Chapter 7. Containerized services
Director installs the core OpenStack Platform services as containers on the overcloud. This section provides some background information on how containerized services work.
7.1. Containerized service architecture
Director installs the core OpenStack Platform services as containers on the overcloud. The templates for the containerized services are located in the /usr/share/openstack-tripleo-heat-templates/deployment/
.
You must enable the OS::TripleO::Services::Podman
service in the role for all nodes that use containerized services. When you create a roles_data.yaml
file for your custom roles configuration, include the OS::TripleO::Services::Podman
service along with the base composable services. For example, the IronicConductor
role uses the following role definition:
- name: IronicConductor description: | Ironic Conductor node role networks: InternalApi: subnet: internal_api_subnet Storage: subnet: storage_subnet HostnameFormatDefault: '%stackname%-ironic-%index%' ServicesDefault: - OS::TripleO::Services::Aide - OS::TripleO::Services::AuditD - OS::TripleO::Services::BootParams - OS::TripleO::Services::CACerts - OS::TripleO::Services::CertmongerUser - OS::TripleO::Services::Collectd - OS::TripleO::Services::Docker - OS::TripleO::Services::Fluentd - OS::TripleO::Services::IpaClient - OS::TripleO::Services::Ipsec - OS::TripleO::Services::IronicConductor - OS::TripleO::Services::IronicPxe - OS::TripleO::Services::Kernel - OS::TripleO::Services::LoginDefs - OS::TripleO::Services::MetricsQdr - OS::TripleO::Services::MySQLClient - OS::TripleO::Services::ContainersLogrotateCrond - OS::TripleO::Services::Podman - OS::TripleO::Services::Rhsm - OS::TripleO::Services::SensuClient - OS::TripleO::Services::Snmp - OS::TripleO::Services::Timesync - OS::TripleO::Services::Timezone - OS::TripleO::Services::TripleoFirewall - OS::TripleO::Services::TripleoPackages - OS::TripleO::Services::Tuned
7.2. Containerized service parameters
Each containerized service template contains an outputs
section that defines a data set passed to the OpenStack Orchestration (heat) service. In addition to the standard composable service parameters (see Section 6.5, “Examining role parameters”), the template contains a set of parameters specific to the container configuration.
puppet_config
Data to pass to Puppet when configuring the service. In the initial overcloud deployment steps, director creates a set of containers used to configure the service before the actual containerized service runs. This parameter includes the following sub-parameters:
-
config_volume
- The mounted volume that stores the configuration. -
puppet_tags
- Tags to pass to Puppet during configuration. OpenStack uses these tags to restrict the Puppet run to the configuration resource of a particular service. For example, the OpenStack Identity (keystone) containerized service uses thekeystone_config
tag to ensure that all require only thekeystone_config
Puppet resource run on the configuration container. -
step_config
- The configuration data passed to Puppet. This is usually inherited from the referenced composable service. -
config_image
- The container image used to configure the service.
-
kolla_config
- A set of container-specific data that defines configuration file locations, directory permissions, and the command to run on the container to launch the service.
docker_config
Tasks to run on the configuration container for the service. All tasks are grouped into the following steps to help director perform a staged deployment:
- Step 1 - Load balancer configuration
- Step 2 - Core services (Database, Redis)
- Step 3 - Initial configuration of OpenStack Platform service
- Step 4 - General OpenStack Platform services configuration
- Step 5 - Service activation
host_prep_tasks
- Preparation tasks for the bare metal node to accommodate the containerized service.
7.3. Preparing container images
The overcloud installation requires an environment file to determine where to obtain container images and how to store them. Generate and customize this environment file that you can use to prepare your container images.
If you need to configure specific container image versions for your overcloud, you must pin the images to a specific version. For more information, see Pinning container images for the overcloud.
Procedure
-
Log in to your undercloud host as the
stack
user. Generate the default container image preparation file:
$ sudo openstack tripleo container image prepare default \ --local-push-destination \ --output-env-file containers-prepare-parameter.yaml
This command includes the following additional options:
-
--local-push-destination
sets the registry on the undercloud as the location for container images. This means that director pulls the necessary images from the Red Hat Container Catalog and pushes them to the registry on the undercloud. Director uses this registry as the container image source. To pull directly from the Red Hat Container Catalog, omit this option. --output-env-file
is an environment file name. The contents of this file include the parameters for preparing your container images. In this case, the name of the file iscontainers-prepare-parameter.yaml
.NoteYou can use the same
containers-prepare-parameter.yaml
file to define a container image source for both the undercloud and the overcloud.
-
-
Modify the
containers-prepare-parameter.yaml
to suit your requirements.
7.4. Container image preparation parameters
The default file for preparing your containers (containers-prepare-parameter.yaml
) contains the ContainerImagePrepare
heat parameter. This parameter defines a list of strategies for preparing a set of images:
parameter_defaults: ContainerImagePrepare: - (strategy one) - (strategy two) - (strategy three) ...
Each strategy accepts a set of sub-parameters that defines which images to use and what to do with the images. The following table contains information about the sub-parameters that you can use with each ContainerImagePrepare
strategy:
Parameter | Description |
---|---|
| List of regular expressions to exclude image names from a strategy. |
|
List of regular expressions to include in a strategy. At least one image name must match an existing image. All |
|
String to append to the tag for the destination image. For example, if you pull an image with the tag 16.1.3-5.161 and set the |
| A dictionary of image labels that filter the images that you want to modify. If an image matches the labels defined, the director includes the image in the modification process. |
| String of ansible role names to run during upload but before pushing the image to the destination registry. |
|
Dictionary of variables to pass to |
| Defines the namespace of the registry that you want to push images to during the upload process.
If you set this parameter to
If the |
| The source registry from where to pull the original container images. |
|
A dictionary of |
|
Use the value of specified container image metadata labels to create a tag for every image and pull that tagged image. For example, if you set |
When you push images to the undercloud, use push_destination: true
instead of push_destination: UNDERCLOUD_IP:PORT
. The push_destination: true
method provides a level of consistency across both IPv4 and IPv6 addresses.
The set
parameter accepts a set of key: value
definitions:
Key | Description |
---|---|
| The name of the Ceph Storage container image. |
| The namespace of the Ceph Storage container image. |
| The tag of the Ceph Storage container image. |
| The name, namespace, and tag of the Ceph Storage Alert Manager container image. |
| The name, namespace, and tag of the Ceph Storage Grafana container image. |
| The name, namespace, and tag of the Ceph Storage Node Exporter container image. |
| The name, namespace, and tag of the Ceph Storage Prometheus container image. |
| A prefix for each OpenStack service image. |
| A suffix for each OpenStack service image. |
| The namespace for each OpenStack service image. |
|
The driver to use to determine which OpenStack Networking (neutron) container to use. Use a null value to set to the standard |
|
Sets a specific tag for all images from the source. If not defined, director uses the Red Hat OpenStack Platform version number as the default value. This parameter takes precedence over the |
The container images use multi-stream tags based on the Red Hat OpenStack Platform version. This means that there is no longer a latest
tag.
7.5. Guidelines for container image tagging
The Red Hat Container Registry uses a specific version format to tag all Red Hat OpenStack Platform container images. This format follows the label metadata for each container, which is version-release
.
- version
- Corresponds to a major and minor version of Red Hat OpenStack Platform. These versions act as streams that contain one or more releases.
- release
- Corresponds to a release of a specific container image version within a version stream.
For example, if the latest version of Red Hat OpenStack Platform is 16.1.3 and the release for the container image is 5.161
, then the resulting tag for the container image is 16.1.3-5.161.
The Red Hat Container Registry also uses a set of major and minor version
tags that link to the latest release for that container image version. For example, both 16.1 and 16.1.3 link to the latest release
in the 16.1.3 container stream. If a new minor release of 16.1 occurs, the 16.1 tag links to the latest release
for the new minor release stream while the 16.1.3 tag continues to link to the latest release
within the 16.1.3 stream.
The ContainerImagePrepare
parameter contains two sub-parameters that you can use to determine which container image to download. These sub-parameters are the tag
parameter within the set
dictionary, and the tag_from_label
parameter. Use the following guidelines to determine whether to use tag
or tag_from_label
.
The default value for
tag
is the major version for your OpenStack Platform version. For this version it is 16.1. This always corresponds to the latest minor version and release.parameter_defaults: ContainerImagePrepare: - set: ... tag: 16.1 ...
To change to a specific minor version for OpenStack Platform container images, set the tag to a minor version. For example, to change to 16.1.2, set
tag
to 16.1.2.parameter_defaults: ContainerImagePrepare: - set: ... tag: 16.1.2 ...
-
When you set
tag
, director always downloads the latest container imagerelease
for the version set intag
during installation and updates. If you do not set
tag
, director uses the value oftag_from_label
in conjunction with the latest major version.parameter_defaults: ContainerImagePrepare: - set: ... # tag: 16.1 ... tag_from_label: '{version}-{release}'
The
tag_from_label
parameter generates the tag from the label metadata of the latest container image release it inspects from the Red Hat Container Registry. For example, the labels for a certain container might use the followingversion
andrelease
metadata:"Labels": { "release": "5.161", "version": "16.1.3", ... }
-
The default value for
tag_from_label
is{version}-{release}
, which corresponds to the version and release metadata labels for each container image. For example, if a container image has 16.1.3 set forversion
and 5.161 set forrelease
, the resulting tag for the container image is 16.1.3-5.161. -
The
tag
parameter always takes precedence over thetag_from_label
parameter. To usetag_from_label
, omit thetag
parameter from your container preparation configuration. -
A key difference between
tag
andtag_from_label
is that director usestag
to pull an image only based on major or minor version tags, which the Red Hat Container Registry links to the latest image release within a version stream, while director usestag_from_label
to perform a metadata inspection of each container image so that director generates a tag and pulls the corresponding image.
7.6. Obtaining container images from private registries
The registry.redhat.io
registry requires authentication to access and pull images. To authenticate with registry.redhat.io
and other private registries, include the ContainerImageRegistryCredentials
and ContainerImageRegistryLogin
parameters in your containers-prepare-parameter.yaml
file.
ContainerImageRegistryCredentials
Some container image registries require authentication to access images. In this situation, use the ContainerImageRegistryCredentials
parameter in your containers-prepare-parameter.yaml
environment file. The ContainerImageRegistryCredentials
parameter uses a set of keys based on the private registry URL. Each private registry URL uses its own key and value pair to define the username (key) and password (value). This provides a method to specify credentials for multiple private registries.
parameter_defaults: ContainerImagePrepare: - push_destination: true set: namespace: registry.redhat.io/... ... ContainerImageRegistryCredentials: registry.redhat.io: my_username: my_password
In the example, replace my_username
and my_password
with your authentication credentials. Instead of using your individual user credentials, Red Hat recommends creating a registry service account and using those credentials to access registry.redhat.io
content.
To specify authentication details for multiple registries, set multiple key-pair values for each registry in ContainerImageRegistryCredentials
:
parameter_defaults: ContainerImagePrepare: - push_destination: true set: namespace: registry.redhat.io/... ... - push_destination: true set: namespace: registry.internalsite.com/... ... ... ContainerImageRegistryCredentials: registry.redhat.io: myuser: 'p@55w0rd!' registry.internalsite.com: myuser2: '0th3rp@55w0rd!' '192.0.2.1:8787': myuser3: '@n0th3rp@55w0rd!'
The default ContainerImagePrepare
parameter pulls container images from registry.redhat.io
, which requires authentication.
For more information, see Red Hat Container Registry Authentication.
ContainerImageRegistryLogin
The ContainerImageRegistryLogin
parameter is used to control whether an overcloud node system needs to log in to the remote registry to fetch the container images. This situation occurs when you want the overcloud nodes to pull images directly, rather than use the undercloud to host images.
You must set ContainerImageRegistryLogin
to true
if push_destination
is set to false or not used for a given strategy.
parameter_defaults: ContainerImagePrepare: - push_destination: false set: namespace: registry.redhat.io/... ... ... ContainerImageRegistryCredentials: registry.redhat.io: myuser: 'p@55w0rd!' ContainerImageRegistryLogin: true
However, if the overcloud nodes do not have network connectivity to the registry hosts defined in ContainerImageRegistryCredentials
and you set ContainerImageRegistryLogin
to true
, the deployment might fail when trying to perform a login. If the overcloud nodes do not have network connectivity to the registry hosts defined in the ContainerImageRegistryCredentials
, set push_destination
to true
and ContainerImageRegistryLogin
to false
so that the overcloud nodes pull images from the undercloud.
parameter_defaults: ContainerImagePrepare: - push_destination: true set: namespace: registry.redhat.io/... ... ... ContainerImageRegistryCredentials: registry.redhat.io: myuser: 'p@55w0rd!' ContainerImageRegistryLogin: false
7.7. Layering image preparation entries
The value of the ContainerImagePrepare
parameter is a YAML list. This means that you can specify multiple entries. The following example demonstrates two entries where director uses the latest version of all images except for the nova-api
image, which uses the version tagged with 16.2-44
:
ContainerImagePrepare: - tag_from_label: "{version}-{release}" push_destination: true excludes: - nova-api set: namespace: registry.redhat.io/rhosp-rhel8 name_prefix: openstack- name_suffix: '' - push_destination: true includes: - nova-api set: namespace: registry.redhat.io/rhosp-rhel8 tag: 16.2-44
The includes
and excludes
parameters use regular expressions to control image filtering for each entry. The images that match the includes
strategy take precedence over excludes
matches. The image name must the includes
or excludes
regular expression value to be considered a match.
7.8. Modifying images during preparation
It is possible to modify images during image preparation, and then immediately deploy the overcloud with modified images.
Red Hat OpenStack Platform (RHOSP) director supports modifying images during preparation for RHOSP containers, not for Ceph containers.
Scenarios for modifying images include:
- As part of a continuous integration pipeline where images are modified with the changes being tested before deployment.
- As part of a development workflow where local changes must be deployed for testing and development.
- When changes must be deployed but are not available through an image build pipeline. For example, adding proprietary add-ons or emergency fixes.
To modify an image during preparation, invoke an Ansible role on each image that you want to modify. The role takes a source image, makes the requested changes, and tags the result. The prepare command can push the image to the destination registry and set the heat parameters to refer to the modified image.
The Ansible role tripleo-modify-image
conforms with the required role interface and provides the behaviour necessary for the modify use cases. Control the modification with the modify-specific keys in the ContainerImagePrepare
parameter:
-
modify_role
specifies the Ansible role to invoke for each image to modify. -
modify_append_tag
appends a string to the end of the source image tag. This makes it obvious that the resulting image has been modified. Use this parameter to skip modification if thepush_destination
registry already contains the modified image. Changemodify_append_tag
whenever you modify the image. -
modify_vars
is a dictionary of Ansible variables to pass to the role.
To select a use case that the tripleo-modify-image
role handles, set the tasks_from
variable to the required file in that role.
While developing and testing the ContainerImagePrepare
entries that modify images, run the image prepare command without any additional options to confirm that the image is modified as you expect:
sudo openstack tripleo container image prepare \ -e ~/containers-prepare-parameter.yaml
To use the openstack tripleo container image prepare
command, your undercloud must contain a running image-serve
registry. As a result, you cannot run this command before a new undercloud installation because the image-serve
registry will not be installed. You can run this command after a successful undercloud installation.
7.9. Updating existing packages on container images
Red Hat OpenStack Platform (RHOSP) director supports updating existing packages on container images for RHOSP containers, not for Ceph containers.
Procedure
The following example
ContainerImagePrepare
entry updates in all packages on the container images by using the dnf repository configuration of the undercloud host:ContainerImagePrepare: - push_destination: true ... modify_role: tripleo-modify-image modify_append_tag: "-updated" modify_vars: tasks_from: yum_update.yml compare_host_packages: true yum_repos_dir_path: /etc/yum.repos.d ...
7.10. Installing additional RPM files to container images
You can install a directory of RPM files in your container images. This is useful for installing hotfixes, local package builds, or any package that is not available through a package repository.
Red Hat OpenStack Platform (RHOSP) director supports installing additional RPM files to container images for RHOSP containers, not for Ceph containers.
When you modify container images in existing deployments, you must then perform a minor update to apply the changes to your overcloud. For more information, see Keeping Red Hat OpenStack Platform Updated.
Procedure
The following example
ContainerImagePrepare
entry installs some hotfix packages on only thenova-compute
image:ContainerImagePrepare: - push_destination: true ... includes: - nova-compute modify_role: tripleo-modify-image modify_append_tag: "-hotfix" modify_vars: tasks_from: rpm_install.yml rpms_path: /home/stack/nova-hotfix-pkgs ...
7.11. Modifying container images with a custom Dockerfile
You can specify a directory that contains a Dockerfile to make the required changes. When you invoke the tripleo-modify-image
role, the role generates a Dockerfile.modified
file that changes the FROM
directive and adds extra LABEL
directives.
Red Hat OpenStack Platform (RHOSP) director supports modifying container images with a custom Dockerfile for RHOSP containers, not for Ceph containers.
Procedure
The following example runs the custom Dockerfile on the
nova-compute
image:ContainerImagePrepare: - push_destination: true ... includes: - nova-compute modify_role: tripleo-modify-image modify_append_tag: "-hotfix" modify_vars: tasks_from: modify_image.yml modify_dir_path: /home/stack/nova-custom ...
The following example shows the
/home/stack/nova-custom/Dockerfile
file. After you run anyUSER
root directives, you must switch back to the original image default user:FROM registry.redhat.io/rhosp-rhel8/openstack-nova-compute:latest USER "root" COPY customize.sh /tmp/ RUN /tmp/customize.sh USER "nova"
7.12. Deploying a vendor plugin
To use some third-party hardware as a Block Storage back end, you must deploy a vendor plugin. The following example demonstrates how to deploy a vendor plugin to use Dell EMC hardware as a Block Storage back end.
For more information about supported back end appliances and drivers, see Third-Party Storage Providers in the Storage Guide.
Procedure
Create a new container images file for your overcloud:
$ sudo openstack tripleo container image prepare default \ --local-push-destination \ --output-env-file containers-prepare-parameter-dellemc.yaml
- Edit the containers-prepare-parameter-dellemc.yaml file.
Add an
exclude
parameter to the strategy for the main Red Hat OpenStack Platform container images. Use this parameter to exclude the container image that the vendor container image will replace. In the example, the container image is thecinder-volume
image:parameter_defaults: ContainerImagePrepare: - push_destination: true excludes: - cinder-volume set: namespace: registry.redhat.io/rhosp-rhel8 name_prefix: openstack- name_suffix: '' tag: 16.1 ... tag_from_label: "{version}-{release}"
Add a new strategy to the
ContainerImagePrepare
parameter that includes the replacement container image for the vendor plugin:parameter_defaults: ContainerImagePrepare: ... - push_destination: true includes: - cinder-volume set: namespace: registry.connect.redhat.com/dellemc name_prefix: openstack- name_suffix: -dellemc-rhosp16 tag: 16.1-2 ...
Add the authentication details for the registry.connect.redhat.com registry to the
ContainerImageRegistryCredentials
parameter:parameter_defaults: ContainerImageRegistryCredentials: registry.redhat.io: [service account username]: [service account password] registry.connect.redhat.com: [service account username]: [service account password]
-
Save the
containers-prepare-parameter-dellemc.yaml
file. Include the
containers-prepare-parameter-dellemc.yaml
file with any deployment commands, such as asopenstack overcloud deploy
:$ openstack overcloud deploy --templates ... -e containers-prepare-parameter-dellemc.yaml ...
When director deploys the overcloud, the overcloud uses the vendor container image instead of the standard container image.
- IMPORTANT
-
The
containers-prepare-parameter-dellemc.yaml
file replaces the standardcontainers-prepare-parameter.yaml
file in your overcloud deployment. Do not include the standardcontainers-prepare-parameter.yaml
file in your overcloud deployment. Retain the standardcontainers-prepare-parameter.yaml
file for your undercloud installation and updates.