Este contenido no está disponible en el idioma seleccionado.

Chapter 1. Architecture of OpenShift AI Self-Managed


Red Hat OpenShift AI Self-Managed is an Operator that is available in a self-managed environment, such as Red Hat OpenShift Container Platform, or in Red Hat-managed cloud environments such as Red Hat OpenShift Dedicated (with a Customer Cloud Subscription for AWS or GCP), Red Hat OpenShift Service on Amazon Web Services (ROSA Classic or ROSA HCP), or Microsoft Azure Red Hat OpenShift.

OpenShift AI integrates the following components and services:

  • At the service layer:

    OpenShift AI dashboard
    A customer-facing dashboard that shows available and installed applications for the OpenShift AI environment as well as learning resources such as tutorials, quick starts, and documentation. Administrative users can access functionality to manage users, clusters, notebook images, hardware profiles, and model-serving runtimes. Data scientists can use the dashboard to create projects to organize their data science work.
    Model serving
    Data scientists can deploy trained machine-learning models to serve intelligent applications in production. After deployment, applications can send requests to the model using its deployed API endpoint.
    Data science pipelines
    Data scientists can build portable machine learning (ML) workflows with data science pipelines 2.0, using Docker containers. With data science pipelines, data scientists can automate workflows as they develop their data science models.
    Jupyter (self-managed)
    A self-managed application that allows data scientists to configure their own notebook server environment and develop machine learning models in JupyterLab.
    Distributed workloads
    Data scientists can use multiple nodes in parallel to train machine-learning models or process data more quickly. This approach significantly reduces the task completion time, and enables the use of larger datasets and more complex models.
  • At the management layer:

    The Red Hat OpenShift AI Operator
    A meta-operator that deploys and maintains all components and sub-operators that are part of OpenShift AI.

When you install the Red Hat OpenShift AI Operator in the OpenShift cluster, the following new projects are created:

  • The redhat-ods-operator project contains the Red Hat OpenShift AI Operator.
  • The redhat-ods-applications project installs the dashboard and other required components of OpenShift AI.
  • The rhods-notebooks project is where notebook environments are deployed by default.

You or your data scientists must create additional projects for the applications that will use your machine learning models.

Do not install independent software vendor (ISV) applications in namespaces associated with OpenShift AI.

Volver arriba
Red Hat logoGithubredditYoutubeTwitter

Aprender

Pruebe, compre y venda

Comunidades

Acerca de la documentación de Red Hat

Ayudamos a los usuarios de Red Hat a innovar y alcanzar sus objetivos con nuestros productos y servicios con contenido en el que pueden confiar. Explore nuestras recientes actualizaciones.

Hacer que el código abierto sea más inclusivo

Red Hat se compromete a reemplazar el lenguaje problemático en nuestro código, documentación y propiedades web. Para más detalles, consulte el Blog de Red Hat.

Acerca de Red Hat

Ofrecemos soluciones reforzadas que facilitan a las empresas trabajar en plataformas y entornos, desde el centro de datos central hasta el perímetro de la red.

Theme

© 2025 Red Hat