Este contenido no está disponible en el idioma seleccionado.

26.6. Spark Performance Considerations


The Data Grid Spark connector creates by default two partitions per each Data Grid node, each partition specifies a subset of the data in that particular node.
Those partitions are then sent to the Spark workers that will process them in parallel. If the number of Spark workers is less than the number of Data Grid nodes, some delay can occur since each worker has a maximum capacity of executing tasks in parallel. For this reason it is recommended to have at least the same number of Spark workers as Data Grid nodes to take advantage of the parallelism.
In addition, if a Spark worker is co-located in the same node as the Data Grid node, the connector will distribute tasks so that each worker only processes data found in the local Data Grid node.
Red Hat logoGithubRedditYoutubeTwitter

Aprender

Pruebe, compre y venda

Comunidades

Acerca de la documentación de Red Hat

Ayudamos a los usuarios de Red Hat a innovar y alcanzar sus objetivos con nuestros productos y servicios con contenido en el que pueden confiar.

Hacer que el código abierto sea más inclusivo

Red Hat se compromete a reemplazar el lenguaje problemático en nuestro código, documentación y propiedades web. Para más detalles, consulte el Blog de Red Hat.

Acerca de Red Hat

Ofrecemos soluciones reforzadas que facilitan a las empresas trabajar en plataformas y entornos, desde el centro de datos central hasta el perímetro de la red.

© 2024 Red Hat, Inc.