
OpenShift Container Platform 4.18

Machine configuration

Managing and applying configuration and updates of the base operating system and
container runtimes in OpenShift Container Platform

Last Updated: 2025-12-23

OpenShift Container Platform 4.18 Machine configuration

Managing and applying configuration and updates of the base operating system and container
runtimes in OpenShift Container Platform

Legal Notice

Copyright © Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for managing changes to systemd, CRI-O, Kubelet, the kernel,
and other system features by using MachineConfig, KubeletConfig, and ContainerRuntimeConfig
objects. In addition, image layering allows you to easily customize the underlying node operating
system by layering additional images onto the base image of any of your cluster worker nodes.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. MACHINE CONFIGURATION OVERVIEW
1.1. ABOUT THE MACHINE CONFIG OPERATOR
1.2. MACHINE CONFIG OVERVIEW

1.2.1. What can you change with machine configs?
1.2.2. Node configuration management with machine config pools

1.3. UNDERSTANDING THE MACHINE CONFIG OPERATOR NODE DRAIN BEHAVIOR
1.4. UNDERSTANDING CONFIGURATION DRIFT DETECTION
1.5. CHECKING MACHINE CONFIG POOL STATUS
1.6. ABOUT NODE STATUS DURING UPDATES

1.6.1. Checking node status during updates
1.7. UNDERSTANDING MACHINE CONFIG OPERATOR CERTIFICATES

1.7.1. Viewing and interacting with certificates

CHAPTER 2. USING MACHINE CONFIG OBJECTS TO CONFIGURE NODES
2.1. CONFIGURING CHRONY TIME SERVICE
2.2. DISABLING THE CHRONY TIME SERVICE
2.3. ADDING KERNEL ARGUMENTS TO NODES
2.4. ENABLING MULTIPATHING WITH KERNEL ARGUMENTS ON RHCOS
2.5. ADDING A REAL-TIME KERNEL TO NODES
2.6. CONFIGURING JOURNALD SETTINGS
2.7. ADDING EXTENSIONS TO RHCOS
2.8. LOADING CUSTOM FIRMWARE BLOBS IN THE MACHINE CONFIG MANIFEST
2.9. CHANGING THE CORE USER PASSWORD FOR NODE ACCESS

CHAPTER 3. USING NODE DISRUPTION POLICIES TO MINIMIZE DISRUPTION FROM MACHINE CONFIG
CHANGES

3.1. EXAMPLE NODE DISRUPTION POLICIES
3.2. CONFIGURING NODE RESTART BEHAVIORS UPON MACHINE CONFIG CHANGES

CHAPTER 4. CONFIGURING MCO-RELATED CUSTOM RESOURCES
4.1. CREATING A KUBELETCONFIG CR TO EDIT KUBELET PARAMETERS
4.2. CREATING A CONTAINERRUNTIMECONFIG CR TO EDIT CRI-O PARAMETERS
4.3. SETTING THE DEFAULT MAXIMUM CONTAINER ROOT PARTITION SIZE FOR OVERLAY WITH CRI-O
4.4. CREATING A DROP-IN FILE FOR THE DEFAULT CRI-O CAPABILITIES

CHAPTER 5. UPDATED BOOT IMAGES
5.1. CONFIGURING UPDATED BOOT IMAGES
5.2. DISABLING UPDATED BOOT IMAGES

CHAPTER 6. MANAGING UNUSED RENDERED MACHINE CONFIGS
6.1. VIEWING RENDERED MACHINE CONFIGS
6.2. REMOVING UNUSED RENDERED MACHINE CONFIGS

CHAPTER 7. RHCOS IMAGE LAYERING
7.1. ABOUT RHCOS IMAGE LAYERING
7.2. EXAMPLE CONTAINERFILES
7.3. USING ON-CLUSTER LAYERING TO APPLY A CUSTOM LAYERED IMAGE

7.3.1. On-cluster layering known limitations
7.3.2. Modifying a custom layered image
7.3.3. Rebuilding an on-cluster custom layered image
7.3.4. Reverting an on-cluster custom layered image
7.3.5. Removing an on-cluster custom layered image

7.4. USING OUT-OF-CLUSTER LAYERING TO APPLY A CUSTOM LAYERED IMAGE

4
4
6
7
9

10
11

13
17

24
27
27

30
30
31

33
36
39
41

43
45
46

49
50
53

57
57
62
66
68

70
71

74

76
76
77

79
79
80
82
84
89
92
93
95
96

Table of Contents

1

. .

7.4.1. Reverting an out-of-cluster node
7.5. UPDATING WITH A RHCOS CUSTOM LAYERED IMAGE

CHAPTER 8. MACHINE CONFIG DAEMON METRICS OVERVIEW
8.1. UNDERSTANDING MACHINE CONFIG DAEMON METRICS

100
101

103
103

OpenShift Container Platform 4.18 Machine configuration

2

Table of Contents

3

CHAPTER 1. MACHINE CONFIGURATION OVERVIEW
There are times when you need to make changes to the operating systems running on OpenShift
Container Platform nodes. This can include changing settings for network time service, adding kernel
arguments, or configuring journaling in a specific way.

Aside from a few specialized features, most changes to operating systems on OpenShift Container
Platform nodes can be done by creating what are referred to as MachineConfig objects that are
managed by the Machine Config Operator. For example, you can use the Machine Config Operator
(MCO) and machine configs to manage update to systemd, CRI-O and kubelet, the kernel, Network
Manager and other system features.

Tasks in this section describe how to use features of the Machine Config Operator to configure
operating system features on OpenShift Container Platform nodes.

IMPORTANT

NetworkManager stores new network configurations to /etc/NetworkManager/system-
connections/ in a key file format.

Previously, NetworkManager stored new network configurations to
/etc/sysconfig/network-scripts/ in the ifcfg format. Starting with RHEL 9.0, RHEL stores
new network configurations at /etc/NetworkManager/system-connections/ in a key file
format. The connections configurations stored to /etc/sysconfig/network-scripts/ in the
old format still work uninterrupted. Modifications in existing profiles continue updating
the older files.

1.1. ABOUT THE MACHINE CONFIG OPERATOR

OpenShift Container Platform 4.18 integrates both operating system and cluster management. Because
the cluster manages its own updates, including updates to Red Hat Enterprise Linux CoreOS (RHCOS)
on cluster nodes, OpenShift Container Platform provides an opinionated lifecycle management
experience that simplifies the orchestration of node upgrades.

OpenShift Container Platform employs three daemon sets and controllers to simplify node
management. These daemon sets orchestrate operating system updates and configuration changes to
the hosts by using standard Kubernetes-style constructs. They include:

The machine-config-controller, which coordinates machine upgrades from the control plane. It
monitors all of the cluster nodes and orchestrates their configuration updates.

The machine-config-daemon daemon set, which runs on each node in the cluster and updates
a machine to configuration as defined by machine config and as instructed by the
MachineConfigController. When the node detects a change, it drains off its pods, applies the
update, and reboots. These changes come in the form of Ignition configuration files that apply
the specified machine configuration and control kubelet configuration. The update itself is
delivered in a container. This process is key to the success of managing OpenShift Container
Platform and RHCOS updates together.

The machine-config-server daemon set, which provides the Ignition config files to control
plane nodes as they join the cluster.

The machine configuration is a subset of the Ignition configuration. The machine-config-daemon reads
the machine configuration to see if it needs to do an OSTree update or if it must apply a series of
systemd kubelet file changes, configuration changes, or other changes to the operating system or

OpenShift Container Platform 4.18 Machine configuration

4

OpenShift Container Platform configuration.

When you perform node management operations, you create or modify a KubeletConfig custom
resource (CR).

IMPORTANT

When changes are made to a machine configuration, the Machine Config Operator
(MCO) automatically reboots all corresponding nodes in order for the changes to take
effect.

You can mitigate the disruption caused by some machine config changes by using a node
disruption policy. See Understanding node restart behaviors after machine config changes .

Alternatively, you can prevent the nodes from automatically rebooting after machine
configuration changes before making the changes. Pause the autoreboot process by
setting the spec.paused field to true in the corresponding machine config pool. When
paused, machine configuration changes are not applied until you set the spec.paused
field to false and the nodes have rebooted into the new configuration.

When the MCO detects any of the following changes, it applies the update
without draining or rebooting the node:

Changes to the SSH key in the
spec.config.passwd.users.sshAuthorizedKeys parameter of a machine
config.

Changes to the global pull secret or pull secret in the openshift-config
namespace.

Automatic rotation of the /etc/kubernetes/kubelet-ca.crt certificate
authority (CA) by the Kubernetes API Server Operator.

When the MCO detects changes to the /etc/containers/registries.conf file, such
as editing an ImageDigestMirrorSet, ImageTagMirrorSet, or
ImageContentSourcePolicy object, it drains the corresponding nodes, applies
the changes, and uncordons the nodes. The node drain does not happen for the
following changes:

The addition of a registry with the pull-from-mirror = "digest-only"
parameter set for each mirror.

The addition of a mirror with the pull-from-mirror = "digest-only"
parameter set in a registry.

The addition of items to the unqualified-search-registries list.

There might be situations where the configuration on a node does not fully match what the currently-
applied machine config specifies. This state is called configuration drift. The Machine Config Daemon
(MCD) regularly checks the nodes for configuration drift. If the MCD detects configuration drift, the
MCO marks the node degraded until an administrator corrects the node configuration. A degraded
node is online and operational, but, it cannot be updated.

Additional resources

CHAPTER 1. MACHINE CONFIGURATION OVERVIEW

5

About the OVN-Kubernetes network plugin

1.2. MACHINE CONFIG OVERVIEW

The Machine Config Operator (MCO) manages updates to systemd, CRI-O and Kubelet, the kernel,
Network Manager and other system features. It also offers a MachineConfig CRD that can write
configuration files onto the host (see machine-config-operator). Understanding what MCO does and
how it interacts with other components is critical to making advanced, system-level changes to an
OpenShift Container Platform cluster. Here are some things you should know about MCO, machine
configs, and how they are used:

A machine config can make a specific change to a file or service on the operating system of
each system representing a pool of OpenShift Container Platform nodes.

MCO applies changes to operating systems in pools of machines. All OpenShift Container
Platform clusters start with worker and control plane node pools. By adding more role labels, you
can configure custom pools of nodes. For example, you can set up a custom pool of worker
nodes that includes particular hardware features needed by an application. However, examples
in this section focus on changes to the default pool types.

IMPORTANT

A node can have multiple labels applied that indicate its type, such as master or
worker, however it can be a member of only a single machine config pool.

Machine configs are processed alphabetically, in lexicographically increasing order, by their
name. The render controller uses the first machine config in the list as the base and appends
the rest to the base machine config into a rendered machine config, which is then applied to the
appropriate nodes.

When you create a machine config for the worker nodes, the changes are also applied to the
nodes in all custom pools.
However, as of OpenShift Container Platform 4.15, any machine configs that target custom
pools always override worker machine configs if the worker machine configs contain definitions
for the same fields.

After a machine config change, the MCO updates the affected nodes alphabetically by zone,
based on the topology.kubernetes.io/zone label. If a zone has more than one node, the oldest
nodes are updated first. For nodes that do not use zones, such as in bare metal deployments,
the nodes are upgraded by age, with the oldest nodes updated first. The MCO updates the
number of nodes as specified by the maxUnavailable field on the machine configuration pool
at a time.

Some machine configuration must be in place before OpenShift Container Platform is installed
to disk. In most cases, this can be accomplished by creating a machine config that is injected
directly into the OpenShift Container Platform installer process, instead of running as a
postinstallation machine config. In other cases, you might need to do bare metal installation
where you pass kernel arguments at OpenShift Container Platform installer startup, to do such
things as setting per-node individual IP addresses or advanced disk partitioning.

MCO manages items that are set in machine configs. Manual changes you do to your systems
will not be overwritten by MCO, unless MCO is explicitly told to manage a conflicting file. In other
words, MCO only makes specific updates you request, it does not claim control over the whole
node.

OpenShift Container Platform 4.18 Machine configuration

6

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/ovn-kubernetes_network_plugin/#about-ovn-kubernetes
https://github.com/openshift/machine-config-operator#machine-config-operator

Manual changes to nodes are strongly discouraged. If you need to decommission a node and
start a new one, those direct changes would be lost.

MCO is only supported for writing to files in /etc and /var directories, although there are
symbolic links to some directories that can be writeable by being symbolically linked to one of
those areas. The /opt and /usr/local directories are examples.

Ignition is the configuration format used in MachineConfigs. See the Ignition Configuration
Specification v3.4.0 for details.

Although Ignition config settings can be delivered directly at OpenShift Container Platform
installation time, and are formatted in the same way that MCO delivers Ignition configs, MCO
has no way of seeing what those original Ignition configs are. Therefore, you should wrap Ignition
config settings into a machine config before deploying them.

When a file managed by MCO changes outside of MCO, the Machine Config Daemon (MCD)
sets the node as degraded. It will not overwrite the offending file, however, and should continue
to operate in a degraded state.

A key reason for using a machine config is that it will be applied when you spin up new nodes for
a pool in your OpenShift Container Platform cluster. The machine-api-operator provisions a
new machine and MCO configures it.

MCO uses Ignition as the configuration format. OpenShift Container Platform 4.6 moved from Ignition
config specification version 2 to version 3.

1.2.1. What can you change with machine configs?

The kinds of components that MCO can change include:

config: Create Ignition config objects (see the Ignition configuration specification) to do things
like modify files, systemd services, and other features on OpenShift Container Platform
machines, including:

Configuration files: Create or overwrite files in the /var or /etc directory.

systemd units: Create and set the status of a systemd service or add to an existing systemd
service by dropping in additional settings.

users and groups: Change SSH keys in the passwd section postinstallation.

IMPORTANT

Changing SSH keys by using a machine config is supported only for the
core user.

Adding new users by using a machine config is not supported.

kernelArguments: Add arguments to the kernel command line when OpenShift Container
Platform nodes boot.

kernelType: Optionally identify a non-standard kernel to use instead of the standard kernel. Use
realtime to use the RT kernel (for RAN). This is only supported on select platforms. Use the 64k-
pages parameter to enable the 64k page size kernel. This setting is exclusive to machines with
64-bit ARM architectures.

CHAPTER 1. MACHINE CONFIGURATION OVERVIEW

7

https://coreos.github.io/ignition/configuration-v3_4/
https://coreos.github.io/ignition/
https://coreos.github.io/ignition/configuration-v3_2/

fips: Enable FIPS mode. FIPS should be set at installation-time setting and not a
postinstallation procedure.

IMPORTANT

To enable FIPS mode for your cluster, you must run the installation program from
a Red Hat Enterprise Linux (RHEL) computer configured to operate in FIPS
mode. For more information about configuring FIPS mode on RHEL, see
Switching RHEL to FIPS mode .

When running Red Hat Enterprise Linux (RHEL) or Red Hat Enterprise Linux
CoreOS (RHCOS) booted in FIPS mode, OpenShift Container Platform core
components use the RHEL cryptographic libraries that have been submitted to
NIST for FIPS 140-2/140-3 Validation on only the x86_64, ppc64le, and s390x
architectures.

extensions: Extend RHCOS features by adding selected pre-packaged software. For this
feature, available extensions include usbguard and kernel modules.

Custom resources (for ContainerRuntime and Kubelet): Outside of machine configs, MCO
manages two special custom resources for modifying CRI-O container runtime settings
(ContainerRuntime CR) and the Kubelet service (Kubelet CR).

The MCO is not the only Operator that can change operating system components on OpenShift
Container Platform nodes. Other Operators can modify operating system-level features as well. One
example is the Node Tuning Operator, which allows you to do node-level tuning through Tuned daemon
profiles.

Tasks for the MCO configuration that can be done after installation are included in the following
procedures. See descriptions of RHCOS bare metal installation for system configuration tasks that must
be done during or before OpenShift Container Platform installation. By default, many of the changes
you make with the MCO require a reboot.

When the MCO detects any of the following changes, it applies the update without draining or
rebooting the node:

Changes to the SSH key in the spec.config.passwd.users.sshAuthorizedKeys parameter
of a machine config.

Changes to the global pull secret or pull secret in the openshift-config namespace.

Automatic rotation of the /etc/kubernetes/kubelet-ca.crt certificate authority (CA) by the
Kubernetes API Server Operator.

When the MCO detects changes to the /etc/containers/registries.conf file, such as editing an
ImageDigestMirrorSet, ImageTagMirrorSet, or ImageContentSourcePolicy object, it drains
the corresponding nodes, applies the changes, and uncordons the nodes. The node drain does
not happen for the following changes:

The addition of a registry with the pull-from-mirror = "digest-only" parameter set for each
mirror.

The addition of a mirror with the pull-from-mirror = "digest-only" parameter set in a
registry.

The addition of items to the unqualified-search-registries list.

OpenShift Container Platform 4.18 Machine configuration

8

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/security_hardening/index#using-the-system-wide-cryptographic-policies_security-hardening
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/9/html/security_hardening/switching-rhel-to-fips-mode_security-hardening
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/security_hardening/index#protecting-systems-against-intrusive-usb-devices_security-hardening

In other cases, you can mitigate the disruption to your workload when the MCO makes changes by using
node disruption policies. For information, see Understanding node restart behaviors after machine config
changes.

There might be situations where the configuration on a node does not fully match what the currently-
applied machine config specifies. This state is called configuration drift. The Machine Config Daemon
(MCD) regularly checks the nodes for configuration drift. If the MCD detects configuration drift, the
MCO marks the node degraded until an administrator corrects the node configuration. A degraded
node is online and operational, but, it cannot be updated. For more information on configuration drift,
see Understanding configuration drift detection .

1.2.2. Node configuration management with machine config pools

Machines that run control plane components or user workloads are divided into groups based on the
types of resources they handle. These groups of machines are called machine config pools (MCP). Each
MCP manages a set of nodes and its corresponding machine configs. The role of the node determines
which MCP it belongs to; the MCP governs nodes based on its assigned node role label. Nodes in an
MCP have the same configuration; this means nodes can be scaled up and torn down in response to
increased or decreased workloads.

By default, there are two MCPs created by the cluster when it is installed: master and worker. Each
default MCP has a defined configuration applied by the Machine Config Operator (MCO), which is
responsible for managing MCPs and facilitating MCP updates.

For worker nodes, you can create additional MCPs, or custom pools, to manage nodes with custom use
cases that extend outside of the default node types. Custom MCPs for the control plane nodes are not
supported.

Custom pools are pools that inherit their configurations from the worker pool. They use any machine
config targeted for the worker pool, but add the ability to deploy changes only targeted at the custom
pool. Since a custom pool inherits its configuration from the worker pool, any change to the worker pool
is applied to the custom pool as well. Custom pools that do not inherit their configurations from the
worker pool are not supported by the MCO.

NOTE

A node can only be included in one MCP. If a node has multiple labels that correspond to
several MCPs, like worker,infra, it is managed by the infra custom pool, not the worker
pool. Custom pools take priority on selecting nodes to manage based on node labels;
nodes that do not belong to a custom pool are managed by the worker pool.

It is recommended to have a custom pool for every node role you want to manage in your cluster. For
example, if you create infra nodes to handle infra workloads, it is recommended to create a custom infra
MCP to group those nodes together. If you apply an infra role label to a worker node so it has the
worker,infra dual label, but do not have a custom infra MCP, the MCO considers it a worker node. If you
remove the worker label from a node and apply the infra label without grouping it in a custom pool, the
node is not recognized by the MCO and is unmanaged by the cluster.

IMPORTANT

CHAPTER 1. MACHINE CONFIGURATION OVERVIEW

9

IMPORTANT

Any node labeled with the infra role that is only running infra workloads is not counted
toward the total number of subscriptions. The MCP managing an infra node is mutually
exclusive from how the cluster determines subscription charges; tagging a node with the
appropriate infra role and using taints to prevent user workloads from being scheduled
on that node are the only requirements for avoiding subscription charges for infra
workloads.

The MCO applies updates for pools independently; for example, if there is an update that affects all
pools, nodes from each pool update in parallel with each other. If you add a custom pool, nodes from
that pool also attempt to update concurrently with the master and worker nodes.

There might be situations where the configuration on a node does not fully match what the currently-
applied machine config specifies. This state is called configuration drift. The Machine Config Daemon
(MCD) regularly checks the nodes for configuration drift. If the MCD detects configuration drift, the
MCO marks the node degraded until an administrator corrects the node configuration. A degraded
node is online and operational, but, it cannot be updated.

1.3. UNDERSTANDING THE MACHINE CONFIG OPERATOR NODE
DRAIN BEHAVIOR

When you use a machine config to change a system feature, such as adding new config files, modifying
systemd units or kernel arguments, or updating SSH keys, the Machine Config Operator (MCO) applies
those changes and ensures that each node is in the desired configuration state.

After you make the changes, the MCO generates a new rendered machine config. In the majority of
cases, when applying the new rendered machine config, the Operator performs the following steps on
each affected node until all of the affected nodes have the updated configuration:

1. Cordon. The MCO marks the node as not schedulable for additional workloads.

2. Drain. The MCO terminates all running workloads on the node, causing the workloads to be
rescheduled onto other nodes.

3. Apply. The MCO writes the new configuration to the nodes as needed.

4. Reboot. The MCO restarts the node.

5. Uncordon. The MCO marks the node as schedulable for workloads.

Throughout this process, the MCO maintains the required number of pods based on the
MaxUnavailable value set in the machine config pool.

NOTE

There are conditions which can prevent the MCO from draining a node. If the MCO fails to
drain a node, the Operator will be unable to reboot the node, preventing any changes
made to the node through a machine config. For more information and mitigation steps,
see the MCCDrainError runbook.

If the MCO drains pods on the master node, note the following conditions:

In single-node OpenShift clusters, the MCO skips the drain operation.

OpenShift Container Platform 4.18 Machine configuration

10

https://github.com/openshift/runbooks/blob/master/alerts/machine-config-operator/MachineConfigControllerDrainError.md

The MCO does not drain static pods in order to prevent interference with services, such as etcd.

NOTE

In certain cases the nodes are not drained. For more information, see "About the Machine
Config Operator."

There are ways to mitigate the disruption caused by drain and reboot cycles by using node disruption
policies or disabling control plane reboots. For more information, see "Understanding node restart
behaviors after machine config changes" and "Disabling the Machine Config Operator from
automatically rebooting."

Additional resources

About the Machine Config Operator

Using node disruption policies to minimize disruption from machine config changes

Disabling the Machine Config Operator from automatically rebooting

1.4. UNDERSTANDING CONFIGURATION DRIFT DETECTION

There might be situations when the on-disk state of a node differs from what is configured in the
machine config. This is known as configuration drift. For example, a cluster admin might manually modify
a file, a systemd unit file, or a file permission that was configured through a machine config. This causes
configuration drift. Configuration drift can cause problems between nodes in a Machine Config Pool or
when the machine configs are updated.

The Machine Config Operator (MCO) uses the Machine Config Daemon (MCD) to check nodes for
configuration drift on a regular basis. If detected, the MCO sets the node and the machine config pool
(MCP) to Degraded and reports the error. A degraded node is online and operational, but, it cannot be
updated.

The MCD performs configuration drift detection upon each of the following conditions:

When a node boots.

After any of the files (Ignition files and systemd drop-in units) specified in the machine config
are modified outside of the machine config.

Before a new machine config is applied.

NOTE

If you apply a new machine config to the nodes, the MCD temporarily shuts down
configuration drift detection. This shutdown is needed because the new machine
config necessarily differs from the machine config on the nodes. After the new
machine config is applied, the MCD restarts detecting configuration drift using
the new machine config.

When performing configuration drift detection, the MCD validates that the file contents and permissions
fully match what the currently-applied machine config specifies. Typically, the MCD detects
configuration drift in less than a second after the detection is triggered.

CHAPTER 1. MACHINE CONFIGURATION OVERVIEW

11

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/support/#troubleshooting-disabling-autoreboot-mco_troubleshooting-operator-issues

1

2

If the MCD detects configuration drift, the MCD performs the following tasks:

Emits an error to the console logs

Emits a Kubernetes event

Stops further detection on the node

Sets the node and MCP to degraded

You can check if you have a degraded node by listing the MCPs:

If you have a degraded MCP, the DEGRADEDMACHINECOUNT field is non-zero, similar to the
following output:

Example output

You can determine if the problem is caused by configuration drift by examining the machine config pool:

Example output

This message shows that a node’s /etc/mco-test-file file, which was added by the machine config,
has changed outside of the machine config.

The state of the node is NodeDegraded.

Or, if you know which node is degraded, examine that node:

Example output

$ oc get mcp worker

NAME CONFIG UPDATED UPDATING DEGRADED
MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT
DEGRADEDMACHINECOUNT AGE
worker rendered-worker-404caf3180818d8ac1f50c32f14b57c3 False True True 2
1 1 1 5h51m

$ oc describe mcp worker

 ...
 Last Transition Time: 2021-12-20T18:54:00Z
 Message: Node ci-ln-j4h8nkb-72292-pxqxz-worker-a-fjks4 is reporting: "content mismatch
for file \"/etc/mco-test-file\"" 1
 Reason: 1 nodes are reporting degraded status on sync
 Status: True
 Type: NodeDegraded 2
 ...

$ oc describe node/ci-ln-j4h8nkb-72292-pxqxz-worker-a-fjks4

 ...

OpenShift Container Platform 4.18 Machine configuration

12

1

2

The error message indicating that configuration drift was detected between the node and the
listed machine config. Here the error message indicates that the contents of the /etc/mco-test-
file, which was added by the machine config, has changed outside of the machine config.

The state of the node is Degraded.

You can correct configuration drift and return the node to the Ready state by performing one of the
following remediations:

Ensure that the contents and file permissions of the files on the node match what is configured
in the machine config. You can manually rewrite the file contents or change the file permissions.

Generate a force file on the degraded node. The force file causes the MCD to bypass the usual
configuration drift detection and reapplies the current machine config.

NOTE

Generating a force file on a node causes that node to reboot.

1.5. CHECKING MACHINE CONFIG POOL STATUS

To see the status of the Machine Config Operator (MCO), its sub-components, and the resources it
manages, use the following oc commands:

Procedure

1. To see the number of MCO-managed nodes available on your cluster for each machine config
pool (MCP), run the following command:

Example output

Annotations: cloud.network.openshift.io/egress-ipconfig: [{"interface":"nic0","ifaddr":
{"ipv4":"10.0.128.0/17"},"capacity":{"ip":10}}]
 csi.volume.kubernetes.io/nodeid:
 {"pd.csi.storage.gke.io":"projects/openshift-gce-devel-ci/zones/us-central1-
a/instances/ci-ln-j4h8nkb-72292-pxqxz-worker-a-fjks4"}
 machine.openshift.io/machine: openshift-machine-api/ci-ln-j4h8nkb-72292-pxqxz-worker-
a-fjks4
 machineconfiguration.openshift.io/controlPlaneTopology: HighlyAvailable
 machineconfiguration.openshift.io/currentConfig: rendered-worker-
67bd55d0b02b0f659aef33680693a9f9
 machineconfiguration.openshift.io/desiredConfig: rendered-worker-
67bd55d0b02b0f659aef33680693a9f9
 machineconfiguration.openshift.io/reason: content mismatch for file "/etc/mco-test-file"
1

 machineconfiguration.openshift.io/state: Degraded 2
 ...

$ oc get machineconfigpool

NAME CONFIG UPDATED UPDATING DEGRADED MACHINECOUNT
READYMACHINECOUNT UPDATEDMACHINECOUNT DEGRADEDMACHINECOUNT

CHAPTER 1. MACHINE CONFIGURATION OVERVIEW

13

https://access.redhat.com/solutions/5414371

where:

UPDATED

The True status indicates that the MCO has applied the current machine config to the
nodes in that MCP. The current machine config is specified in the STATUS field in the oc
get mcp output. The False status indicates a node in the MCP is updating.

UPDATING

The True status indicates that the MCO is applying the desired machine config, as specified
in the MachineConfigPool custom resource, to at least one of the nodes in that MCP. The
desired machine config is the new, edited machine config. Nodes that are updating might
not be available for scheduling. The False status indicates that all nodes in the MCP are
updated.

DEGRADED

A True status indicates the MCO is blocked from applying the current or desired machine
config to at least one of the nodes in that MCP, or the configuration is failing. Nodes that
are degraded might not be available for scheduling. A False status indicates that all nodes in
the MCP are ready.

MACHINECOUNT

Indicates the total number of machines in that MCP.

READYMACHINECOUNT

Indicates the number of machines that are both running the current machine config and are
ready for scheduling. This count is always less than or equal to the
UPDATEDMACHINECOUNT number.

UPDATEDMACHINECOUNT

Indicates the total number of machines in that MCP that have the current machine config.

DEGRADEDMACHINECOUNT

Indicates the total number of machines in that MCP that are marked as degraded or
unreconcilable.

In the previous output, there are three control plane (master) nodes and three worker nodes.
The control plane MCP and the associated nodes are updated to the current machine config.
The nodes in the worker MCP are being updated to the desired machine config. Two of the
nodes in the worker MCP are updated and one is still updating, as indicated by the
UPDATEDMACHINECOUNT being 2. There are no issues, as indicated by the
DEGRADEDMACHINECOUNT being 0 and DEGRADED being False.

While the nodes in the MCP are updating, the machine config listed under CONFIG is the
current machine config, which the MCP is being updated from. When the update is complete,
the listed machine config is the desired machine config, which the MCP was updated to.

NOTE

AGE
master rendered-master-06c9c4… True False False 3 3 3
0 4h42m
worker rendered-worker-f4b64… False True False 3 2 2
0 4h42m

OpenShift Container Platform 4.18 Machine configuration

14

NOTE

If a node is being cordoned, that node is not included in the
READYMACHINECOUNT, but is included in the MACHINECOUNT. Also, the
MCP status is set to UPDATING. Because the node has the current machine
config, it is counted in the UPDATEDMACHINECOUNT total:

Example output

2. To check the status of the nodes in an MCP by examining the MachineConfigPool custom
resource, run the following command: :

Example output

NOTE

If a node is being cordoned, the node is not included in the Ready Machine
Count. It is included in the Unavailable Machine Count:

Example output

3. To see each existing MachineConfig object, run the following command:

NAME CONFIG UPDATED UPDATING DEGRADED
MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT
DEGRADEDMACHINECOUNT AGE
master rendered-master-06c9c4… True False False 3 3
3 0 4h42m
worker rendered-worker-c1b41a… False True False 3 2
3 0 4h42m

$ oc describe mcp worker

...
 Degraded Machine Count: 0
 Machine Count: 3
 Observed Generation: 2
 Ready Machine Count: 3
 Unavailable Machine Count: 0
 Updated Machine Count: 3
Events: <none>

...
 Degraded Machine Count: 0
 Machine Count: 3
 Observed Generation: 2
 Ready Machine Count: 2
 Unavailable Machine Count: 1
 Updated Machine Count: 3

$ oc get machineconfigs

CHAPTER 1. MACHINE CONFIGURATION OVERVIEW

15

Example output

Note that the MachineConfig objects listed as rendered are not meant to be changed or
deleted.

4. To view the contents of a particular machine config (in this case, 01-master-kubelet), run the
following command:

The output from the command shows that this MachineConfig object contains both
configuration files (cloud.conf and kubelet.conf) and a systemd service (Kubernetes Kubelet):

Example output

NAME GENERATEDBYCONTROLLER IGNITIONVERSION AGE
00-master 2c9371fbb673b97a6fe8b1c52... 3.4.0 5h18m
00-worker 2c9371fbb673b97a6fe8b1c52... 3.4.0 5h18m
01-master-container-runtime 2c9371fbb673b97a6fe8b1c52... 3.4.0 5h18m
01-master-kubelet 2c9371fbb673b97a6fe8b1c52… 3.4.0 5h18m
...
rendered-master-dde... 2c9371fbb673b97a6fe8b1c52... 3.4.0 5h18m
rendered-worker-fde... 2c9371fbb673b97a6fe8b1c52... 3.4.0 5h18m

$ oc describe machineconfigs 01-master-kubelet

Name: 01-master-kubelet
...
Spec:
 Config:
 Ignition:
 Version: 3.4.0
 Storage:
 Files:
 Contents:
 Source: data:,
 Mode: 420
 Overwrite: true
 Path: /etc/kubernetes/cloud.conf
 Contents:
 Source:
data:,kind%3A%20KubeletConfiguration%0AapiVersion%3A%20kubelet.config.k8s.io%2Fv1bet
a1%0Aauthentication%3A%0A%20%20x509%3A%0A%20%20%20%20clientCAFile%3A%20
%2Fetc%2Fkubernetes%2Fkubelet-ca.crt%0A%20%20anonymous...
 Mode: 420
 Overwrite: true
 Path: /etc/kubernetes/kubelet.conf
 Systemd:
 Units:
 Contents: [Unit]
Description=Kubernetes Kubelet
Wants=rpc-statd.service network-online.target crio.service
After=network-online.target crio.service

ExecStart=/usr/bin/hyperkube \
 kubelet \
 --config=/etc/kubernetes/kubelet.conf \ ...

OpenShift Container Platform 4.18 Machine configuration

16

If something goes wrong with a machine config that you apply, you can always back out that change. For
example, if you had run oc create -f ./myconfig.yaml to apply a machine config, you could remove that
machine config by running the following command:

If that was the only problem, the nodes in the affected pool should return to a non-degraded state. This
actually causes the rendered configuration to roll back to its previously rendered state.

If you add your own machine configs to your cluster, you can use the commands shown in the previous
example to check their status and the related status of the pool to which they are applied.

1.6. ABOUT NODE STATUS DURING UPDATES

If you make changes to a machine config pool (MCP) that results in a new machine config, for example
by using a MachineConfig or KubeletConfig object, you can get detailed information about the
progress of the node updates by using the machine config nodes custom resource. This information can
be helpful if issues arise during the update and you need to troubleshoot a node.

You can view this detailed information for nodes in the control plane and worker machine config pools
that were created upon OpenShift Container Platform installation. You cannot use custom machine
config pools.

The MachineConfigNode custom resource allows you to monitor the progress of individual node
updates as they move through the upgrade phases. This information can be helpful with troubleshooting
if one of the nodes has an issue during the update. The custom resource reports where in the update
process the node is at the moment, the phases that have completed, and the phases that are remaining.

IMPORTANT

The machine config node custom resource is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

The node update process consists of the following phases and subphases that are tracked by the
machine config node custom resource, explained with more detail later in this section:

Update Prepared. The MCO stops the configuration drift monitoring process and verifies that
the newly-created machine config can be applied to a node.

UpdateCompatible

Update Executed. The MCO cordons and drains the node and applies the new machine config
to the node’s files and operating system, as needed. It contains the following sub-phases:

Cordoned

Drained

$ oc delete -f ./myconfig.yaml

CHAPTER 1. MACHINE CONFIGURATION OVERVIEW

17

https://access.redhat.com/support/offerings/techpreview/

1

AppliedFilesAndOS

PinnedImageSetsProgressing The MCO is performing the steps needed to pin and pre-load
container images.

PinnedImageSetsDegraded The pinned image process failed. You can view the reason for the
failure by using the oc describe machineconfignode command, as described later in this
section.

Update Post update action. The MCO reboots the node or reloads CRI-O, as needed.

RebootedNode

ReloadedCRIO

Update Complete. The MCO uncordons the nodes, updates the node state to the cluster, and
resumes producing node metrics.

Updated

Uncordoned

Resumed. The MCO restarts the config drift monitor process and the node returns to
operational state.

As the update moves through these phases, you can query the MachineConfigNode custom resource,
which reports one of the following conditions for each phase:

True. The phase is complete on that node or the MCO has started that phase on that node.

False. The phase is either being executed or will not be executed on that node.

Unknown. The phase is either being executed on that node or has an error. If the phase has an
error, you can use the oc describe machineconfignodes command for more information, as
described later in this section.

For example, consider a cluster with a newly-created machine config:

Example output

The current machine config for the control plane and worker nodes.

$ oc get machineconfig

...
rendered-master-23cf200e4ee97daa6e39fdce24c9fb67
c00e2c941bc6e236b50e0bf3988e6c790cf2bbb2 3.4.0 6d15h
rendered-master-a386c2d1550b927d274054124f58be68
c00e2c941bc6e236b50e0bf3988e6c790cf2bbb2 3.4.0 7m26s
...
rendered-worker-01f27f752eb84eba917450e43636b210
c00e2c941bc6e236b50e0bf3988e6c790cf2bbb2 3.4.0 6d15h 1
rendered-worker-f351f6947f15cd0380514f4b1c89f8f2
c00e2c941bc6e236b50e0bf3988e6c790cf2bbb2 3.4.0 7m26s 2
...

OpenShift Container Platform 4.18 Machine configuration

18

2

1

2

3

A newly-created machine config that is being applied to the control plane and worker nodes.

You can watch as the nodes are updated with the new machine config:

Example output

This node has been updated. The new machine config, rendered-worker-
f351f6947f15cd0380514f4b1c89f8f2, is shown as the desired and current machine configs.

This node is currently being updated to the new machine config. The previous and new machine
configs are shown as the desired and current machine configs, respectively.

This node has not yet been updated to the new machine config. The previous machine config is
shown as the desired and current machine configs.

Table 1.1. Basic machine config node fields

Field Meaning

NAME The name of the node.

POOLNAME The name of the machine config pool associated with that node.

DESIREDCONFI
G

The name of the new machine config that the node updates to.

$ oc get machineconfignodes

NAME POOLNAME DESIREDCONFIG
CURRENTCONFIG UPDATED
ci-ln-ds73n5t-72292-9xsm9-master-0 master rendered-master-
a386c2d1550b927d274054124f58be68 rendered-master-a386c2d1550b927d274054124f58be68
True
ci-ln-ds73n5t-72292-9xsm9-master-1 master rendered-master-
a386c2d1550b927d274054124f58be68 rendered-master-23cf200e4ee97daa6e39fdce24c9fb67
False
ci-ln-ds73n5t-72292-9xsm9-master-2 master rendered-master-
23cf200e4ee97daa6e39fdce24c9fb67 rendered-master-23cf200e4ee97daa6e39fdce24c9fb67
True
ci-ln-ds73n5t-72292-9xsm9-worker-a-2d8tz worker rendered-worker-
f351f6947f15cd0380514f4b1c89f8f2 rendered-worker-f351f6947f15cd0380514f4b1c89f8f2 True
1

ci-ln-ds73n5t-72292-9xsm9-worker-b-gw5sd worker rendered-worker-
f351f6947f15cd0380514f4b1c89f8f2 rendered-worker-01f27f752eb84eba917450e43636b210
False 2
ci-ln-ds73n5t-72292-9xsm9-worker-c-t227w worker rendered-worker-
01f27f752eb84eba917450e43636b210 rendered-worker-01f27f752eb84eba917450e43636b210
True 3

CHAPTER 1. MACHINE CONFIGURATION OVERVIEW

19

CURRENTCONF
IG

The name of the current machine configuration on that node.

UPDATED Indicates if the node has been updated with one of the following conditions:

If False, the node is being updated to the new machine configuration shown in
the DESIREDCONFIG field.

If True, and the CURRENTCONFIG matches the new machine configuration
shown in the DESIREDCONFIG field, the node has been updated.

If True, and the CURRENTCONFIG matches the old machine configuration
shown in the DESIREDCONFIG field, that node has not been updated yet.

Field Meaning

You can use the -o wide flag to display additional information about the updates:

Example output

$ oc get machineconfignodes -o wide

$ oc get machineconfignode -o wide
NAME POOLNAME DESIREDCONFIG
CURRENTCONFIG UPDATED UPDATEPREPARED UPDATEEXECUTED
UPDATEPOSTACTIONCOMPLETE UPDATECOMPLETE RESUMED UPDATECOMPATIBLE
UPDATEDFILESANDOS CORDONEDNODE DRAINEDNODE REBOOTEDNODE
RELOADEDCRIO UNCORDONEDNODE
ci-ln-ds73n5t-72292-9xsm9-master-0 master rendered-master-
23cf200e4ee97daa6e39fdce24c9fb67 rendered-master-23cf200e4ee97daa6e39fdce24c9fb67
True False False False False False False False
False False False False False
ci-ln-ds73n5t-72292-9xsm9-master-1 master rendered-master-
23cf200e4ee97daa6e39fdce24c9fb67 rendered-master-23cf200e4ee97daa6e39fdce24c9fb67
True False False False False False False False
False False False False False
ci-ln-ds73n5t-72292-9xsm9-master-2 master rendered-master-
23cf200e4ee97daa6e39fdce24c9fb67 rendered-master-23cf200e4ee97daa6e39fdce24c9fb67
True False False False False False False False
False False False False False
ci-ln-ds73n5t-72292-9xsm9-worker-a-2d8tz worker rendered-worker-
f351f6947f15cd0380514f4b1c89f8f2 rendered-worker-f351f6947f15cd0380514f4b1c89f8f2 True
False False False False False False False False
False False False False
ci-ln-ds73n5t-72292-9xsm9-worker-b-gw5sd worker rendered-worker-
f351f6947f15cd0380514f4b1c89f8f2 rendered-worker-01f27f752eb84eba917450e43636b210
False True True Unknown False False True True
True True Unknown False False
ci-ln-ds73n5t-72292-9xsm9-worker-c-t227w worker rendered-worker-
01f27f752eb84eba917450e43636b210 rendered-worker-01f27f752eb84eba917450e43636b210
True False False False False False False False
False False False False False

OpenShift Container Platform 4.18 Machine configuration

20

In addition to the fields defined in the previous table, the -o wide output displays the following fields:

Table 1.2. Machine config node fields in the -o wide output

Phase Name Definition

UPDATEPREPA
RED

Indicates if the MCO is preparing to update the node.

UPDATEEXECU
TED

Indicates if the MCO has completed the body of the update on the node.

UPDATEPOSTA
CTIONCOMPLE
TE

Indicates if the MCO has executed the post-update actions on the node.

UPDATECOMPL
ETE

Indicates if the MCO has completed the update on the node.

RESUMED Indicates if the node has resumed normal processes.

UPDATECOMP
ATIBLE

Indicates if the MCO has determined it can execute the update on the node.

UPDATEDFILES
ANDOS

Indicates if the MCO has updated the node files and operating system.

CORDONEDNO
DE

Indicates if the MCO has marked the node as not schedulable.

DRAINEDNODE Indicates if the MCO has drained the node.

REBOOTEDNO
DE

Indicates if the MCO has restarted the node.

RELOADEDCRI
O

Indicates if the MCO has restarted the CRI-O service.

UNCORDONED
NODE

Indicates if the MCO has marked the node as schedulable.

For more details on the update status, you can use the oc describe machineconfignode command:

Example output

$ oc describe machineconfignode/<machine_config_node_name>

Name: <machine_config_node_name> 1

CHAPTER 1. MACHINE CONFIGURATION OVERVIEW

21

Namespace:
Labels: <none>
Annotations: <none>
API Version: machineconfiguration.openshift.io/v1alpha1
Kind: MachineConfigNode
Metadata:
 Creation Timestamp: 2023-10-17T13:08:58Z
 Generation: 1
 Resource Version: 49443
 UID: 4bd758ab-2187-413c-ac42-882e61761b1d
Spec:
 Node Ref:
 Name: <node_name>
 Pool:
 Name: worker
 ConfigVersion:
 Desired: rendered-worker-f351f6947f15cd0380514f4b1c89f8f2 2
Status:
 Conditions:
 Last Transition Time: 2025-01-14T17:01:16Z
 Message: Node ci-ln-ds73n5t-72292-9xsm9-worker-b-gw5sd needs an update
 Reason: Updated
 Status: False
 Type: Updated
 Last Transition Time: 2025-01-14T17:01:18Z
 Message: Update is Compatible.
 Reason: UpdateCompatible
 Status: True
 Type: UpdatePrepared
 Last Transition Time: 2025-01-14T17:04:08Z
 Message: Updated the Files and OS on disk as a part of the in progress phase
 Reason: AppliedFilesAndOS
 Status: True
 Type: UpdateExecuted
 Last Transition Time: 2025-01-14T17:04:08Z
 Message: Node will reboot into config rendered-worker-
db01b33f959e5645a721da50a6db1fbb
 Reason: RebootedNode
 Status: Unknown
 Type: UpdatePostActionComplete
 Last Transition Time: 2025-01-14T16:04:27Z
 Message: Action during update to rendered-worker-f351f6947f15cd0380514f4b1c89f8f2:
UnCordoned Node as part of completing upgrade phase
 Reason: Uncordoned
 Status: False
 Type: UpdateComplete
 Last Transition Time: 2025-01-14T16:04:27Z
 Message: Action during update to rendered-worker-f351f6947f15cd0380514f4b1c89f8f2:
In desired config rendered-worker-01f27f752eb84eba917450e43636b210. Resumed normal
operations.
 Reason: Resumed
 Status: False
 Type: Resumed
 Last Transition Time: 2025-01-14T17:01:18Z
 Message: Update Compatible. Post Cfg Actions []: Drain Required: true
 Reason: UpdatePreparedUpdateCompatible

OpenShift Container Platform 4.18 Machine configuration

22

1

2

The MachineConfigNode object name.

The new machine configuration. This field updates after the MCO validates the machine config in
the UPDATEPREPARED phase, then the status adds the new configuration.

 Status: True
 Type: UpdateCompatible
 Last Transition Time: 2025-01-14T17:03:57Z
 Message: Drained node. The drain is complete as the desired drainer matches current
drainer: drain-rendered-worker-db01b33f959e5645a721da50a6db1fbb
 Reason: UpdateExecutedDrained
 Status: True
 Type: Drained
 Last Transition Time: 2025-01-14T17:04:08Z
 Message: Applied files and new OS config to node. OS did not need an update. SSH Keys
did not need an update
 Reason: UpdateExecutedAppliedFilesAndOS
 Status: True
 Type: AppliedFilesAndOS
 Last Transition Time: 2025-01-14T17:01:23Z
 Message: Cordoned node. The node is reporting Unschedulable = true
 Reason: UpdateExecutedCordoned
 Status: True
 Type: Cordoned
 Last Transition Time: 2025-01-14T17:04:08Z
 Message: Upgrade requires a reboot. Currently doing this as the post update action.
 Reason: UpdatePostActionCompleteRebootedNode
 Status: Unknown
 Type: RebootedNode
 Last Transition Time: 2025-01-14T15:30:57Z
 Message: This node has not yet entered the ReloadedCRIO phase
 Reason: NotYetOccured
 Status: False
 Type: ReloadedCRIO
 Last Transition Time: 2025-01-14T16:04:27Z
 Message: Action during update to rendered-worker-f351f6947f15cd0380514f4b1c89f8f2:
UnCordoned node. The node is reporting Unschedulable = false
 Reason: UpdateCompleteUncordoned
 Status: False
 Type: Uncordoned
 Last Transition Time: 2025-01-14T16:04:07Z
 Message: All is good
 Reason: AsExpected
 Status: False
 Type: PinnedImageSetsDegraded
 Last Transition Time: 2025-01-14T16:04:07Z
 Message: All pinned image sets complete
 Reason: AsExpected
 Status: False
 Type: PinnedImageSetsProgressing
 Config Version:
 Current: rendered-worker-01f27f752eb84eba917450e43636b210 3
 Desired: rendered-worker-f351f6947f15cd0380514f4b1c89f8f2
 Observed Generation: 6
...

CHAPTER 1. MACHINE CONFIGURATION OVERVIEW

23

3 The current machine config on the node.

1.6.1. Checking node status during updates

During the update of a machine config pool (MCP), you can monitor the progress of all of the nodes in
your cluster by using the oc get machineconfignodes and oc describe machineconfignodes
commands. These commands provide information that can be helpful if issues arise during the update
and you need to troubleshoot a node.

For more information on the meaning of these fields, see "About checking machine config node status."

Prerequisites

You enabled the required Technology Preview features for your cluster by editing the
FeatureGate CR named cluster:

Example FeatureGate CR

WARNING

Enabling the TechPreviewNoUpgrade feature set on your cluster cannot
be undone and prevents minor version updates. This feature set allows you
to enable these Technology Preview features on test clusters, where you
can fully test them. Do not enable this feature set on production clusters.

After you save the changes, new machine configs are created, the machine config pools are
updated, and scheduling on each node is disabled while the change is being applied.

Procedure

View the update status of all nodes in the cluster, including the current and desired machine
configurations, by running the following command:

Example output

$ oc edit featuregate cluster

apiVersion: config.openshift.io/v1
kind: FeatureGate
metadata:
 name: cluster
spec:
 featureSet: TechPreviewNoUpgrade



$ oc get machineconfignodes

NAME POOLNAME DESIREDCONFIG

OpenShift Container Platform 4.18 Machine configuration

24

View of all machine config node status fields for the nodes in your cluster by running the
following command:

Example output

CURRENTCONFIG UPDATED
ci-ln-mdb23yt-72292-kzdsg-master-0 master rendered-master-
f21b093d20f68a7c06f922ed3ea5fbc8 rendered-master-
1abc053eec29e6c945670f39d6dc8afa False
ci-ln-mdb23yt-72292-kzdsg-master-1 master rendered-master-
1abc053eec29e6c945670f39d6dc8afa rendered-master-
1abc053eec29e6c945670f39d6dc8afa True
ci-ln-mdb23yt-72292-kzdsg-master-2 master rendered-master-
1abc053eec29e6c945670f39d6dc8afa rendered-master-
1abc053eec29e6c945670f39d6dc8afa True
ci-ln-mdb23yt-72292-kzdsg-worker-a-gfqjr worker rendered-worker-
d0130cd74e9e576d7ba78ce166272bfb rendered-worker-
8f61bf839898a4487c3b5263a430e94a False
ci-ln-mdb23yt-72292-kzdsg-worker-b-gknq4 worker rendered-worker-
8f61bf839898a4487c3b5263a430e94a rendered-worker-
8f61bf839898a4487c3b5263a430e94a True
ci-ln-mdb23yt-72292-kzdsg-worker-c-mffrx worker rendered-worker-
8f61bf839898a4487c3b5263a430e94a rendered-worker-
8f61bf839898a4487c3b5263a430e94a True

$ oc get machineconfignodes -o wide

NAME POOLNAME DESIREDCONFIG
CURRENTCONFIG UPDATED UPDATEPREPARED
UPDATEEXECUTED UPDATEPOSTACTIONCOMPLETE UPDATECOMPLETE
RESUMED UPDATECOMPATIBLE UPDATEDFILESANDOS CORDONEDNODE
DRAINEDNODE REBOOTEDNODE RELOADEDCRIO UNCORDONEDNODE
ci-ln-g6dr34b-72292-g9btv-master-0 master rendered-master-
d4e122320b351cdbe1df59ddb63ddcfc rendered-master-
6f2064fcb36d2a914de5b0c660dc49ff False True Unknown False
False False True Unknown False False False False
False
ci-ln-g6dr34b-72292-g9btv-master-1 master rendered-master-
6f2064fcb36d2a914de5b0c660dc49ff rendered-master-
6f2064fcb36d2a914de5b0c660dc49ff True False False False
False False False False False False False False
False
ci-ln-g6dr34b-72292-g9btv-master-2 master rendered-master-
6f2064fcb36d2a914de5b0c660dc49ff rendered-master-
6f2064fcb36d2a914de5b0c660dc49ff True False False False
False False False False False False False False
False
ci-ln-g6dr34b-72292-g9btv-worker-a-sjh5r worker rendered-worker-
671b88c8c569fa3f60dc1a27cf9c91f2 rendered-worker-
d5534cb730e5e108905fc285c2a42b6c False True Unknown False
False False True Unknown False False False False
False
ci-ln-g6dr34b-72292-g9btv-worker-b-xthbz worker rendered-worker-
d5534cb730e5e108905fc285c2a42b6c rendered-worker-
d5534cb730e5e108905fc285c2a42b6c True False False False

CHAPTER 1. MACHINE CONFIGURATION OVERVIEW

25

Check the update status of nodes in a specific machine config pool by running the following
command:

Example output

Check the update status of an individual node by running the following command:

Example output

False False False False False False False False
False
ci-ln-g6dr34b-72292-g9btv-worker-c-gnpd6 worker rendered-worker-
d5534cb730e5e108905fc285c2a42b6c rendered-worker-
d5534cb730e5e108905fc285c2a42b6c True False False False
False False False False False False False False
False

$ oc get machineconfignodes $(oc get machineconfignodes -o json | jq -r
'.items[]|select(.spec.pool.name=="<pool_name>")|.metadata.name') 1

NAME POOLNAME DESIREDCONFIG
CURRENTCONFIG UPDATED
ci-ln-g6dr34b-72292-g9btv-worker-a-sjh5r worker rendered-worker-
d5534cb730e5e108905fc285c2a42b6c rendered-worker-
d5534cb730e5e108905fc285c2a42b6c True
ci-ln-g6dr34b-72292-g9btv-worker-b-xthbz worker rendered-worker-
d5534cb730e5e108905fc285c2a42b6c rendered-worker-
faf6b50218a8bbce21f1370866283de5 False
ci-ln-g6dr34b-72292-g9btv-worker-c-gnpd6 worker rendered-worker-
faf6b50218a8bbce21f1370866283de5 rendered-worker-
faf6b50218a8bbce21f1370866283de5 True

$ oc describe machineconfignode/<node_name>

Name: <node_name>
Namespace:
Labels: <none>
Annotations: <none>
API Version: machineconfiguration.openshift.io/v1alpha1
Kind: MachineConfigNode
Metadata:
 Creation Timestamp: 2023-10-17T13:08:58Z
 Generation: 1
 Resource Version: 49443
 UID: 4bd758ab-2187-413c-ac42-882e61761b1d
Spec:
 Node Ref:
 Name: <node_name>
 Pool:
 Name: master
 ConfigVersion:
 Desired: rendered-worker-823ff8dc2b33bf444709ed7cd2b9855b
Status:
...

OpenShift Container Platform 4.18 Machine configuration

26

Additional resources

For more information about feature gates, see Enabling feature sets using the web console .

1.7. UNDERSTANDING MACHINE CONFIG OPERATOR CERTIFICATES

Machine Config Operator certificates are used to secure connections between the Red Hat Enterprise
Linux CoreOS (RHCOS) nodes and the Machine Config Server. For more information, see Machine
Config Operator certificates.

1.7.1. Viewing and interacting with certificates

The following certificates are handled in the cluster by the Machine Config Controller (MCC) and can be
found in the ControllerConfig resource:

/etc/kubernetes/kubelet-ca.crt

/etc/kubernetes/static-pod-resources/configmaps/cloud-config/ca-bundle.pem

/etc/pki/ca-trust/source/anchors/openshift-config-user-ca-bundle.crt

The MCC also handles the image registry certificates and its associated user bundle certificate.

You can get information about the listed certificates, including the underyling bundle the certificate
comes from, and the signing and subject data.

Prerequisites

This procedure contains optional steps that require that the python-yq RPM package is
installed.

Procedure

Get detailed certificate information by running the following command:

Example output

 Message: Drained node. The drain is complete as the desired drainer matches
current drainer: drain-rendered-worker-01f27f752eb84eba917450e43636b210
 Reason: UpdateExecutedDrained
 Status: True
 Type: Drained
 Last Transition Time: 2025-01-14T15:45:55Z
...
 Config Version:
 Current: rendered-master-8110974a5cea69dff5b263237b58abd8
 Desired: rendered-worker-823ff8dc2b33bf444709ed7cd2b9855b
 Observed Generation: 6
...

$ oc get controllerconfig/machine-config-controller -o yaml | yq -y
'.status.controllerCertificates'

- bundleFile: KubeAPIServerServingCAData

CHAPTER 1. MACHINE CONFIGURATION OVERVIEW

27

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/nodes/#nodes-cluster-enabling-features-console_nodes-cluster-enabling
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/security_and_compliance/#cert-types-machine-config-operator-certificates

Get a simpler version of the information found in the ControllerConfig resource by checking
the machine config pool status using the following command:

Example output

This method is meant for OpenShift Container Platform applications that already consume
machine config pool information.

Check which image registry certificates are on the nodes:

a. Log in to a node:

b. Set /host as the root directory within the debug shell:

c. Look at the contents of the /etc/docker/cert.d directory:

 notAfter: '2034-10-23T13:13:02Z'
 notBefore: '2024-10-25T13:13:02Z'
 signer: CN=admin-kubeconfig-signer,OU=openshift
 subject: CN=admin-kubeconfig-signer,OU=openshift
- bundleFile: KubeAPIServerServingCAData
 notAfter: '2024-10-26T13:13:05Z'
 notBefore: '2024-10-25T13:27:14Z'
 signer: CN=kubelet-signer,OU=openshift
 subject: CN=kube-csr-signer_@1729862835
- bundleFile: KubeAPIServerServingCAData
 notAfter: '2024-10-26T13:13:05Z'
 notBefore: '2024-10-25T13:13:05Z'
 signer: CN=kubelet-signer,OU=openshift
 subject: CN=kubelet-signer,OU=openshift
...

$ oc get mcp master -o yaml | yq -y '.status.certExpirys'

- bundle: KubeAPIServerServingCAData
 expiry: '2034-10-23T13:13:02Z'
 subject: CN=admin-kubeconfig-signer,OU=openshift
- bundle: KubeAPIServerServingCAData
 expiry: '2024-10-26T13:13:05Z'
 subject: CN=kube-csr-signer_@1729862835
- bundle: KubeAPIServerServingCAData
 expiry: '2024-10-26T13:13:05Z'
 subject: CN=kubelet-signer,OU=openshift
- bundle: KubeAPIServerServingCAData
 expiry: '2025-10-25T13:13:05Z'
 subject: CN=kube-apiserver-to-kubelet-signer,OU=openshift
...

$ oc debug node/<node_name>

sh-5.1# chroot /host

sh-5.1# ls /etc/docker/certs.d

OpenShift Container Platform 4.18 Machine configuration

28

Example output

image-registry.openshift-image-registry.svc.cluster.local:5000
image-registry.openshift-image-registry.svc:5000

CHAPTER 1. MACHINE CONFIGURATION OVERVIEW

29

CHAPTER 2. USING MACHINE CONFIG OBJECTS TO
CONFIGURE NODES

You can use the tasks in this section to create MachineConfig objects that modify files, systemd unit
files, and other operating system features running on OpenShift Container Platform nodes. For more
ideas on working with machine configs, see content related to updating SSH authorized keys, verifying
image signatures, enabling SCTP, and configuring iSCSI initiatornames for OpenShift Container
Platform.

OpenShift Container Platform supports Ignition specification version 3.4 . You should base all new
machine configs you create going forward on Ignition specification version 3.4. If you are upgrading your
OpenShift Container Platform cluster, any existing machine configs with a previous Ignition specification
will be translated automatically to specification version 3.4.

There might be situations where the configuration on a node does not fully match what the currently-
applied machine config specifies. This state is called configuration drift. The Machine Config Daemon
(MCD) regularly checks the nodes for configuration drift. If the MCD detects configuration drift, the
MCO marks the node degraded until an administrator corrects the node configuration. A degraded
node is online and operational, but, it cannot be updated. For more information on configuration drift,
see Understanding configuration drift detection .

TIP

Use the following "Configuring chrony time service" procedure as a model for how to go about adding
other configuration files to OpenShift Container Platform nodes.

2.1. CONFIGURING CHRONY TIME SERVICE

You can set the time server and related settings used by the chrony time service (chronyd) by
modifying the contents of the chrony.conf file and passing those contents to your nodes as a machine
config.

Procedure

1. Create a Butane config including the contents of the chrony.conf file. For example, to
configure chrony on worker nodes, create a 99-worker-chrony.bu file.

NOTE

The Butane version you specify in the config file should match the OpenShift
Container Platform version and always ends in 0. For example, 4.18.0. See
"Creating machine configs with Butane" for information about Butane.

variant: openshift
version: 4.18.0
metadata:
 name: 99-worker-chrony 1
 labels:
 machineconfiguration.openshift.io/role: worker 2
storage:
 files:
 - path: /etc/chrony.conf

OpenShift Container Platform 4.18 Machine configuration

30

https://access.redhat.com/solutions/3868301
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/security_and_compliance/#security-container-signature
https://access.redhat.com/solutions/4727321
https://access.redhat.com/solutions/5170251
https://coreos.github.io/ignition/configuration-v3_4/
https://coreos.github.io/butane/specs/

1 1 2

3

4

On control plane nodes, substitute master for worker in both of these locations.

Specify an octal value mode for the mode field in the machine config file. After creating
the file and applying the changes, the mode is converted to a decimal value. You can check
the YAML file with the command oc get mc <mc-name> -o yaml.

Specify any valid, reachable time source, such as the one provided by your DHCP server.

NOTE

For all-machine to all-machine communication, the Network Time Protocol (NTP)
on UDP is port 123. If an external NTP time server is configured, you must open
UDP port 123.

Alternatively, you can specify any of the following NTP servers: 1.rhel.pool.ntp.org,
2.rhel.pool.ntp.org, or 3.rhel.pool.ntp.org. When you use NTP with your DHCP server, you
must set the sourcedir /run/chrony-dhcp parameter in the chrony.conf file.

2. Use Butane to generate a MachineConfig object file, 99-worker-chrony.yaml, containing the
configuration to be delivered to the nodes:

3. Apply the configurations in one of two ways:

If the cluster is not running yet, after you generate manifest files, add the MachineConfig
object file to the <installation_directory>/openshift directory, and then continue to create
the cluster.

If the cluster is already running, apply the file:

Additional resources

Creating machine configs with Butane

2.2. DISABLING THE CHRONY TIME SERVICE

You can disable the chrony time service (chronyd) for nodes with a specific role by using a
MachineConfig custom resource (CR).

 mode: 0644 3
 overwrite: true
 contents:
 inline: |
 pool 0.rhel.pool.ntp.org iburst 4
 driftfile /var/lib/chrony/drift
 makestep 1.0 3
 rtcsync
 logdir /var/log/chrony

$ butane 99-worker-chrony.bu -o 99-worker-chrony.yaml

$ oc apply -f ./99-worker-chrony.yaml

CHAPTER 2. USING MACHINE CONFIG OBJECTS TO CONFIGURE NODES

31

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installation_configuration/#installation-special-config-butane_installing-customizing

1

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create the MachineConfig CR that disables chronyd for the specified node role.

a. Save the following YAML in the disable-chronyd.yaml file:

Node role where you want to disable chronyd, for example, master.

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: <node_role> 1
 name: disable-chronyd
spec:
 config:
 ignition:
 version: 3.4.0
 systemd:
 units:
 - contents: |
 [Unit]
 Description=NTP client/server
 Documentation=man:chronyd(8) man:chrony.conf(5)
 After=ntpdate.service sntp.service ntpd.service
 Conflicts=ntpd.service systemd-timesyncd.service
 ConditionCapability=CAP_SYS_TIME
 [Service]
 Type=forking
 PIDFile=/run/chrony/chronyd.pid
 EnvironmentFile=-/etc/sysconfig/chronyd
 ExecStart=/usr/sbin/chronyd $OPTIONS
 ExecStartPost=/usr/libexec/chrony-helper update-daemon
 PrivateTmp=yes
 ProtectHome=yes
 ProtectSystem=full
 [Install]
 WantedBy=multi-user.target
 enabled: false
 name: "chronyd.service"
 - name: "kubelet-dependencies.target"
 contents: |
 [Unit]
 Description=Dependencies necessary to run kubelet
 Documentation=https://github.com/openshift/machine-config-operator/
 Requires=basic.target network-online.target
 Wants=NetworkManager-wait-online.service crio-wipe.service
 Wants=rpc-statd.service

OpenShift Container Platform 4.18 Machine configuration

32

b. Create the MachineConfig CR by running the following command:

2.3. ADDING KERNEL ARGUMENTS TO NODES

In some special cases, you might want to add kernel arguments to a set of nodes in your cluster. This
should only be done with caution and clear understanding of the implications of the arguments you set.

WARNING

Improper use of kernel arguments can result in your systems becoming unbootable.

Examples of kernel arguments you could set include:

nosmt: Disables symmetric multithreading (SMT) in the kernel. Multithreading allows multiple
logical threads for each CPU. You could consider nosmt in multi-tenant environments to reduce
risks from potential cross-thread attacks. By disabling SMT, you essentially choose security over
performance.

systemd.unified_cgroup_hierarchy: Enables Linux control group version 2 (cgroup v2). cgroup
v2 is the next version of the kernel control group and offers multiple improvements.

IMPORTANT

cgroup v1 is a deprecated feature. Deprecated functionality is still included in
OpenShift Container Platform and continues to be supported; however, it will be
removed in a future release of this product and is not recommended for new
deployments.

For the most recent list of major functionality that has been deprecated or
removed within OpenShift Container Platform, refer to the Deprecated and
removed features section of the OpenShift Container Platform release notes.

enforcing=0: Configures Security Enhanced Linux (SELinux) to run in permissive mode. In
permissive mode, the system acts as if SELinux is enforcing the loaded security policy, including
labeling objects and emitting access denial entries in the logs, but it does not actually deny any
operations. While not supported for production systems, permissive mode can be helpful for
debugging.

$ oc create -f disable-chronyd.yaml



CHAPTER 2. USING MACHINE CONFIG OBJECTS TO CONFIGURE NODES

33

https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/ch01

WARNING

Disabling SELinux on RHCOS in production is not supported. After SELinux
has been disabled on a node, it must be re-provisioned before re-inclusion
in a production cluster.

See Kernel.org kernel parameters for a list and descriptions of kernel arguments.

In the following procedure, you create a MachineConfig object that identifies:

A set of machines to which you want to add the kernel argument. In this case, machines with a
worker role.

Kernel arguments that are appended to the end of the existing kernel arguments.

A label that indicates where in the list of machine configs the change is applied.

Prerequisites

You have cluster-admin privileges.

Your cluster is running.

Procedure

1. List existing MachineConfig objects for your OpenShift Container Platform cluster to
determine how to label your machine config:

Example output



$ oc get MachineConfig

NAME GENERATEDBYCONTROLLER
IGNITIONVERSION AGE
00-master 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.4.0
33m
00-worker 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.4.0
33m
01-master-container-runtime 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.4.0 33m
01-master-kubelet 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.4.0 33m
01-worker-container-runtime 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.4.0 33m
01-worker-kubelet 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.4.0 33m
99-master-generated-registries 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.4.0 33m
99-master-ssh 3.2.0 40m
99-worker-generated-registries 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9

OpenShift Container Platform 4.18 Machine configuration

34

https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt

2. Create a MachineConfig object file that identifies the kernel argument (for example, 05-
worker-kernelarg-selinuxpermissive.yaml)

where:

machineconfiguration.openshift.io/role

Applies the new kernel argument only to worker nodes.

name

Named to identify where it fits among the machine configs (05) and what it does (adds a
kernel argument to configure SELinux permissive mode).

kernelArguments

Identifies the exact kernel argument as enforcing=0.

3. Create the new machine config:

4. Check the machine configs to see that the new one was added:

Example output

3.4.0 33m
99-worker-ssh 3.2.0 40m
rendered-master-23e785de7587df95a4b517e0647e5ab7
52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.4.0 33m
rendered-worker-5d596d9293ca3ea80c896a1191735bb1
52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.4.0 33m

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 05-worker-kernelarg-selinuxpermissive
spec:
 kernelArguments:
 - enforcing=0 1

$ oc create -f 05-worker-kernelarg-selinuxpermissive.yaml

$ oc get MachineConfig

NAME GENERATEDBYCONTROLLER
IGNITIONVERSION AGE
00-master 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.4.0
33m
00-worker 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.4.0
33m
01-master-container-runtime 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.4.0 33m
01-master-kubelet 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.4.0 33m
01-worker-container-runtime 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.4.0 33m

CHAPTER 2. USING MACHINE CONFIG OBJECTS TO CONFIGURE NODES

35

5. Check the nodes:

Example output

You can see that scheduling on each worker node is disabled as the change is being applied.

6. Check that the kernel argument worked by going to one of the worker nodes and listing the
kernel command-line arguments (in /proc/cmdline on the host):

Example output

You should see the enforcing=0 argument added to the other kernel arguments.

2.4. ENABLING MULTIPATHING WITH KERNEL ARGUMENTS ON
RHCOS

IMPORTANT

01-worker-kubelet 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.4.0 33m
05-worker-kernelarg-selinuxpermissive 3.4.0 105s
99-master-generated-registries 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.4.0 33m
99-master-ssh 3.2.0 40m
99-worker-generated-registries 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.4.0 33m
99-worker-ssh 3.2.0 40m
rendered-master-23e785de7587df95a4b517e0647e5ab7
52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.4.0 33m
rendered-worker-5d596d9293ca3ea80c896a1191735bb1
52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.4.0 33m

$ oc get nodes

NAME STATUS ROLES AGE VERSION
ip-10-0-136-161.ec2.internal Ready worker 28m v1.31.3
ip-10-0-136-243.ec2.internal Ready master 34m v1.31.3
ip-10-0-141-105.ec2.internal Ready,SchedulingDisabled worker 28m v1.31.3
ip-10-0-142-249.ec2.internal Ready master 34m v1.31.3
ip-10-0-153-11.ec2.internal Ready worker 28m v1.31.3
ip-10-0-153-150.ec2.internal Ready master 34m v1.31.3

$ oc debug node/ip-10-0-141-105.ec2.internal

Starting pod/ip-10-0-141-105ec2internal-debug ...
To use host binaries, run `chroot /host`

sh-4.2# cat /host/proc/cmdline
BOOT_IMAGE=/ostree/rhcos-... console=tty0 console=ttyS0,115200n8
rootflags=defaults,prjquota rw root=UUID=fd0... ostree=/ostree/boot.0/rhcos/16...
coreos.oem.id=qemu coreos.oem.id=ec2 ignition.platform.id=ec2 enforcing=0

sh-4.2# exit

OpenShift Container Platform 4.18 Machine configuration

36

IMPORTANT

Enabling multipathing during installation is supported and recommended for nodes
provisioned in OpenShift Container Platform. In setups where any I/O to non-optimized
paths results in I/O system errors, you must enable multipathing at installation time. For
more information about enabling multipathing during installation time, see "Enabling
multipathing post installation" in the Installing on bare metal documentation.

Red Hat Enterprise Linux CoreOS (RHCOS) supports multipathing on the primary disk, allowing
stronger resilience to hardware failure to achieve higher host availability. Postinstallation support is
available by activating multipathing via the machine config.

IMPORTANT

On IBM Z® and IBM® LinuxONE, you can enable multipathing only if you configured your
cluster for it during installation. For more information, see "Installing RHCOS and starting
the OpenShift Container Platform bootstrap process" in Installing a cluster with z/VM on
IBM Z® and IBM® LinuxONE.

IMPORTANT

When an OpenShift Container Platform cluster is installed or configured as a
postinstallation activity on a single VIOS host with "vSCSI" storage on IBM Power® with
multipath configured, the CoreOS nodes with multipath enabled fail to boot. This
behavior is expected, as only one path is available to the node.

Prerequisites

You have a running OpenShift Container Platform cluster.

You are logged in to the cluster as a user with administrative privileges.

You have confirmed that the disk is enabled for multipathing. Multipathing is only supported on
hosts that are connected to a SAN via an HBA adapter.

Procedure

1. To enable multipathing postinstallation on control plane nodes:

Create a machine config file, such as 99-master-kargs-mpath.yaml, that instructs the
cluster to add the master label and that identifies the multipath kernel argument, for
example:

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: "master"
 name: 99-master-kargs-mpath
spec:
 kernelArguments:
 - 'rd.multipath=default'
 - 'root=/dev/disk/by-label/dm-mpath-root'

CHAPTER 2. USING MACHINE CONFIG OBJECTS TO CONFIGURE NODES

37

2. To enable multipathing postinstallation on worker nodes:

Create a machine config file, such as 99-worker-kargs-mpath.yaml, that instructs the
cluster to add the worker label and that identifies the multipath kernel argument, for
example:

3. Create the new machine config by using either the master or worker YAML file you previously
created:

4. Check the machine configs to see that the new one was added:

Example output

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: "worker"
 name: 99-worker-kargs-mpath
spec:
 kernelArguments:
 - 'rd.multipath=default'
 - 'root=/dev/disk/by-label/dm-mpath-root'

$ oc create -f ./99-worker-kargs-mpath.yaml

$ oc get MachineConfig

NAME GENERATEDBYCONTROLLER
IGNITIONVERSION AGE
00-master 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.4.0
33m
00-worker 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.4.0
33m
01-master-container-runtime 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.4.0 33m
01-master-kubelet 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.4.0 33m
01-worker-container-runtime 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.4.0 33m
01-worker-kubelet 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.4.0 33m
99-master-generated-registries 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.4.0 33m
99-master-ssh 3.2.0 40m
99-worker-generated-registries 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.4.0 33m
99-worker-kargs-mpath 52dd3ba6a9a527fc3ab42afac8d12b693534c8c9
3.4.0 105s
99-worker-ssh 3.2.0 40m
rendered-master-23e785de7587df95a4b517e0647e5ab7
52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.4.0 33m
rendered-worker-5d596d9293ca3ea80c896a1191735bb1
52dd3ba6a9a527fc3ab42afac8d12b693534c8c9 3.4.0 33m

OpenShift Container Platform 4.18 Machine configuration

38

5. Check the nodes:

Example output

You can see that scheduling on each worker node is disabled as the change is being applied.

6. Check that the kernel argument worked by going to one of the worker nodes and listing the
kernel command-line arguments (in /proc/cmdline on the host):

Example output

You should see the added kernel arguments.

Additional resources

See Enabling multipathing with kernel arguments on RHCOS for more information about
enabling multipathing during installation time.

2.5. ADDING A REAL-TIME KERNEL TO NODES

Some OpenShift Container Platform workloads require a high degree of determinism.While Linux is not
a real-time operating system, the Linux real-time kernel includes a preemptive scheduler that provides
the operating system with real-time characteristics.

If your OpenShift Container Platform workloads require these real-time characteristics, you can switch
your machines to the Linux real-time kernel. For OpenShift Container Platform, 4.18 you can make this
switch using a MachineConfig object. Although making the change is as simple as changing a machine
config kernelType setting to realtime, there are a few other considerations before making the change:

Currently, real-time kernel is supported only on worker nodes, and only for radio access network
(RAN) use.

$ oc get nodes

NAME STATUS ROLES AGE VERSION
ip-10-0-136-161.ec2.internal Ready worker 28m v1.31.3
ip-10-0-136-243.ec2.internal Ready master 34m v1.31.3
ip-10-0-141-105.ec2.internal Ready,SchedulingDisabled worker 28m v1.31.3
ip-10-0-142-249.ec2.internal Ready master 34m v1.31.3
ip-10-0-153-11.ec2.internal Ready worker 28m v1.31.3
ip-10-0-153-150.ec2.internal Ready master 34m v1.31.3

$ oc debug node/ip-10-0-141-105.ec2.internal

Starting pod/ip-10-0-141-105ec2internal-debug ...
To use host binaries, run `chroot /host`

sh-4.2# cat /host/proc/cmdline
...
rd.multipath=default root=/dev/disk/by-label/dm-mpath-root
...

sh-4.2# exit

CHAPTER 2. USING MACHINE CONFIG OBJECTS TO CONFIGURE NODES

39

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installing_on_bare_metal/#rhcos-enabling-multipath_installing-bare-metal

The following procedure is fully supported with bare metal installations that use systems that
are certified for Red Hat Enterprise Linux for Real Time 8.

Real-time support in OpenShift Container Platform is limited to specific subscriptions.

The following procedure is also supported for use with Google Cloud.

Prerequisites

Have a running OpenShift Container Platform cluster (version 4.4 or later).

Log in to the cluster as a user with administrative privileges.

Procedure

1. Create a machine config for the real-time kernel: Create a YAML file (for example, 99-worker-
realtime.yaml) that contains a MachineConfig object for the realtime kernel type. This
example tells the cluster to use a real-time kernel for all worker nodes:

2. Add the machine config to the cluster. Type the following to add the machine config to the
cluster:

3. Check the real-time kernel: Once each impacted node reboots, log in to the cluster and run the
following commands to make sure that the real-time kernel has replaced the regular kernel for
the set of nodes you configured:

Example output

Example output

$ cat << EOF > 99-worker-realtime.yaml
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: "worker"
 name: 99-worker-realtime
spec:
 kernelType: realtime
EOF

$ oc create -f 99-worker-realtime.yaml

$ oc get nodes

NAME STATUS ROLES AGE VERSION
ip-10-0-143-147.us-east-2.compute.internal Ready worker 103m v1.31.3
ip-10-0-146-92.us-east-2.compute.internal Ready worker 101m v1.31.3
ip-10-0-169-2.us-east-2.compute.internal Ready worker 102m v1.31.3

$ oc debug node/ip-10-0-143-147.us-east-2.compute.internal

Starting pod/ip-10-0-143-147us-east-2computeinternal-debug ...

OpenShift Container Platform 4.18 Machine configuration

40

The kernel name contains rt and text “PREEMPT RT” indicates that this is a real-time kernel.

4. To go back to the regular kernel, delete the MachineConfig object:

2.6. CONFIGURING JOURNALD SETTINGS

If you need to configure settings for the journald service on OpenShift Container Platform nodes, you
can do that by modifying the appropriate configuration file and passing the file to the appropriate pool
of nodes as a machine config.

This procedure describes how to modify journald rate limiting settings in the
/etc/systemd/journald.conf file and apply them to worker nodes. See the journald.conf man page for
information on how to use that file.

Prerequisites

Have a running OpenShift Container Platform cluster.

Log in to the cluster as a user with administrative privileges.

Procedure

1. Create a Butane config file, 40-worker-custom-journald.bu, that includes an
/etc/systemd/journald.conf file with the required settings.

NOTE

The Butane version you specify in the config file should match the OpenShift
Container Platform version and always ends in 0. For example, 4.18.0. See
"Creating machine configs with Butane" for information about Butane.

To use host binaries, run `chroot /host`

sh-4.4# uname -a
Linux <worker_node> 4.18.0-147.3.1.rt24.96.el8_1.x86_64 #1 SMP PREEMPT RT
 Wed Nov 27 18:29:55 UTC 2019 x86_64 x86_64 x86_64 GNU/Linux

$ oc delete -f 99-worker-realtime.yaml

variant: openshift
version: 4.18.0
metadata:
 name: 40-worker-custom-journald
 labels:
 machineconfiguration.openshift.io/role: worker
storage:
 files:
 - path: /etc/systemd/journald.conf
 mode: 0644
 overwrite: true
 contents:
 inline: |
 # Disable rate limiting

CHAPTER 2. USING MACHINE CONFIG OBJECTS TO CONFIGURE NODES

41

https://coreos.github.io/butane/specs/

2. Use Butane to generate a MachineConfig object file, 40-worker-custom-journald.yaml,
containing the configuration to be delivered to the worker nodes:

3. Apply the machine config to the pool:

4. Check that the new machine config is applied and that the nodes are not in a degraded state. It
might take a few minutes. The worker pool will show the updates in progress, as each node
successfully has the new machine config applied:

Example output

5. To check that the change was applied, you can log in to a worker node:

Example output

Example output

 RateLimitInterval=1s
 RateLimitBurst=10000
 Storage=volatile
 Compress=no
 MaxRetentionSec=30s

$ butane 40-worker-custom-journald.bu -o 40-worker-custom-journald.yaml

$ oc apply -f 40-worker-custom-journald.yaml

$ oc get machineconfigpool

NAME CONFIG UPDATED UPDATING DEGRADED MACHINECOUNT
READYMACHINECOUNT UPDATEDMACHINECOUNT DEGRADEDMACHINECOUNT
AGE
master rendered-master-35 True False False 3 3 3 0
34m
worker rendered-worker-d8 False True False 3 1 1 0
34m

$ oc get node | grep worker

ip-10-0-0-1.us-east-2.compute.internal Ready worker 39m v0.0.0-master+$Format:%h$

$ oc debug node/ip-10-0-0-1.us-east-2.compute.internal

Starting pod/ip-10-0-141-142us-east-2computeinternal-debug ...
...
sh-4.2# chroot /host
sh-4.4# cat /etc/systemd/journald.conf
Disable rate limiting
RateLimitInterval=1s
RateLimitBurst=10000
Storage=volatile

OpenShift Container Platform 4.18 Machine configuration

42

Additional resources

Creating machine configs with Butane

2.7. ADDING EXTENSIONS TO RHCOS

RHCOS is a minimal container-oriented RHEL operating system, designed to provide a common set of
capabilities to OpenShift Container Platform clusters across all platforms. Although adding software
packages to RHCOS systems is generally discouraged, the MCO provides an extensions feature you
can use to add a minimal set of features to RHCOS nodes.

Currently, the following extensions are available:

usbguard: The usbguard extension protects RHCOS systems from attacks by intrusive USB
devices. For more information, see USBGuard for details.

kerberos: The kerberos extension provides a mechanism that allows both users and machines
to identify themselves to the network to receive defined, limited access to the areas and
services that an administrator has configured. For more information, see Using Kerberos for
details, including how to set up a Kerberos client and mount a Kerberized NFS share.

sandboxed-containers: The sandboxed-containers extension contains RPMs for Kata, QEMU,
and its dependencies. For more information, see OpenShift Sandboxed Containers .

ipsec: The ipsec extension contains RPMs for libreswan and NetworkManager-libreswan.

wasm: The wasm extension enables Developer Preview functionality in OpenShift Container
Platform for users who want to use WASM-supported workloads.

sysstat: Adding the sysstat extension provides additional performance monitoring for
OpenShift Container Platform nodes, including the system activity reporter (sar) command for
collecting and reporting information.

kernel-devel: The kernel-devel extension provides kernel headers and makefiles sufficient to
build modules against the kernel package.

The following procedure describes how to use a machine config to add one or more extensions to your
RHCOS nodes.

Prerequisites

Have a running OpenShift Container Platform cluster (version 4.6 or later).

Log in to the cluster as a user with administrative privileges.

Procedure

1. Create a machine config for extensions: Create a YAML file (for example, 80-extensions.yaml)
that contains a MachineConfig extensions object. This example tells the cluster to add the
usbguard extension.

Compress=no
MaxRetentionSec=30s
sh-4.4# exit

CHAPTER 2. USING MACHINE CONFIG OBJECTS TO CONFIGURE NODES

43

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installation_configuration/#installation-special-config-butane_installing-customizing
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/security_hardening/index#usbguard_protecting-systems-against-intrusive-usb-devices
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system-level_authentication_guide/using_kerberos
https://docs.redhat.com/en/documentation/openshift_sandboxed_containers/latest

2. Add the machine config to the cluster. Type the following to add the machine config to the
cluster:

This sets all worker nodes to have rpm packages for usbguard installed.

3. Check that the extensions were applied:

Example output

4. Check that the new machine config is now applied and that the nodes are not in a degraded
state. It may take a few minutes. The worker pool will show the updates in progress, as each
machine successfully has the new machine config applied:

Example output

5. Check the extensions. To check that the extension was applied, run:

Example output

$ cat << EOF > 80-extensions.yaml
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 80-worker-extensions
spec:
 config:
 ignition:
 version: 3.4.0
 extensions:
 - usbguard
EOF

$ oc create -f 80-extensions.yaml

$ oc get machineconfig 80-worker-extensions

NAME GENERATEDBYCONTROLLER IGNITIONVERSION AGE
80-worker-extensions 3.4.0 57s

$ oc get machineconfigpool

NAME CONFIG UPDATED UPDATING DEGRADED MACHINECOUNT
READYMACHINECOUNT UPDATEDMACHINECOUNT DEGRADEDMACHINECOUNT
AGE
master rendered-master-35 True False False 3 3 3 0
34m
worker rendered-worker-d8 False True False 3 1 1 0
34m

$ oc get node | grep worker

OpenShift Container Platform 4.18 Machine configuration

44

1

Example output

2.8. LOADING CUSTOM FIRMWARE BLOBS IN THE MACHINE CONFIG
MANIFEST

Because the default location for firmware blobs in /usr/lib is read-only, you can locate a custom
firmware blob by updating the search path. This enables you to load local firmware blobs in the machine
config manifest when the blobs are not managed by RHCOS.

Procedure

1. Create a Butane config file, 98-worker-firmware-blob.bu, that updates the search path so that
it is root-owned and writable to local storage. The following example places the custom blob file
from your local workstation onto nodes under /var/lib/firmware.

NOTE

The Butane version you specify in the config file should match the OpenShift
Container Platform version and always ends in 0. For example, 4.18.0. See
"Creating machine configs with Butane" for information about Butane.

Butane config file for custom firmware blob

Sets the path on the node where the firmware package is copied to.

NAME STATUS ROLES AGE VERSION
ip-10-0-169-2.us-east-2.compute.internal Ready worker 102m v1.31.3

$ oc debug node/ip-10-0-169-2.us-east-2.compute.internal

...
To use host binaries, run `chroot /host`
sh-4.4# chroot /host
sh-4.4# rpm -q usbguard
usbguard-0.7.4-4.el8.x86_64.rpm

variant: openshift
version: 4.18.0
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 98-worker-firmware-blob
storage:
 files:
 - path: /var/lib/firmware/<package_name> 1
 contents:
 local: <package_name> 2
 mode: 0644 3
openshift:
 kernel_arguments:
 - 'firmware_class.path=/var/lib/firmware' 4

CHAPTER 2. USING MACHINE CONFIG OBJECTS TO CONFIGURE NODES

45

https://coreos.github.io/butane/specs/

2

1 3

4

Specifies a file with contents that are read from a local file directory on the system running
Butane. The path of the local file is relative to a files-dir directory, which must be specified

Sets the permissions for the file on the RHCOS node. It is recommended to set 0644
permissions.

The firmware_class.path parameter customizes the kernel search path of where to look
for the custom firmware blob that was copied from your local workstation onto the root file
system of the node. This example uses /var/lib/firmware as the customized path.

2. Run Butane to generate a MachineConfig object file that uses a copy of the firmware blob on
your local workstation named 98-worker-firmware-blob.yaml. The firmware blob contains the
configuration to be delivered to the nodes. The following example uses the --files-dir option to
specify the directory on your workstation where the local file or files are located:

3. Apply the configurations to the nodes in one of two ways:

If the cluster is not running yet, after you generate manifest files, add the MachineConfig
object file to the <installation_directory>/openshift directory, and then continue to create
the cluster.

If the cluster is already running, apply the file:

A MachineConfig object YAML file is created for you to finish configuring your machines.

4. Save the Butane config in case you need to update the MachineConfig object in the future.

Additional resources

Creating machine configs with Butane

2.9. CHANGING THE CORE USER PASSWORD FOR NODE ACCESS

By default, Red Hat Enterprise Linux CoreOS (RHCOS) creates a user named core on the nodes in your
cluster. You can use the core user to access the node through a cloud provider serial console or a bare
metal baseboard controller manager (BMC). This can be helpful, for example, if a node is down and you
cannot access that node by using SSH or the oc debug node command. However, by default, there is
no password for this user, so you cannot log in without creating one.

You can create a password for the core user by using a machine config. The Machine Config Operator
(MCO) assigns the password and injects the password into the /etc/shadow file, allowing you to log in
with the core user. The MCO does not examine the password hash. As such, the MCO cannot report if
there is a problem with the password.

NOTE

$ butane 98-worker-firmware-blob.bu -o 98-worker-firmware-blob.yaml --files-dir
<directory_including_package_name>

$ oc apply -f 98-worker-firmware-blob.yaml

OpenShift Container Platform 4.18 Machine configuration

46

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/installation_configuration/#installation-special-config-butane_installing-customizing

1

2

NOTE

The password works only through a cloud provider serial console or a BMC. It
does not work with SSH.

If you have a machine config that includes an /etc/shadow file or a systemd unit
that sets a password, it takes precedence over the password hash.

You can change the password, if needed, by editing the machine config you used to create the
password. Also, you can remove the password by deleting the machine config. Deleting the machine
config does not remove the user account.

Procedure

1. Using a tool that is supported by your operating system, create a hashed password. For example,
create a hashed password using mkpasswd by running the following command:

Example output

2. Create a machine config file that contains the core username and the hashed password:

This must be core.

The hashed password to use with the core account.

3. Create the machine config by running the following command:

The nodes do not reboot and should become available in a few moments. You can use the oc

$ mkpasswd -m SHA-512 testpass

$
6CBZwA6s6AVFOtiZe$aUKDWpthhJEyR3nnhM02NM1sKCpHn9XN.NPrJNQ3HYewioaorp
wL3mKGLxvW0AOb4pJxqoqP4nFX77y0p00.8.

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: set-core-user-password
spec:
 config:
 ignition:
 version: 3.4.0
 passwd:
 users:
 - name: core 1
 passwordHash: <password> 2

$ oc create -f <file-name>.yaml

CHAPTER 2. USING MACHINE CONFIG OBJECTS TO CONFIGURE NODES

47

The nodes do not reboot and should become available in a few moments. You can use the oc
get mcp to watch for the machine config pools to be updated, as shown in the following
example:

NAME CONFIG UPDATED UPDATING DEGRADED
MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT
DEGRADEDMACHINECOUNT AGE
master rendered-master-d686a3ffc8fdec47280afec446fce8dd True False False 3
3 3 0 64m
worker rendered-worker-4605605a5b1f9de1d061e9d350f251e5 False True False
3 0 0 0 64m

Verification

1. After the nodes return to the UPDATED=True state, start a debug session for a node by
running the following command:

2. Set /host as the root directory within the debug shell by running the following command:

3. Check the contents of the /etc/shadow file:

Example output

The hashed password is assigned to the core user.

$ oc debug node/<node_name>

sh-4.4# chroot /host

...
core:$6$2sE/010goDuRSxxv$o18K52wor.wIwZp:19418:0:99999:7:::
...

OpenShift Container Platform 4.18 Machine configuration

48

CHAPTER 3. USING NODE DISRUPTION POLICIES TO
MINIMIZE DISRUPTION FROM MACHINE CONFIG CHANGES

By default, when you make certain changes to the fields in a MachineConfig object, the Machine Config
Operator (MCO) drains and reboots the nodes associated with that machine config. However, you can
create a node disruption policy that defines a set of changes to some Ignition config objects that would
require little or no disruption to your workloads.

A node disruption policy allows you to define the configuration changes that cause a disruption to your
cluster, and which changes do not. This allows you to reduce node downtime when making small machine
configuration changes in your cluster. To configure the policy, you modify the MachineConfiguration
object, which is in the openshift-machine-config-operator namespace. See the example node
disruption policies in the MachineConfiguration objects that follow.

NOTE

There are machine configuration changes that always require a reboot, regardless of any
node disruption policies. For more information, see About the Machine Config Operator .

After you create the node disruption policy, the MCO validates the policy to search for potential issues
in the file, such as problems with formatting. The MCO then merges the policy with the cluster defaults
and populates the status.nodeDisruptionPolicyStatus fields in the machine config with the actions to
be performed upon future changes to the machine config. The configurations in your policy always
overwrite the cluster defaults.

IMPORTANT

The MCO does not validate whether a change can be successfully applied by your node
disruption policy. Therefore, you are responsible to ensure the accuracy of your node
disruption policies.

For example, you can configure a node disruption policy so that sudo configurations do not require a
node drain and reboot. Or, you can configure your cluster so that updates to sshd are applied with only
a reload of that one service.

You can control the behavior of the MCO when making the changes to the following Ignition
configuration objects:

configuration files: You add to or update the files in the /var or /etc directory. You can
configure a policy for a specific file anywhere in the directory or for a path to a specific directory.
For a path, a change or addition to any file in that directory triggers the policy.

NOTE

If a file is included in more than one policy, only the policy with the best match to
that file is applied.

For example, if you have a policy for the /etc/ directory and a policy for the
/etc/pki/ directory, a change to the /etc/pki/tls/certs/ca-bundle.crt file would
apply the etc/pki policy.

systemd units: You create and set the status of a systemd service or modify a systemd service.

CHAPTER 3. USING NODE DISRUPTION POLICIES TO MINIMIZE DISRUPTION FROM MACHINE CONFIG CHANGES

49

users and groups: You change SSH keys in the passwd section postinstallation.

ICSP, ITMS, IDMS objects: You can remove mirroring rules from an
ImageContentSourcePolicy (ICSP), ImageTagMirrorSet (ITMS), and ImageDigestMirrorSet
(IDMS) object.

When you make any of these changes, the node disruption policy determines which of the following
actions are required when the MCO implements the changes:

Reboot: The MCO drains and reboots the nodes. This is the default behavior.

None: The MCO does not drain or reboot the nodes. The MCO applies the changes with no
further action.

Drain: The MCO cordons and drains the nodes of their workloads. The workloads restart with
the new configurations.

Reload: For services, the MCO reloads the specified services without restarting the service.

Restart: For services, the MCO fully restarts the specified services.

DaemonReload: The MCO reloads the systemd manager configuration.

Special: This is an internal MCO-only action and cannot be set by the user.

NOTE

The Reboot and None actions cannot be used with any other actions, as the
Reboot and None actions override the others.

Actions are applied in the order that they are set in the node disruption policy list.

If you make other machine config changes that do require a reboot or other
disruption to the nodes, that reboot supercedes the node disruption policy
actions.

3.1. EXAMPLE NODE DISRUPTION POLICIES

The following example MachineConfiguration objects contain a node disruption policy.

TIP

A MachineConfiguration object and a MachineConfig object are different objects. A
MachineConfiguration object is a singleton object in the MCO namespace that contains configuration
parameters for the MCO operator. A MachineConfig object defines changes that are applied to a
machine config pool.

The following example MachineConfiguration object shows no user defined policies. The default node
disruption policy values are shown in the status stanza.

Default node disruption policy

apiVersion: operator.openshift.io/v1
kind: MachineConfiguration

OpenShift Container Platform 4.18 Machine configuration

50

The default node disruption policy does not contain a policy for changes to the
/etc/containers/registries.conf.d file. This is because both OpenShift Container Platform and Red Hat
Enterprise Linux (RHEL) use the registries.conf.d file to specify aliases for image short names. It is
recommended that you always pull an image by its fully-qualified name. This is particularly important

metadata:
 name: cluster
spec:
 logLevel: Normal
 managementState: Managed
 operatorLogLevel: Normal
status:
 nodeDisruptionPolicyStatus:
 clusterPolicies:
 files:
 - actions:
 - type: None
 path: /etc/mco/internal-registry-pull-secret.json
 - actions:
 - type: None
 path: /var/lib/kubelet/config.json
 - actions:
 - reload:
 serviceName: crio.service
 type: Reload
 path: /etc/machine-config-daemon/no-reboot/containers-gpg.pub
 - actions:
 - reload:
 serviceName: crio.service
 type: Reload
 path: /etc/containers/policy.json
 - actions:
 - type: Special
 path: /etc/containers/registries.conf
 - actions:
 - reload:
 serviceName: crio.service
 type: Reload
 path: /etc/containers/registries.d
 - actions:
 - type: None
 path: /etc/nmstate/openshift
 - actions:
 - restart:
 serviceName: coreos-update-ca-trust.service
 type: Restart
 - restart:
 serviceName: crio.service
 type: Restart
 path: /etc/pki/ca-trust/source/anchors/openshift-config-user-ca-bundle.crt
 sshkey:
 actions:
 - type: None
 observedGeneration: 9

CHAPTER 3. USING NODE DISRUPTION POLICIES TO MINIMIZE DISRUPTION FROM MACHINE CONFIG CHANGES

51

with public registries, because the image might not deploy if the public registry requires authentication.
You can create a user-defined policy to use with the /etc/containers/registries.conf.d file, if you need
to use image short names.

In the following example, when changes are made to the SSH keys, the MCO drains the cluster nodes,
reloads the crio.service, reloads the systemd configuration, and restarts the crio-service.

Example node disruption policy for an SSH key change

In the following example, when changes are made to the /etc/chrony.conf file, the MCO restarts the
chronyd.service on the cluster nodes. If files are added to or modified in the /var/run directory, the
MCO applies the changes with no further action.

Example node disruption policy for a configuration file change

In the following example, when changes are made to the auditd.service systemd unit, the MCO drains
the cluster nodes, reloads the crio.service, reloads the systemd manager configuration, and restarts
the crio.service.

apiVersion: operator.openshift.io/v1
kind: MachineConfiguration
metadata:
 name: cluster
...
spec:
 nodeDisruptionPolicy:
 sshkey:
 actions:
 - type: Drain
 - reload:
 serviceName: crio.service
 type: Reload
 - type: DaemonReload
 - restart:
 serviceName: crio.service
 type: Restart
...

apiVersion: operator.openshift.io/v1
kind: MachineConfiguration
metadata:
 name: cluster
...
spec:
 nodeDisruptionPolicy:
 files:
 - actions:
 - restart:
 serviceName: chronyd.service
 type: Restart
 path: /etc/chrony.conf
 - actions:
 - type: None
 path: /var/run

OpenShift Container Platform 4.18 Machine configuration

52

Example node disruption policy for a systemd unit change

In the following example, when changes are made to the registries.conf file, such as by editing an
ImageContentSourcePolicy (ICSP) object, the MCO does not drain or reboot the nodes and applies
the changes with no further action.

Example node disruption policy for a registries.conf file change

3.2. CONFIGURING NODE RESTART BEHAVIORS UPON MACHINE
CONFIG CHANGES

You can create a node disruption policy to define the machine configuration changes that cause a
disruption to your cluster, and which changes do not.

You can control how your nodes respond to changes in the files in the /var or /etc directory, the
systemd units, the SSH keys, and the registries.conf file.

When you make any of these changes, the node disruption policy determines which of the following
actions are required when the MCO implements the changes:

Reboot: The MCO drains and reboots the nodes. This is the default behavior.

None: The MCO does not drain or reboot the nodes. The MCO applies the changes with no

apiVersion: operator.openshift.io/v1
kind: MachineConfiguration
metadata:
 name: cluster
...
spec:
 nodeDisruptionPolicy:
 units:
 - name: auditd.service
 actions:
 - type: Drain
 - type: Reload
 reload:
 serviceName: crio.service
 - type: DaemonReload
 - type: Restart
 restart:
 serviceName: crio.service

apiVersion: operator.openshift.io/v1
kind: MachineConfiguration
metadata:
 name: cluster
...
spec:
 nodeDisruptionPolicy:
 files:
 - actions:
 - type: None
 path: /etc/containers/registries.conf

CHAPTER 3. USING NODE DISRUPTION POLICIES TO MINIMIZE DISRUPTION FROM MACHINE CONFIG CHANGES

53

None: The MCO does not drain or reboot the nodes. The MCO applies the changes with no
further action.

Drain: The MCO cordons and drains the nodes of their workloads. The workloads restart with
the new configurations.

Reload: For services, the MCO reloads the specified services without restarting the service.

Restart: For services, the MCO fully restarts the specified services.

DaemonReload: The MCO reloads the systemd manager configuration.

Special: This is an internal MCO-only action and cannot be set by the user.

NOTE

The Reboot and None actions cannot be used with any other actions, as the
Reboot and None actions override the others.

Actions are applied in the order that they are set in the node disruption policy list.

If you make other machine config changes that do require a reboot or other
disruption to the nodes, that reboot supercedes the node disruption policy
actions.

Procedure

1. Edit the machineconfigurations.operator.openshift.io object to define the node disruption
policy:

2. Add a node disruption policy similar to the following:

$ oc edit MachineConfiguration cluster -n openshift-machine-config-operator

apiVersion: operator.openshift.io/v1
kind: MachineConfiguration
metadata:
 name: cluster
...
spec:
 nodeDisruptionPolicy: 1
 files: 2
 - actions: 3
 - restart: 4
 serviceName: chronyd.service 5
 type: Restart
 path: /etc/chrony.conf 6
 sshkey: 7
 actions:
 - type: Drain
 - reload:
 serviceName: crio.service
 type: Reload
 - type: DaemonReload
 - restart:

OpenShift Container Platform 4.18 Machine configuration

54

1

2

3

4

5

6

7

8

Specifies the node disruption policy.

Specifies a list of machine config file definitions and actions to take to changes on those
paths. This list supports a maximum of 50 entries.

Specifies the series of actions to be executed upon changes to the specified files. Actions
are applied in the order that they are set in this list. This list supports a maximum of 10
entries.

Specifies that the listed service is to be reloaded upon changes to the specified files.

Specifies the full name of the service to be acted upon.

Specifies the location of a file that is managed by a machine config. The actions in the
policy apply when changes are made to the file in path.

Specifies a list of service names and actions to take upon changes to the SSH keys in the
cluster.

Specifies a list of systemd unit names and actions to take upon changes to those units.

Verification

View the MachineConfiguration object file that you created:

$ oc get MachineConfiguration/cluster -o yaml

Example output

 serviceName: crio.service
 type: Restart
 units: 8
 - actions:
 - type: Drain
 - reload:
 serviceName: crio.service
 type: Reload
 - type: DaemonReload
 - restart:
 serviceName: crio.service
 type: Restart
 name: test.service

apiVersion: operator.openshift.io/v1
kind: MachineConfiguration
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: cluster
...
status:
 nodeDisruptionPolicyStatus: 1
 clusterPolicies:
 files:

CHAPTER 3. USING NODE DISRUPTION POLICIES TO MINIMIZE DISRUPTION FROM MACHINE CONFIG CHANGES

55

1 Specifies the current cluster-validated policies.

...
 - actions:
 - restart:
 serviceName: chronyd.service
 type: Restart
 path: /etc/chrony.conf
 sshkey:
 actions:
 - type: Drain
 - reload:
 serviceName: crio.service
 type: Reload
 - type: DaemonReload
 - restart:
 serviceName: crio.service
 type: Restart
 units:
 - actions:
 - type: Drain
 - reload:
 serviceName: crio.service
 type: Reload
 - type: DaemonReload
 - restart:
 serviceName: crio.service
 type: Restart
 name: test.se
...

OpenShift Container Platform 4.18 Machine configuration

56

CHAPTER 4. CONFIGURING MCO-RELATED CUSTOM
RESOURCES

Besides managing MachineConfig objects, the MCO manages two custom resources (CRs):
KubeletConfig and ContainerRuntimeConfig. Those CRs let you change node-level settings
impacting how the kubelet and CRI-O container runtime services behave.

4.1. CREATING A KUBELETCONFIG CR TO EDIT KUBELET
PARAMETERS

The kubelet configuration is currently serialized as an Ignition configuration, so it can be directly edited.
However, there is also a new kubelet-config-controller added to the Machine Config Controller (MCC).
This lets you use a KubeletConfig custom resource (CR) to edit the kubelet parameters.

NOTE

As the fields in the kubeletConfig object are passed directly to the kubelet from
upstream Kubernetes, the kubelet validates those values directly. Invalid values in the
kubeletConfig object might cause cluster nodes to become unavailable. For valid values,
see the Kubernetes documentation.

Consider the following guidance:

Edit an existing KubeletConfig CR to modify existing settings or add new settings, instead of
creating a CR for each change. It is recommended that you create a CR only to modify a
different machine config pool, or for changes that are intended to be temporary, so that you
can revert the changes.

Create one KubeletConfig CR for each machine config pool with all the config changes you
want for that pool.

As needed, create multiple KubeletConfig CRs with a limit of 10 per cluster. For the first
KubeletConfig CR, the Machine Config Operator (MCO) creates a machine config appended
with kubelet. With each subsequent CR, the controller creates another kubelet machine config
with a numeric suffix. For example, if you have a kubelet machine config with a -2 suffix, the next
kubelet machine config is appended with -3.

NOTE

CHAPTER 4. CONFIGURING MCO-RELATED CUSTOM RESOURCES

57

https://kubernetes.io/docs/reference/config-api/kubelet-config.v1beta1/

NOTE

If you are applying a kubelet or container runtime config to a custom machine config
pool, the custom role in the machineConfigSelector must match the name of the
custom machine config pool.

For example, because the following custom machine config pool is named infra, the
custom role must also be infra:

If you want to delete the machine configs, delete them in reverse order to avoid exceeding the limit. For
example, you delete the kubelet-3 machine config before deleting the kubelet-2 machine config.

NOTE

If you have a machine config with a kubelet-9 suffix, and you create another
KubeletConfig CR, a new machine config is not created, even if there are fewer than 10
kubelet machine configs.

Example KubeletConfig CR

Example showing a KubeletConfig machine config

The following procedure is an example to show how to configure the maximum number of pods per
node, the maximum PIDs per node, and the maximum container log size size on the worker nodes.

Prerequisites

1. Obtain the label associated with the static MachineConfigPool CR for the type of node you
want to configure. Perform one of the following steps:

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 name: infra
spec:
 machineConfigSelector:
 matchExpressions:
 - {key: machineconfiguration.openshift.io/role, operator: In, values: [worker,infra]}
...

$ oc get kubeletconfig

NAME AGE
set-kubelet-config 15m

$ oc get mc | grep kubelet

...
99-worker-generated-kubelet-1 b5c5119de007945b6fe6fb215db3b8e2ceb12511 3.4.0
26m
...

OpenShift Container Platform 4.18 Machine configuration

58

1

a. View the machine config pool:

For example:

Example output

If a label has been added it appears under labels.

b. If the label is not present, add a key/value pair:

Procedure

1. View the available machine configuration objects that you can select:

By default, the two kubelet-related configs are 01-master-kubelet and 01-worker-kubelet.

2. Check the current value for the maximum pods per node:

For example:

Look for value: pods: <value> in the Allocatable stanza:

Example output

$ oc describe machineconfigpool <name>

$ oc describe machineconfigpool worker

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 creationTimestamp: 2019-02-08T14:52:39Z
 generation: 1
 labels:
 custom-kubelet: set-kubelet-config 1

$ oc label machineconfigpool worker custom-kubelet=set-kubelet-config

$ oc get machineconfig

$ oc describe node <node_name>

$ oc describe node ci-ln-5grqprb-f76d1-ncnqq-worker-a-mdv94

Allocatable:
 attachable-volumes-aws-ebs: 25
 cpu: 3500m
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 15341844Ki
 pods: 250

CHAPTER 4. CONFIGURING MCO-RELATED CUSTOM RESOURCES

59

1

2

3. Configure the worker nodes as needed:

a. Create a YAML file similar to the following that contains the kubelet configuration:

IMPORTANT

Kubelet configurations that target a specific machine config pool also affect
any dependent pools. For example, creating a kubelet configuration for the
pool containing worker nodes will also apply to any subset pools, including
the pool containing infrastructure nodes. To avoid this, you must create a
new machine config pool with a selection expression that only includes
worker nodes, and have your kubelet configuration target this new pool.

Enter the label from the machine config pool.

Add the kubelet configuration. For example:

Use podPidsLimit to set the maximum number of PIDs in any pod.

Use containerLogMaxSize to set the maximum size of the container log file before it is
rotated.

Use maxPods to set the maximum pods per node.

NOTE

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: set-kubelet-config
spec:
 machineConfigPoolSelector:
 matchLabels:
 custom-kubelet: set-kubelet-config 1
 kubeletConfig: 2
 podPidsLimit: 8192
 containerLogMaxSize: 50Mi
 maxPods: 500

OpenShift Container Platform 4.18 Machine configuration

60

NOTE

The rate at which the kubelet talks to the API server depends on queries
per second (QPS) and burst values. The default values, 50 for
kubeAPIQPS and 100 for kubeAPIBurst, are sufficient if there are
limited pods running on each node. It is recommended to update the
kubelet QPS and burst rates if there are enough CPU and memory
resources on the node.

b. Update the machine config pool for workers with the label:

c. Create the KubeletConfig object:

Verification

1. Verify that the KubeletConfig object is created:

Example output

Depending on the number of worker nodes in the cluster, wait for the worker nodes to be
rebooted one by one. For a cluster with 3 worker nodes, this could take about 10 to 15 minutes.

2. Verify that the changes are applied to the node:

a. Check on a worker node that the maxPods value changed:

b. Locate the Allocatable stanza:

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: set-kubelet-config
spec:
 machineConfigPoolSelector:
 matchLabels:
 custom-kubelet: set-kubelet-config
 kubeletConfig:
 maxPods: <pod_count>
 kubeAPIBurst: <burst_rate>
 kubeAPIQPS: <QPS>

$ oc label machineconfigpool worker custom-kubelet=set-kubelet-config

$ oc create -f change-maxPods-cr.yaml

$ oc get kubeletconfig

NAME AGE
set-kubelet-config 15m

$ oc describe node <node_name>

CHAPTER 4. CONFIGURING MCO-RELATED CUSTOM RESOURCES

61

1 In this example, the pods parameter should report the value you set in the
KubeletConfig object.

3. Verify the change in the KubeletConfig object:

This should show a status of True and type:Success, as shown in the following example:

4.2. CREATING A CONTAINERRUNTIMECONFIG CR TO EDIT CRI-O
PARAMETERS

You can change some of the settings associated with the OpenShift Container Platform CRI-O runtime
for the nodes associated with a specific machine config pool (MCP). Using a ContainerRuntimeConfig
custom resource (CR), you set the configuration values and add a label to match the MCP. The MCO
then rebuilds the crio.conf and storage.conf configuration files on the associated nodes with the
updated values.

NOTE

To revert the changes implemented by using a ContainerRuntimeConfig CR, you must
delete the CR. Removing the label from the machine config pool does not revert the
changes.

You can modify the following settings by using a ContainerRuntimeConfig CR:

 ...
Allocatable:
 attachable-volumes-gce-pd: 127
 cpu: 3500m
 ephemeral-storage: 123201474766
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 14225400Ki
 pods: 500 1
 ...

$ oc get kubeletconfigs set-kubelet-config -o yaml

spec:
 kubeletConfig:
 containerLogMaxSize: 50Mi
 maxPods: 500
 podPidsLimit: 8192
 machineConfigPoolSelector:
 matchLabels:
 custom-kubelet: set-kubelet-config
status:
 conditions:
 - lastTransitionTime: "2021-06-30T17:04:07Z"
 message: Success
 status: "True"
 type: Success

OpenShift Container Platform 4.18 Machine configuration

62

Log level: The logLevel parameter sets the CRI-O log_level parameter, which is the level of
verbosity for log messages. The default is info (log_level = info). Other options include fatal,
panic, error, warn, debug, and trace.

Overlay size: The overlaySize parameter sets the CRI-O Overlay storage driver size
parameter, which is the maximum size of a container image.

Container runtime: The defaultRuntime parameter sets the container runtime to either crun
or runc. The default is crun.

You should have one ContainerRuntimeConfig CR for each machine config pool with all the config
changes you want for that pool. If you are applying the same content to all the pools, you only need one
ContainerRuntimeConfig CR for all the pools.

You should edit an existing ContainerRuntimeConfig CR to modify existing settings or add new
settings instead of creating a new CR for each change. It is recommended to create a new
ContainerRuntimeConfig CR only to modify a different machine config pool, or for changes that are
intended to be temporary so that you can revert the changes.

You can create multiple ContainerRuntimeConfig CRs, as needed, with a limit of 10 per cluster. For the
first ContainerRuntimeConfig CR, the MCO creates a machine config appended with
containerruntime. With each subsequent CR, the controller creates a new containerruntime machine
config with a numeric suffix. For example, if you have a containerruntime machine config with a -2
suffix, the next containerruntime machine config is appended with -3.

If you want to delete the machine configs, you should delete them in reverse order to avoid exceeding
the limit. For example, you should delete the containerruntime-3 machine config before deleting the
containerruntime-2 machine config.

NOTE

If you have a machine config with a containerruntime-9 suffix, and you create another
ContainerRuntimeConfig CR, a new machine config is not created, even if there are
fewer than 10 containerruntime machine configs.

Example showing multiple ContainerRuntimeConfig CRs

Example output

Example showing multiple containerruntime machine configs

Example output

$ oc get ctrcfg

NAME AGE
ctr-overlay 15m
ctr-level 5m45s

$ oc get mc | grep container

...

CHAPTER 4. CONFIGURING MCO-RELATED CUSTOM RESOURCES

63

1

2

3

4

The following example sets the log_level field to debug, sets the overlay size to 8 GB, and configures
runC as the container runtime:

Example ContainerRuntimeConfig CR

Specifies the machine config pool label. For a container runtime config, the role must match the
name of the associated machine config pool.

Optional: Specifies the level of verbosity for log messages.

Optional: Specifies the maximum size of a container image.

Optional: Specifies the container runtime to deploy to new containers, either crun or runc. The
default value is crun.

Procedure

To change CRI-O settings using the ContainerRuntimeConfig CR:

1. Create a YAML file for the ContainerRuntimeConfig CR:

01-master-container-runtime b5c5119de007945b6fe6fb215db3b8e2ceb12511 3.4.0
57m
...
01-worker-container-runtime b5c5119de007945b6fe6fb215db3b8e2ceb12511 3.4.0
57m
...
99-worker-generated-containerruntime b5c5119de007945b6fe6fb215db3b8e2ceb12511
3.4.0 26m
99-worker-generated-containerruntime-1 b5c5119de007945b6fe6fb215db3b8e2ceb12511
3.4.0 17m
99-worker-generated-containerruntime-2 b5c5119de007945b6fe6fb215db3b8e2ceb12511
3.4.0 7m26s
...

apiVersion: machineconfiguration.openshift.io/v1
kind: ContainerRuntimeConfig
metadata:
 name: overlay-size
spec:
 machineConfigPoolSelector:
 matchLabels:
 pools.operator.machineconfiguration.openshift.io/worker: '' 1
 containerRuntimeConfig:
 logLevel: debug 2
 overlaySize: 8G 3
 defaultRuntime: "runc" 4

apiVersion: machineconfiguration.openshift.io/v1
kind: ContainerRuntimeConfig
metadata:
 name: overlay-size
spec:
 machineConfigPoolSelector:

OpenShift Container Platform 4.18 Machine configuration

64

1

2

Specify a label for the machine config pool that you want you want to modify.

Set the parameters as needed.

2. Create the ContainerRuntimeConfig CR:

3. Verify that the CR is created:

Example output

4. Check that a new containerruntime machine config is created:

Example output

5. Monitor the machine config pool until all are shown as ready:

Example output

6. Verify that the settings were applied in CRI-O:

a. Open an oc debug session to a node in the machine config pool and run chroot /host.

 matchLabels:
 pools.operator.machineconfiguration.openshift.io/worker: '' 1
 containerRuntimeConfig: 2
 logLevel: debug
 overlaySize: 8G
 defaultRuntime: "runc"

$ oc create -f <file_name>.yaml

$ oc get ContainerRuntimeConfig

NAME AGE
overlay-size 3m19s

$ oc get machineconfigs | grep containerrun

99-worker-generated-containerruntime 2c9371fbb673b97a6fe8b1c52691999ed3a1bfc2
3.4.0 31s

$ oc get mcp worker

NAME CONFIG UPDATED UPDATING DEGRADED MACHINECOUNT
READYMACHINECOUNT UPDATEDMACHINECOUNT DEGRADEDMACHINECOUNT
AGE
worker rendered-worker-169 False True False 3 1 1 0
9h

$ oc debug node/<node_name>

CHAPTER 4. CONFIGURING MCO-RELATED CUSTOM RESOURCES

65

b. Verify the changes in the crio.conf file:

Example output

c. Verify the changes in the storage.conf file:

Example output

d. Verify the changes in the crio/crio.conf.d/01-ctrcfg-defaultRuntime file:

Example output

4.3. SETTING THE DEFAULT MAXIMUM CONTAINER ROOT PARTITION
SIZE FOR OVERLAY WITH CRI-O

The root partition of each container shows all of the available disk space of the underlying host. Follow
this guidance to set a maximum partition size for the root disk of all containers.

To configure the maximum Overlay size, as well as other CRI-O options like the log level, you can create
the following ContainerRuntimeConfig custom resource definition (CRD):

sh-4.4# chroot /host

sh-4.4# crio config | grep 'log_level'

log_level = "debug"

sh-4.4# head -n 7 /etc/containers/storage.conf

[storage]
 driver = "overlay"
 runroot = "/var/run/containers/storage"
 graphroot = "/var/lib/containers/storage"
 [storage.options]
 additionalimagestores = []
 size = "8G"

sh-5.1# cat /etc/crio/crio.conf.d/01-ctrcfg-defaultRuntime

[crio]
 [crio.runtime]
 default_runtime = "runc"

apiVersion: machineconfiguration.openshift.io/v1
kind: ContainerRuntimeConfig
metadata:
 name: overlay-size
spec:
 machineConfigPoolSelector:
 matchLabels:
 custom-crio: overlay-size

OpenShift Container Platform 4.18 Machine configuration

66

Procedure

1. Create the configuration object:

2. To apply the new CRI-O configuration to your worker nodes, edit the worker machine config
pool:

3. Add the custom-crio label based on the matchLabels name you set in the
ContainerRuntimeConfig CRD:

4. Save the changes, then view the machine configs:

New 99-worker-generated-containerruntime and rendered-worker-xyz objects are created:

Example output

5. After those objects are created, monitor the machine config pool for the changes to be applied:

The worker nodes show UPDATING as True, as well as the number of machines, the number
updated, and other details:

Example output

 containerRuntimeConfig:
 logLevel: debug
 overlaySize: 8G

$ oc apply -f overlaysize.yml

$ oc edit machineconfigpool worker

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 creationTimestamp: "2020-07-09T15:46:34Z"
 generation: 3
 labels:
 custom-crio: overlay-size
 machineconfiguration.openshift.io/mco-built-in: ""

$ oc get machineconfigs

99-worker-generated-containerruntime 4173030d89fbf4a7a0976d1665491a4d9a6e54f1
3.4.0 7m42s
rendered-worker-xyz 4173030d89fbf4a7a0976d1665491a4d9a6e54f1 3.4.0
7m36s

$ oc get mcp worker

NAME CONFIG UPDATED UPDATING DEGRADED MACHINECOUNT
READYMACHINECOUNT UPDATEDMACHINECOUNT DEGRADEDMACHINECOUNT
AGE

CHAPTER 4. CONFIGURING MCO-RELATED CUSTOM RESOURCES

67

When complete, the worker nodes transition back to UPDATING as False, and the
UPDATEDMACHINECOUNT number matches the MACHINECOUNT:

Example output

Looking at a worker machine, you see that the new 8 GB max size configuration is applied to all
of the workers:

Example output

Looking inside a container, you see that the root partition is now 8 GB:

Example output

4.4. CREATING A DROP-IN FILE FOR THE DEFAULT CRI-O
CAPABILITIES

You can change some of the settings associated with the OpenShift Container Platform CRI-O runtime
for the nodes associated with a specific machine config pool (MCP). By using a controller custom
resource (CR), you set the configuration values and add a label to match the MCP. The Machine Config
Operator (MCO) then rebuilds the crio.conf and default.conf configuration files on the associated
nodes with the updated values.

Earlier versions of OpenShift Container Platform included specific machine configs by default. If you
updated to a later version of OpenShift Container Platform, those machine configs were retained to
ensure that clusters running on the same OpenShift Container Platform version have the same machine
configs.

You can create multiple ContainerRuntimeConfig CRs, as needed, with a limit of 10 per cluster. For the
first ContainerRuntimeConfig CR, the MCO creates a machine config appended with
containerruntime. With each subsequent CR, the controller creates a containerruntime machine

worker rendered-worker-xyz False True False 3 2 2 0
20h

NAME CONFIG UPDATED UPDATING DEGRADED MACHINECOUNT
READYMACHINECOUNT UPDATEDMACHINECOUNT DEGRADEDMACHINECOUNT
AGE
worker rendered-worker-xyz True False False 3 3 3 0
20h

head -n 7 /etc/containers/storage.conf
[storage]
 driver = "overlay"
 runroot = "/var/run/containers/storage"
 graphroot = "/var/lib/containers/storage"
 [storage.options]
 additionalimagestores = []
 size = "8G"

~ $ df -h
Filesystem Size Used Available Use% Mounted on
overlay 8.0G 8.0K 8.0G 0% /

OpenShift Container Platform 4.18 Machine configuration

68

1

config with a numeric suffix. For example, if you have a containerruntime machine config with a -2
suffix, the next containerruntime machine config is appended with -3.

If you want to delete the machine configs, delete them in reverse order to avoid exceeding the limit. For
example, delete the containerruntime-3 machine config before you delete the containerruntime-2
machine config.

NOTE

If you have a machine config with a containerruntime-9 suffix and you create another
ContainerRuntimeConfig CR, a new machine config is not created, even if there are
fewer than 10 containerruntime machine configs.

Example of multiple ContainerRuntimeConfig CRs

Example output

Example showing multiple containerruntime related system configs

Replace <decode_CapBnd_value> with the specific value you want to decode.

$ oc get ctrcfg

NAME AGE
ctr-overlay 15m
ctr-level 5m45s

$ cat /proc/1/status | grep Cap

$ capsh --decode=<decode_CapBnd_value> 1

CHAPTER 4. CONFIGURING MCO-RELATED CUSTOM RESOURCES

69

CHAPTER 5. UPDATED BOOT IMAGES
The Machine Config Operator (MCO) uses a boot image to start a Red Hat Enterprise Linux CoreOS
(RHCOS) node. By default, OpenShift Container Platform does not manage the boot image.

This means that the boot image in your cluster is not updated along with your cluster. For example, if
your cluster was originally created with OpenShift Container Platform 4.12, the boot image that the
cluster uses to create nodes is the same 4.12 version, even if your cluster is at a later version. If the
cluster is later upgraded to 4.13 or later, new nodes continue to scale with the same 4.12 image.

This process could cause the following issues:

Extra time to start nodes

Certificate expiration issues

Version skew issues

To avoid these issues, you can configure your cluster to update the boot image whenever you update
your cluster. By modifying the MachineConfiguration object, you can enable this feature. Currently, the
ability to update the boot image is available for only Google Cloud Platform (GCP) and Amazon Web
Services (AWS) clusters. It is not supported for clusters managed by the Cluster CAPI Operator.

If you are not using the default user data secret, named worker-user-data, in your machine set, or you
have modified the worker-user-data secret, you should not use managed boot image updates. This is
because the Machine Config Operator (MCO) updates the machine set to use a managed version of the
secret. By using the managed boot images feature, you are giving up the capability to customize the
secret stored in the machine set object.

To view the current boot image used in your cluster, examine a machine set.

NOTE

The location and format of the boot image within the machine set differs, based on the
platform. However, the boot image is always listed in the
spec.template.spec.providerSpec. parameter.

Example GCP machine set with the boot image reference

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 name: ci-ln-hmy310k-72292-5f87z-worker-a
 namespace: openshift-machine-api
spec:
...
 template:
...
 spec:
...
 providerSpec:
...
 value:
 disks:
 - autoDelete: true

OpenShift Container Platform 4.18 Machine configuration

70

1 This boot image is the same as the originally-installed OpenShift Container Platform version, in this
example OpenShift Container Platform 4.12, regardless of the current version of the cluster. The
way that the boot image is represented in the machine set depends on the platform, as the
structure of the providerSpec field differs from platform to platform.

Example AWS machine set with the boot image reference

If you configure your cluster to update your boot images, the boot image referenced in your machine
sets matches the current version of the cluster.

5.1. CONFIGURING UPDATED BOOT IMAGES

By default, OpenShift Container Platform does not manage the boot image. You can configure your
cluster to update the boot image whenever you update your cluster by modifying the
MachineConfiguration object.

Currently, the ability to update the boot image is available for only Google Cloud Platform (GCP) and
Amazon Web Services (AWS) clusters. It is not supported for clusters managed by the Cluster CAPI
Operator.

Procedure

1. Edit the MachineConfiguration object, named cluster, to enable the updating of boot images
by running the following command:

Optional: Configure the boot image update feature for all the machine sets:

 boot: true
 image: projects/rhcos-cloud/global/images/rhcos-412-85-202203181601-0-gcp-x86-64 1
...

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 name: ci-ln-hmy310k-72292-5f87z-worker-a
 namespace: openshift-machine-api
spec:
...
 template:
...
 spec:
...
 providerSpec:
 value:
 ami:
 id: ami-0e8fd9094e487d1ff
...

$ oc edit MachineConfiguration cluster

apiVersion: operator.openshift.io/v1
kind: MachineConfiguration
metadata:

CHAPTER 5. UPDATED BOOT IMAGES

71

1

2

1

2

Activates the boot image update feature.

Specifies that all the machine sets in the cluster are to be updated.

Optional: Configure the boot image update feature for specific machine sets:

Activates the boot image update feature.

Specifies that any machine set with this label is to be updated.

TIP

If an appropriate label is not present on the machine set, add a key-value pair by running a
command similar to following:

$ oc label machineset.machine ci-ln-hmy310k-72292-5f87z-worker-a update-boot-
image=true -n openshift-machine-api

Verification

1. View the current state of the boot image updates by viewing the machine configuration object:

 name: cluster
 namespace: openshift-machine-config-operator
spec:
...
 managedBootImages: 1
 machineManagers:
 - resource: machinesets
 apiGroup: machine.openshift.io
 selection:
 mode: All 2

apiVersion: operator.openshift.io/v1
kind: MachineConfiguration
metadata:
 name: cluster
 namespace: openshift-machine-config-operator
spec:
...
 managedBootImages: 1
 machineManagers:
 - resource: machinesets
 apiGroup: machine.openshift.io
 selection:
 mode: Partial
 partial:
 machineResourceSelector:
 matchLabels:
 update-boot-image: "true" 2

$ oc get machineconfiguration cluster -n openshift-machine-api -o yaml

OpenShift Container Platform 4.18 Machine configuration

72

1

2

Example machine set with the boot image reference

Status of the boot image update. Cluster CAPI Operator machine sets and machine
deployments are not currently supported for boot image updates.

Indicates if any boot image updates failed. If any of the updates fail, the Machine Config
Operator is degraded. In this case, manual intervention might be required.

2. Get the boot image version by running the following command:

Example machine set with the boot image reference

kind: MachineConfiguration
metadata:
 name: cluster
...
status:
 conditions:
 - lastTransitionTime: "2024-09-09T13:51:37Z" 1
 message: Reconciled 1 of 2 MAPI MachineSets | Reconciled 0 of 0 CAPI MachineSets
 | Reconciled 0 of 0 CAPI MachineDeployments
 reason: BootImageUpdateConfigurationAdded
 status: "True"
 type: BootImageUpdateProgressing
 - lastTransitionTime: "2024-09-09T13:51:37Z" 2
 message: 0 Degraded MAPI MachineSets | 0 Degraded CAPI MachineSets | 0 CAPI
MachineDeployments
 reason: BootImageUpdateConfigurationAdded
 status: "False"
 type: BootImageUpdateDegraded

$ oc get machinesets <machineset_name> -n openshift-machine-api -o yaml

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: ci-ln-77hmkpt-72292-d4pxp
 update-boot-image: "true"
 name: ci-ln-77hmkpt-72292-d4pxp-worker-a
 namespace: openshift-machine-api
spec:
...
 template:
...
 spec:
...
 providerSpec:
...
 value:
 disks:
 - autoDelete: true
 boot: true
 image: projects/rhcos-cloud/global/images/<boot_image> 1

CHAPTER 5. UPDATED BOOT IMAGES

73

1 This boot image is the same as the current OpenShift Container Platform version. The
location and format of the boot image within the machine set differs, based on the
platform. However, the boot image is always listed in the
spec.template.spec.providerSpec. parameter.

Additional resources

Enabling features using feature gates

5.2. DISABLING UPDATED BOOT IMAGES

To disable the updated boot image feature, edit the MachineConfiguration object so that the
machineManagers field is an empty array.

NOTE

If you are updating a Google Cloud or Amazon Web Services (AWS) cluster from
OpenShift Container Platform 4.18 to 4.19, and you have not configured the
managedBootImages parameter, the update is blocked with a This cluster is GCP or
AWS but lacks a boot image configuration. message. The update is blocked intentionally
on Google Cloud or AWS clusters in order to alert you that the default updated boot
image behavior is changing between version 4.18 and 4.19 to enable updated boot images
by default on those platforms .

To allow the update, perform one of the following tasks:

If you want to allow the feature to be enabled, acknowledge that you are aware of
the change in default behavior by patching the admin-acks config map by using
the following command:

If you do not want the updated boot image feature enabled, explicitly disable the
feature by using the following procedure.

It is important to note that if you use boot images from the AWS Marketplace or the GCP
Marketplace, enabling the updated boot image feature overwrites those images with a
standard Red Hat Enterprise Linux CoreOS (RHCOS) image. You should explicitly disable
this feature and not patch the admin-acks config map. If you accidentally enable the
updated boot image feature, you can disable it by using the following procedure. Then,
replace the marketplace boot images by modifying the compute machine sets, as
described in Modifying a compute machine set .

If you disable this feature after some nodes have been created with the new boot image version, any
existing nodes retain their current boot image. Turning off this feature does not rollback the nodes or
machine sets to the originally-installed boot image. The machine sets retain the boot image version that
was present when the feature was enabled and is not updated again when the cluster is upgraded to a
new OpenShift Container Platform version in the future.

...

$ oc -n openshift-config patch cm admin-acks --patch '{"data":{"ack-4.18-boot-
image-opt-out-in-4.19":"true"}}' --type=merge

OpenShift Container Platform 4.18 Machine configuration

74

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/nodes/#nodes-cluster-enabling-features

1

Procedure

1. Disable updated boot images by editing the MachineConfiguration object:

2. Make the machineManagers parameter an empty array:

Remove the parameters listed under machineManagers and add the [] characters to
disable boot image updates.

Additional resources

Modifying a compute machine set

$ oc edit MachineConfiguration cluster

apiVersion: operator.openshift.io/v1
kind: MachineConfiguration
metadata:
 name: cluster
 namespace: openshift-machine-config-operator
spec:
...
 managedBootImages: 1
 machineManagers: []

CHAPTER 5. UPDATED BOOT IMAGES

75

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/machine_management/#modifying-machineset

CHAPTER 6. MANAGING UNUSED RENDERED MACHINE
CONFIGS

The Machine Config Operator (MCO) does not perform any garbage collection activities. This means
that all rendered machine configs remain in the cluster. Each time a user or controller applies a new
machine config, the MCO creates new rendered configs for each affected machine config pool. Over
time, this can lead to a large number of rendered machine configs, which can make working with machine
configs confusing. Having too many rendered machine configs can also contribute to disk space issues
and performance issues with etcd.

You can remove old, unused rendered machine configs by using the oc adm prune
renderedmachineconfigs command with the --confirm flag. With this command, you can remove all
unused rendered machine configs or only those in a specific machine config pool. You can also remove a
specified number of unused rendered machine configs in order to keep some older machine configs, in
case you want to check older configurations.

You can use the oc adm prune renderedmachineconfigs command without the --confirm flag to see
which rendered machine configs would be removed.

Use the list subcommand to display all the rendered machine configs in the cluster or a specific machine
config pool.

NOTE

The oc adm prune renderedmachineconfigs command deletes only rendered machine
configs that are not in use. If a rendered machine configs are in use by a machine config
pool, the rendered machine config is not deleted. In this case, the command output
specifies the reason that the rendered machine config was not deleted.

6.1. VIEWING RENDERED MACHINE CONFIGS

You can view a list of rendered machine configs by using the oc adm prune renderedmachineconfigs
command with the list subcommand.

For example, the command in the following procedure would list all rendered machine configs for the
worker machine config pool.

Procedure

Optional: List the rendered machine configs by using the following command:

where:

list

Displays a list of rendered machine configs in your cluster.

--in-use

Optional: Specifies whether to display only the used machine configs or all machine configs
from the specified pool. If true, the output lists the rendered machine configs that are being
used by a machine config pool. If false, the output lists all rendered machine configs in the
cluster. The default value is false.

$ oc adm prune renderedmachineconfigs list --in-use=false --pool-name=worker

OpenShift Container Platform 4.18 Machine configuration

76

--pool-name

Optional: Specifies the machine config pool from which to display the machine configs.

Example output

List the rendered machine configs that you can remove automatically by running the following
command. Any rendered machine config marked with the as it’s currently in use message in
the command output cannot be removed.

The command runs in dry-run mode, and no machine configs are removed.

where:

--pool-name

Optional: Displays the machine configs in the specified machine config pool.

Example output

6.2. REMOVING UNUSED RENDERED MACHINE CONFIGS

You can remove unused rendered machine configs by using the oc adm prune
renderedmachineconfigs command with the --confirm command. If any rendered machine config is
not deleted, the command output indicates which was not deleted and lists the reason for skipping the
deletion.

Procedure

1. Optional: List the rendered machine configs that you can remove automatically by running the
following command. Any rendered machine config marked with the as it’s currently in use
message in the command output cannot be removed.

worker

rendered-worker-f38bf61ced3c920cf5a29a200ed43243 -- 2025-01-21 13:45:01 +0000 UTC
(Currently in use: false)
rendered-worker-fc94397dc7c43808c7014683c208956e-- 2025-01-30 17:20:53 +0000 UTC
(Currently in use: false)
rendered-worker-708c652868f7597eaa1e2622edc366ef -- 2025-01-31 18:01:16 +0000 UTC
(Currently in use: true)

$ oc adm prune renderedmachineconfigs --pool-name=worker

Dry run enabled - no modifications will be made. Add --confirm to remove rendered machine
configs.
dry-run deleting rendered MachineConfig rendered-worker-
f38bf61ced3c920cf5a29a200ed43243
dry-run deleting MachineConfig rendered-worker-fc94397dc7c43808c7014683c208956e
Skip dry-run deleting rendered MachineConfig rendered-worker-
708c652868f7597eaa1e2622edc366ef as it's currently in use

$ oc adm prune renderedmachineconfigs --pool-name=worker

CHAPTER 6. MANAGING UNUSED RENDERED MACHINE CONFIGS

77

Example output

where:

pool-name

Optional: Specifies the machine config pool where you want to delete the machine configs
from.

2. Remove the unused rendered machine configs by running the following command. The
command in the following procedure would delete the two oldest unused rendered machine
configs in the worker machine config pool.

where:

--count

Optional: Specifies the maximum number of unused rendered machine configs you want to
delete, starting with the oldest.

--confirm

Indicates that pruning should occur, instead of performing a dry-run.

--pool-name

Optional: Specifies the machine config pool from which you want to delete the machine. If
not specified, all the pools are evaluated.

Example output

Dry run enabled - no modifications will be made. Add --confirm to remove rendered machine
configs.
dry-run deleting rendered MachineConfig rendered-worker-
f38bf61ced3c920cf5a29a200ed43243
dry-run deleting MachineConfig rendered-worker-fc94397dc7c43808c7014683c208956e
Skip dry-run deleting rendered MachineConfig rendered-worker-
708c652868f7597eaa1e2622edc366ef as it's currently in use

$ oc adm prune renderedmachineconfigs --pool-name=worker --count=2 --confirm

deleting rendered MachineConfig rendered-worker-f38bf61ced3c920cf5a29a200ed43243
deleting rendered MachineConfig rendered-worker-fc94397dc7c43808c7014683c208956e
Skip deleting rendered MachineConfig rendered-worker-
708c652868f7597eaa1e2622edc366ef as it's currently in use

OpenShift Container Platform 4.18 Machine configuration

78

CHAPTER 7. RHCOS IMAGE LAYERING
Red Hat Enterprise Linux CoreOS (RHCOS) image layering allows you to easily extend the functionality
of your base RHCOS image by layering additional images onto the base image. This layering does not
modify the base RHCOS image. Instead, it creates a custom layered image that includes all RHCOS
functionality and adds additional functionality to specific nodes in the cluster.

7.1. ABOUT RHCOS IMAGE LAYERING

Image layering allows you to customize the underlying node operating system on any of your cluster
nodes. This helps keep everything up-to-date, including the node operating system and any added
customizations such as specialized software.

You create a custom layered image by using a Containerfile and applying it to nodes by using a custom
object. At any time, you can remove the custom layered image by deleting that custom object.

With RHCOS image layering, you can install RPMs into your base image, and your custom content will be
booted alongside RHCOS. The Machine Config Operator (MCO) can roll out these custom layered
images and monitor these custom containers in the same way it does for the default RHCOS image.
RHCOS image layering gives you greater flexibility in how you manage your RHCOS nodes.

IMPORTANT

Installing realtime kernel and extensions RPMs as custom layered content is not
recommended. This is because these RPMs can conflict with RPMs installed by using a
machine config. If there is a conflict, the MCO enters a degraded state when it tries to
install the machine config RPM. You need to remove the conflicting extension from your
machine config before proceeding.

As soon as you apply the custom layered image to your cluster, you effectively take ownership of your
custom layered images and those nodes. While Red Hat remains responsible for maintaining and
updating the base RHCOS image on standard nodes, you are responsible for maintaining and updating
images on nodes that use a custom layered image. You assume the responsibility for the package you
applied with the custom layered image and any issues that might arise with the package.

There are two methods for deploying a custom layered image onto your nodes:

On-cluster layering

With on-cluster layering, you create a MachineOSConfig object where you include the Containerfile
and other parameters. The build is performed on your cluster and the resulting custom layered image
is automatically pushed to your repository and applied to the machine config pool that you specified
in the MachineOSConfig object. The entire process is performed completely within your cluster.

Out-of-cluster layering

With out-of-cluster layering, you create a Containerfile that references an OpenShift Container
Platform image and the RPM that you want to apply, build the layered image in your own
environment, and push the image to your repository. Then, in your cluster, create a MachineConfig
object for the targeted node pool that points to the new image. The Machine Config Operator
overrides the base RHCOS image, as specified by the osImageURL value in the associated machine
config, and boots the new image.

IMPORTANT

CHAPTER 7. RHCOS IMAGE LAYERING

79

IMPORTANT

For both methods, use the same base RHCOS image installed on the rest of your cluster.
Use the oc adm release info --image-for rhel-coreos command to obtain the base
image used in your cluster.

7.2. EXAMPLE CONTAINERFILES

RHCOS image layering allows you to use the following types of images to create custom layered
images:

OpenShift Container Platform Hotfixes. You can work with Customer Experience and
Engagement (CEE) to obtain and apply Hotfix packages on top of your RHCOS image. In some
instances, you might want a bug fix or enhancement before it is included in an official OpenShift
Container Platform release. RHCOS image layering allows you to easily add the Hotfix before it
is officially released and remove the Hotfix when the underlying RHCOS image incorporates the
fix.

IMPORTANT

Some Hotfixes require a Red Hat Support Exception and are outside of the
normal scope of OpenShift Container Platform support coverage or life cycle
policies.

Hotfixes are provided to you based on Red Hat Hotfix policy . Apply it on top of the base image
and test that new custom layered image in a non-production environment. When you are
satisfied that the custom layered image is safe to use in production, you can roll it out on your
own schedule to specific node pools. For any reason, you can easily roll back the custom layered
image and return to using the default RHCOS.

Example on-cluster Containerfile to apply a Hotfix

Example out-of-cluster Containerfile to apply a Hotfix

containerfileArch: noarch
content: |-
 FROM configs AS final
 #Install hotfix package
 RUN dnf update -y https://example.com/files/systemd-252-46.el9_4.x86_64.rpm \
 https://example.com/files/systemd-journal-remote-252-46.el9_4.x86_64.rpm \
 https://example.com/files/systemd-libs-252-46.el9_4.x86_64.rpm \
 https://example.com/files/systemd-pam-252-46.el9_4.x86_64.rpm \
 https://example.com/files/systemd-udev-252-46.el9_4.x86_64.rpm \
 https://example.com/files/systemd-rpm-macros-252-46.el9_4.noarch.rpm && \
 dnf clean all && \
 ostree container commit

FROM quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256...
#Install hotfix package
RUN dnf update -y https://example.com/files/systemd-252-46.el9_4.x86_64.rpm \
 https://example.com/files/systemd-journal-remote-252-46.el9_4.x86_64.rpm \
 https://example.com/files/systemd-libs-252-46.el9_4.x86_64.rpm \
 https://example.com/files/systemd-pam-252-46.el9_4.x86_64.rpm \
 https://example.com/files/systemd-udev-252-46.el9_4.x86_64.rpm \

OpenShift Container Platform 4.18 Machine configuration

80

https://access.redhat.com/solutions/2996001
https://access.redhat.com/solutions/2996001

RHEL packages. You can download Red Hat Enterprise Linux (RHEL) packages from the Red
Hat Customer Portal, such as chrony, firewalld, and iputils.

Example out-of-cluster Containerfile to apply the rsyslog utility

Third-party packages. You can download and install RPMs from third-party organizations, such
as the following types of packages:

Bleeding edge drivers and kernel enhancements to improve performance or add
capabilities.

Forensic client tools to investigate possible and actual break-ins.

Security agents.

Inventory agents that provide a coherent view of the entire cluster.

SSH Key management packages.

Example on-cluster Containerfile to apply a third-party package from EPEL

Example out-of-cluster Containerfile to apply a third-party package from EPEL

This Containerfile installs the RHEL fish program. Because fish requires additional RHEL
packages, the image must be built on an entitled RHEL host. For RHEL entitlements to work,
you must copy the etc-pki-entitlement secret into the openshift-machine-config-operator

 https://example.com/files/systemd-rpm-macros-252-46.el9_4.noarch.rpm && \
 dnf clean all && \
 ostree container commit

Using a 4.18.0 image
FROM quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256...
Install rsyslog package
RUN dnf install -y rsyslog && \
 ostree container commit
Copy your custom configuration in
ADD remote.conf /etc/rsyslog.d/remote.conf

FROM configs AS final

#Enable EPEL (more info at https://docs.fedoraproject.org/en-US/epel/) and install htop
RUN dnf install -y https://dl.fedoraproject.org/pub/epel/epel-release-latest-9.noarch.rpm && \
 dnf install -y htop && \
 dnf clean all && \
 ostree container commit

Get RHCOS base image of target cluster `oc adm release info --image-for rhel-coreos`
FROM quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256...

#Enable EPEL (more info at https://docs.fedoraproject.org/en-US/epel/) and install htop
RUN dnf install -y https://dl.fedoraproject.org/pub/epel/epel-release-latest-9.noarch.rpm && \
 dnf install -y htop && \
 dnf clean all && \
 ostree container commit

CHAPTER 7. RHCOS IMAGE LAYERING

81

https://access.redhat.com/downloads/content/479/ver=/rhel---9/9.1/x86_64/packages

namespace.

Example on-cluster Containerfile to apply a third-party package that has RHEL
dependencies

Example out-of-cluster Containerfile to apply a third-party package that has RHEL
dependencies

After you create the machine config, the Machine Config Operator (MCO) performs the following steps:

1. Renders a new machine config for the specified pool or pools.

2. Performs cordon and drain operations on the nodes in the pool or pools.

3. Writes the rest of the machine config parameters onto the nodes.

4. Applies the custom layered image to the node.

5. Reboots the node using the new image.

IMPORTANT

It is strongly recommended that you test your images outside of your production
environment before rolling out to your cluster.

7.3. USING ON-CLUSTER LAYERING TO APPLY A CUSTOM LAYERED
IMAGE

To apply a custom layered image to your cluster by using the on-cluster build process, make a
MachineOSConfig custom resource (CR) that specifies the following parameters:

the Containerfile to build

the machine config pool to associate the build

FROM configs AS final

RHEL entitled host is needed here to access RHEL packages
Install fish as third party package from EPEL
RUN dnf install -y https://dl.fedoraproject.org/pub/epel/9/Everything/x86_64/Packages/f/fish-
3.3.1-3.el9.x86_64.rpm && \
 dnf clean all && \
 ostree container commit

Get RHCOS base image of target cluster `oc adm release info --image-for rhel-coreos`
FROM quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256...

RHEL entitled host is needed here to access RHEL packages
Install fish as third party package from EPEL
RUN dnf install -y https://dl.fedoraproject.org/pub/epel/9/Everything/x86_64/Packages/f/fish-
3.3.1-3.el9.x86_64.rpm && \
 dnf clean all && \
 ostree container commit

OpenShift Container Platform 4.18 Machine configuration

82

where the final image should be pushed and pulled from

the push and pull secrets to use

You can create only one MachineOSConfig CR for each machine config pool.

When you create the object, the Machine Config Operator (MCO) creates a MachineOSBuild object
and a builder pod. The build process also creates transient objects, such as config maps, which are
cleaned up after the build is complete. The MachineOSBuild object and the associated builder-* pod
use the same naming scheme, <MachineOSConfig_CR_name>-<hash>, for example:

Example MachineOSBuild object

Example builder pod

When the build is complete, the MCO pushes the new custom layered image to your repository and
rolled out to the nodes in the associated machine config pool. You can see the digested image pull spec
for the new custom layered image in the MachineOSBuild object and machine-os-builder pod.

TIP

You can test a MachineOSBuild object to make sure it builds correctly without rolling out the custom
layered image to active nodes by using a custom machine config pool that contains non-production
nodes. Alternatively, you can use a custom machine config pool that has no nodes. The
MachineOSBuild object builds even if there are no nodes for the MCO to deploy the custom layered
image onto.

You should not need to interact with these new objects or the machine-os-builder pod. However, you
can use all of these resources for troubleshooting, if necessary.

You need a separate MachineOSConfig CR for each machine config pool where you want to use a
custom layered image.

Making certain changes to a MachineOSConfig object triggers an automatic rebuild of the associated
custom layered image. You can mitigate the effects of the rebuild by pausing the machine config pool
where the custom layered image is applied as described in "Pausing the machine config pools." While the
pools are paused, the MCO does not roll out the newly built image to the nodes after the build is
complete. However, the build will still run regardless of whether the pool is paused or not. For example, if
you want to remove and replace a MachineOSCOnfig object, pausing the machine config pools before
making the change prevents the MCO from reverting the associated nodes to the base image, reducing
the number of reboots needed.

When a machine config pool is paused, the oc get machineconfigpools reports the following status:

Example output

NAME PREPARED BUILDING SUCCEEDED INTERRUPTED FAILED
layered-c8765e26ebc87e1e17a7d6e0a78e8bae False False True False False

NAME READY STATUS RESTARTS AGE
build-layered-c8765e26ebc87e1e17a7d6e0a78e8bae 2/2 Running 0 11m

NAME CONFIG UPDATED UPDATING DEGRADED

CHAPTER 7. RHCOS IMAGE LAYERING

83

1 The worker machine config pool is paused, as indicated by the three False statuses and the
READYMACHINECOUNT at 0.

After the changes have been rolled out, you can unpause the machine config pool.

In the case of a build failure, for example due to network issues or an invalid secret, the MCO retries the
build three additional times before the job fails. The MCO creates a different build pod for each build
attempt. You can use the build pod logs to troubleshoot any build failures. However, the MCO
automatically removes these build pods after a short period of time.

Example failed MachineOSBuild object

You can manually rebuild your custom layered image by either modifying your MachineOSConfig object
or applying an annotation to the MachineOSConfig object. For more information, see "Rebuilding an
on-cluster custom layered image".

If you used a custom machine config pool to apply an on-cluster layered image to a node, you can
remove the custom layered image from the node and revert to the base image. For more information,
see "Reverting an on-cluster layered node".

You can modify an on-custom layered image as needed, to install additional packages, remove existing
packages, change repositories, update secrets, or other similar changes, by editing the
MachineOSConfig object. For more information, see "Modifying a custom layered image".

7.3.1. On-cluster layering known limitations

Note the following limitations when working with the on-cluster layering feature:

On-cluster layering is supported only for OpenShift Container Platform clusters on the AMD64
architecture.

On-cluster layering is not supported on multi-architecture compute machines, or single-node
OpenShift clusters.

If you scale up a machine set that uses a custom layered image, the nodes reboot two times.
The first, when the node is initially created with the base image and a second time when the
custom layered image is applied.

Node disruption policies are not supported on nodes with a custom layered image. As a result
the following configuration changes cause a node reboot:

Modifying the configuration files in the /var or /etc directory

Adding or modifying a systemd service

MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT
DEGRADEDMACHINECOUNT AGE
master rendered-master-a0b404d061a6183cc36d302363422aba True False False 3
3 3 0 4h14m
worker rendered-worker-221507009cbcdec0eec8ab3ccd789d18 False False False 2
2 2 0 4h14m 1

NAME PREPARED BUILDING SUCCEEDED INTERRUPTED FAILED
layered-c8765e26ebc87e1e17a7d6e0a78e8bae False False False False True

OpenShift Container Platform 4.18 Machine configuration

84

Changing SSH keys

Removing mirroring rules from ICSP, ITMS, and IDMS objects

Changing the trusted CA, by updating the user-ca-bundle configmap in the openshift-
config namespace

The images used in creating custom layered images take up space in your push registry. Always
be aware of the free space in your registry and prune the images as needed. You can
automatically remove an on-cluster, custom layered image from the repository by deleting the
MachineOSBuild object that created the image. Note that the credentials provided by the
registry push secret must also grant permission to delete an image from the registry. For more
information, see "Removing an on-cluster custom layered image".

Prerequisites

You have a copy of the pull secret in the openshift-machine-config-operator namespace that
the MCO needs to pull the base operating system image.
For example, if you are using the global pull secret, you can run the following command:

You have the push secret of the registry that the MCO needs to push the new custom layered
image to.

You have a pull secret that your nodes need to pull the new custom layered image from your
registry. This should be a different secret than the one used to push the image to the repository.

You are familiar with how to configure a Containerfile. Instructions on how to create a
Containerfile are beyond the scope of this documentation.

Optional: You have a separate machine config pool for the nodes where you want to apply the
custom layered image. One benefit to having a custom machine config pool for the nodes is
that you can easily revert to the base image, if needed. For more information, see "Reverting an
on-cluster layered node".

Procedure

1. Create a MachineOSconfig object:

a. Create a YAML file similar to the following:

$oc create secret docker-registry global-pull-secret-copy \
 --namespace "openshift-machine-config-operator" \
 --from-file=.dockerconfigjson=<(oc get secret/pull-secret -n openshift-config -o go-
template='{{index .data ".dockerconfigjson" | base64decode}}')

apiVersion: machineconfiguration.openshift.io/v1 1
kind: MachineOSConfig
metadata:
 name: layered 2
spec:
 machineConfigPool:
 name: layered 3
 containerFile: 4
 - containerfileArch: NoArch 5
 content: |-

CHAPTER 7. RHCOS IMAGE LAYERING

85

1

2

3

4

5

6

7

8

9

Specifies the machineconfiguration.openshift.io/v1 API that is required for
MachineConfig CRs.

Specifies a name for the MachineOSConfig object. The name must match the name
of the associated machine config pool. This name is used with other on-cluster layering
resources. The examples in this documentation use the name layered.

Specifies the name of the machine config pool associated with the nodes where you
want to deploy the custom layered image. The examples in this documentation use the
layered machine config pool.

Specifies the Containerfile to configure the custom layered image.

Specifies the architecture this containerfile is to be built for: ARM64, AMD64,
PPC64LE, S390X, or NoArch. The default is NoArch, which defines a Containerfile
that can be applied to any architecture.

Specifies the name of the image builder to use. This must be Job, which is a reference
to the job object that is managing the image build.

Optional: Specifies the name of the pull secret that the MCO needs to pull the base
operating system image from the registry. By default, the global pull secret is used.

Specifies the image registry to push the newly-built custom layered image to. This can
be any registry that your cluster has access to in the host[:port][/namespace]/name
or svc_name.namespace.svc[:port]/repository/name:<tag> format. This example
uses the internal OpenShift Container Platform registry. You can specify a mirror
registry if you cluster is properly configured to use a mirror registry.

Specifies the name of the push secret that the MCO needs to push the newly-built
custom layered image to that registry.

b. Create the MachineOSConfig object:

2. If necessary, when the MachineOSBuild object has been created and is in the READY state,
modify the node spec for the nodes where you want to use the new custom layered image:

a. Check that the MachineOSBuild object is READY. When the SUCCEEDED value is True,
the build is complete.

 FROM configs AS final
 RUN dnf install -y cowsay && \
 dnf clean all && \
 ostree container commit
 imageBuilder: 6
 imageBuilderType: Job
 baseImagePullSecret: 7
 name: global-pull-secret-copy
 renderedImagePushSpec: image-registry.openshift-image-
registry.svc:5000/openshift/os-image:latest 8
 renderedImagePushSecret: 9
 name: builder-dockercfg-mtcl23

$ oc create -f <file_name>.yaml

OpenShift Container Platform 4.18 Machine configuration

86

1

2

Example output showing that the MachineOSBuild object is ready

b. Edit the nodes where you want to deploy the custom layered image by adding a label for the
machine config pool you specified in the MachineOSConfig object:

where:

node-role.kubernetes.io/<mcp_name>=

Specifies a node selector that identifies the nodes to deploy the custom layered image.

When you save the changes, the MCO drains, cordons, and reboots the nodes. After the
reboot, the node will be using the new custom layered image.

Verification

1. Verify that the new pods are ready by running the following command:

Example output

This is the build pod where the custom layered image is building, named in the build-
<MachineOSConfig_CR_name>-<hash> format.

This pod can be used for troubleshooting.

2. Verify that the MachineOSConfig object contains a reference to the new custom layered
image by running the following command:

Example output

$ oc get machineosbuild

NAME PREPARED BUILDING SUCCEEDED
INTERRUPTED FAILED
layered-ad5a3cad36303c363cf458ab0524e7c0-builder False False True
False False

$ oc label node <node_name> 'node-role.kubernetes.io/<mcp_name>='

$ oc get pods -n openshift-machine-config-operator

NAME READY STATUS RESTARTS AGE
build-layered-ad5a3cad36303c363cf458ab0524e7c0-hxrws 2/2 Running 0
2m40s 1
...
machine-os-builder-6fb66cfb99-zcpvq 1/1 Running 0 2m42s 2

$ oc get machineosbuilds

NAME PREPARED BUILDING SUCCEEDED INTERRUPTED
FAILED
layered-ad5a3cad36303c363cf458ab0524e7c0 False True False False

CHAPTER 7. RHCOS IMAGE LAYERING

87

1

1

The MachineOSBuild is named in the <MachineOSConfig_CR_name>-<hash> format.

3. Verify that the MachineOSBuild object contains a reference to the new custom layered image
by running the following command:

Example output

Digested image pull spec for the new custom layered image.

4. Verify that the appropriate nodes are using the new custom layered image:

a. Start a debug session as root for a control plane node:

b. Set /host as the root directory within the debug shell:

c. Run the rpm-ostree status command to view that the custom layered image is in use:

False 1

$ oc describe machineosbuild <object_name>

Name: layered-ad5a3cad36303c363cf458ab0524e7c0
...
API Version: machineconfiguration.openshift.io/v1
Kind: MachineOSBuild
...
Spec:
 Config Generation: 1
 Desired Config:
 Name: rendered-layered-ad5a3cad36303c363cf458ab0524e7c0
 Machine OS Config:
 Name: layered
 Rendered Image Pushspec: image-registry.openshift-image-registry.svc:5000/openshift-
machine-config-operator/os-images:layered-ad5a3cad36303c363cf458ab0524e7c0
...
 Last Transition Time: 2025-02-12T19:21:28Z
 Message: Build Ready
 Reason: Ready
 Status: True
 Type: Succeeded
 Final Image Pullspec: image-registry.openshift-image-registry.svc:5000/openshift-
machine-config-operator/os-
images@sha256:312e48825e074b01a913deedd6de68abd44894ede50b2d14f99d722f13cda0
4b 1

$ oc debug node/<node_name>

sh-4.4# chroot /host

sh-5.1# rpm-ostree status

OpenShift Container Platform 4.18 Machine configuration

88

1

Example output

Digested image pull spec for the new custom layered image.

Additional resources

Pausing the machine config pools

Removing an on-cluster custom layered image

Modifying a custom layered image

Rebuilding an on-cluster custom layered image

Reverting an on-cluster custom layered image

7.3.2. Modifying a custom layered image

You can modify an on-cluster custom layered image, as needed. This allows you to install additional
packages, remove existing packages, change the pull or push repositories, update secrets, or other
similar changes. You can edit the MachineOSConfig object, apply changes to the YAML file that
created the MachineOSConfig object, or create a new YAML file for that purpose.

If you modify and apply the MachineOSConfig object YAML or create a new YAML file, the YAML
overwrites any changes you made directly to the MachineOSConfig object itself.

Making certain changes to a MachineOSConfig object triggers an automatic rebuild of the associated
custom layered image. You can mitigate the effects of the rebuild by pausing the machine config pool
where the custom layered image is applied as described in "Pausing the machine config pools." While the
pools are paused, the MCO does not roll out the newly built image to the nodes after the build is
complete. However, the build will still run regardless of whether the pool is paused or not. For example, if
you want to remove and replace a MachineOSCOnfig object, pausing the machine config pools before
making the change prevents the MCO from reverting the associated nodes to the base image, reducing
the number of reboots needed.

When a machine config pool is paused, the oc get machineconfigpools reports the following status:

Example output

...
Deployments:
* ostree-unverified-registry:image-registry.openshift-image-registry.svc:5000/openshift-
machine-config-operator/os-
images@sha256:312e48825e074b01a913deedd6de68abd44894ede50b2d14f99d722f13c
da04b
 Digest:
sha256:312e48825e074b01a913deedd6de68abd44894ede50b2d14f99d722f13cda04b
1

 Version: 418.94.202502100215-0 (2025-02-12T19:20:44Z)

NAME CONFIG UPDATED UPDATING DEGRADED
MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT
DEGRADEDMACHINECOUNT AGE
master rendered-master-a0b404d061a6183cc36d302363422aba True False False 3

CHAPTER 7. RHCOS IMAGE LAYERING

89

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/updating_clusters/#update-using-custom-machine-config-pools-pause_update-using-custom-machine-config-pools

1

1

2

3

4

The worker machine config pool is paused, as indicated by the three False statuses and the
READYMACHINECOUNT at 0.

After the changes have been rolled out, you can unpause the machine config pool.

Prerequisites

You have opted in to on-cluster layering by creating a MachineOSConfig object.

Procedure

Modify an object to update the associated custom layered image:

a. Edit the MachineOSConfig object to modify the custom layered image. The following
example adds the rngd daemon to nodes that already have the tree package that was
installed using a custom layered image.

Optional: Modify the Containerfile, for example to add or remove packages.

Optional: Update the secret needed to pull the base operating system image from the
registry.

Optional: Modify the image registry to push the newly built custom layered image to.

Optional: Update the secret needed to push the newly built custom layered image to
the registry.

3 3 0 4h14m
worker rendered-worker-221507009cbcdec0eec8ab3ccd789d18 False False False 2
2 2 0 4h14m 1

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineOSConfig
metadata:
 name: layered
spec:
 machineConfigPool:
 name: layered
 containerFile:
 - containerfileArch: NoArch
 content: |- 1
 FROM configs AS final
 RUN dnf install -y cowsay && \
 dnf clean all && \
 ostree container commit
 imageBuilder:
 imageBuilderType: Job
 baseImagePullSecret:
 name: global-pull-secret-copy 2
 renderedImagePushSpec: image-registry.openshift-image-
registry.svc:5000/openshift/os-image:latest 3
 renderedImagePushSecret: 4
 name: builder-dockercfg-mtcl23

OpenShift Container Platform 4.18 Machine configuration

90

1

1

When you save the changes, the MCO drains, cordons, and reboots the nodes. After the
reboot, the node uses the cluster base Red Hat Enterprise Linux CoreOS (RHCOS) image.
If your changes modify a secret only, no new build is triggered and no reboot is performed.

Verification

1. Verify that the new MachineOSBuild object was created by using the following command:

Example output

The value True in the BUILDING column indicates that the MachineOSBuild object is
building. When the SUCCEEDED column reports True, the build is complete.

2. You can watch as the new machine config is rolled out to the nodes by using the following
command:

Example output

The value FALSE in the UPDATED column indicates that the MachineOSBuild object is
building. When the UPDATED column reports FALSE, the new custom layered image has
rolled out to the nodes.

3. When the node is back in the Ready state, check that the changes were applied:

a. Open an oc debug session to the node by running the following command:

b. Set /host as the root directory within the debug shell by running the following command:

$ oc get machineosbuild

NAME PREPARED BUILDING SUCCEEDED INTERRUPTED
FAILED
layered-a5457b883f5239cdcb71b57e1a30b6ef False False True False
False
layered-f91f0f5593dd337d89bf4d38c877590b False True False False False
1

$ oc get machineconfigpools

NAME CONFIG UPDATED UPDATING DEGRADED
MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT
DEGRADEDMACHINECOUNT AGE
master rendered-master-a0b404d061a6183cc36d302363422aba True False False
3 3 3 0 3h38m
worker rendered-worker-221507009cbcdec0eec8ab3ccd789d18 False True False
2 2 2 0 3h38m 1

$ oc debug node/<node_name>

sh-5.1# chroot /host

CHAPTER 7. RHCOS IMAGE LAYERING

91

c. Use an appropriate command to verify that change was applied. The following examples
shows that the rngd daemon was installed:

Example output

Example output

Additional resources

Pausing the machine config pools

7.3.3. Rebuilding an on-cluster custom layered image

In situations where you want to rebuild an on-cluster custom layered image, you can either modify your
MachineOSConfig object or add an annotation to the MachineOSConfig object. Both of these actions
trigger an automatic rebuild of the object. For example, you could perform a rebuild if the you change
the Containerfile or need to update the osimageurl location in a machine config.

After you add the annotation, the Machine Config Operator (MCO) deletes the current
MachineOSBuild object and creates a new one in its place. When the build process is complete, the
MCO automatically removes the annotation.

Prerequisites

You have opted-in to {image-mode-os-on-lower} by creating a MachineOSConfig object.

Procedure

Edit the MachineOSConfig object to add the machineconfiguration.openshift.io/rebuild
annotation by using the following command:

Example MachineOSConfig object

sh-5.1# rpm -qa |grep rng-tools

rng-tools-6.17-3.fc41.x86_64

sh-5.1# rngd -v

rngd 6.16

$ oc edit MachineOSConfig <object_name>

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineOSConfig
metadata:
 annotations:
 machineconfiguration.openshift.io/current-machine-os-build: layering-
c26d4a003432df70ee66c83981144cfa
 machineconfiguration.openshift.io/rebuild: "" 1

OpenShift Container Platform 4.18 Machine configuration

92

https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/updating_clusters/#update-using-custom-machine-config-pools-pause_update-using-custom-machine-config-pools

1

1

Add this annotation to trigger a rebuild of the custom layered image.

Verification

Check that the MachineOSBuild object is building by using the following command:

Example output

The value True in the BUILDING column indicates that the MachineOSBuild object is
building.

Edit the MachineOSConfig object to verify that the MCO removed the
machineconfiguration.openshift.io/rebuild annotation by using the following command:

Example MachineOSConfig object

7.3.4. Reverting an on-cluster custom layered image

You can revert an on-cluster custom layered image from nodes by removing the label for the machine
config pool (MCP) that you specified in the MachineOSConfig object. After you remove the label, the
Machine Config Operator (MCO) reboots the nodes in that MCP with the cluster base Red Hat
Enterprise Linux CoreOS (RHCOS) image, along with any previously-made machine config changes,
overriding the custom layered image.

IMPORTANT

...
 name: layered
...

$ oc get machineosbuild

NAME PREPARED BUILDING SUCCEEDED
INTERRUPTED FAILED AGE
layered-d6b929a29c6dbfa8e4007c8069a2fd08 False True False False
False 2m41s 1

$ oc edit MachineOSConfig <object_name>

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineOSConfig
metadata:
 annotations:
 machineconfiguration.openshift.io/current-machine-os-build: layering-
c26d4a003432df70ee66c83981144cfa
...
 name: layered
...

CHAPTER 7. RHCOS IMAGE LAYERING

93

1

IMPORTANT

If the node where the custom layered image is deployed uses a custom machine config
pool, before you remove the label, make sure the node is associated with a second MCP.

You can reapply the custom layered image to the node by using the oc label node/<node_name>
'node-role.kubernetes.io/<mcp_name>=' label.

Prerequisites

You have opted in to on-cluster layering by creating a MachineOSConfig object.

Procedure

Remove the label from the node by using the following command:

When you save the changes, the MCO drains, cordons, and reboots the nodes. After the reboot,
the node uses the cluster base Red Hat Enterprise Linux CoreOS (RHCOS) image.

Verification

You can verify that the custom layered image is removed by performing the following checks:

1. Check that the worker machine config pool is updating with the previous machine config:

Sample output

The value FALSE in the UPDATED column indicates that the MachineOSBuild object is
building. When the UPDATED column reports FALSE, the base image has rolled out to the
nodes.

2. Check the nodes to see that scheduling on the nodes is disabled. This indicates that the change
is being applied:

Example output

$ oc label node/<node_name> node-role.kubernetes.io/<mcp_name>-

$ oc get mcp

NAME CONFIG UPDATED UPDATING DEGRADED
MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT
DEGRADEDMACHINECOUNT AGE
master rendered-master-8332482204e0b76002f15ecad15b6c2d True False False
3 3 3 0 5h26m
worker rendered-worker-bde4e4206442c0a48b1a1fb35ba56e85 False True False
3 2 2 0 5h26m 1

$ oc get nodes

NAME STATUS ROLES AGE VERSION
ip-10-0-148-79.us-west-1.compute.internal Ready worker 32m
v1.31.3

OpenShift Container Platform 4.18 Machine configuration

94

3. When the node is back in the Ready state, check that the node is using the base image:

a. Open an oc debug session to the node. For example:

b. Set /host as the root directory within the debug shell:

c. Run an rpm-ostree status command to view that the base image is in use:

Example output

7.3.5. Removing an on-cluster custom layered image

To prevent the custom layered images from taking up excessive space in your registry, you can
automatically remove an on-cluster custom layered image from the repository by deleting the
MachineOSBuild object that created the image.

The credentials provided by the registry push secret that you added to the MachineOSBuild object
must grant the permission for deleting an image from the registry. If the delete permission is not
provided, the image is not removed when you delete the MachineOSBuild object.

The custom layered image is not deleted if the image is either currently in use on a node or is desired by
the nodes, as indicated by the machineconfiguration.openshift.io/currentImage or
machineconfiguration.openshift.io/desiredImage annotations on the node, which are added to the
node when you create the MachineOSConfig object.

7.4. USING OUT-OF-CLUSTER LAYERING TO APPLY A CUSTOM

ip-10-0-155-125.us-west-1.compute.internal Ready,SchedulingDisabled worker
35m v1.31.3
ip-10-0-170-47.us-west-1.compute.internal Ready control-plane,master 42m
v1.31.3
ip-10-0-174-77.us-west-1.compute.internal Ready control-plane,master 42m
v1.31.3
ip-10-0-211-49.us-west-1.compute.internal Ready control-plane,master 42m
v1.31.3
ip-10-0-218-151.us-west-1.compute.internal Ready worker 31m
v1.31.3

$ oc debug node/<node_name>

sh-5.1# chroot /host

sh-5.1# rpm-ostree status

State: idle
Deployments:
* ostree-unverified-image:containers-storage:quay.io/openshift-release-dev/ocp-v4.0-art-
dev@sha256:76721c875a2b79688be46b1dca654c2c6619a6be28b29a2822cd86c3f9d8e3
c1
 Digest:
sha256:76721c875a2b79688be46b1dca654c2c6619a6be28b29a2822cd86c3f9d8e3c1
 Version: 418.94.202501300706-0 (2025-01-30T07:10:58Z)

CHAPTER 7. RHCOS IMAGE LAYERING

95

1

2

7.4. USING OUT-OF-CLUSTER LAYERING TO APPLY A CUSTOM
LAYERED IMAGE

You can easily configure Red Hat Enterprise Linux CoreOS (RHCOS) image layering on the nodes in
specific machine config pools. The Machine Config Operator (MCO) reboots those nodes with the new
custom layered image, overriding the base Red Hat Enterprise Linux CoreOS (RHCOS) image.

To apply a custom layered image to your cluster, you must have the custom layered image in a
repository that your cluster can access. Then, create a MachineConfig object that points to the custom
layered image. You need a separate MachineConfig object for each machine config pool that you want
to configure.

IMPORTANT

When you configure a custom layered image, OpenShift Container Platform no longer
automatically updates any node that uses the custom layered image. You become
responsible for manually updating your nodes as appropriate. If you roll back the custom
layer, OpenShift Container Platform will again automatically update the node. See the
Additional resources section that follows for important information about updating nodes
that use a custom layered image.

Prerequisites

You must create a custom layered image that is based on an OpenShift Container Platform
image digest, not a tag.

NOTE

You should use the same base RHCOS image that is installed on the rest of your
cluster. Use the oc adm release info --image-for rhel-coreos command to
obtain the base image being used in your cluster.

For example, the following Containerfile creates a custom layered image from an OpenShift
Container Platform 4.18 image and overrides the kernel package with one from CentOS 9
Stream:

Example Containerfile for a custom layer image

Specifies the RHCOS base image of your cluster.

Replaces the kernel packages.

NOTE

Using a 4.18.0 image
FROM quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256... 1
#Install hotfix rpm
RUN rpm-ostree override replace http://mirror.stream.centos.org/9-
stream/BaseOS/x86_64/os/Packages/kernel-{,core-,modules-,modules-core-,modules-extra-
}5.14.0-295.el9.x86_64.rpm && \ 2
 rpm-ostree cleanup -m && \
 ostree container commit

OpenShift Container Platform 4.18 Machine configuration

96

1

2

NOTE

Instructions on how to create a Containerfile are beyond the scope of this
documentation.

Because the process for building a custom layered image is performed outside of the cluster,
you must use the --authfile /path/to/pull-secret option with Podman or Buildah. Alternatively,
to have the pull secret read by these tools automatically, you can add it to one of the default file
locations: ~/.docker/config.json, $XDG_RUNTIME_DIR/containers/auth.json,
~/.docker/config.json, or ~/.dockercfg. Refer to the containers-auth.json man page for more
information.

You must push the custom layered image to a repository that your cluster can access.

Procedure

1. Create a machine config file.

a. Create a YAML file similar to the following:

Specifies the machine config pool to deploy the custom layered image.

Specifies the path to the custom layered image in the repository.

b. Create the MachineConfig object:

IMPORTANT

It is strongly recommended that you test your images outside of your
production environment before rolling out to your cluster.

Verification

You can verify that the custom layered image is applied by performing any of the following checks:

1. Check that the worker machine config pool has rolled out with the new machine config:

a. Check that the new machine config is created:

Sample output

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker 1
 name: os-layer-custom
spec:
 osImageURL: quay.io/my-registry/custom-image@sha256... 2

$ oc create -f <file_name>.yaml

$ oc get mc

CHAPTER 7. RHCOS IMAGE LAYERING

97

1

2

New machine config

New rendered machine config

b. Check that the osImageURL value in the new machine config points to the expected
image:

Example output

c. Check that the associated machine config pool is updated with the new machine config:

NAME GENERATEDBYCONTROLLER
IGNITIONVERSION AGE
00-master 5bdb57489b720096ef912f738b46330a8f577803
3.4.0 95m
00-worker 5bdb57489b720096ef912f738b46330a8f577803
3.4.0 95m
01-master-container-runtime
5bdb57489b720096ef912f738b46330a8f577803 3.4.0 95m
01-master-kubelet 5bdb57489b720096ef912f738b46330a8f577803
3.4.0 95m
01-worker-container-runtime
5bdb57489b720096ef912f738b46330a8f577803 3.4.0 95m
01-worker-kubelet 5bdb57489b720096ef912f738b46330a8f577803
3.4.0 95m
99-master-generated-registries
5bdb57489b720096ef912f738b46330a8f577803 3.4.0 95m
99-master-ssh 3.2.0 98m
99-worker-generated-registries
5bdb57489b720096ef912f738b46330a8f577803 3.4.0 95m
99-worker-ssh 3.2.0 98m
os-layer-custom 10s 1
rendered-master-15961f1da260f7be141006404d17d39b
5bdb57489b720096ef912f738b46330a8f577803 3.4.0 95m
rendered-worker-5aff604cb1381a4fe07feaf1595a797e
5bdb57489b720096ef912f738b46330a8f577803 3.4.0 95m
rendered-worker-5de4837625b1cbc237de6b22bc0bc873
5bdb57489b720096ef912f738b46330a8f577803 3.4.0 4s 2

$ oc describe mc rendered-worker-5de4837625b1cbc237de6b22bc0bc873

Name: rendered-worker-5de4837625b1cbc237de6b22bc0bc873
Namespace:
Labels: <none>
Annotations: machineconfiguration.openshift.io/generated-by-controller-version:
5bdb57489b720096ef912f738b46330a8f577803
 machineconfiguration.openshift.io/release-image-version: 4.18.0-ec.3
API Version: machineconfiguration.openshift.io/v1
Kind: MachineConfig
...
 Os Image URL: quay.io/my-registry/custom-image@sha256...

$ oc get mcp

OpenShift Container Platform 4.18 Machine configuration

98

1

Sample output

When the UPDATING field is True, the machine config pool is updating with the new
machine config. In this case, you will not see the new machine config listed in the
output. When the field becomes False, the worker machine config pool has rolled out
to the new machine config.

d. Check the nodes to see that scheduling on the nodes is disabled. This indicates that the
change is being applied:

Example output

2. When the node is back in the Ready state, check that the node is using the custom layered
image:

a. Open an oc debug session to the node. For example:

b. Set /host as the root directory within the debug shell:

c. Run the rpm-ostree status command to view that the custom layered image is in use:

NAME CONFIG UPDATED UPDATING DEGRADED
MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT
DEGRADEDMACHINECOUNT AGE
master rendered-master-15961f1da260f7be141006404d17d39b True False
False 3 3 3 0 39m
worker rendered-worker-5de4837625b1cbc237de6b22bc0bc873 True False
False 3 0 0 0 39m 1

$ oc get nodes

NAME STATUS ROLES AGE
VERSION
ip-10-0-148-79.us-west-1.compute.internal Ready worker 32m
v1.31.3
ip-10-0-155-125.us-west-1.compute.internal Ready,SchedulingDisabled worker
35m v1.31.3
ip-10-0-170-47.us-west-1.compute.internal Ready control-plane,master
42m v1.31.3
ip-10-0-174-77.us-west-1.compute.internal Ready control-plane,master
42m v1.31.3
ip-10-0-211-49.us-west-1.compute.internal Ready control-plane,master
42m v1.31.3
ip-10-0-218-151.us-west-1.compute.internal Ready worker 31m
v1.31.3

$ oc debug node/ip-10-0-155-125.us-west-1.compute.internal

sh-4.4# chroot /host

sh-4.4# sudo rpm-ostree status

CHAPTER 7. RHCOS IMAGE LAYERING

99

1

Example output

State: idle
Deployments:
* ostree-unverified-registry:quay.io/my-registry/...
 Digest: sha256:...

Additional resources

Updating with a RHCOS custom layered image

7.4.1. Reverting an out-of-cluster node

You can revert an out-of-cluster custom layered image from the nodes in specific machine config pools.
The Machine Config Operator (MCO) reboots those nodes with the cluster base Red Hat Enterprise
Linux CoreOS (RHCOS) image, overriding the custom layered image.

To remove a Red Hat Enterprise Linux CoreOS (RHCOS) custom layered image from your cluster, you
need to delete the machine config that applied the image.

Procedure

Delete the machine config that applied the custom layered image.

After deleting the machine config, the nodes reboot.

Verification

You can verify that the custom layered image is removed by performing any of the following checks:

1. Check that the worker machine config pool is updating with the previous machine config:

Sample output

When the UPDATING field is True, the machine config pool is updating with the previous
machine config. When the field becomes False, the worker machine config pool has rolled
out to the previous machine config.

2. Check the nodes to see that scheduling on the nodes is disabled. This indicates that the change
is being applied:

$ oc delete mc os-layer-custom

$ oc get mcp

NAME CONFIG UPDATED UPDATING DEGRADED
MACHINECOUNT READYMACHINECOUNT UPDATEDMACHINECOUNT
DEGRADEDMACHINECOUNT AGE
master rendered-master-6faecdfa1b25c114a58cf178fbaa45e2 True False False
3 3 3 0 39m
worker rendered-worker-6b000dbc31aaee63c6a2d56d04cd4c1b False True False
3 0 0 0 39m 1

OpenShift Container Platform 4.18 Machine configuration

100

Example output

3. When the node is back in the Ready state, check that the node is using the base image:

a. Open an oc debug session to the node by running the following command:

b. Set /host as the root directory within the debug shell by running the following command:

c. Run the rpm-ostree status command to view that the custom layered image is in use:

Example output

State: idle
Deployments:
* ostree-unverified-registry:podman pull quay.io/openshift-release-dev/ocp-
release@sha256:e2044c3cfebe0ff3a99fc207ac5efe6e07878ad59fd4ad5e41f88cb016dacd
73
 Digest:
sha256:e2044c3cfebe0ff3a99fc207ac5efe6e07878ad59fd4ad5e41f88cb016dacd73

7.5. UPDATING WITH A RHCOS CUSTOM LAYERED IMAGE

When you configure Red Hat Enterprise Linux CoreOS (RHCOS) image layering, OpenShift Container
Platform no longer automatically updates the node pool that uses the custom layered image. You
become responsible to manually update your nodes as appropriate.

To update a node that uses a custom layered image, follow these general steps:

1. The cluster automatically upgrades to version x.y.z+1, except for the nodes that use the custom
layered image.

$ oc get nodes

NAME STATUS ROLES AGE VERSION
ip-10-0-148-79.us-west-1.compute.internal Ready worker 32m
v1.31.3
ip-10-0-155-125.us-west-1.compute.internal Ready,SchedulingDisabled worker
35m v1.31.3
ip-10-0-170-47.us-west-1.compute.internal Ready control-plane,master 42m
v1.31.3
ip-10-0-174-77.us-west-1.compute.internal Ready control-plane,master 42m
v1.31.3
ip-10-0-211-49.us-west-1.compute.internal Ready control-plane,master 42m
v1.31.3
ip-10-0-218-151.us-west-1.compute.internal Ready worker 31m
v1.31.3

$ oc debug node/<node_name>

sh-5.1# chroot /host

sh-5.1# sudo rpm-ostree status

CHAPTER 7. RHCOS IMAGE LAYERING

101

2. You could then create a new Containerfile that references the updated OpenShift Container
Platform image and the RPM that you had previously applied.

3. Create a new machine config that points to the updated custom layered image.

Updating a node with a custom layered image is not required. However, if that node gets too far behind
the current OpenShift Container Platform version, you could experience unexpected results.

OpenShift Container Platform 4.18 Machine configuration

102

CHAPTER 8. MACHINE CONFIG DAEMON METRICS
OVERVIEW

The Machine Config Daemon is a part of the Machine Config Operator. It runs on every node in the
cluster. The Machine Config Daemon manages configuration changes and updates on each of the
nodes.

8.1. UNDERSTANDING MACHINE CONFIG DAEMON METRICS

Beginning with OpenShift Container Platform 4.3, the Machine Config Daemon provides a set of
metrics. These metrics can be accessed using the Prometheus Cluster Monitoring stack.

The following table describes this set of metrics. Some entries contain commands for getting specific
logs. However, the most comprehensive set of logs is available using the oc adm must-gather
command.

NOTE

Metrics marked with * in the Name and Description columns represent serious errors
that might cause performance problems. Such problems might prevent updates and
upgrades from proceeding.

Table 8.1. MCO metrics

Name Format Description Notes

mcd_host_o
s_and_versio
n

[]string{"os",
"version"}

Shows the OS that MCD is
running on, such as RHCOS or
RHEL. In case of RHCOS, the
version is provided.

mcd_drain_e
rr*

 Logs errors received during failed
drain. *

While drains might need multiple
tries to succeed, terminal failed
drains prevent updates from
proceeding. The drain_time
metric, which shows how much
time the drain took, might help
with troubleshooting.

For further investigation, see the
logs by running:

$ oc logs -f -n openshift-
machine-config-operator
machine-config-daemon-
<hash> -c machine-config-
daemon

CHAPTER 8. MACHINE CONFIG DAEMON METRICS OVERVIEW

103

mcd_pivot_e
rr*

[]string{"err",
"node",
"pivot_target
"}

Logs errors encountered during
pivot. *

Pivot errors might prevent OS
upgrades from proceeding.

For further investigation, run this
command to see the logs from
the machine-config-daemon
container:

$ oc logs -f -n openshift-
machine-config-operator
machine-config-daemon-
<hash> -c machine-config-
daemon

mcd_state []string{"stat
e", "reason"}

State of Machine Config Daemon
for the indicated node. Possible
states are "Done", "Working", and
"Degraded". In case of
"Degraded", the reason is
included.

For further investigation, see the
logs by running:

$ oc logs -f -n openshift-
machine-config-operator
machine-config-daemon-
<hash> -c machine-config-
daemon

mcd_kubelet
_state*

 Logs kubelet health failures. * This is expected to be empty,
with failure count of 0. If failure
count exceeds 2, the error
indicating threshold is exceeded.
This indicates a possible issue
with the health of the kubelet.

For further investigation, run this
command to access the node and
see all its logs:

$ oc debug node/<node> — 
chroot /host journalctl -u
kubelet

Name Format Description Notes

OpenShift Container Platform 4.18 Machine configuration

104

mcd_reboot_
err*

[]string{"mes
sage", "err",
"node"}

Logs the failed reboots and the
corresponding errors. *

This is expected to be empty,
which indicates a successful
reboot.

For further investigation, see the
logs by running:

$ oc logs -f -n openshift-
machine-config-operator
machine-config-daemon-
<hash> -c machine-config-
daemon

mcd_update
_state

[]string{"con
fig", "err"}

Logs success or failure of
configuration updates and the
corresponding errors.

The expected value is rendered-
master/rendered-worker-
XXXX. If the update fails, an error
is present.

For further investigation, see the
logs by running:

$ oc logs -f -n openshift-
machine-config-operator
machine-config-daemon-
<hash> -c machine-config-
daemon

Name Format Description Notes

Additional resources

About OpenShift Container Platform monitoring

Gathering data about your cluster

CHAPTER 8. MACHINE CONFIG DAEMON METRICS OVERVIEW

105

https://docs.redhat.com/en/documentation/monitoring_stack_for_red_hat_openshift/4.18/html/about_monitoring/about-ocp-monitoring
https://docs.redhat.com/en/documentation/openshift_container_platform/4.18/html-single/support/#gathering-cluster-data

	Table of Contents
	CHAPTER 1. MACHINE CONFIGURATION OVERVIEW
	1.1. ABOUT THE MACHINE CONFIG OPERATOR
	1.2. MACHINE CONFIG OVERVIEW
	1.2.1. What can you change with machine configs?
	1.2.2. Node configuration management with machine config pools

	1.3. UNDERSTANDING THE MACHINE CONFIG OPERATOR NODE DRAIN BEHAVIOR
	1.4. UNDERSTANDING CONFIGURATION DRIFT DETECTION
	1.5. CHECKING MACHINE CONFIG POOL STATUS
	1.6. ABOUT NODE STATUS DURING UPDATES
	1.6.1. Checking node status during updates

	1.7. UNDERSTANDING MACHINE CONFIG OPERATOR CERTIFICATES
	1.7.1. Viewing and interacting with certificates

	CHAPTER 2. USING MACHINE CONFIG OBJECTS TO CONFIGURE NODES
	2.1. CONFIGURING CHRONY TIME SERVICE
	2.2. DISABLING THE CHRONY TIME SERVICE
	2.3. ADDING KERNEL ARGUMENTS TO NODES
	2.4. ENABLING MULTIPATHING WITH KERNEL ARGUMENTS ON RHCOS
	2.5. ADDING A REAL-TIME KERNEL TO NODES
	2.6. CONFIGURING JOURNALD SETTINGS
	2.7. ADDING EXTENSIONS TO RHCOS
	2.8. LOADING CUSTOM FIRMWARE BLOBS IN THE MACHINE CONFIG MANIFEST
	2.9. CHANGING THE CORE USER PASSWORD FOR NODE ACCESS

	CHAPTER 3. USING NODE DISRUPTION POLICIES TO MINIMIZE DISRUPTION FROM MACHINE CONFIG CHANGES
	3.1. EXAMPLE NODE DISRUPTION POLICIES
	3.2. CONFIGURING NODE RESTART BEHAVIORS UPON MACHINE CONFIG CHANGES

	CHAPTER 4. CONFIGURING MCO-RELATED CUSTOM RESOURCES
	4.1. CREATING A KUBELETCONFIG CR TO EDIT KUBELET PARAMETERS
	4.2. CREATING A CONTAINERRUNTIMECONFIG CR TO EDIT CRI-O PARAMETERS
	4.3. SETTING THE DEFAULT MAXIMUM CONTAINER ROOT PARTITION SIZE FOR OVERLAY WITH CRI-O
	4.4. CREATING A DROP-IN FILE FOR THE DEFAULT CRI-O CAPABILITIES

	CHAPTER 5. UPDATED BOOT IMAGES
	5.1. CONFIGURING UPDATED BOOT IMAGES
	5.2. DISABLING UPDATED BOOT IMAGES

	CHAPTER 6. MANAGING UNUSED RENDERED MACHINE CONFIGS
	6.1. VIEWING RENDERED MACHINE CONFIGS
	6.2. REMOVING UNUSED RENDERED MACHINE CONFIGS

	CHAPTER 7. RHCOS IMAGE LAYERING
	7.1. ABOUT RHCOS IMAGE LAYERING
	7.2. EXAMPLE CONTAINERFILES
	7.3. USING ON-CLUSTER LAYERING TO APPLY A CUSTOM LAYERED IMAGE
	7.3.1. On-cluster layering known limitations
	7.3.2. Modifying a custom layered image
	7.3.3. Rebuilding an on-cluster custom layered image
	7.3.4. Reverting an on-cluster custom layered image
	7.3.5. Removing an on-cluster custom layered image

	7.4. USING OUT-OF-CLUSTER LAYERING TO APPLY A CUSTOM LAYERED IMAGE
	7.4.1. Reverting an out-of-cluster node

	7.5. UPDATING WITH A RHCOS CUSTOM LAYERED IMAGE

	CHAPTER 8. MACHINE CONFIG DAEMON METRICS OVERVIEW
	8.1. UNDERSTANDING MACHINE CONFIG DAEMON METRICS

