Este contenido no está disponible en el idioma seleccionado.

Chapter 1. About AI Inference Server


AI Inference Server provides enterprise-grade stability and security, building on upstream, open source software. AI Inference Server leverages the upstream vLLM project, which provides state-of-the-art inferencing features.

For example, AI Inference Server uses continuous batching to process requests as they arrive instead of waiting for a full batch to be accumulated. It also uses tensor parallelism to distribute LLM workloads across multiple GPUs. These features provide reduced latency and higher throughput.

To reduce the cost of inferencing models, AI Inference Server uses paged attention. LLMs use a mechanism called attention to understand conversations with users. Normally, attention uses a significant amount of memory, much of which is wasted. Paged attention addresses this memory wastage by provisioning memory for LLMs similar to the way that virtual memory works for operating systems. This approach consumes less memory, which lowers costs.

To verify cost savings and performance gains with AI Inference Server, complete the following procedures:

Volver arriba
Red Hat logoGithubredditYoutubeTwitter

Aprender

Pruebe, compre y venda

Comunidades

Acerca de la documentación de Red Hat

Ayudamos a los usuarios de Red Hat a innovar y alcanzar sus objetivos con nuestros productos y servicios con contenido en el que pueden confiar. Explore nuestras recientes actualizaciones.

Hacer que el código abierto sea más inclusivo

Red Hat se compromete a reemplazar el lenguaje problemático en nuestro código, documentación y propiedades web. Para más detalles, consulte el Blog de Red Hat.

Acerca de Red Hat

Ofrecemos soluciones reforzadas que facilitan a las empresas trabajar en plataformas y entornos, desde el centro de datos central hasta el perímetro de la red.

Theme

© 2025 Red Hat