Chapter 14. Colocating cluster resources
To specify that the location of one resource depends on the location of another resource, you configure a colocation constraint.
There is an important side effect of creating a colocation constraint between two resources: it affects the order in which resources are assigned to a node. This is because you cannot place resource A relative to resource B unless you know where resource B is. So when you are creating colocation constraints, it is important to consider whether you should colocate resource A with resource B or resource B with resource A.
Another thing to keep in mind when creating colocation constraints is that, assuming resource A is colocated with resource B, the cluster will also take into account resource A’s preferences when deciding which node to choose for resource B.
The following command creates a colocation constraint.
pcs constraint colocation add [master|slave] source_resource with [master|slave] target_resource [score] [options]
The following table summarizes the properties and options for configuring colocation constraints.
Parameter | Description |
---|---|
source_resource | The colocation source. If the constraint cannot be satisfied, the cluster may decide not to allow the resource to run at all. |
target_resource | The colocation target. The cluster will decide where to put this resource first and then decide where to put the source resource. |
score |
Positive values indicate the resource should run on the same node. Negative values indicate the resources should not run on the same node. A value of + |
| (RHEL 8.4 and later) Determines whether the cluster will move both the primary resource (source_resource) and dependent resources (target_resource) to another node when the dependent resource reaches its migration threshold for failure, or whether the cluster will leave the dependent resource offline without causing a service switch.
The
When this option has a value of
When this option has a value of |
14.1. Specifying mandatory placement of resources
Mandatory placement occurs any time the constraint’s score is +INFINITY
or -INFINITY
. In such cases, if the constraint cannot be satisfied, then the source_resource is not permitted to run. For score=INFINITY
, this includes cases where the target_resource is not active.
If you need myresource1
to always run on the same machine as myresource2
, you would add the following constraint:
# pcs constraint colocation add myresource1 with myresource2 score=INFINITY
Because INFINITY
was used, if myresource2
cannot run on any of the cluster nodes (for whatever reason) then myresource1
will not be allowed to run.
Alternatively, you may want to configure the opposite, a cluster in which myresource1
cannot run on the same machine as myresource2
. In this case use score=-INFINITY
# pcs constraint colocation add myresource1 with myresource2 score=-INFINITY
Again, by specifying -INFINITY
, the constraint is binding. So if the only place left to run is where myresource2
already is, then myresource1
may not run anywhere.
14.2. Specifying advisory placement of resources
Advisory placement of resources indicates the placement of resources is a preference, but is not mandatory. For constraints with scores greater than -INFINITY
and less than INFINITY
, the cluster will try to accommodate your wishes but may ignore them if the alternative is to stop some of the cluster resources.
14.3. Colocating sets of resources
If your configuration requires that you create a set of resources that are colocated and started in order, you can configure a resource group that contains those resources. There are some situations, however, where configuring the resources that need to be colocated as a resource group is not appropriate:
- You may need to colocate a set of resources but the resources do not necessarily need to start in order.
- You may have a resource C that must be colocated with either resource A or B, but there is no relationship between A and B.
- You may have resources C and D that must be colocated with both resources A and B, but there is no relationship between A and B or between C and D.
In these situations, you can create a colocation constraint on a set or sets of resources with the pcs constraint colocation set
command.
You can set the following options for a set of resources with the pcs constraint colocation set
command.
sequential
, which can be set totrue
orfalse
to indicate whether the members of the set must be colocated with each other.Setting
sequential
tofalse
allows the members of this set to be colocated with another set listed later in the constraint, regardless of which members of this set are active. Therefore, this option makes sense only if another set is listed after this one in the constraint; otherwise, the constraint has no effect.-
role
, which can be set toStopped
,Started
,Master
, orSlave
.
You can set the following constraint option for a set of resources following the setoptions
parameter of the pcs constraint colocation set
command.
-
id
, to provide a name for the constraint you are defining. -
score
, to indicate the degree of preference for this constraint. For information about this option, see the "Location Constraint Options" table in Configuring Location Constraints
When listing members of a set, each member is colocated with the one before it. For example, "set A B" means "B is colocated with A". However, when listing multiple sets, each set is colocated with the one after it. For example, "set C D sequential=false set A B" means "set C D (where C and D have no relation between each other) is colocated with set A B (where B is colocated with A)".
The following command creates a colocation constraint on a set or sets of resources.
pcs constraint colocation set resource1 resource2] [resourceN]... [options] [set resourceX resourceY] ... [options]] [setoptions [constraint_options]]
Use the following command to remove colocation constraints with source_resource.
pcs constraint colocation remove source_resource target_resource