Chapter 2. Deploy OpenShift Data Foundation using local storage devices

download PDF

Deploying OpenShift Data Foundation on OpenShift Container Platform using local storage devices provides you with the option to create internal cluster resources. Follow this deployment method to use local storage to back persistent volumes for your OpenShift Container Platform applications.

Use this section to deploy OpenShift Data Foundation on IBM Z infrastructure where OpenShift Container Platform is already installed.

2.1. Installing Red Hat OpenShift Data Foundation Operator

You can install Red Hat OpenShift Data Foundation Operator using the Red Hat OpenShift Container Platform Operator Hub.


  • Access to an OpenShift Container Platform cluster using an account with cluster-admin and Operator installation permissions.
  • You must have at least three worker nodes in the Red Hat OpenShift Container Platform cluster.
  • For additional resource requirements, see the Planning your deployment guide.
  • When you need to override the cluster-wide default node selector for OpenShift Data Foundation, you can use the following command in the command line interface to specify a blank node selector for the openshift-storage namespace (create openshift-storage namespace in this case):

    $ oc annotate namespace openshift-storage
  • Taint a node as infra to ensure only Red Hat OpenShift Data Foundation resources are scheduled on that node. This helps you save on subscription costs. For more information, see How to use dedicated worker nodes for Red Hat OpenShift Data Foundation chapter in the Managing and Allocating Storage Resources guide.


  1. Log in to the OpenShift Web Console.
  2. Click Operators OperatorHub.
  3. Scroll or type OpenShift Data Foundation into the Filter by keyword box to find the OpenShift Data Foundation Operator.
  4. Click Install.
  5. Set the following options on the Install Operator page:

    1. Update Channel as stable-4.10.
    2. Installation Mode as A specific namespace on the cluster.
    3. Installed Namespace as Operator recommended namespace openshift-storage. If Namespace openshift-storage does not exist, it is created during the operator installation.
    4. Select Approval Strategy as Automatic or Manual.

      If you select Automatic updates, then the Operator Lifecycle Manager (OLM) automatically upgrades the running instance of your Operator without any intervention.

      If you select Manual updates, then the OLM creates an update request. As a cluster administrator, you must then manually approve that update request to update the Operator to a newer version.

    5. Ensure that the Enable option is selected for the Console plugin.
    6. Click Install.

Verification steps

  • After the operator is successfully installed, a pop-up with a message, Web console update is available appears on the user interface. Click Refresh web console from this pop-up for the console changes to reflect.
  • In the Web Console:

    • Navigate to Installed Operators and verify that the OpenShift Data Foundation Operator shows a green tick indicating successful installation.
    • Navigate to Storage and verify if Data Foundation dashboard is available.

2.2. Installing Local Storage Operator

Install the Local Storage Operator from the Operator Hub before creating Red Hat OpenShift Data Foundation clusters on local storage devices.


  1. Log in to the OpenShift Web Console.
  2. Click Operators OperatorHub.
  3. Type local storage in the Filter by keyword​ box to find the Local Storage Operator from the list of operators and click on it.
  4. Set the following options on the Install Operator page:

    1. Update channel as either 4.10 or stable.
    2. Installation mode as A specific namespace on the cluster.
    3. Installed Namespace as Operator recommended namespace openshift-local-storage.
    4. Update approval as Automatic.
  5. Click Install.

Verification steps

  • Verify that the Local Storage Operator shows a green tick indicating successful installation.

2.3. Finding available storage devices (optional)

This step is additional information and can be skipped as the disks are automatically discovered during storage cluster creation. Use this procedure to identify the device names for each of the three or more worker nodes that you have labeled with the OpenShift Data Foundation label'' before creating Persistent Volumes (PV) for IBM Z.


  1. List and verify the name of the worker nodes with the OpenShift Data Foundation label.

    $ oc get nodes

    Example output:

    NAME          STATUS   ROLES    AGE     VERSION
    bmworker01    Ready    worker   6h45m   v1.16.2
    bmworker02    Ready    worker   6h45m   v1.16.2
    bmworker03    Ready    worker   6h45m   v1.16.2
  2. Log in to each worker node that is used for OpenShift Data Foundation resources and find the unique by-id device name for each available raw block device.

    $ oc debug node/<node name>

    Example output:

    $ oc debug node/bmworker01
    Starting pod/bmworker01-debug ...
    To use host binaries, run `chroot /host`
    Pod IP:
    If you don't see a command prompt, try pressing enter.
    sh-4.2# chroot /host
    sh-4.4# lsblk
    NAME                         MAJ:MIN RM   SIZE RO TYPE MOUNTPOINT
    loop0                          7:0    0   500G  0 loop
    sda                            8:0    0   120G  0 disk
    |-sda1                         8:1    0   384M  0 part /boot
    `-sda4                         8:4    0 119.6G  0 part
    `-coreos-luks-root-nocrypt   253:0    0 119.6G  0 dm   /sysroot
    sdb                            8:16   0   500G  0 disk

    In this example, for bmworker01, the available local device is sdb.

  3. Identify the unique ID for each of the devices selected in Step 2.

    sh-4.4#ls -l /dev/disk/by-id/  | grep sdb
    lrwxrwxrwx. 1 root root  9 Feb  3 16:49 scsi-360050763808104bc2800000000000259 -> ../../sdb
    lrwxrwxrwx. 1 root root  9 Feb  3 16:49 scsi-SIBM_2145_00e020412f0aXX00 -> ../../sdb
    lrwxrwxrwx. 1 root root  9 Feb  3 16:49 scsi-0x60050763808104bc2800000000000259 -> ../../sdb

    In the above example, the ID for the local device sdb

  4. Repeat the above step to identify the device ID for all the other nodes that have the storage devices to be used by OpenShift Data Foundation. See this Knowledge Base article for more details.

2.4. Creating OpenShift Data Foundation cluster on IBM Z

Use this procedure to create an OpenShift Data Foundation cluster on IBM Z.



  1. In the OpenShift Web Console, click Operators Installed Operators to view all the installed operators.

    Ensure that the Project selected is openshift-storage.

  2. Click on the OpenShift Data Foundation operator and then click Create StorageSystem.
  3. In the Backing storage page, perform the following:

    1. Select the Create a new StorageClass using the local storage devices for Backing storage type option.
    2. Select Full Deployment for the Deployment type option.
    3. Click Next.


      You are prompted to install the Local Storage Operator if it is not already installed. Click Install, and follow the procedure as described in Installing Local Storage Operator.

  4. In the Create local volume set page, provide the following information:

    1. Enter a name for the LocalVolumeSet and the StorageClass.

      By default, the local volume set name appears for the storage class name. You can change the name.

    2. Choose one of the following:

      • Disks on all nodes

        Uses the available disks that match the selected filters on all the nodes.

      • Disks on selected nodes

        Uses the available disks that match the selected filters only on the selected nodes.

        • The flexible scaling feature is enabled only when the storage cluster that you created with three or more nodes are spread across fewer than the minimum requirement of three availability zones.

          For information about flexible scaling, see the Add capacity using YAML section in Scaling Storage guide.

        • If the nodes selected do not match the OpenShift Data Foundation cluster requirement of an aggregated 30 CPUs and 72 GiB of RAM, a minimal cluster is deployed.

          For minimum starting node requirements, see the Resource requirements section in the Planning guide.

    3. From the available list of Disk Type, select SSD/NVME.
    4. Expand the Advanced section and set the following options:

      Volume Mode

      Block is selected by default.

      Device Type

      Select one or more device type from the dropdown list.

      Disk Size

      Set a minimum size of 100GB for the device and maximum available size of the device that needs to be included.

      Maximum Disks Limit

      This indicates the maximum number of PVs that can be created on a node. If this field is left empty, then PVs are created for all the available disks on the matching nodes.

    5. Click Next.

      A pop-up to confirm the creation of LocalVolumeSet is displayed.

    6. Click Yes to continue.
  5. In the Capacity and nodes page, configure the following:

    1. Available raw capacity is populated with the capacity value based on all the attached disks associated with the storage class. This takes some time to show up. The Selected nodes list shows the nodes based on the storage class.
    2. You can check the box to select Taint nodes.
    3. Click Next.
  6. Optional: In the Security and network page, configure the following based on your requirement:

    1. To enable encryption, select Enable data encryption for block and file storage.
    2. Choose one or both of the following Encryption level:

      • Cluster-wide encryption

        Encrypts the entire cluster (block and file).

      • StorageClass encryption

        Creates encrypted persistent volume (block only) using encryption enabled storage class.

    3. Select Connect to an external key management service checkbox. This is optional for cluster-wide encryption.

      1. Key Management Service Provider is set to Vault by default.
      2. Enter Vault Service Name, host Address of Vault server ('https://<hostname or ip>''), Port number and Token.
      3. Expand Advanced Settings to enter additional settings and certificate details based on your Vault configuration:

        1. Enter the Key Value secret path in Backend Path that is dedicated and unique to OpenShift Data Foundation.
        2. Optional: Enter TLS Server Name and Vault Enterprise Namespace.
        3. Upload the respective PEM encoded certificate file to provide CA Certificate, Client Certificate and Client Private Key.
        4. Click Save.
    4. Select Default (SDN) as Multus is not yet supported on OpenShift Data Foundation on IBM Z infrastructure.
    5. Click Next.
  7. In the Review and create page::

    1. Review the configuration details. To modify any configuration settings, click Back to go back to the previous configuration page.
    2. Click Create StorageSystem.

Verification steps

  • To verify the final Status of the installed storage cluster:

    1. In the OpenShift Web Console, navigate to Installed Operators OpenShift Data Foundation Storage System ocs-storagecluster-storagesystem Resources.
    2. Verify that Status of StorageCluster is Ready and has a green tick mark next to it.
  • To verify if flexible scaling is enabled on your storage cluster, perform the following steps:

    1. In the OpenShift Web Console, navigate to Installed Operators OpenShift Data Foundation Storage System ocs-storagecluster-storagesystem Resources ocs-storagecluster.
    2. In the YAML tab, search for the keys flexibleScaling in spec section and failureDomain in status section. If flexible scaling is true and failureDomain is set to host, flexible scaling feature is enabled.

      flexibleScaling: true
      failureDomain: host
  • To verify that all components for OpenShift Data Foundation are successfully installed, see Verifying your OpenShift Data Foundation deployment.

Additional resources

  • To expand the capacity of the initial cluster, see the Scaling Storage guide.
Red Hat logoGithubRedditYoutubeTwitter


Try, buy, & sell


About Red Hat Documentation

We help Red Hat users innovate and achieve their goals with our products and services with content they can trust.

Making open source more inclusive

Red Hat is committed to replacing problematic language in our code, documentation, and web properties. For more details, see the Red Hat Blog.

About Red Hat

We deliver hardened solutions that make it easier for enterprises to work across platforms and environments, from the core datacenter to the network edge.

© 2024 Red Hat, Inc.