Este contenido no está disponible en el idioma seleccionado.
Chapter 4. Installing a cluster on AWS with customizations
In OpenShift Container Platform version 4.14, you can install a customized cluster on infrastructure that the installation program provisions on Amazon Web Services (AWS). To customize the installation, you modify parameters in the install-config.yaml file before you install the cluster.
The scope of the OpenShift Container Platform installation configurations is intentionally narrow. It is designed for simplicity and ensured success. You can complete many more OpenShift Container Platform configuration tasks after an installation completes.
4.1. Prerequisites Copiar enlaceEnlace copiado en el portapapeles!
- You reviewed details about the OpenShift Container Platform installation and update processes.
- You read the documentation on selecting a cluster installation method and preparing it for users.
You configured an AWS account to host the cluster.
ImportantIf you have an AWS profile stored on your computer, it must not use a temporary session token that you generated while using a multi-factor authentication device. The cluster continues to use your current AWS credentials to create AWS resources for the entire life of the cluster, so you must use long-term credentials. To generate appropriate keys, see Managing Access Keys for IAM Users in the AWS documentation. You can supply the keys when you run the installation program.
- If you use a firewall, you configured it to allow the sites that your cluster requires access to.
4.2. Internet access for OpenShift Container Platform Copiar enlaceEnlace copiado en el portapapeles!
In OpenShift Container Platform 4.14, you require access to the internet to install your cluster.
You must have internet access to:
- Access OpenShift Cluster Manager to download the installation program and perform subscription management. If the cluster has internet access and you do not disable Telemetry, that service automatically entitles your cluster.
- Access Quay.io to obtain the packages that are required to install your cluster.
- Obtain the packages that are required to perform cluster updates.
If your cluster cannot have direct internet access, you can perform a restricted network installation on some types of infrastructure that you provision. During that process, you download the required content and use it to populate a mirror registry with the installation packages. With some installation types, the environment that you install your cluster in will not require internet access. Before you update the cluster, you update the content of the mirror registry.
4.3. Generating a key pair for cluster node SSH access Copiar enlaceEnlace copiado en el portapapeles!
During an OpenShift Container Platform installation, you can provide an SSH public key to the installation program. The key is passed to the Red Hat Enterprise Linux CoreOS (RHCOS) nodes through their Ignition config files and is used to authenticate SSH access to the nodes. The key is added to the ~/.ssh/authorized_keys list for the core user on each node, which enables password-less authentication.
After the key is passed to the nodes, you can use the key pair to SSH in to the RHCOS nodes as the user core. To access the nodes through SSH, the private key identity must be managed by SSH for your local user.
If you want to SSH in to your cluster nodes to perform installation debugging or disaster recovery, you must provide the SSH public key during the installation process. The ./openshift-install gather command also requires the SSH public key to be in place on the cluster nodes.
Do not skip this procedure in production environments, where disaster recovery and debugging is required.
You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.
Procedure
If you do not have an existing SSH key pair on your local machine to use for authentication onto your cluster nodes, create one. For example, on a computer that uses a Linux operating system, run the following command:
ssh-keygen -t ed25519 -N '' -f <path>/<file_name>
$ ssh-keygen -t ed25519 -N '' -f <path>/<file_name>1 Copy to Clipboard Copied! Toggle word wrap Toggle overflow - 1
- Specify the path and file name, such as
~/.ssh/id_ed25519, of the new SSH key. If you have an existing key pair, ensure your public key is in the your~/.sshdirectory.
NoteIf you plan to install an OpenShift Container Platform cluster that uses the RHEL cryptographic libraries that have been submitted to NIST for FIPS 140-2/140-3 Validation on only the
x86_64,ppc64le, ands390xarchitectures, do not create a key that uses theed25519algorithm. Instead, create a key that uses thersaorecdsaalgorithm.View the public SSH key:
cat <path>/<file_name>.pub
$ cat <path>/<file_name>.pubCopy to Clipboard Copied! Toggle word wrap Toggle overflow For example, run the following to view the
~/.ssh/id_ed25519.pubpublic key:cat ~/.ssh/id_ed25519.pub
$ cat ~/.ssh/id_ed25519.pubCopy to Clipboard Copied! Toggle word wrap Toggle overflow Add the SSH private key identity to the SSH agent for your local user, if it has not already been added. SSH agent management of the key is required for password-less SSH authentication onto your cluster nodes, or if you want to use the
./openshift-install gathercommand.NoteOn some distributions, default SSH private key identities such as
~/.ssh/id_rsaand~/.ssh/id_dsaare managed automatically.If the
ssh-agentprocess is not already running for your local user, start it as a background task:eval "$(ssh-agent -s)"
$ eval "$(ssh-agent -s)"Copy to Clipboard Copied! Toggle word wrap Toggle overflow Example output
Agent pid 31874
Agent pid 31874Copy to Clipboard Copied! Toggle word wrap Toggle overflow NoteIf your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
Add your SSH private key to the
ssh-agent:ssh-add <path>/<file_name>
$ ssh-add <path>/<file_name>1 Copy to Clipboard Copied! Toggle word wrap Toggle overflow - 1
- Specify the path and file name for your SSH private key, such as
~/.ssh/id_ed25519
Example output
Identity added: /home/<you>/<path>/<file_name> (<computer_name>)
Identity added: /home/<you>/<path>/<file_name> (<computer_name>)Copy to Clipboard Copied! Toggle word wrap Toggle overflow
Next steps
- When you install OpenShift Container Platform, provide the SSH public key to the installation program.
4.4. Obtaining an AWS Marketplace image Copiar enlaceEnlace copiado en el portapapeles!
If you are deploying an OpenShift Container Platform cluster using an AWS Marketplace image, you must first subscribe through AWS. Subscribing to the offer provides you with the AMI ID that the installation program uses to deploy worker nodes.
You should only modify the RHCOS image for compute machines to use an AWS Marketplace image. Control plane machines and infrastructure nodes do not require an OpenShift Container Platform subscription and use the public RHCOS default image by default, which does not incur subscription costs on your AWS bill. Therefore, you should not modify the cluster default boot image or the control plane boot images. Applying the AWS Marketplace image to them will incur additional licensing costs that cannot be recovered.
Prerequisites
- You have an AWS account to purchase the offer. This account does not have to be the same account that is used to install the cluster.
Procedure
- Complete the OpenShift Container Platform subscription from the AWS Marketplace.
-
Record the AMI ID for your specific region. As part of the installation process, you must update the
install-config.yamlfile with this value before deploying the cluster.
Sample install-config.yaml file with AWS Marketplace worker nodes
4.5. Obtaining the installation program Copiar enlaceEnlace copiado en el portapapeles!
Before you install OpenShift Container Platform, download the installation file on the host you are using for installation.
Prerequisites
- You have a computer that runs Linux or macOS, with at least 1.2 GB of local disk space.
Procedure
- Go to the Cluster Type page on the Red Hat Hybrid Cloud Console. If you have a Red Hat account, log in with your credentials. If you do not, create an account.
- Select your infrastructure provider from the Run it yourself section of the page.
- Select your host operating system and architecture from the dropdown menus under OpenShift Installer and click Download Installer.
Place the downloaded file in the directory where you want to store the installation configuration files.
Important- The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both of the files are required to delete the cluster.
- Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OpenShift Container Platform uninstallation procedures for your specific cloud provider.
Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
tar -xvf openshift-install-linux.tar.gz
$ tar -xvf openshift-install-linux.tar.gzCopy to Clipboard Copied! Toggle word wrap Toggle overflow - Download your installation pull secret from Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OpenShift Container Platform components.
Alternatively, you can retrieve the installation program from the Red Hat Customer Portal, where you can specify a version of the installation program to download. However, you must have an active subscription to access this page.
4.6. Creating the installation configuration file Copiar enlaceEnlace copiado en el portapapeles!
You can customize the OpenShift Container Platform cluster you install on Amazon Web Services (AWS).
Prerequisites
- You have the OpenShift Container Platform installation program and the pull secret for your cluster.
Procedure
Create the
install-config.yamlfile.Change to the directory that contains the installation program and run the following command:
./openshift-install create install-config --dir <installation_directory>
$ ./openshift-install create install-config --dir <installation_directory>1 Copy to Clipboard Copied! Toggle word wrap Toggle overflow - 1
- For
<installation_directory>, specify the directory name to store the files that the installation program creates.
When specifying the directory:
-
Verify that the directory has the
executepermission. This permission is required to run Terraform binaries under the installation directory. Use an empty directory. Some installation assets, such as bootstrap X.509 certificates, have short expiration intervals, therefore you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OpenShift Container Platform version.
NoteAlways delete the
~/.powervsdirectory to avoid reusing a stale configuration. Run the following command:rm -rf ~/.powervs
$ rm -rf ~/.powervsCopy to Clipboard Copied! Toggle word wrap Toggle overflow
At the prompts, provide the configuration details for your cloud:
Optional: Select an SSH key to use to access your cluster machines.
NoteFor production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your
ssh-agentprocess uses.- Select AWS as the platform to target.
- If you do not have an Amazon Web Services (AWS) profile stored on your computer, enter the AWS access key ID and secret access key for the user that you configured to run the installation program.
- Select the AWS region to deploy the cluster to.
- Select the base domain for the Route 53 service that you configured for your cluster.
- Enter a descriptive name for your cluster.
Modify the
install-config.yamlfile. You can find more information about the available parameters in the "Installation configuration parameters" section.NoteIf you are installing a three-node cluster, be sure to set the
compute.replicasparameter to0. This ensures that the cluster’s control planes are schedulable. For more information, see "Installing a three-node cluster on AWS".Back up the
install-config.yamlfile so that you can use it to install multiple clusters.ImportantThe
install-config.yamlfile is consumed during the installation process. If you want to reuse the file, you must back it up now.
4.6.1. Minimum resource requirements for cluster installation Copiar enlaceEnlace copiado en el portapapeles!
Each cluster machine must meet the following minimum requirements:
| Machine | Operating System | vCPU [1] | Virtual RAM | Storage | Input/Output Per Second (IOPS)[2] |
|---|---|---|---|---|---|
| Bootstrap | RHCOS | 4 | 16 GB | 100 GB | 300 |
| Control plane | RHCOS | 4 | 16 GB | 100 GB | 300 |
| Compute | RHCOS, RHEL 8.6 and later [3] | 2 | 8 GB | 100 GB | 300 |
- One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or Hyper-Threading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = vCPUs.
- OpenShift Container Platform and Kubernetes are sensitive to disk performance, and faster storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so you might need to over-allocate storage volume to obtain sufficient performance.
- As with all user-provisioned installations, if you choose to use RHEL compute machines in your cluster, you take responsibility for all operating system life cycle management and maintenance, including performing system updates, applying patches, and completing all other required tasks. Use of RHEL 7 compute machines is deprecated and has been removed in OpenShift Container Platform 4.10 and later.
As of OpenShift Container Platform version 4.13, RHCOS is based on RHEL version 9.2, which updates the micro-architecture requirements. The following list contains the minimum instruction set architectures (ISA) that each architecture requires:
- x86-64 architecture requires x86-64-v2 ISA
- ARM64 architecture requires ARMv8.0-A ISA
- IBM Power architecture requires Power 9 ISA
- s390x architecture requires z14 ISA
For more information, see RHEL Architectures.
If an instance type for your platform meets the minimum requirements for cluster machines, it is supported to use in OpenShift Container Platform.
4.6.2. Tested instance types for AWS Copiar enlaceEnlace copiado en el portapapeles!
The following Amazon Web Services (AWS) instance types have been tested with OpenShift Container Platform.
Use the machine types included in the following charts for your AWS instances. If you use an instance type that is not listed in the chart, ensure that the instance size you use matches the minimum resource requirements that are listed in "Minimum resource requirements for cluster installation".
Example 4.1. Machine types based on 64-bit x86 architecture
-
c4.* -
c5.* -
c5a.* -
i3.* -
m4.* -
m5.* -
m5a.* -
m6i.* -
r4.* -
r5.* -
r5a.* -
r6i.* -
t3.* -
t3a.*
4.6.3. Tested instance types for AWS on 64-bit ARM infrastructures Copiar enlaceEnlace copiado en el portapapeles!
The following Amazon Web Services (AWS) 64-bit ARM instance types have been tested with OpenShift Container Platform.
Use the machine types included in the following charts for your AWS ARM instances. If you use an instance type that is not listed in the chart, ensure that the instance size you use matches the minimum resource requirements that are listed in "Minimum resource requirements for cluster installation".
Example 4.2. Machine types based on 64-bit ARM architecture
-
c6g.* -
m6g.* -
r8g.*
4.6.4. Sample customized install-config.yaml file for AWS Copiar enlaceEnlace copiado en el portapapeles!
You can customize the installation configuration file (install-config.yaml) to specify more details about your OpenShift Container Platform cluster’s platform or modify the values of the required parameters.
This sample YAML file is provided for reference only. You must obtain your install-config.yaml file by using the installation program and modify it.
- 1 12 14 20
- Required. The installation program prompts you for this value.
- 2
- Optional: Add this parameter to force the Cloud Credential Operator (CCO) to use the specified mode. By default, the CCO uses the root credentials in the
kube-systemnamespace to dynamically try to determine the capabilities of the credentials. For details about CCO modes, see the "About the Cloud Credential Operator" section in the Authentication and authorization guide. - 3 8 15
- If you do not provide these parameters and values, the installation program provides the default value.
- 4
- The
controlPlanesection is a single mapping, but thecomputesection is a sequence of mappings. To meet the requirements of the different data structures, the first line of thecomputesection must begin with a hyphen,-, and the first line of thecontrolPlanesection must not. Only one control plane pool is used. - 5 9
- Whether to enable or disable simultaneous multithreading, or
hyperthreading. By default, simultaneous multithreading is enabled to increase the performance of your machines' cores. You can disable it by setting the parameter value toDisabled. If you disable simultaneous multithreading in some cluster machines, you must disable it in all cluster machines.ImportantIf you disable simultaneous multithreading, ensure that your capacity planning accounts for the dramatically decreased machine performance. Use larger instance types, such as
m4.2xlargeorm5.2xlarge, for your machines if you disable simultaneous multithreading. - 6 10
- To configure faster storage for etcd, especially for larger clusters, set the storage type as
io1and setiopsto2000. - 7 11
- Whether to require the Amazon EC2 Instance Metadata Service v2 (IMDSv2). To require IMDSv2, set the parameter value to
Required. To allow the use of both IMDSv1 and IMDSv2, set the parameter value toOptional. If no value is specified, both IMDSv1 and IMDSv2 are allowed.NoteThe IMDS configuration for control plane machines that is set during cluster installation can only be changed by using the AWS CLI. The IMDS configuration for compute machines can be changed by using compute machine sets.
- 13
- The cluster network plugin to install. The supported values are
OVNKubernetesandOpenShiftSDN. The default value isOVNKubernetes. - 16
- The ID of the AMI used to boot machines for the cluster. If set, the AMI must belong to the same region as the cluster.
- 17
- The AWS service endpoints. Custom endpoints are required when installing to an unknown AWS region. The endpoint URL must use the
httpsprotocol and the host must trust the certificate. - 18
- Whether to enable or disable FIPS mode. By default, FIPS mode is not enabled. If FIPS mode is enabled, the Red Hat Enterprise Linux CoreOS (RHCOS) machines that OpenShift Container Platform runs on bypass the default Kubernetes cryptography suite and use the cryptography modules that are provided with RHCOS instead.Important
To enable FIPS mode for your cluster, you must run the installation program from a Red Hat Enterprise Linux (RHEL) computer configured to operate in FIPS mode. For more information about configuring FIPS mode on RHEL, see Installing the system in FIPS mode. When running Red Hat Enterprise Linux (RHEL) or Red Hat Enterprise Linux CoreOS (RHCOS) booted in FIPS mode, OpenShift Container Platform core components use the RHEL cryptographic libraries that have been submitted to NIST for FIPS 140-2/140-3 Validation on only the x86_64, ppc64le, and s390x architectures.
- 19
- You can optionally provide the
sshKeyvalue that you use to access the machines in your cluster.NoteFor production OpenShift Container Platform clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your
ssh-agentprocess uses.
4.6.5. Configuring the cluster-wide proxy during installation Copiar enlaceEnlace copiado en el portapapeles!
Production environments can deny direct access to the internet and instead have an HTTP or HTTPS proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.
Prerequisites
-
You have an existing
install-config.yamlfile. You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the
Proxyobject’sspec.noProxyfield to bypass the proxy if necessary.NoteThe
Proxyobjectstatus.noProxyfield is populated with the values of thenetworking.machineNetwork[].cidr,networking.clusterNetwork[].cidr, andnetworking.serviceNetwork[]fields from your installation configuration.For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the
Proxyobjectstatus.noProxyfield is also populated with the instance metadata endpoint (169.254.169.254).
Procedure
Edit your
install-config.yamlfile and add the proxy settings. For example:Copy to Clipboard Copied! Toggle word wrap Toggle overflow - 1
- A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be
http. - 2
- A proxy URL to use for creating HTTPS connections outside the cluster.
- 3
- A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with
.to match subdomains only. For example,.y.commatchesx.y.com, but noty.com. Use*to bypass the proxy for all destinations. If you have added the AmazonEC2,Elastic Load Balancing, andS3VPC endpoints to your VPC, you must add these endpoints to thenoProxyfield. - 4
- If provided, the installation program generates a config map that is named
user-ca-bundlein theopenshift-confignamespace that contains one or more additional CA certificates that are required for proxying HTTPS connections. The Cluster Network Operator then creates atrusted-ca-bundleconfig map that merges these contents with the Red Hat Enterprise Linux CoreOS (RHCOS) trust bundle, and this config map is referenced in thetrustedCAfield of theProxyobject. TheadditionalTrustBundlefield is required unless the proxy’s identity certificate is signed by an authority from the RHCOS trust bundle. - 5
- Optional: The policy to determine the configuration of the
Proxyobject to reference theuser-ca-bundleconfig map in thetrustedCAfield. The allowed values areProxyonlyandAlways. UseProxyonlyto reference theuser-ca-bundleconfig map only whenhttp/httpsproxy is configured. UseAlwaysto always reference theuser-ca-bundleconfig map. The default value isProxyonly.
NoteThe installation program does not support the proxy
readinessEndpointsfield.NoteIf the installer times out, restart and then complete the deployment by using the
wait-forcommand of the installer. For example:./openshift-install wait-for install-complete --log-level debug
$ ./openshift-install wait-for install-complete --log-level debugCopy to Clipboard Copied! Toggle word wrap Toggle overflow - Save the file and reference it when installing OpenShift Container Platform.
The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.
Only the Proxy object named cluster is supported, and no additional proxies can be created.
4.7. Installing the OpenShift CLI by downloading the binary Copiar enlaceEnlace copiado en el portapapeles!
You can install the OpenShift CLI (oc) to interact with OpenShift Container Platform from a command-line interface. You can install oc on Linux, Windows, or macOS.
If you installed an earlier version of oc, you cannot use it to complete all of the commands in OpenShift Container Platform 4.14. Download and install the new version of oc.
4.7.1. Installing the OpenShift CLI on Linux Copiar enlaceEnlace copiado en el portapapeles!
You can install the OpenShift CLI (oc) binary on Linux by using the following procedure.
Procedure
- Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
- Select the architecture from the Product Variant drop-down list.
- Select the appropriate version from the Version drop-down list.
- Click Download Now next to the OpenShift v4.14 Linux Client entry and save the file.
Unpack the archive:
tar xvf <file>
$ tar xvf <file>Copy to Clipboard Copied! Toggle word wrap Toggle overflow Place the
ocbinary in a directory that is on yourPATH.To check your
PATH, execute the following command:echo $PATH
$ echo $PATHCopy to Clipboard Copied! Toggle word wrap Toggle overflow
Verification
After you install the OpenShift CLI, it is available using the
occommand:oc <command>
$ oc <command>Copy to Clipboard Copied! Toggle word wrap Toggle overflow
4.7.2. Installing the OpenShift CLI on Windows Copiar enlaceEnlace copiado en el portapapeles!
You can install the OpenShift CLI (oc) binary on Windows by using the following procedure.
Procedure
- Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
- Select the appropriate version from the Version drop-down list.
- Click Download Now next to the OpenShift v4.14 Windows Client entry and save the file.
- Unzip the archive with a ZIP program.
Move the
ocbinary to a directory that is on yourPATH.To check your
PATH, open the command prompt and execute the following command:path
C:\> pathCopy to Clipboard Copied! Toggle word wrap Toggle overflow
Verification
After you install the OpenShift CLI, it is available using the
occommand:oc <command>
C:\> oc <command>Copy to Clipboard Copied! Toggle word wrap Toggle overflow
4.7.3. Installing the OpenShift CLI on macOS Copiar enlaceEnlace copiado en el portapapeles!
You can install the OpenShift CLI (oc) binary on macOS by using the following procedure.
Procedure
- Navigate to the OpenShift Container Platform downloads page on the Red Hat Customer Portal.
- Select the appropriate version from the Version drop-down list.
Click Download Now next to the OpenShift v4.14 macOS Client entry and save the file.
NoteFor macOS arm64, choose the OpenShift v4.14 macOS arm64 Client entry.
- Unpack and unzip the archive.
Move the
ocbinary to a directory on your PATH.To check your
PATH, open a terminal and execute the following command:echo $PATH
$ echo $PATHCopy to Clipboard Copied! Toggle word wrap Toggle overflow
Verification
Verify your installation by using an
occommand:oc <command>
$ oc <command>Copy to Clipboard Copied! Toggle word wrap Toggle overflow
4.8. Alternatives to storing administrator-level secrets in the kube-system project Copiar enlaceEnlace copiado en el portapapeles!
By default, administrator secrets are stored in the kube-system project. If you configured the credentialsMode parameter in the install-config.yaml file to Manual, you must use one of the following alternatives:
- To manage long-term cloud credentials manually, follow the procedure in Manually creating long-term credentials.
- To implement short-term credentials that are managed outside the cluster for individual components, follow the procedures in Configuring an AWS cluster to use short-term credentials.
4.8.1. Manually creating long-term credentials Copiar enlaceEnlace copiado en el portapapeles!
The Cloud Credential Operator (CCO) can be put into manual mode prior to installation in environments where the cloud identity and access management (IAM) APIs are not reachable, or the administrator prefers not to store an administrator-level credential secret in the cluster kube-system namespace.
Procedure
If you did not set the
credentialsModeparameter in theinstall-config.yamlconfiguration file toManual, modify the value as shown:Sample configuration file snippet
apiVersion: v1 baseDomain: example.com credentialsMode: Manual # ...
apiVersion: v1 baseDomain: example.com credentialsMode: Manual # ...Copy to Clipboard Copied! Toggle word wrap Toggle overflow If you have not previously created installation manifest files, do so by running the following command:
openshift-install create manifests --dir <installation_directory>
$ openshift-install create manifests --dir <installation_directory>Copy to Clipboard Copied! Toggle word wrap Toggle overflow where
<installation_directory>is the directory in which the installation program creates files.Set a
$RELEASE_IMAGEvariable with the release image from your installation file by running the following command:RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')Copy to Clipboard Copied! Toggle word wrap Toggle overflow Extract the list of
CredentialsRequestcustom resources (CRs) from the OpenShift Container Platform release image by running the following command:Copy to Clipboard Copied! Toggle word wrap Toggle overflow - 1
- The
--includedparameter includes only the manifests that your specific cluster configuration requires. - 2
- Specify the location of the
install-config.yamlfile. - 3
- Specify the path to the directory where you want to store the
CredentialsRequestobjects. If the specified directory does not exist, this command creates it.
This command creates a YAML file for each
CredentialsRequestobject.Sample
CredentialsRequestobjectCopy to Clipboard Copied! Toggle word wrap Toggle overflow Create YAML files for secrets in the
openshift-installmanifests directory that you generated previously. The secrets must be stored using the namespace and secret name defined in thespec.secretReffor eachCredentialsRequestobject.Sample
CredentialsRequestobject with secretsCopy to Clipboard Copied! Toggle word wrap Toggle overflow Sample
SecretobjectCopy to Clipboard Copied! Toggle word wrap Toggle overflow
Before upgrading a cluster that uses manually maintained credentials, you must ensure that the CCO is in an upgradeable state.
4.8.2. Configuring an AWS cluster to use short-term credentials Copiar enlaceEnlace copiado en el portapapeles!
To install a cluster that is configured to use the AWS Security Token Service (STS), you must configure the CCO utility and create the required AWS resources for your cluster.
4.8.2.1. Configuring the Cloud Credential Operator utility Copiar enlaceEnlace copiado en el portapapeles!
To create and manage cloud credentials from outside of the cluster when the Cloud Credential Operator (CCO) is operating in manual mode, extract and prepare the CCO utility (ccoctl) binary.
The ccoctl utility is a Linux binary that must run in a Linux environment.
Prerequisites
- You have access to an OpenShift Container Platform account with cluster administrator access.
-
You have installed the OpenShift CLI (
oc).
You have created an AWS account for the
ccoctlutility to use with the following permissions:Example 4.3. Required AWS permissions
Required
iampermissions-
iam:CreateOpenIDConnectProvider -
iam:CreateRole -
iam:DeleteOpenIDConnectProvider -
iam:DeleteRole -
iam:DeleteRolePolicy -
iam:GetOpenIDConnectProvider -
iam:GetRole -
iam:GetUser -
iam:ListOpenIDConnectProviders -
iam:ListRolePolicies -
iam:ListRoles -
iam:PutRolePolicy -
iam:TagOpenIDConnectProvider -
iam:TagRole
Required
s3permissions-
s3:CreateBucket -
s3:DeleteBucket -
s3:DeleteObject -
s3:GetBucketAcl -
s3:GetBucketTagging -
s3:GetObject -
s3:GetObjectAcl -
s3:GetObjectTagging -
s3:ListBucket -
s3:PutBucketAcl -
s3:PutBucketPolicy -
s3:PutBucketPublicAccessBlock -
s3:PutBucketTagging -
s3:PutObject -
s3:PutObjectAcl -
s3:PutObjectTagging
Required
cloudfrontpermissions-
cloudfront:ListCloudFrontOriginAccessIdentities -
cloudfront:ListDistributions -
cloudfront:ListTagsForResource
If you plan to store the OIDC configuration in a private S3 bucket that is accessed by the IAM identity provider through a public CloudFront distribution URL, the AWS account that runs the
ccoctlutility requires the following additional permissions:Example 4.4. Additional permissions for a private S3 bucket with CloudFront
-
cloudfront:CreateCloudFrontOriginAccessIdentity -
cloudfront:CreateDistribution -
cloudfront:DeleteCloudFrontOriginAccessIdentity -
cloudfront:DeleteDistribution -
cloudfront:GetCloudFrontOriginAccessIdentity -
cloudfront:GetCloudFrontOriginAccessIdentityConfig -
cloudfront:GetDistribution -
cloudfront:TagResource -
cloudfront:UpdateDistribution
NoteThese additional permissions support the use of the
--create-private-s3-bucketoption when processing credentials requests with theccoctl aws create-allcommand.-
Procedure
Set a variable for the OpenShift Container Platform release image by running the following command:
RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')Copy to Clipboard Copied! Toggle word wrap Toggle overflow Obtain the CCO container image from the OpenShift Container Platform release image by running the following command:
CCO_IMAGE=$(oc adm release info --image-for='cloud-credential-operator' $RELEASE_IMAGE -a ~/.pull-secret)
$ CCO_IMAGE=$(oc adm release info --image-for='cloud-credential-operator' $RELEASE_IMAGE -a ~/.pull-secret)Copy to Clipboard Copied! Toggle word wrap Toggle overflow NoteEnsure that the architecture of the
$RELEASE_IMAGEmatches the architecture of the environment in which you will use theccoctltool.Extract the
ccoctlbinary from the CCO container image within the OpenShift Container Platform release image by running the following command:oc image extract $CCO_IMAGE --file="/usr/bin/ccoctl" -a ~/.pull-secret
$ oc image extract $CCO_IMAGE --file="/usr/bin/ccoctl" -a ~/.pull-secretCopy to Clipboard Copied! Toggle word wrap Toggle overflow Change the permissions to make
ccoctlexecutable by running the following command:chmod 775 ccoctl
$ chmod 775 ccoctlCopy to Clipboard Copied! Toggle word wrap Toggle overflow
Verification
To verify that
ccoctlis ready to use, display the help file. Use a relative file name when you run the command, for example:./ccoctl.rhel9
$ ./ccoctl.rhel9Copy to Clipboard Copied! Toggle word wrap Toggle overflow Example output
Copy to Clipboard Copied! Toggle word wrap Toggle overflow
4.8.2.2. Creating AWS resources with the Cloud Credential Operator utility Copiar enlaceEnlace copiado en el portapapeles!
You have the following options when creating AWS resources:
-
You can use the
ccoctl aws create-allcommand to create the AWS resources automatically. This is the quickest way to create the resources. See Creating AWS resources with a single command. -
If you need to review the JSON files that the
ccoctltool creates before modifying AWS resources, or if the process theccoctltool uses to create AWS resources automatically does not meet the requirements of your organization, you can create the AWS resources individually. See Creating AWS resources individually.
4.8.2.2.1. Creating AWS resources with a single command Copiar enlaceEnlace copiado en el portapapeles!
If the process the ccoctl tool uses to create AWS resources automatically meets the requirements of your organization, you can use the ccoctl aws create-all command to automate the creation of AWS resources.
Otherwise, you can create the AWS resources individually. For more information, see "Creating AWS resources individually".
By default, ccoctl creates objects in the directory in which the commands are run. To create the objects in a different directory, use the --output-dir flag. This procedure uses <path_to_ccoctl_output_dir> to refer to this directory.
Prerequisites
You must have:
-
Extracted and prepared the
ccoctlbinary.
Procedure
Set a
$RELEASE_IMAGEvariable with the release image from your installation file by running the following command:RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')Copy to Clipboard Copied! Toggle word wrap Toggle overflow Extract the list of
CredentialsRequestobjects from the OpenShift Container Platform release image by running the following command:Copy to Clipboard Copied! Toggle word wrap Toggle overflow - 1
- The
--includedparameter includes only the manifests that your specific cluster configuration requires. - 2
- Specify the location of the
install-config.yamlfile. - 3
- Specify the path to the directory where you want to store the
CredentialsRequestobjects. If the specified directory does not exist, this command creates it.
NoteThis command might take a few moments to run.
Use the
ccoctltool to process allCredentialsRequestobjects by running the following command:Copy to Clipboard Copied! Toggle word wrap Toggle overflow - 1
- Specify the name used to tag any cloud resources that are created for tracking.
- 2
- Specify the AWS region in which cloud resources will be created.
- 3
- Specify the directory containing the files for the component
CredentialsRequestobjects. - 4
- Optional: Specify the directory in which you want the
ccoctlutility to create objects. By default, the utility creates objects in the directory in which the commands are run. - 5
- Optional: By default, the
ccoctlutility stores the OpenID Connect (OIDC) configuration files in a public S3 bucket and uses the S3 URL as the public OIDC endpoint. To store the OIDC configuration in a private S3 bucket that is accessed by the IAM identity provider through a public CloudFront distribution URL instead, use the--create-private-s3-bucketparameter.
NoteIf your cluster uses Technology Preview features that are enabled by the
TechPreviewNoUpgradefeature set, you must include the--enable-tech-previewparameter.
Verification
To verify that the OpenShift Container Platform secrets are created, list the files in the
<path_to_ccoctl_output_dir>/manifestsdirectory:ls <path_to_ccoctl_output_dir>/manifests
$ ls <path_to_ccoctl_output_dir>/manifestsCopy to Clipboard Copied! Toggle word wrap Toggle overflow Example output
Copy to Clipboard Copied! Toggle word wrap Toggle overflow You can verify that the IAM roles are created by querying AWS. For more information, refer to AWS documentation on listing IAM roles.
4.8.2.2.2. Creating AWS resources individually Copiar enlaceEnlace copiado en el portapapeles!
You can use the ccoctl tool to create AWS resources individually. This option might be useful for an organization that shares the responsibility for creating these resources among different users or departments.
Otherwise, you can use the ccoctl aws create-all command to create the AWS resources automatically. For more information, see "Creating AWS resources with a single command".
By default, ccoctl creates objects in the directory in which the commands are run. To create the objects in a different directory, use the --output-dir flag. This procedure uses <path_to_ccoctl_output_dir> to refer to this directory.
Some ccoctl commands make AWS API calls to create or modify AWS resources. You can use the --dry-run flag to avoid making API calls. Using this flag creates JSON files on the local file system instead. You can review and modify the JSON files and then apply them with the AWS CLI tool using the --cli-input-json parameters.
Prerequisites
-
Extract and prepare the
ccoctlbinary.
Procedure
Generate the public and private RSA key files that are used to set up the OpenID Connect provider for the cluster by running the following command:
ccoctl aws create-key-pair
$ ccoctl aws create-key-pairCopy to Clipboard Copied! Toggle word wrap Toggle overflow Example output
2021/04/13 11:01:02 Generating RSA keypair 2021/04/13 11:01:03 Writing private key to /<path_to_ccoctl_output_dir>/serviceaccount-signer.private 2021/04/13 11:01:03 Writing public key to /<path_to_ccoctl_output_dir>/serviceaccount-signer.public 2021/04/13 11:01:03 Copying signing key for use by installer
2021/04/13 11:01:02 Generating RSA keypair 2021/04/13 11:01:03 Writing private key to /<path_to_ccoctl_output_dir>/serviceaccount-signer.private 2021/04/13 11:01:03 Writing public key to /<path_to_ccoctl_output_dir>/serviceaccount-signer.public 2021/04/13 11:01:03 Copying signing key for use by installerCopy to Clipboard Copied! Toggle word wrap Toggle overflow where
serviceaccount-signer.privateandserviceaccount-signer.publicare the generated key files.This command also creates a private key that the cluster requires during installation in
/<path_to_ccoctl_output_dir>/tls/bound-service-account-signing-key.key.Create an OpenID Connect identity provider and S3 bucket on AWS by running the following command:
ccoctl aws create-identity-provider \ --name=<name> \ --region=<aws_region> \ --public-key-file=<path_to_ccoctl_output_dir>/serviceaccount-signer.public
$ ccoctl aws create-identity-provider \ --name=<name> \1 --region=<aws_region> \2 --public-key-file=<path_to_ccoctl_output_dir>/serviceaccount-signer.public3 Copy to Clipboard Copied! Toggle word wrap Toggle overflow Example output
2021/04/13 11:16:09 Bucket <name>-oidc created 2021/04/13 11:16:10 OpenID Connect discovery document in the S3 bucket <name>-oidc at .well-known/openid-configuration updated 2021/04/13 11:16:10 Reading public key 2021/04/13 11:16:10 JSON web key set (JWKS) in the S3 bucket <name>-oidc at keys.json updated 2021/04/13 11:16:18 Identity Provider created with ARN: arn:aws:iam::<aws_account_id>:oidc-provider/<name>-oidc.s3.<aws_region>.amazonaws.com
2021/04/13 11:16:09 Bucket <name>-oidc created 2021/04/13 11:16:10 OpenID Connect discovery document in the S3 bucket <name>-oidc at .well-known/openid-configuration updated 2021/04/13 11:16:10 Reading public key 2021/04/13 11:16:10 JSON web key set (JWKS) in the S3 bucket <name>-oidc at keys.json updated 2021/04/13 11:16:18 Identity Provider created with ARN: arn:aws:iam::<aws_account_id>:oidc-provider/<name>-oidc.s3.<aws_region>.amazonaws.comCopy to Clipboard Copied! Toggle word wrap Toggle overflow where
openid-configurationis a discovery document andkeys.jsonis a JSON web key set file.This command also creates a YAML configuration file in
/<path_to_ccoctl_output_dir>/manifests/cluster-authentication-02-config.yaml. This file sets the issuer URL field for the service account tokens that the cluster generates, so that the AWS IAM identity provider trusts the tokens.Create IAM roles for each component in the cluster:
Set a
$RELEASE_IMAGEvariable with the release image from your installation file by running the following command:RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')Copy to Clipboard Copied! Toggle word wrap Toggle overflow Extract the list of
CredentialsRequestobjects from the OpenShift Container Platform release image:Copy to Clipboard Copied! Toggle word wrap Toggle overflow - 1
- The
--includedparameter includes only the manifests that your specific cluster configuration requires. - 2
- Specify the location of the
install-config.yamlfile. - 3
- Specify the path to the directory where you want to store the
CredentialsRequestobjects. If the specified directory does not exist, this command creates it.
Use the
ccoctltool to process allCredentialsRequestobjects by running the following command:ccoctl aws create-iam-roles \ --name=<name> \ --region=<aws_region> \ --credentials-requests-dir=<path_to_credentials_requests_directory> \ --identity-provider-arn=arn:aws:iam::<aws_account_id>:oidc-provider/<name>-oidc.s3.<aws_region>.amazonaws.com
$ ccoctl aws create-iam-roles \ --name=<name> \ --region=<aws_region> \ --credentials-requests-dir=<path_to_credentials_requests_directory> \ --identity-provider-arn=arn:aws:iam::<aws_account_id>:oidc-provider/<name>-oidc.s3.<aws_region>.amazonaws.comCopy to Clipboard Copied! Toggle word wrap Toggle overflow NoteFor AWS environments that use alternative IAM API endpoints, such as GovCloud, you must also specify your region with the
--regionparameter.If your cluster uses Technology Preview features that are enabled by the
TechPreviewNoUpgradefeature set, you must include the--enable-tech-previewparameter.For each
CredentialsRequestobject,ccoctlcreates an IAM role with a trust policy that is tied to the specified OIDC identity provider, and a permissions policy as defined in eachCredentialsRequestobject from the OpenShift Container Platform release image.
Verification
To verify that the OpenShift Container Platform secrets are created, list the files in the
<path_to_ccoctl_output_dir>/manifestsdirectory:ls <path_to_ccoctl_output_dir>/manifests
$ ls <path_to_ccoctl_output_dir>/manifestsCopy to Clipboard Copied! Toggle word wrap Toggle overflow Example output
Copy to Clipboard Copied! Toggle word wrap Toggle overflow You can verify that the IAM roles are created by querying AWS. For more information, refer to AWS documentation on listing IAM roles.
4.8.2.3. Incorporating the Cloud Credential Operator utility manifests Copiar enlaceEnlace copiado en el portapapeles!
To implement short-term security credentials managed outside the cluster for individual components, you must move the manifest files that the Cloud Credential Operator utility (ccoctl) created to the correct directories for the installation program.
Prerequisites
- You have configured an account with the cloud platform that hosts your cluster.
-
You have configured the Cloud Credential Operator utility (
ccoctl). -
You have created the cloud provider resources that are required for your cluster with the
ccoctlutility.
Procedure
If you did not set the
credentialsModeparameter in theinstall-config.yamlconfiguration file toManual, modify the value as shown:Sample configuration file snippet
apiVersion: v1 baseDomain: example.com credentialsMode: Manual # ...
apiVersion: v1 baseDomain: example.com credentialsMode: Manual # ...Copy to Clipboard Copied! Toggle word wrap Toggle overflow If you have not previously created installation manifest files, do so by running the following command:
openshift-install create manifests --dir <installation_directory>
$ openshift-install create manifests --dir <installation_directory>Copy to Clipboard Copied! Toggle word wrap Toggle overflow where
<installation_directory>is the directory in which the installation program creates files.Copy the manifests that the
ccoctlutility generated to themanifestsdirectory that the installation program created by running the following command:cp /<path_to_ccoctl_output_dir>/manifests/* ./manifests/
$ cp /<path_to_ccoctl_output_dir>/manifests/* ./manifests/Copy to Clipboard Copied! Toggle word wrap Toggle overflow Copy the
tlsdirectory that contains the private key to the installation directory:cp -a /<path_to_ccoctl_output_dir>/tls .
$ cp -a /<path_to_ccoctl_output_dir>/tls .Copy to Clipboard Copied! Toggle word wrap Toggle overflow
4.9. Deploying the cluster Copiar enlaceEnlace copiado en el portapapeles!
You can install OpenShift Container Platform on a compatible cloud platform.
You can run the create cluster command of the installation program only once, during initial installation.
Prerequisites
- You have configured an account with the cloud platform that hosts your cluster.
- You have the OpenShift Container Platform installation program and the pull secret for your cluster.
- You have verified that the cloud provider account on your host has the correct permissions to deploy the cluster. An account with incorrect permissions causes the installation process to fail with an error message that displays the missing permissions.
Procedure
Change to the directory that contains the installation program and initialize the cluster deployment:
./openshift-install create cluster --dir <installation_directory> \ --log-level=info$ ./openshift-install create cluster --dir <installation_directory> \1 --log-level=info2 Copy to Clipboard Copied! Toggle word wrap Toggle overflow Optional: Remove or disable the
AdministratorAccesspolicy from the IAM account that you used to install the cluster.NoteThe elevated permissions provided by the
AdministratorAccesspolicy are required only during installation.
Verification
When the cluster deployment completes successfully:
-
The terminal displays directions for accessing your cluster, including a link to the web console and credentials for the
kubeadminuser. -
Credential information also outputs to
<installation_directory>/.openshift_install.log.
Do not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.
Example output
-
The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending
node-bootstrappercertificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information. - It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.
4.10. Logging in to the cluster by using the CLI Copiar enlaceEnlace copiado en el portapapeles!
You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OpenShift Container Platform installation.
Prerequisites
- You deployed an OpenShift Container Platform cluster.
-
You installed the
ocCLI.
Procedure
Export the
kubeadmincredentials:export KUBECONFIG=<installation_directory>/auth/kubeconfig
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig1 Copy to Clipboard Copied! Toggle word wrap Toggle overflow - 1
- For
<installation_directory>, specify the path to the directory that you stored the installation files in.
Verify you can run
occommands successfully using the exported configuration:oc whoami
$ oc whoamiCopy to Clipboard Copied! Toggle word wrap Toggle overflow Example output
system:admin
system:adminCopy to Clipboard Copied! Toggle word wrap Toggle overflow
/validating-an-installation.adoc
4.11. Logging in to the cluster by using the web console Copiar enlaceEnlace copiado en el portapapeles!
The kubeadmin user exists by default after an OpenShift Container Platform installation. You can log in to your cluster as the kubeadmin user by using the OpenShift Container Platform web console.
Prerequisites
- You have access to the installation host.
- You completed a cluster installation and all cluster Operators are available.
Procedure
Obtain the password for the
kubeadminuser from thekubeadmin-passwordfile on the installation host:cat <installation_directory>/auth/kubeadmin-password
$ cat <installation_directory>/auth/kubeadmin-passwordCopy to Clipboard Copied! Toggle word wrap Toggle overflow NoteAlternatively, you can obtain the
kubeadminpassword from the<installation_directory>/.openshift_install.loglog file on the installation host.List the OpenShift Container Platform web console route:
oc get routes -n openshift-console | grep 'console-openshift'
$ oc get routes -n openshift-console | grep 'console-openshift'Copy to Clipboard Copied! Toggle word wrap Toggle overflow NoteAlternatively, you can obtain the OpenShift Container Platform route from the
<installation_directory>/.openshift_install.loglog file on the installation host.Example output
console console-openshift-console.apps.<cluster_name>.<base_domain> console https reencrypt/Redirect None
console console-openshift-console.apps.<cluster_name>.<base_domain> console https reencrypt/Redirect NoneCopy to Clipboard Copied! Toggle word wrap Toggle overflow -
Navigate to the route detailed in the output of the preceding command in a web browser and log in as the
kubeadminuser.
4.12. Telemetry access for OpenShift Container Platform Copiar enlaceEnlace copiado en el portapapeles!
In OpenShift Container Platform 4.14, the Telemetry service, which runs by default to provide metrics about cluster health and the success of updates, requires internet access. If your cluster is connected to the internet, Telemetry runs automatically, and your cluster is registered to OpenShift Cluster Manager.
After you confirm that your OpenShift Cluster Manager inventory is correct, either maintained automatically by Telemetry or manually by using OpenShift Cluster Manager, use subscription watch to track your OpenShift Container Platform subscriptions at the account or multi-cluster level.