17.3. Performing Remote Queries via the Hot Rod C++ Client


The Hot Rod C++ client allows remote querying, using Google's Protocol Buffers, once the RemoteCacheManager has been configured with the Protobuf marshaller.

Important

Remote Querying is a Technology Preview feature of the C++ client in JBoss Data Grid 7.0.0.

Procedure 17.2. Enable Remote Querying on the Hot Rod C++ Client

  1. Obtain a connection to the remote JBoss Data Grid server:
    #include "addressbook.pb.h"
    #include "bank.pb.h"
    #include <infinispan/hotrod/BasicTypesProtoStreamMarshaller.h>
    #include <infinispan/hotrod/ProtoStreamMarshaller.h>
    #include "infinispan/hotrod/ConfigurationBuilder.h"
    #include "infinispan/hotrod/RemoteCacheManager.h"
    #include "infinispan/hotrod/RemoteCache.h"
    #include "infinispan/hotrod/Version.h"
    #include "infinispan/hotrod/query.pb.h"
    #include "infinispan/hotrod/QueryUtils.h"
    #include <vector>
    #include <tuple>
    
    #define PROTOBUF_METADATA_CACHE_NAME "___protobuf_metadata"
    #define ERRORS_KEY_SUFFIX  ".errors"
    
    using namespace infinispan::hotrod;
    using namespace org::infinispan::query::remote::client;
    
    std::string read(std::string file)
    {
      std::ifstream t(file);
      std::stringstream buffer;
      buffer << t.rdbuf();
      return buffer.str();
    }
    
    int main(int argc, char** argv) {
      std::cout << "Tests for Query" << std::endl;
        ConfigurationBuilder builder;
        builder.addServer().host(argc > 1 ? argv[1] : "127.0.0.1").port(argc > 2 ? atoi(argv[2]) : 11222).protocolVersion(Configuration::PROTOCOL_VERSION_24);
        RemoteCacheManager cacheManager(builder.build(), false);
        cacheManager.start();
    
  2. Create the Protobuf metadata cache with the Protobuf Marshaller:
        // This example continues the previous codeblock
        // Create the Protobuf Metadata cache peer with a Protobuf marshaller
        auto *km = new BasicTypesProtoStreamMarshaller<std::string>();
        auto *vm = new BasicTypesProtoStreamMarshaller<std::string>();
        auto metadataCache = cacheManager.getCache<std::string, std::string>(
            km, &Marshaller<std::string>::destroy, 
            vm, &Marshaller<std::string>::destroy,PROTOBUF_METADATA_CACHE_NAME, false);
  3. Install the data model in the Protobuf metadata cache:
        // This example continues the previous codeblock
        // Install the data model into the Protobuf metadata cache
        metadataCache.put("sample_bank_account/bank.proto", read("proto/bank.proto"));
        if (metadataCache.containsKey(ERRORS_KEY_SUFFIX))
        {
            std::cerr << "fail: error in registering .proto model" << std::endl;
            return -1;
        }
    
  4. This step adds data to the cache for the purposes of this demonstration, and may be ignored when simply querying a remote cache:
        // This example continues the previous codeblock
        // Fill the cache with the application data: two users Tom and Jerry
        testCache.clear();
        sample_bank_account::User_Address a;
        sample_bank_account::User user1;
        user1.set_id(3);
        user1.set_name("Tom");
        user1.set_surname("Cat");
        user1.set_gender(sample_bank_account::User_Gender_MALE);
        sample_bank_account::User_Address * addr= user1.add_addresses();
        addr->set_street("Via Roma");
        addr->set_number(3);
        addr->set_postcode("202020");
        testCache.put(3, user1);
        user1.set_id(4);
        user1.set_name("Jerry");
        user1.set_surname("Mouse");
        addr->set_street("Via Milano");
        user1.set_gender(sample_bank_account::User_Gender_MALE);
        testCache.put(4, user1);
  5. Query the remote cache:
        // This example continues the previous codeblock
        // Simple query to get User objects
        {
            QueryRequest qr;
            std::cout << "Query: from sample_bank_account.User" << std::endl;
            qr.set_jpqlstring("from sample_bank_account.User");
            QueryResponse resp = testCache.query(qr);
            std::vector<sample_bank_account::User> res;
            unwrapResults(resp, res);
            for (auto i = 0; i < res.size(); i++) {
                std::cout << "User(id=" << res[i].id() << ",name=" << res[i].name()
                << ",surname=" << res[i].surname() << ")" << std::endl;
            }
        }
        cacheManager.stop();
        return 0;
    }
Additional Query Examples

The following examples are included to demonstrate more complicated queries, and may be used on the same dataset found in the above procedure.

Example 17.3. Using a query with a conditional

// Simple query to get User objects with where condition
{
    QueryRequest qr;
    std::cout << "from sample_bank_account.User u where u.addresses.street=\"Via Milano\"" << std::endl;
    qr.set_jpqlstring("from sample_bank_account.User u where u.addresses.street=\"Via Milano\"");
    QueryResponse resp = testCache.query(qr);
    std::vector<sample_bank_account::User> res;
    unwrapResults(resp, res);
    for (auto i = 0; i < res.size(); i++) {
        std::cout << "User(id=" << res[i].id() << ",name=" << res[i].name()
        << ",surname=" << res[i].surname() << ")" << std::endl;
    }
}

Example 17.4. Using a query with a projection

// Simple query to get projection (name, surname)
{
    QueryRequest qr;
    std::cout << "Query: select u.name, u.surname from sample_bank_account.User u" << std::endl;
    qr.set_jpqlstring(
        "select u.name, u.surname from sample_bank_account.User u");
    QueryResponse resp = testCache.query(qr);
    
    //Typed resultset
    std::vector<std::tuple<std::string, std::string> > prjRes;
    unwrapProjection(resp, prjRes);
    for (auto i = 0; i < prjRes.size(); i++) {
        std::cout << "Name: " << std::get<0> (prjRes[i])
        << " Surname: " << std::get<1> (prjRes[i]) << std::endl;
    }
}
Red Hat logoGithubRedditYoutube

About Red Hat Documentation

We help Red Hat users innovate and achieve their goals with our products and services with content they can trust.

Making open source more inclusive

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. For more details, see the Red Hat Blog.

About Red Hat

We deliver hardened solutions that make it easier for enterprises to work across platforms and environments, from the core datacenter to the network edge.

© 2024 Red Hat, Inc.