15.3. Map Reduce Example


The following example uses a word count application to demonstrate MapReduce and its distributed task abilities.
This example assumes we have a mapping of the key sentence stored on JBoss Data Grid nodes.
  • Key is a String.
  • Each sentence is a String.
All words that appear in all sentences must be counted.

Example 15.6. Implementing the Distributed Task

public class WordCountExample {
 
   /**
    * In this example replace c1 and c2 with
    * real Cache references
    *
    * @param args
    */
   public static void main(String[] args) {
      Cache c1 = null;
      Cache c2 = null;
 
      c1.put("1", "Hello world here I am");
      c2.put("2", "Infinispan rules the world");
      c1.put("3", "JUDCon is in Boston");
      c2.put("4", "JBoss World is in Boston as well");
      c1.put("12","WildFly");
      c2.put("15", "Hello world");
      c1.put("14", "Infinispan community");
      c2.put("15", "Hello world");
 
      c1.put("111", "Infinispan open source");
      c2.put("112", "Boston is close to Toronto");
      c1.put("113", "Toronto is a capital of Ontario");
      c2.put("114", "JUDCon is cool");
      c1.put("211", "JBoss World is awesome");
      c2.put("212", "JBoss rules");
      c1.put("213", "JBoss division of RedHat ");
      c2.put("214", "RedHat community");
 
      MapReduceTask<String, String, String, Integer> t =
         new MapReduceTask<String, String, String, Integer>(c1);
      t.mappedWith(new WordCountMapper())
         .reducedWith(new WordCountReducer());
      Map<String, Integer> wordCountMap = t.execute();
   }
 
   static class WordCountMapper implements Mapper<String,String,String,Integer> {
      /** The serialVersionUID */
      private static final long serialVersionUID = -5943370243108735560L;
 
      @Override
      public void map(String key, String value, Collector<String, Integer> collector) {
         StringTokenizer tokens = new StringTokenizer(value);
		 for(String token : value.split("\\w")) {
             collector.emit(token, 1);
             }
      }
}
 
   static class WordCountReducer implements Reducer<String, Integer> {
      /** The serialVersionUID */
      private static final long serialVersionUID = 1901016598354633256L;
 
      @Override
      public Integer reduce(String key, Iterator<Integer> iter) {
         int sum = 0;
         while (iter.hasNext()) {
            Integer i = (Integer) iter.next();
            sum += i;
         }
         return sum;
      }
   }
}
In this second example, a Collator is defined, which will transform the result of MapReduceTask Map<KOut,VOut> into a String that is returned to a task invoker. The Collator is a transformation function applied to a final result of MapReduceTask.

Example 15.7. Defining the Collator

MapReduceTask<String, String, String, Integer> t = new MapReduceTask<String, String, String, Integer>(cache);
t.mappedWith(new WordCountMapper()).reducedWith(new WordCountReducer());
String mostFrequentWord = t.execute(
      new Collator<String,Integer,String>() {
 
         @Override
         public String collate(Map<String, Integer> reducedResults) {
            String mostFrequent = "";
            int maxCount = 0;
            for (Entry<String, Integer> e : reducedResults.entrySet()) {
               Integer count = e.getValue();
               if(count > maxCount) {
                  maxCount = count;
                  mostFrequent = e.getKey();
               }
            }
         return mostFrequent;
         }
 
      });
System.out.println("The most frequent word is " + mostFrequentWord);
Red Hat logoGithubRedditYoutubeTwitter

Learn

Try, buy, & sell

Communities

About Red Hat Documentation

We help Red Hat users innovate and achieve their goals with our products and services with content they can trust.

Making open source more inclusive

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. For more details, see the Red Hat Blog.

About Red Hat

We deliver hardened solutions that make it easier for enterprises to work across platforms and environments, from the core datacenter to the network edge.

© 2024 Red Hat, Inc.