Ce contenu n'est pas disponible dans la langue sélectionnée.

17.3. Map Reduce Example


The following example uses a word count application to demonstrate MapReduce and its distributed task abilities.
This example assumes we have a mapping of the key sentence stored on JBoss Data Grid nodes.
  • Key is a String.
  • Each sentence is a String.
All words that appear in all sentences must be counted.
The following defines the implementation of this distributed task:
public class WordCountExample {
 
   /**
    * In this example replace c1 and c2 with
    * real Cache references
    *
    * @param args
    */
   public static void main(String[] args) {
      Cache c1 = null;
      Cache c2 = null;
 
      c1.put("1", "Hello world here I am");
      c2.put("2", "Infinispan rules the world");
      c1.put("3", "JUDCon is in Boston");
      c2.put("4", "JBoss World is in Boston as well");
      c1.put("12","WildFly");
      c2.put("15", "Hello world");
      c1.put("14", "Infinispan community");
      c2.put("15", "Hello world");
 
      c1.put("111", "Infinispan open source");
      c2.put("112", "Boston is close to Toronto");
      c1.put("113", "Toronto is a capital of Ontario");
      c2.put("114", "JUDCon is cool");
      c1.put("211", "JBoss World is awesome");
      c2.put("212", "JBoss rules");
      c1.put("213", "JBoss division of RedHat ");
      c2.put("214", "RedHat community");
 
      MapReduceTask<String, String, String, Integer> t =
         new MapReduceTask<String, String, String, Integer>(c1);
      t.mappedWith(new WordCountMapper())
         .reducedWith(new WordCountReducer());
      Map<String, Integer> wordCountMap = t.execute();
   }
 
   static class WordCountMapper implements Mapper<String,String,String,Integer> {
      /** The serialVersionUID */
      private static final long serialVersionUID = -5943370243108735560L;
 
      @Override
      public void map(String key, String value, Collector<String, Integer> collector) {
         StringTokenizer tokens = new StringTokenizer(value);
		 for(String token : value.split("\\w")) {
             collector.emit(token, 1);
             }
      }
}
 
   static class WordCountReducer implements Reducer<String, Integer> {
      /** The serialVersionUID */
      private static final long serialVersionUID = 1901016598354633256L;
 
      @Override
      public Integer reduce(String key, Iterator<Integer> iter) {
         int sum = 0;
         while (iter.hasNext()) {
            Integer i = (Integer) iter.next();
            sum += i;
         }
         return sum;
      }
   }
}
In this second example, a Collator is defined, which will transform the result of MapReduceTask Map<KOut,VOut> into a String that is returned to a task invoker. The Collator is a transformation function applied to a final result of MapReduceTask.
MapReduceTask<String, String, String, Integer> t = new MapReduceTask<String, String, String, Integer>(cache);
t.mappedWith(new WordCountMapper()).reducedWith(new WordCountReducer());
String mostFrequentWord = t.execute(
      new Collator<String,Integer,String>() {
 
         @Override
         public String collate(Map<String, Integer> reducedResults) {
            String mostFrequent = "";
            int maxCount = 0;
            for (Entry<String, Integer> e : reducedResults.entrySet()) {
               Integer count = e.getValue();
               if(count > maxCount) {
                  maxCount = count;
                  mostFrequent = e.getKey();
               }
            }
         return mostFrequent;
         }
 
      });
System.out.println("The most frequent word is " + mostFrequentWord);
Red Hat logoGithubRedditYoutubeTwitter

Apprendre

Essayez, achetez et vendez

Communautés

À propos de la documentation Red Hat

Nous aidons les utilisateurs de Red Hat à innover et à atteindre leurs objectifs grâce à nos produits et services avec un contenu auquel ils peuvent faire confiance.

Rendre l’open source plus inclusif

Red Hat s'engage à remplacer le langage problématique dans notre code, notre documentation et nos propriétés Web. Pour plus de détails, consultez leBlog Red Hat.

À propos de Red Hat

Nous proposons des solutions renforcées qui facilitent le travail des entreprises sur plusieurs plates-formes et environnements, du centre de données central à la périphérie du réseau.

© 2024 Red Hat, Inc.