSLv3 may be supported in older JVMs, but their usage is discouraged due to known security vulnerabilities.

ssl.provider

Type: string
Default: null
Importance: medium

The name of the security provider used for SSL connections. Default value is the default security provider of the JVM.

ssl.truststore.type

Type: string
Default: JKS
Importance: medium

The file format of the trust store file.

metadata.max.age.ms

Type: long
Default: 300000
Valid Values: [0,…​]
Importance: low

The period of time in milliseconds after which we force a refresh of metadata even if we haven’t seen any partition leadership changes to proactively discover any new brokers or partitions.

metric.reporters

Type: list
Default: ""
Importance: low

A list of classes to use as metrics reporters. Implementing the org.apache.kafka.common.metrics.MetricsReporter interface allows plugging in classes that will be notified of new metric creation. The JmxReporter is always included to register JMX statistics.

metrics.num.samples

Type: int
Default: 2
Valid Values: [1,…​]
Importance: low

The number of samples maintained to compute metrics.

metrics.recording.level

Type: string
Default: INFO
Valid Values: [INFO, DEBUG]
Importance: low

The highest recording level for metrics.

metrics.sample.window.ms

Type: long
Default: 30000
Valid Values: [0,…​]
Importance: low

The window of time a metrics sample is computed over.

reconnect.backoff.max.ms

Type: long
Default: 1000
Valid Values: [0,…​]
Importance: low

The maximum amount of time in milliseconds to wait when reconnecting to a broker that has repeatedly failed to connect. If provided, the backoff per host will increase exponentially for each consecutive connection failure, up to this maximum. After calculating the backoff increase, 20% random jitter is added to avoid connection storms.

reconnect.backoff.ms

Type: long
Default: 50
Valid Values: [0,…​]
Importance: low

The base amount of time to wait before attempting to reconnect to a given host. This avoids repeatedly connecting to a host in a tight loop. This backoff applies to all connection attempts by the client to a broker.

retries

Type: int
Default: 5
Valid Values: [0,…​]
Importance: low

Setting a value greater than zero will cause the client to resend any request that fails with a potentially transient error.

retry.backoff.ms

Type: long
Default: 100
Valid Values: [0,…​]
Importance: low

The amount of time to wait before attempting to retry a failed request. This avoids repeatedly sending requests in a tight loop under some failure scenarios.

sasl.kerberos.kinit.cmd

Type: string
Default: /usr/bin/kinit
Importance: low

Kerberos kinit command path.

sasl.kerberos.min.time.before.relogin

Type: long
Default: 60000
Importance: low

Login thread sleep time between refresh attempts.

sasl.kerberos.ticket.renew.jitter

Type: double
Default: 0.05
Importance: low

Percentage of random jitter added to the renewal time.

sasl.kerberos.ticket.renew.window.factor

Type: double
Default: 0.8
Importance: low

Login thread will sleep until the specified window factor of time from last refresh to ticket’s expiry has been reached, at which time it will try to renew the ticket.

sasl.login.refresh.buffer.seconds

Type: short
Default: 300
Valid Values: [0,…​,3600]
Importance: low

The amount of buffer time before credential expiration to maintain when refreshing a credential, in seconds. If a refresh would otherwise occur closer to expiration than the number of buffer seconds then the refresh will be moved up to maintain as much of the buffer time as possible. Legal values are between 0 and 3600 (1 hour); a default value of 300 (5 minutes) is used if no value is specified. This value and sasl.login.refresh.min.period.seconds are both ignored if their sum exceeds the remaining lifetime of a credential. Currently applies only to OAUTHBEARER.

sasl.login.refresh.min.period.seconds

Type: short
Default: 60
Valid Values: [0,…​,900]
Importance: low

The desired minimum time for the login refresh thread to wait before refreshing a credential, in seconds. Legal values are between 0 and 900 (15 minutes); a default value of 60 (1 minute) is used if no value is specified. This value and sasl.login.refresh.buffer.seconds are both ignored if their sum exceeds the remaining lifetime of a credential. Currently applies only to OAUTHBEARER.

sasl.login.refresh.window.factor

Type: double
Default: 0.8
Valid Values: [0.5,…​,1.0]
Importance: low

Login refresh thread will sleep until the specified window factor relative to the credential’s lifetime has been reached, at which time it will try to refresh the credential. Legal values are between 0.5 (50%) and 1.0 (100%) inclusive; a default value of 0.8 (80%) is used if no value is specified. Currently applies only to OAUTHBEARER.

sasl.login.refresh.window.jitter

Type: double
Default: 0.05
Valid Values: [0.0,…​,0.25]
Importance: low

The maximum amount of random jitter relative to the credential’s lifetime that is added to the login refresh thread’s sleep time. Legal values are between 0 and 0.25 (25%) inclusive; a default value of 0.05 (5%) is used if no value is specified. Currently applies only to OAUTHBEARER.

ssl.cipher.suites

Type: list
Default: null
Importance: low

A list of cipher suites. This is a named combination of authentication, encryption, MAC and key exchange algorithm used to negotiate the security settings for a network connection using TLS or SSL network protocol. By default all the available cipher suites are supported.

ssl.endpoint.identification.algorithm

Type: string
Default: https
Importance: low

The endpoint identification algorithm to validate server hostname using server certificate.

ssl.keymanager.algorithm

Type: string
Default: SunX509
Importance: low

The algorithm used by key manager factory for SSL connections. Default value is the key manager factory algorithm configured for the Java Virtual Machine.

ssl.secure.random.implementation

Type: string
Default: null
Importance: low

The SecureRandom PRNG implementation to use for SSL cryptography operations.

ssl.trustmanager.algorithm

Type: string
Default: PKIX
Importance: low

The algorithm used by trust manager factory for SSL connections. Default value is the trust manager factory algorithm configured for the Java Virtual Machine.

Red Hat logoGithubRedditYoutubeTwitter

Learn

Try, buy, & sell

Communities

About Red Hat Documentation

We help Red Hat users innovate and achieve their goals with our products and services with content they can trust.

Making open source more inclusive

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. For more details, see the Red Hat Blog.

About Red Hat

We deliver hardened solutions that make it easier for enterprises to work across platforms and environments, from the core datacenter to the network edge.

© 2024 Red Hat, Inc.