
OpenShift Dedicated 4

Opérateurs

Opérateurs dédiés à OpenShift

Last Updated: 2025-05-27

OpenShift Dedicated 4 Opérateurs

Opérateurs dédiés à OpenShift

Notice légale

Copyright © 2025 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Résumé

Comment les opérateurs aident à emballer, déployer et gérer les services sur le plan de contrôle.

. .

. .

. .

. .

. .

Table des matières

CHAPITRE 1. APERÇU DES OPÉRATEURS
1.1. DESTINÉ AUX DÉVELOPPEURS
1.2. ADMINISTRATEURS POUR LES ADMINISTRATEURS
1.3. LES PROCHAINES ÉTAPES

CHAPITRE 2. COMPRENDRE LES OPÉRATEURS
2.1. EN QUOI CONSISTENT LES OPÉRATEURS?
2.2. FORMAT D’EMBALLAGE DU CADRE OPÉRATEUR
2.3. GLOSSAIRE DU CADRE OPÉRATEUR DES TERMES COMMUNS
2.4. GESTIONNAIRE DU CYCLE DE VIE DE L’OPÉRATEUR (OLM)
2.5. COMPRENDRE L’OPÉRATEURHUB
2.6. CATALOGUES D’OPÉRATEURS RED HAT
2.7. OPÉRATEURS EN CLUSTERS MULTILOCATAIRES
2.8. CRDS

CHAPITRE 3. LES TÂCHES DE L’UTILISATEUR
3.1. CRÉATION D’APPLICATIONS À PARTIR D’OPÉRATEURS INSTALLÉS

CHAPITRE 4. LES TÂCHES D’ADMINISTRATEUR
4.1. AJOUT D’OPÉRATEURS À UN CLUSTER
4.2. LA MISE À JOUR DES OPÉRATEURS INSTALLÉS
4.3. LA SUPPRESSION DES OPÉRATEURS D’UN CLUSTER
4.4. CONFIGURATION DU SUPPORT PROXY DANS OPERATOR LIFECYCLE MANAGER
4.5. STATUT DE L’OPÉRATEUR
4.6. GESTION DES CONDITIONS DE L’OPÉRATEUR
4.7. GESTION DES CATALOGUES PERSONNALISÉS
4.8. CATALOGUE SOURCE DE CALENDRIER DES POD
4.9. DÉPANNAGE DES PROBLÈMES DE L’OPÉRATEUR

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS
5.1. À PROPOS DE L’OPÉRATEUR SDK
5.2. INSTALLATION DE L’OPÉRATEUR SDK CLI
5.3. OPÉRATEURS BASÉS SUR GO
5.4. OPÉRATEURS BASÉS SUR ANSIBLE
5.5. OPÉRATEURS BASÉS SUR LE BARREAU
5.6. DÉFINITION DES VERSIONS DE SERVICE CLUSTER (CSV)
5.7. EN TRAVAILLANT AVEC DES IMAGES GROUPÉES
5.8. CONFORMITÉ À L’ADMISSION DE SÉCURITÉ DE POD
5.9. LA VALIDATION DES OPÉRATEURS À L’AIDE DE L’OUTIL DE CARTE DE POINTAGE
5.10. LA VALIDATION DES PAQUETS D’OPÉRATEURS
5.11. DÉTECTION ET SUPPORT DE CLUSTERS À HAUTE DISPONIBILITÉ OU À UN SEUL NŒUD
5.12. CONFIGURATION DE LA SURVEILLANCE INTÉGRÉE AVEC PROMETHEUS
5.13. CONFIGURATION DE L’ÉLECTION DES DIRIGEANTS
5.14. UTILITAIRE D’ÉLAGAGE D’OBJETS POUR LES OPÉRATEURS GO-BASED
5.15. LES PROJETS DE MANIFESTATION DE PAQUETS MIGRATOIRES AU FORMAT DE PAQUETAGE
5.16. OPÉRATEUR SDK CLI RÉFÉRENCE
5.17. LA MIGRATION VERS L’OPÉRATEUR SDK V0.1.0

3
3
3
4

5
5
7

21
23
67
68
71
73

76
76

78
78
96
97
101

104
108
110
127
130

136
136
138
141

168
202
221

252
264
269
279
282
284
285
287
290
293
300

Table des matières

1

OpenShift Dedicated 4 Opérateurs

2

CHAPITRE 1. APERÇU DES OPÉRATEURS
Les opérateurs sont parmi les composants les plus importants d’OpenShift Dedicated. Ils sont la
méthode préférée d’emballage, de déploiement et de gestion des services sur le plan de contrôle. Ils
peuvent également fournir des avantages aux applications que les utilisateurs exécutent.

Les opérateurs s’intègrent aux API Kubernetes et aux outils CLI tels que kubectl et OpenShift CLI (oc).
Ils fournissent les moyens de surveiller les applications, d’effectuer des contrôles de santé, de gérer les
mises à jour en direct (OTA) et de s’assurer que les applications restent dans votre état spécifié.

Les opérateurs sont conçus spécifiquement pour les applications natives de Kubernetes afin
d’implémenter et d’automatiser les opérations courantes de jour 1, telles que l’installation et la
configuration. Les opérateurs peuvent également automatiser les opérations du Jour 2, telles que
l’autoscalisation vers le haut ou vers le bas et la création de sauvegardes. L’ensemble de ces activités
est dirigée par un logiciel fonctionnant sur votre cluster.

Bien que les deux suivent des concepts et des objectifs similaires, les opérateurs dans OpenShift
Dedicated sont gérés par deux systèmes différents, en fonction de leur objectif:

Les opérateurs de clusters

Géré par l’opérateur de versions de cluster (CVO) et installé par défaut pour effectuer des fonctions
de cluster.

Opérateurs complémentaires optionnels

Géré par Operator Lifecycle Manager (OLM) et peut être rendu accessible pour les utilisateurs à
exécuter dans leurs applications. Également connu sous le nom d’opérateurs basés sur OLM.

1.1. DESTINÉ AUX DÉVELOPPEURS

En tant qu’auteur de l’opérateur, vous pouvez effectuer les tâches de développement suivantes pour les
opérateurs basés sur OLM:

Installez l’opérateur SDK CLI.

Créer des Opérateurs Go-based, des Opérateurs Ansibles et des Opérateurs basés sur Helm.

Employez le SDK de l’opérateur pour construire, tester et déployer un opérateur.

Créez une application à partir d’un opérateur installé via la console Web.

1.2. ADMINISTRATEURS POUR LES ADMINISTRATEURS

En tant qu’administrateur avec le rôle d’administrateur dédié, vous pouvez effectuer les tâches
suivantes:

Gérez des catalogues personnalisés.

Installez un opérateur à partir de OperatorHub.

Afficher l’état de l’opérateur.

Gérer les conditions de l’opérateur.

La mise à niveau des opérateurs installés.

Effacer les opérateurs installés.

CHAPITRE 1. APERÇU DES OPÉRATEURS

3

Configurer le support proxy.

1.3. LES PROCHAINES ÉTAPES

En savoir plus sur les opérateurs, voir Qu’est-ce que les opérateurs?

OpenShift Dedicated 4 Opérateurs

4

CHAPITRE 2. COMPRENDRE LES OPÉRATEURS

2.1. EN QUOI CONSISTENT LES OPÉRATEURS?

Conceptuellement, les opérateurs prennent les connaissances opérationnelles humaines et les encodent
dans des logiciels plus facilement partagés avec les consommateurs.

Les opérateurs sont des logiciels qui facilitent la complexité opérationnelle de l’exécution d’un autre
logiciel. Ils agissent comme une extension de l’équipe d’ingénierie du fournisseur de logiciels, en
surveillant un environnement Kubernetes (comme OpenShift Dedicated) et en utilisant son état actuel
pour prendre des décisions en temps réel. Les opérateurs avancés sont conçus pour gérer les mises à
niveau de manière transparente, réagir aux pannes automatiquement et ne pas prendre de raccourcis,
comme sauter un processus de sauvegarde logiciel pour gagner du temps.

Les opérateurs sont plus techniquement une méthode d’emballage, de déploiement et de gestion d’une
application Kubernetes.

L’application Kubernetes est une application qui est déployée sur Kubernetes et gérée à l’aide des API
Kubernetes et des outils kubectl ou oc. Afin de pouvoir tirer le meilleur parti des Kubernetes, vous avez
besoin d’un ensemble d’API cohérentes à étendre afin d’assurer le service et la gestion de vos
applications qui s’exécutent sur Kubernetes. Considérez les Opérateurs comme le runtime qui gère ce
type d’application sur Kubernetes.

2.1.1. Comment utiliser les opérateurs?

Les opérateurs fournissent:

La répétabilité de l’installation et de la mise à niveau.

Contrôles de santé constants de chaque composant du système.

Des mises à jour en direct (OTA) pour les composants OpenShift et le contenu ISV.

C’est un endroit pour encapsuler les connaissances des ingénieurs de terrain et les diffuser à
tous les utilisateurs, pas seulement un ou deux.

Comment déployer sur Kubernetes?

Kubernetes (et par extension, OpenShift Dedicated) contient tous les primitifs nécessaires pour
construire des systèmes distribués complexes - gestion secrète, équilibrage de charge, découverte
de services, autoscaling - qui fonctionnent sur site et fournisseurs de cloud.

Comment gérer votre application avec les API Kubernetes et les outils kubectl?

Ces API sont riches en fonctionnalités, ont des clients pour toutes les plates-formes et se branchent
dans le contrôle d’accès / audit du cluster. L’opérateur utilise le mécanisme d’extension Kubernetes,
les définitions de ressources personnalisées (CRD), de sorte que votre objet personnalisé, par
exemple MongoDB, ressemble et agit comme les objets Kubernetes natifs intégrés.

Comment les opérateurs se comparent-ils aux courtiers de services?

Le courtier de services est une étape vers la découverte programmatique et le déploiement d’une
application. Cependant, parce qu’il ne s’agit pas d’un processus de longue durée, il ne peut pas
exécuter les opérations de jour 2 comme la mise à niveau, le basculement ou la mise à l’échelle. Les
personnalisations et paramétrages des réglages sont fournis au moment de l’installation, par rapport
à un opérateur qui surveille constamment l’état actuel de votre cluster. Les services hors-clus sont
un bon match pour un courtier de services, bien que les opérateurs existent également pour ceux-ci.

CHAPITRE 2. COMPRENDRE LES OPÉRATEURS

5

2.1.2. Cadre de l’opérateur

Le Cadre d’opérateur est une famille d’outils et de capacités pour fournir l’expérience client décrite ci-
dessus. Il ne s’agit pas seulement d’écrire du code; tester, livrer et mettre à jour les opérateurs est tout
aussi important. Les composants du cadre opérateur sont constitués d’outils open source pour résoudre
ces problèmes:

Le SDK de l’opérateur

Le SDK de l’opérateur assiste les auteurs de l’opérateur dans le démarrage, la construction, l’essai et
l’emballage de leur propre opérateur en fonction de leur expertise sans nécessiter de connaissance
des complexités de l’API Kubernetes.

Gestionnaire du cycle de vie de l’opérateur

Le gestionnaire de cycle de vie de l’opérateur (OLM) contrôle l’installation, la mise à niveau et le
contrôle d’accès basé sur les rôles (RBAC) des opérateurs dans un cluster. Il est déployé par défaut
dans OpenShift Dedicated 4.

Registre de l’opérateur

Le Registre des opérateurs stocke les versions de services de cluster (CSV) et les définitions de
ressources personnalisées (CRD) pour la création dans un cluster et stocke les métadonnées de
l’opérateur sur les paquets et les canaux. Il s’exécute dans un cluster Kubernetes ou OpenShift pour
fournir les données du catalogue Opérateur à OLM.

L’opérateurHub

OperatorHub est une console Web permettant aux administrateurs de cluster de découvrir et de
sélectionner Opérateurs à installer sur leur cluster. Il est déployé par défaut dans OpenShift
Dedicated.

Ces outils sont conçus pour être composables, de sorte que vous pouvez utiliser tous ceux qui vous sont
utiles.

2.1.3. Le modèle de maturité de l’opérateur

Le niveau de sophistication de la logique de gestion encapsulé au sein d’un opérateur peut varier. Cette
logique est également en général fortement dépendante du type de service représenté par l’Opérateur.

Cependant, on peut généraliser l’échelle de maturité des opérations encapsulées d’un opérateur pour
certains ensembles de capacités que la plupart des opérateurs peuvent inclure. À cette fin, le modèle de
maturité de l’opérateur suivant définit cinq phases de maturité pour les opérations génériques de jour 2
d’un opérateur:

Figure 2.1. Le modèle de maturité de l’opérateur

OpenShift Dedicated 4 Opérateurs

6

Figure 2.1. Le modèle de maturité de l’opérateur

Le modèle ci-dessus montre également comment ces capacités peuvent être développées au mieux
grâce aux capacités Helm, Go et Ansible du SDK Opérateur.

2.2. FORMAT D’EMBALLAGE DU CADRE OPÉRATEUR

Ce guide décrit le format d’emballage pour les opérateurs pris en charge par Operator Lifecycle
Manager (OLM) dans OpenShift Dedicated.

2.2.1. Format de paquet

Le format groupé pour les opérateurs est un format d’emballage introduit par le Cadre de l’opérateur.
Afin d’améliorer l’évolutivité et de permettre aux utilisateurs en amont d’héberger leurs propres
catalogues, la spécification de format groupé simplifie la distribution des métadonnées de l’opérateur.

Le bundle Opérateur représente une seule version d’un Opérateur. Les manifestes de paquets sur
disque sont conteneurisés et expédiés sous forme d’image de paquet, qui est une image de conteneur
non-runnable qui stocke les manifestes Kubernetes et les métadonnées de l’opérateur. Le stockage et
la distribution de l’image de paquet sont ensuite gérés à l’aide d’outils de conteneurs existants tels que
podman et docker et des registres de conteneurs tels que Quay.

Les métadonnées de l’opérateur peuvent inclure:

Informations qui identifient l’opérateur, par exemple son nom et sa version.

Des informations supplémentaires qui pilotent l’interface utilisateur, par exemple son icône et
quelques exemples de ressources personnalisées (CRs).

API requise et fournies.

Images connexes.

Lorsque le chargement se manifeste dans la base de données du Registre de l’opérateur, les exigences
suivantes sont validées:

Le faisceau doit avoir au moins un canal défini dans les annotations.

CHAPITRE 2. COMPRENDRE LES OPÉRATEURS

7

Chaque paquet a exactement une version de service cluster (CSV).

Lorsqu’un CSV possède une définition de ressource personnalisée (CRD), ce CRD doit exister
dans le paquet.

2.2.1.1. Les manifestes

Les manifestes de paquets se réfèrent à un ensemble de manifestes Kubernetes qui définissent le
déploiement et le modèle RBAC de l’opérateur.

Le bundle comprend un CSV par répertoire et généralement les CRD qui définissent les API
appartenant au CSV dans son répertoire /manifestes.

Exemple de mise en page de format de paquet

Autres objets pris en charge
Les types d’objets suivants peuvent également être inclus en option dans le répertoire /manifestes d’un
bundle:

Les types d’objets optionnels pris en charge

ClusterRole

ClusterRoleBinding

ConfigMap

ConsoleCLIDownload

ConsoleLink

ConsoleQuickStart

ConsoleYamlSample

Budget de perturbation de Pod

Classe de priorité

À propos de PrometheusRule

Le rôle

À propos de RoleBinding

Le secret

etcd
├── manifests
│ ├── etcdcluster.crd.yaml
│ └── etcdoperator.clusterserviceversion.yaml
│ └── secret.yaml
│ └── configmap.yaml
└── metadata
 └── annotations.yaml
 └── dependencies.yaml

OpenShift Dedicated 4 Opérateurs

8

1

2

3

4

5

6

Le service

Compte de ServiceAccount

À propos de ServiceMonitor

À propos de VerticalPodAutoscaler

Lorsque ces objets optionnels sont inclus dans un paquet, Operator Lifecycle Manager (OLM) peut les
créer à partir du paquet et gérer leur cycle de vie avec le CSV:

Cycle de vie pour les objets optionnels

Lorsque le CSV est supprimé, OLM supprime l’objet optionnel.

Lorsque le CSV est mis à jour:

Lorsque le nom de l’objet optionnel est le même, OLM le met à jour en place.

Lorsque le nom de l’objet optionnel a changé d’une version à l’autre, OLM le supprime et le
recrée.

2.2.1.2. Annotations

Le bundle inclut également un fichier annotations.yaml dans son répertoire /metadata. Ce fichier définit
des données agrégées de niveau supérieur qui aident à décrire le format et les informations du paquet
sur la façon dont le paquet devrait être ajouté dans un index de paquets:

Exemple annotations.yaml

Le type de média ou le format du paquet Opérateur. Le format Register+v1 signifie qu’il contient un
CSV et ses objets Kubernetes associés.

Le chemin dans l’image vers le répertoire qui contient l’opérateur se manifeste. Cette étiquette est
réservée à une utilisation future et actuellement par défaut aux manifestes/. La valeur manifeste.v1
implique que le paquet contient des manifestes d’opérateur.

Le chemin dans l’image vers le répertoire qui contient des fichiers de métadonnées sur le paquet.
Cette étiquette est réservée à une utilisation future et actuellement par défaut aux métadonnées/.
La valeur métadonnées.v1 implique que ce paquet possède les métadonnées de l’opérateur.

Le nom du paquet.

La liste des canaux auxquels le bundle s’abonne lorsqu’elle est ajoutée dans un Registre
d’opérateur.

Le canal par défaut auquel un opérateur doit être souscrit lorsqu’il est installé à partir d’un registre.

annotations:
 operators.operatorframework.io.bundle.mediatype.v1: "registry+v1" 1
 operators.operatorframework.io.bundle.manifests.v1: "manifests/" 2
 operators.operatorframework.io.bundle.metadata.v1: "metadata/" 3
 operators.operatorframework.io.bundle.package.v1: "test-operator" 4
 operators.operatorframework.io.bundle.channels.v1: "beta,stable" 5
 operators.operatorframework.io.bundle.channel.default.v1: "stable" 6

CHAPITRE 2. COMPRENDRE LES OPÉRATEURS

9

NOTE

En cas d’inadéquation, le fichier annotations.yaml fait autorité car le registre de
l’opérateur sur le groupe qui s’appuie sur ces annotations n’a accès qu’à ce fichier.

2.2.1.3. Dépendances

Les dépendances d’un opérateur sont listées dans un fichier de dépendances.yaml dans le dossier
métadonnées d’un bundle. Ce fichier est facultatif et actuellement utilisé uniquement pour spécifier des
dépendances explicites de version d’opérateur.

La liste de dépendances contient un champ de type pour chaque élément pour spécifier quel type de
dépendance il s’agit. Les types de dépendances des opérateurs suivants sont pris en charge:

emballage OLM.

Ce type indique une dépendance pour une version spécifique de l’opérateur. Les informations de
dépendance doivent inclure le nom du paquet et la version du paquet au format semver. À titre
d’exemple, vous pouvez spécifier une version exacte telle que 0.5.2 ou une gamme de versions telles
que >0.5.1.

à propos de OLM.gvk

Avec ce type, l’auteur peut spécifier une dépendance avec des informations de groupe/version/type
(GVK), similaire à l’utilisation existante CRD et API dans un CSV. Il s’agit d’un chemin permettant aux
auteurs de l’opérateur de consolider toutes les dépendances, API ou versions explicites, pour être au
même endroit.

limite OLM.

Ce type déclare des contraintes génériques sur les propriétés arbitraires de l’opérateur.

Dans l’exemple suivant, les dépendances sont spécifiées pour un opérateur Prometheus et etcd CRD:

Exemple de fichier dépendances.yaml

Ressources supplémentaires

La résolution de dépendance du gestionnaire de cycle de vie de l’opérateur

2.2.1.4. À propos de l’opm CLI

L’outil Opm CLI est fourni par le Cadre d’opérateur pour une utilisation avec le format de paquet Opm.
Cet outil vous permet de créer et de maintenir des catalogues d’opérateurs à partir d’une liste de
paquets d’opérateurs similaires aux référentiels de logiciels. Le résultat est une image de conteneur qui
peut être stockée dans un registre de conteneurs puis installée sur un cluster.

Le catalogue contient une base de données de pointeurs vers l’opérateur manifeste du contenu qui

dependencies:
 - type: olm.package
 value:
 packageName: prometheus
 version: ">0.27.0"
 - type: olm.gvk
 value:
 group: etcd.database.coreos.com
 kind: EtcdCluster
 version: v1beta2

OpenShift Dedicated 4 Opérateurs

10

Le catalogue contient une base de données de pointeurs vers l’opérateur manifeste du contenu qui
peut être interrogé via une API incluse qui est servie lorsque l’image du conteneur est exécutée. Dans
OpenShift Dedicated, Operator Lifecycle Manager (OLM) peut référencer l’image dans une source de
catalogue, définie par un objet CatalogSource, qui sonne l’image à intervalles réguliers pour permettre
des mises à jour fréquentes aux opérateurs installés sur le cluster.

Consultez les outils CLI pour les étapes d’installation de l’opm CLI.

2.2.2. Faits saillants

Les catalogues basés sur des fichiers sont la dernière itération du format de catalogue dans Operator
Lifecycle Manager (OLM). Il s’agit d’un texte simple (JSON ou YAML) et d’une évolution de
configuration déclarative du format de base de données SQLite antérieur, et il est entièrement
rétrocompatible. L’objectif de ce format est d’activer l’édition de catalogue de l’opérateur, la
composabilité et l’extensibilité.

Édition de l’édition

Avec les catalogues basés sur des fichiers, les utilisateurs qui interagissent avec le contenu d’un
catalogue sont en mesure d’apporter des modifications directes au format et de vérifier que leurs
modifications sont valides. Comme ce format est en texte brut JSON ou YAML, les mainteneurs de
catalogue peuvent facilement manipuler les métadonnées de catalogue à la main ou avec des outils
JSON ou YAML largement connus et pris en charge, tels que le jq CLI.
Cette modifiabilité permet les fonctionnalités suivantes et les extensions définies par l’utilisateur:

La promotion d’un faisceau existant vers un nouveau canal

Changer le canal par défaut d’un paquet

Algorithmes personnalisés pour ajouter, mettre à jour et supprimer les chemins de mise à
niveau

Composabilité

Les catalogues basés sur des fichiers sont stockés dans une hiérarchie de répertoire arbitraire, ce qui
permet la composition du catalogue. À titre d’exemple, envisagez deux répertoires de catalogues
distincts basés sur des fichiers : catalogA et catalogB. Le mainteneur de catalogue peut créer un
nouveau catalogue combiné en créant un nouveau catalogue C et en copiant le catalogueA et le
catalogueB.
Cette composabilité permet des catalogues décentralisés. Le format permet aux auteurs de
l’opérateur de maintenir des catalogues spécifiques à l’opérateur, et il permet aux mainteneurs de
construire trivialement un catalogue composé de catalogues individuels de l’opérateur. Les
catalogues basés sur des fichiers peuvent être composés en combinant plusieurs autres catalogues,
en extrayant des sous-ensembles d’un catalogue, ou une combinaison de ces deux catalogues.

NOTE

Les paquets en double et les paquets dupliqués dans un paquet ne sont pas autorisés.
La commande de validation opm renvoie une erreur si des doublons sont trouvés.

Les auteurs de l’opérateur étant plus familiers avec leur opérateur, ses dépendances et sa
compatibilité de mise à niveau, ils sont en mesure de maintenir leur propre catalogue spécifique à
l’opérateur et d’avoir un contrôle direct sur son contenu. Avec les catalogues basés sur des fichiers,
les auteurs de l’opérateur possèdent la tâche de construire et de maintenir leurs paquets dans un
catalogue. Cependant, les mainteneurs de catalogues composites ne possèdent que la tâche de
gérer les paquets dans leur catalogue et de le publier aux utilisateurs.

CHAPITRE 2. COMPRENDRE LES OPÉRATEURS

11

Extensibilité

La spécification de catalogue basée sur des fichiers est une représentation de bas niveau d’un
catalogue. Bien qu’il puisse être maintenu directement sous sa forme de bas niveau, les mainteneurs
de catalogue peuvent construire des extensions intéressantes sur le dessus qui peuvent être utilisées
par leur propre outil personnalisé pour effectuer un certain nombre de mutations.
À titre d’exemple, un outil pourrait traduire une API de haut niveau, telle que (mode=semver),
jusqu’au format de catalogue de bas niveau basé sur des fichiers pour les chemins de mise à niveau. Il
se peut qu’un mainteneur de catalogue doive personnaliser toutes les métadonnées du paquet en
ajoutant une nouvelle propriété à des paquets répondant à certains critères.

Bien que cette extensibilité permette de développer des outils officiels supplémentaires en plus des
API de bas niveau pour les futures versions dédiées à OpenShift, l’avantage majeur est que les
responsables du catalogue ont également cette capacité.

IMPORTANT

À partir d’OpenShift Dedicated 4.11, le catalogue de l’opérateur par défaut Red Hat est
publié dans le format de catalogue basé sur des fichiers. Les catalogues d’opérateurs Red
Hat fournis par défaut pour OpenShift Dedicated 4.6 à 4.10 publiés dans le format de
base de données SQLite obsolète.

Les sous-commandes opm, les drapeaux et les fonctionnalités liés au format de base de
données SQLite sont également obsolètes et seront supprimés dans une version
ultérieure. Les fonctionnalités sont toujours prises en charge et doivent être utilisées
pour les catalogues utilisant le format de base de données SQLite obsolète.

La plupart des sous-commandes et des drapeaux opm pour travailler avec le format de
base de données SQLite, tels que le prune de l’index opm, ne fonctionnent pas avec le
format de catalogue basé sur des fichiers. Consultez Gérer les catalogues personnalisés
pour plus d’informations sur le travail avec les catalogues basés sur les fichiers.

2.2.2.1. La structure des répertoires

Les catalogues basés sur des fichiers peuvent être stockés et chargés à partir de systèmes de fichiers
basés sur des répertoires. L’opm CLI charge le catalogue en marchant le répertoire racine et en
récursant dans des sous-répertoires. Le CLI tente de charger tous les fichiers qu’il trouve et échoue si
des erreurs se produisent.

Les fichiers non catalog peuvent être ignorés en utilisant les fichiers .indexignore, qui ont les mêmes
règles pour les modèles et la préséance que les fichiers .gitignore.

Exemple de fichier .indexignore

Les responsables du catalogue ont la flexibilité de choisir la disposition souhaitée, mais il est
recommandé de stocker les blobs de catalogue de chaque paquet dans des sous-répertoires distincts.
Chaque fichier individuel peut être soit JSON ou YAML; il n’est pas nécessaire que chaque fichier d’un
catalogue utilise le même format.

Ignore everything except non-object .json and .yaml files
**/*
!*.json
!*.yaml
**/objects/*.json
**/objects/*.yaml

OpenShift Dedicated 4 Opérateurs

12

La structure de base recommandée

Cette structure recommandée a la propriété que chaque sous-répertoire de la hiérarchie des
répertoires est un catalogue autonome, ce qui rend les opérations triviales de système de fichiers
triviales de composition, de découverte et de navigation du catalogue. Le catalogue peut également
être inclus dans un catalogue parent en le copiant dans le répertoire racine du catalogue parent.

2.2.2.2. Les schémas

Les catalogues basés sur des fichiers utilisent un format, basé sur la spécification du langage CUE, qui
peut être étendu avec des schémas arbitraires. Le schéma _Meta CUE suivant définit le format auquel
tous les blobs de catalogues basés sur des fichiers doivent adhérer:

_Méta schema

NOTE

Aucun schéma CUE listé dans cette spécification ne doit être considéré comme
exhaustif. La commande de validation opm a des validations supplémentaires qui sont
difficiles ou impossibles à exprimer de manière concise dans CUE.

Le catalogue de gestion du cycle de vie de l’opérateur (OLM) utilise actuellement trois schémas

catalog
├── packageA
│ └── index.yaml
├── packageB
│ ├── .indexignore
│ ├── index.yaml
│ └── objects
│ └── packageB.v0.1.0.clusterserviceversion.yaml
└── packageC
 └── index.json
 └── deprecations.yaml

_Meta: {
 // schema is required and must be a non-empty string
 schema: string & !=""

 // package is optional, but if it's defined, it must be a non-empty string
 package?: string & !=""

 // properties is optional, but if it's defined, it must be a list of 0 or more properties
 properties?: [... #Property]
}

#Property: {
 // type is required
 type: string & !=""

 // value is required, and it must not be null
 value: !=null
}

CHAPITRE 2. COMPRENDRE LES OPÉRATEURS

13

Le catalogue de gestion du cycle de vie de l’opérateur (OLM) utilise actuellement trois schémas
(olm.package, olm.channel et olm.bundle), qui correspondent aux concepts de paquets et de paquets
existants d’OLM.

Chaque paquet Opérateur dans un catalogue nécessite exactement un blob olm.package, au moins un
blob olm.channel et un ou plusieurs blobs olm.bundle.

NOTE

Les schémas Olm.* sont réservés aux schémas définis par OLM. Les schémas
personnalisés doivent utiliser un préfixe unique, tel qu’un domaine que vous possédez.

2.2.2.2.1. schéma OLM.package

Le schéma olm.package définit les métadonnées au niveau du paquet pour un opérateur. Cela inclut son
nom, sa description, son canal par défaut et son icône.

Exemple 2.1. schéma OLM.package

2.2.2.2.2. schéma OLM.canal

Le schéma olm.channel définit un canal à l’intérieur d’un paquet, les entrées de paquet qui sont membres
du canal et les chemins de mise à niveau pour ces paquets.

Lorsqu’une entrée de paquet représente un bord dans plusieurs blobs olm.canal, elle ne peut apparaître
qu’une seule fois par canal.

Il est valable pour une valeur de remplacement d’une entrée de référencer un autre nom de paquet qui
ne peut pas être trouvé dans ce catalogue ou un autre catalogue. Cependant, tous les autres invariants
de canal doivent tenir vrai, comme un canal n’ayant pas plusieurs têtes.

Exemple 2.2. schéma OLM.canal

#Package: {
 schema: "olm.package"

 // Package name
 name: string & !=""

 // A description of the package
 description?: string

 // The package's default channel
 defaultChannel: string & !=""

 // An optional icon
 icon?: {
 base64data: string
 mediatype: string
 }
}

#Channel: {

OpenShift Dedicated 4 Opérateurs

14

AVERTISSEMENT

Lors de l’utilisation du champ skipRange, les versions de l’opérateur sauté sont
taillées à partir du graphique de mise à jour et sont plus longues installables par les
utilisateurs avec la propriété spec.startingCSV des objets d’abonnement.

Il est possible de mettre à jour progressivement un opérateur tout en gardant les
versions précédemment installées à la disposition des utilisateurs pour l’installation
future en utilisant à la fois le champ skipRange et le champ de remplacement.
Assurez-vous que le champ remplace la version précédente immédiate de la version
de l’opérateur en question.

2.2.2.2.3. schéma OLM.bundle

Exemple 2.3. schéma OLM.bundle

 schema: "olm.channel"
 package: string & !=""
 name: string & !=""
 entries: [...#ChannelEntry]
}

#ChannelEntry: {
 // name is required. It is the name of an `olm.bundle` that
 // is present in the channel.
 name: string & !=""

 // replaces is optional. It is the name of bundle that is replaced
 // by this entry. It does not have to be present in the entry list.
 replaces?: string & !=""

 // skips is optional. It is a list of bundle names that are skipped by
 // this entry. The skipped bundles do not have to be present in the
 // entry list.
 skips?: [...string & !=""]

 // skipRange is optional. It is the semver range of bundle versions
 // that are skipped by this entry.
 skipRange?: string & !=""
}



#Bundle: {
 schema: "olm.bundle"
 package: string & !=""
 name: string & !=""
 image: string & !=""
 properties: [...#Property]
 relatedImages?: [...#RelatedImage]
}

CHAPITRE 2. COMPRENDRE LES OPÉRATEURS

15

2.2.2.2.4. schéma OLM.déprécations

Le schéma optionnel olm.deprecations définit les informations de déprécation pour les paquets, les
paquets et les canaux dans un catalogue. Les auteurs d’opérateurs peuvent utiliser ce schéma pour
fournir des messages pertinents sur leurs opérateurs, tels que l’état du support et les chemins de mise à
niveau recommandés, aux utilisateurs exécutant ces opérateurs à partir d’un catalogue.

Lorsque ce schéma est défini, la console Web OpenShift Dedicated affiche des badges d’avertissement
pour les éléments affectés de l’opérateur, y compris les messages de déprécation personnalisés, sur les
pages de pré- et de post-installation de l’opérateur.

L’entrée de schéma olm.deprecations contient un ou plusieurs des types de référence suivants, qui
indique la portée de déprécation. Après l’installation de l’opérateur, tous les messages spécifiés peuvent
être considérés comme des conditions d’état sur l’objet d’abonnement associé.

Tableau 2.1. Les types de référence de déprécation

Le type Champ d’application État du statut

emballage OLM. Représente l’ensemble du paquet Forfait déprécié

canal OLM. Il représente un canal ChannelDeprécated

à propos de
OLM.bundle

Il représente une version de bundle BundleDeprecated

Chaque type de référence a ses propres exigences, comme détaillé dans l’exemple suivant.

Exemple 2.4. Exemple de schéma olm.deprecations avec chaque type de référence

#Property: {
 // type is required
 type: string & !=""

 // value is required, and it must not be null
 value: !=null
}

#RelatedImage: {
 // image is the image reference
 image: string & !=""

 // name is an optional descriptive name for an image that
 // helps identify its purpose in the context of the bundle
 name?: string & !=""
}

schema: olm.deprecations
package: my-operator 1
entries:
 - reference:

OpenShift Dedicated 4 Opérateurs

16

1

2

3

4

5

Chaque schéma de déprécation doit avoir une valeur de paquet, et cette référence de paquet
doit être unique dans tout le catalogue. Il ne doit pas y avoir de champ de nom associé.

Le schéma olm.package ne doit pas inclure un champ nom, car il est déterminé par le champ de
paquet défini plus tôt dans le schéma.

Les champs de messages, pour tout type de référence, doivent être d’une longueur non nulle et
représenté comme un blob de texte opaque.

Le champ nom du schéma olm.channel est requis.

Le champ nom du schéma olm.bundle est requis.

NOTE

La fonction de déprécation ne tient pas compte du chevauchement de la déprécation,
par exemple le paquet par rapport au canal par rapport au faisceau.

Les auteurs de l’opérateur peuvent enregistrer les entrées de schéma olm.deprecations en tant que
fichier deprecations.yaml dans le même répertoire que le fichier index.yaml du paquet:

Exemple de structure de répertoire pour un catalogue avec déprécations

Ressources supplémentaires

La mise à jour ou le filtrage d’une image de catalogue basée sur des fichiers

2.2.2.3. Les propriétés

Les propriétés sont des morceaux arbitraires de métadonnées qui peuvent être attachés à des schémas

 schema: olm.package 2
 message: | 3
 The 'my-operator' package is end of life. Please use the
 'my-operator-new' package for support.
 - reference:
 schema: olm.channel
 name: alpha 4
 message: |
 The 'alpha' channel is no longer supported. Please switch to the
 'stable' channel.
 - reference:
 schema: olm.bundle
 name: my-operator.v1.68.0 5
 message: |
 my-operator.v1.68.0 is deprecated. Uninstall my-operator.v1.68.0 and
 install my-operator.v1.72.0 for support.

my-catalog
└── my-operator
 ├── index.yaml
 └── deprecations.yaml

CHAPITRE 2. COMPRENDRE LES OPÉRATEURS

17

de catalogue basés sur des fichiers. Le champ type est une chaîne qui spécifie efficacement la
signification sémantique et syntaxique du champ de valeur. La valeur peut être tout JSON ou YAML
arbitraire.

L’OLM définit une poignée de types de propriétés, encore une fois en utilisant le préfixe Olm.* réservé.

2.2.2.3.1. immobilier OLM.package

La propriété olm.package définit le nom et la version du paquet. Il s’agit d’une propriété requise sur les
paquets, et il doit y avoir exactement l’une de ces propriétés. Le champ packageName doit
correspondre au champ paquet de première classe du paquet, et le champ de version doit être une
version sémantique valide.

Exemple 2.5. immobilier OLM.package

2.2.2.3.2. immobilier OLM.gvk

La propriété olm.gvk définit le groupe/version/type (GVK) d’une API Kubernetes fournie par ce paquet.
Cette propriété est utilisée par OLM pour résoudre un paquet avec cette propriété en tant que
dépendance pour d’autres bundles qui répertorient le même GVK qu’une API requise. Le GVK doit
adhérer aux validations Kubernetes GVK.

Exemple 2.6. immobilier OLM.gvk

2.2.2.3.3. conditions d’utilisation OLM.package.required

La propriété olm.package.required définit le nom du paquet et la gamme de versions d’un autre paquet
que ce paquet nécessite. Dans chaque propriété de paquet requise, une liste de paquets, OLM s’assure
qu’un opérateur est installé sur le cluster pour le paquet listé et dans la gamme de versions requise. Le
champ versionRange doit être une plage sémantique valide (semver).

Exemple 2.7. la propriété OLM.package.required

#PropertyPackage: {
 type: "olm.package"
 value: {
 packageName: string & !=""
 version: string & !=""
 }
}

#PropertyGVK: {
 type: "olm.gvk"
 value: {
 group: string & !=""
 version: string & !=""
 kind: string & !=""
 }
}

#PropertyPackageRequired: {

OpenShift Dedicated 4 Opérateurs

18

2.2.2.3.4. conditions d’utilisation OLM.gvk.required

La propriété olm.gvk.required définit le groupe/version/type (GVK) d’une API Kubernetes que ce
paquet nécessite. Dans chaque propriété GVK requise, une liste de paquets, OLM s’assure qu’un
opérateur est installé sur le cluster qui le fournit. Le GVK doit adhérer aux validations Kubernetes GVK.

Exemple 2.8. la propriété OLM.gvk.required

2.2.2.4. Exemple de catalogue

Avec les catalogues basés sur des fichiers, les responsables du catalogue peuvent se concentrer sur la
curation et la compatibilité de l’opérateur. Étant donné que les auteurs de l’opérateur ont déjà produit
des catalogues spécifiques à l’opérateur pour leurs opérateurs, les responsables du catalogue peuvent
construire leur catalogue en rendant chaque catalogue Opérateur dans un sous-répertoire du répertoire
racine du catalogue.

Il existe de nombreuses façons possibles de créer un catalogue basé sur des fichiers; les étapes
suivantes décrivent une approche simple:

1. Conserver un fichier de configuration unique pour le catalogue, contenant des références
d’image pour chaque opérateur dans le catalogue:

Exemple de fichier de configuration du catalogue

 type: "olm.package.required"
 value: {
 packageName: string & !=""
 versionRange: string & !=""
 }
}

#PropertyGVKRequired: {
 type: "olm.gvk.required"
 value: {
 group: string & !=""
 version: string & !=""
 kind: string & !=""
 }
}

name: community-operators
repo: quay.io/community-operators/catalog
tag: latest
references:
- name: etcd-operator
 image: quay.io/etcd-
operator/index@sha256:5891b5b522d5df086d0ff0b110fbd9d21bb4fc7163af34d08286a2e846f
6be03
- name: prometheus-operator
 image: quay.io/prometheus-
operator/index@sha256:e258d248fda94c63753607f7c4494ee0fcbe92f1a76bfdac795c9d84101
eb317

CHAPITRE 2. COMPRENDRE LES OPÉRATEURS

19

2. Exécutez un script qui analyse le fichier de configuration et crée un nouveau catalogue à partir
de ses références:

Exemple de script

2.2.2.5. Lignes directrices

Considérez les directives suivantes lors de la maintenance des catalogues basés sur des fichiers.

2.2.2.5.1. Des paquets immuables

L’avis général de Operator Lifecycle Manager (OLM) est que les images groupées et leurs
métadonnées doivent être traitées comme immuables.

Lorsqu’un paquet cassé a été poussé à un catalogue, vous devez supposer qu’au moins un de vos
utilisateurs a été mis à niveau vers ce paquet. Basé sur cette hypothèse, vous devez libérer un autre
paquet avec un chemin de mise à niveau à partir du paquet cassé pour s’assurer que les utilisateurs avec
le paquet cassé installé reçoivent une mise à niveau. L’OLM ne réinstallera pas un paquet installé si le
contenu de ce paquet est mis à jour dans le catalogue.

Cependant, il y a certains cas où un changement dans les métadonnées du catalogue est préféré:

Canal promotion: Si vous avez déjà publié un paquet et décidez plus tard que vous souhaitez
l’ajouter à un autre canal, vous pouvez ajouter une entrée pour votre paquet dans un autre blob
olm.channel.

De nouveaux chemins de mise à niveau: Si vous publiez une nouvelle version de paquet 1.2.z, par
exemple 1.2.4, mais 1.3.0 est déjà publié, vous pouvez mettre à jour les métadonnées du
catalogue pour 1.3.0 pour sauter 1.2.4.

2.2.2.5.2. Contrôle des sources

Les métadonnées du catalogue doivent être stockées dans le contrôle de la source et traitées comme
source de vérité. Les mises à jour des images de catalogue devraient inclure les étapes suivantes:

1. Actualisez le répertoire du catalogue contrôlé par la source avec un nouveau commit.

2. Créez et poussez l’image du catalogue. Employez une taxonomie de marquage cohérente, telle
que :dernière ou :<target_cluster_version>, afin que les utilisateurs puissent recevoir des
mises à jour d’un catalogue au fur et à mesure qu’ils deviennent disponibles.

name=$(yq eval '.name' catalog.yaml)
mkdir "$name"
yq eval '.name + "/" + .references[].name' catalog.yaml | xargs mkdir
for l in $(yq e '.name as $catalog | .references[] | .image + "|" + $catalog + "/" + .name +
"/index.yaml"' catalog.yaml); do
 image=$(echo $l | cut -d'|' -f1)
 file=$(echo $l | cut -d'|' -f2)
 opm render "$image" > "$file"
done
opm generate dockerfile "$name"
indexImage=$(yq eval '.repo + ":" + .tag' catalog.yaml)
docker build -t "$indexImage" -f "$name.Dockerfile" .
docker push "$indexImage"

OpenShift Dedicated 4 Opérateurs

20

2.2.2.6. L’utilisation de CLI

En ce qui concerne les instructions concernant la création de catalogues basés sur des fichiers à l’aide de
l’opm CLI, voir Gérer les catalogues personnalisés. En ce qui concerne la documentation de référence
sur les commandes opm CLI liées à la gestion des catalogues basés sur des fichiers, consultez les outils
CLI.

2.2.2.7. Automatisation

Les auteurs d’opérateurs et les responsables du catalogue sont encouragés à automatiser la
maintenance de leur catalogue avec des flux de travail CI/CD. Les mainteneurs de catalogues peuvent
encore s’améliorer à ce sujet en construisant l’automatisation GitOps pour accomplir les tâches
suivantes:

Les auteurs de la demande de tirage (PR) sont autorisés à apporter les modifications
demandées, par exemple en mettant à jour la référence d’image de leur paquet.

Assurez-vous que les mises à jour du catalogue passent la commande opm valid.

Assurez-vous que les références mises à jour du paquet ou de l’image du catalogue existent, que
les images du catalogue s’exécutent avec succès dans un cluster, et que les opérateurs de ce
paquet peuvent être installés avec succès.

Fusionner automatiquement les PR qui passent les vérifications précédentes.

Automatiquement reconstruire et republier l’image du catalogue.

2.3. GLOSSAIRE DU CADRE OPÉRATEUR DES TERMES COMMUNS

Cette rubrique fournit un glossaire des termes communs liés au Cadre d’exploitation, y compris le
gestionnaire du cycle de vie de l’opérateur (OLM) et le SDK de l’opérateur.

2.3.1. Le paquet

Dans le format de paquet, un bundle est une collection d’opérateurs CSV, manifestes et métadonnées.
Ensemble, ils forment une version unique d’un opérateur qui peut être installé sur le cluster.

2.3.2. Image de paquet

Dans le format de paquet, une image de paquet est une image de conteneur qui est construite à partir
des manifestes de l’opérateur et qui contient un paquet. Les images groupées sont stockées et
distribuées par les registres de conteneurs spec Open Container Initiative (OCI), tels que Quay.io ou
DockerHub.

2.3.3. Catalogue source

La source d’un catalogue représente une réserve de métadonnées que OLM peut interroger pour
découvrir et installer des opérateurs et leurs dépendances.

2.3.4. Canal

Le canal définit un flux de mises à jour pour un opérateur et est utilisé pour déployer des mises à jour
pour les abonnés. La tête pointe vers la dernière version de ce canal. À titre d’exemple, un canal stable
aurait toutes les versions stables d’un opérateur disposées du plus tôt au dernier.

CHAPITRE 2. COMPRENDRE LES OPÉRATEURS

21

L’opérateur peut avoir plusieurs canaux, et un abonnement lié à un certain canal ne chercherait que des
mises à jour dans ce canal.

2.3.5. Tête de canal

La tête de canal fait référence à la dernière mise à jour connue d’un canal particulier.

2.3.6. Cluster de service version

La version de service de cluster (CSV) est un manifeste YAML créé à partir des métadonnées de
l’opérateur qui aide OLM à exécuter l’opérateur dans un cluster. Ce sont les métadonnées qui
accompagnent une image de conteneur d’opérateur, utilisée pour peupler les interfaces utilisateur avec
des informations telles que son logo, sa description et sa version.

C’est aussi une source d’informations techniques qui est nécessaire pour exécuter l’opérateur, comme
les règles RBAC qu’il exige et de quelles ressources personnalisées (CR) il gère ou dépend.

2.3.7. Dépendance

L’opérateur peut dépendre de la présence d’un autre opérateur dans le cluster. À titre d’exemple,
l’opérateur Vault dépend de l’opérateur etcd pour sa couche de persistance des données.

L’OLM résout les dépendances en veillant à ce que toutes les versions spécifiées des opérateurs et des
CRD soient installées sur le cluster pendant la phase d’installation. Cette dépendance est résolue par la
recherche et l’installation d’un opérateur dans un catalogue qui satisfait à l’API CRD requise, et n’est pas
lié à des paquets ou des paquets.

2.3.8. Extension

Les extensions permettent aux administrateurs de clusters d’étendre les capacités des utilisateurs sur
leur cluster dédié OpenShift. Les extensions sont gérées par Operator Lifecycle Manager (OLM) v1.

L’API ClusterExtension simplifie la gestion des extensions installées, qui inclut des opérateurs via le
format de paquet Register+v1, en consolidant les API face à l’utilisateur en un seul objet. Les
administrateurs et les SRE peuvent utiliser l’API pour automatiser les processus et définir les états
souhaités en utilisant les principes GitOps.

2.3.9. Image de l’index

Dans le format de paquet, une image d’index se réfère à une image d’une base de données (un
instantané de base de données) qui contient des informations sur les paquets Opérateur, y compris les
CSV et les CRD de toutes les versions. Cet index peut héberger un historique d’opérateurs sur un cluster
et être maintenu en ajoutant ou en supprimant des opérateurs à l’aide de l’outil Opm CLI.

2.3.10. Installer le plan

Le plan d’installation est une liste calculée de ressources à créer pour installer ou mettre à niveau
automatiquement un CSV.

2.3.11. La multitenance

Le locataire dans OpenShift Dedicated est un utilisateur ou un groupe d’utilisateurs qui partagent un
accès et des privilèges communs pour un ensemble de charges de travail déployées, généralement
représentées par un espace de noms ou un projet. Il est possible d’utiliser les locataires pour assurer un

OpenShift Dedicated 4 Opérateurs

22

niveau d’isolement entre différents groupes ou équipes.

Lorsqu’un cluster est partagé par plusieurs utilisateurs ou groupes, il est considéré comme un cluster
multilocataires.

2.3.12. Exploitant

Les opérateurs constituent une méthode de mise en package, de déploiement et de gestion d’une
application Kubernetes. L’application Kubernetes est une application qui est déployée sur Kubernetes et
gérée à l’aide des API Kubernetes et des outils kubectl ou oc.

Dans Operator Lifecycle Manager (OLM) v1, l’API ClusterExtension simplifie la gestion des extensions
installées, qui inclut les opérateurs via le format de paquet Register+v1.

2.3.13. Groupe d’opérateurs

Le groupe d’opérateurs configure tous les opérateurs déployés dans le même espace de noms que
l’objet OperatorGroup pour surveiller leur CR dans une liste d’espaces de noms ou de clusters.

2.3.14. Forfait

Dans le format de paquet, un paquet est un répertoire qui contient tout l’historique publié d’un
opérateur avec chaque version. La version publiée d’un opérateur est décrite dans un manifeste CSV
aux côtés des CRD.

2.3.15. Registry

Le registre est une base de données qui stocke des images groupées d’opérateurs, chacune avec toutes
ses versions les plus récentes et historiques dans tous les canaux.

2.3.16. Abonnement

L’abonnement maintient les CSV à jour en suivant un canal dans un paquet.

2.3.17. Graphique de mise à jour

Le graphique de mise à jour relie les versions de CSV ensemble, comme le graphique de mise à jour de
tout autre logiciel emballé. Les opérateurs peuvent être installés de manière séquentielle, ou certaines
versions peuvent être ignorées. Le graphique de mise à jour devrait croître uniquement en tête avec de
nouvelles versions ajoutées.

Également connu sous le nom de bords de mise à jour ou chemins de mise à jour.

2.4. GESTIONNAIRE DU CYCLE DE VIE DE L’OPÉRATEUR (OLM)

2.4.1. Concepts et ressources du gestionnaire du cycle de vie de l’opérateur

Ce guide donne un aperçu des concepts qui pilotent le gestionnaire de cycle de vie de l’opérateur
(OLM) dans OpenShift Dedicated.

2.4.1.1. En quoi consiste le gestionnaire de cycle de vie de l’opérateur (OLM) Classic?

Opérateur Lifecycle Manager (OLM) Classic aide les utilisateurs à installer, mettre à jour et gérer le cycle

CHAPITRE 2. COMPRENDRE LES OPÉRATEURS

23

de vie des applications natives Kubernetes (Operators) et de leurs services associés fonctionnant sur
leurs clusters dédiés OpenShift. Il s’inscrit dans le cadre de l’opérateur, une boîte à outils open source
conçue pour gérer les opérateurs de manière efficace, automatisée et évolutive.

Figure 2.2. Flux de travail OLM (Classic)

L’OLM fonctionne par défaut dans OpenShift Dedicated 4, qui aide les administrateurs à jouer le rôle
d’administrateur dédié dans l’installation, la mise à niveau et l’octroi d’un accès aux opérateurs
fonctionnant sur leur cluster. La console Web dédiée OpenShift fournit des écrans de gestion aux
administrateurs dédiés pour installer des opérateurs, ainsi que l’accès à des projets spécifiques pour
utiliser le catalogue des opérateurs disponibles sur le cluster.

En ce qui concerne les développeurs, une expérience en libre-service permet de fournir et de configurer
des instances de bases de données, de surveillance et de services de big data sans avoir à être des
experts en la matière, car l’opérateur dispose de ces connaissances.

2.4.1.2. Les ressources OLM

Les définitions de ressources personnalisées (DCR) suivantes sont définies et gérées par Operator
Lifecycle Manager (OLM):

Tableau 2.2. CRDS géré par OLM et les opérateurs de catalogue

A) Ressources Court nom Description

ClusterService
Version (CSV)

CSV Les métadonnées de l’application. Exemple : nom, version, icône,
ressources requises.

CatalogueSo
urce

catsrc Dépôt de CSV, CRD et packages qui définissent une application.

Abonnement a) Sous Garde les CSVs à jour en suivant un canal dans un paquet.

InstallPlan IP Liste calculée des ressources à créer pour installer ou mettre à jour
automatiquement un CSV.

Groupe
d’opérateurs

à propos de
OG

Configure tous les opérateurs déployés dans le même espace de noms
que l’objet OperatorGroup pour surveiller leur ressource personnalisée
(CR) dans une liste d’espaces de noms ou à l’échelle du cluster.

OpenShift Dedicated 4 Opérateurs

24

Conditions
de
l’opérateur

- Crée un canal de communication entre OLM et un opérateur qu’il gère.
Les opérateurs peuvent écrire dans le tableau Status.Conditions pour
communiquer des états complexes à OLM.

A) Ressources Court nom Description

2.4.1.2.1. Cluster de service version

La version de service cluster (CSV) représente une version spécifique d’un opérateur en cours
d’exécution sur un cluster dédié OpenShift. Il s’agit d’un manifeste YAML créé à partir des métadonnées
de l’opérateur qui aide le gestionnaire de cycle de vie de l’opérateur (OLM) à exécuter l’opérateur dans
le cluster.

L’OLM exige que ces métadonnées concernant un opérateur puissent être maintenues en toute
sécurité sur un cluster et pour fournir des informations sur la façon dont les mises à jour devraient être
appliquées au fur et à mesure que de nouvelles versions de l’opérateur sont publiées. Ceci est similaire
au logiciel d’emballage pour un système d’exploitation traditionnel; pensez à l’étape d’emballage pour
OLM comme le stade auquel vous faites votre rpm, deb ou apk bundle.

Le CSV comprend les métadonnées qui accompagnent une image de conteneur d’opérateur, utilisée
pour remplir les interfaces utilisateur avec des informations telles que son nom, sa version, sa
description, ses étiquettes, son lien de dépôt et son logo.

Le CSV est également une source d’informations techniques nécessaires à l’exécution de l’opérateur,
telles que les ressources personnalisées (CR) dont il gère ou dépend, les règles RBAC, les exigences en
cluster et les stratégies d’installation. Ces informations indiquent à OLM comment créer les ressources
requises et configurer l’opérateur en tant que déploiement.

2.4.1.2.2. Catalogue source

La source du catalogue représente un magasin de métadonnées, généralement en faisant référence à
une image d’index stockée dans un registre de conteneurs. Le gestionnaire de cycle de vie de
l’opérateur (OLM) interroge les sources de catalogue pour découvrir et installer les opérateurs et leurs
dépendances. OperatorHub dans la console Web dédiée OpenShift affiche également les opérateurs
fournis par les sources du catalogue.

ASTUCE

Les administrateurs de clusters peuvent afficher la liste complète des opérateurs fournis par une source
de catalogue activée sur un cluster à l’aide de la page Administration → Paramètres du cluster →
Configuration → OperatorHub page dans la console Web.

La spécification d’un objet CatalogSource indique comment construire un pod ou comment
communiquer avec un service qui sert l’API GRPC du Registre de l’opérateur.

Exemple 2.9. Exemple d’objet CatalogSource

​apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 generation: 1
 name: example-catalog 1
 namespace: openshift-marketplace 2

CHAPITRE 2. COMPRENDRE LES OPÉRATEURS

25

1

2

3

Le nom de l’objet CatalogSource. Cette valeur est également utilisée dans le nom du pod
associé qui est créé dans l’espace de noms demandé.

Espace de noms pour créer le catalogue. Afin de rendre le catalogue disponible à l’échelle du
cluster dans tous les espaces de noms, définissez cette valeur sur openshift-marketplace. Les
sources de catalogue Red Hat par défaut utilisent également l’espace de noms openshift-
marketplace. Dans le cas contraire, définissez la valeur d’un espace de noms spécifique pour
rendre l’opérateur disponible uniquement dans cet espace de noms.

Facultatif: Pour éviter les mises à niveau de cluster potentiellement laissant les installations de
l’opérateur dans un état non pris en charge ou sans chemin de mise à jour continu, vous pouvez
activer la modification automatique de la version d’image d’index de votre catalogue
d’opérateur dans le cadre des mises à niveau de cluster.

Définissez l’annotation olm.catalogImageTemplate sur votre nom d’image d’index et utilisez une
ou plusieurs des variables de version du cluster Kubernetes comme indiqué lors de la
construction du modèle pour la balise d’image. L’annotation écrase le champ spec.image au

 annotations:
 olm.catalogImageTemplate: 3
 "quay.io/example-org/example-catalog:v{kube_major_version}.{kube_minor_version}.
{kube_patch_version}"
spec:
 displayName: Example Catalog 4
 image: quay.io/example-org/example-catalog:v1 5
 priority: -400 6
 publisher: Example Org
 sourceType: grpc 7
 grpcPodConfig:
 securityContextConfig: <security_mode> 8
 nodeSelector: 9
 custom_label: <label>
 priorityClassName: system-cluster-critical 10
 tolerations: 11
 - key: "key1"
 operator: "Equal"
 value: "value1"
 effect: "NoSchedule"
 updateStrategy:
 registryPoll: 12
 interval: 30m0s
status:
 connectionState:
 address: example-catalog.openshift-marketplace.svc:50051
 lastConnect: 2021-08-26T18:14:31Z
 lastObservedState: READY 13
 latestImageRegistryPoll: 2021-08-26T18:46:25Z 14
 registryService: 15
 createdAt: 2021-08-26T16:16:37Z
 port: 50051
 protocol: grpc
 serviceName: example-catalog
 serviceNamespace: openshift-marketplace

OpenShift Dedicated 4 Opérateurs

26

4

5

6

7

8

9

10

11

12

13

14

moment de l’exécution. Consultez la section « Modèle d’image pour les sources de catalogue
personnalisées » pour plus de détails.

Afficher le nom du catalogue dans la console Web et CLI.

Index de l’image pour le catalogue. En option, peut être omis lors de l’utilisation de l’annotation
olm.catalogImageTemplate, qui définit la spécification de traction au moment de l’exécution.

Le poids pour la source du catalogue. L’OMM utilise le poids pour la priorisation lors de la
résolution de dépendance. Le poids plus élevé indique que le catalogue est préféré aux
catalogues moins pondérés.

Les types de sources comprennent les éléments suivants:

GRPC avec une référence d’image: OLM tire l’image et exécute le pod, qui est censé
servir une API conforme.

GRPC avec un champ d’adresse: OLM tente de contacter l’API gRPC à l’adresse
donnée. Cela ne devrait pas être utilisé dans la plupart des cas.

ConfigMap: OLM analyse la configuration des données cartographiques et exécute un
pod qui peut servir l’API gRPC.

Indiquez la valeur de l’héritage ou de la restriction. Lorsque le champ n’est pas défini, la valeur
par défaut est héritée. Dans une version ultérieure d’OpenShift Dedicated, il est prévu que la
valeur par défaut soit limitée. Dans le cas où votre catalogue ne peut pas fonctionner avec des
autorisations restreintes, il est recommandé de définir manuellement ce champ sur l’héritage.

Facultatif: Pour les sources de catalogue de type grpc, remplace le sélecteur de nœud par
défaut pour le pod servant le contenu dans spec.image, si défini.

Facultatif: Pour les sources de catalogue de type grpc, remplace le nom de classe de priorité par
défaut pour le pod servant le contenu dans spec.image, si défini. Kubernetes fournit par défaut
des classes de priorité critiques et critiques du cluster système. Définir le champ à vide ("")
attribue à la pod la priorité par défaut. D’autres classes prioritaires peuvent être définies
manuellement.

Facultatif: Pour les sources de catalogue de type grpc, outrepasse les tolérances par défaut
pour le pod servant le contenu dans spec.image, si défini.

Vérifiez automatiquement les nouvelles versions à un intervalle donné pour rester à jour.

Dernier état observé de la connexion au catalogue. À titre d’exemple:

LIRE: Une connexion est établie avec succès.

CONNECTING : Une connexion tente d’établir.

FAILURE TRANSIENTE : Un problème temporaire s’est produit lors de la tentative
d’établir une connexion, comme un délai d’attente. L’état finira par revenir à
CONNECTING et essayer à nouveau.

Consultez les états de connectivité dans la documentation du GRPC pour plus de détails.

La dernière fois que le registre conteneur stockant l’image du catalogue a été sondé pour
s’assurer que l’image est à jour.

CHAPITRE 2. COMPRENDRE LES OPÉRATEURS

27

15 Informations d’état pour le service de registre de l’opérateur du catalogue.

Faire référence au nom d’un objet CatalogSource dans un abonnement indique à OLM où chercher pour
trouver un opérateur demandé:

Exemple 2.10. Exemple Objet d’abonnement faisant référence à une source de catalogue

Ressources supplémentaires

Comprendre l’opérateurHub

Catalogues d’opérateurs Red Hat

Ajout d’une source de catalogue à un cluster

La priorité du catalogue

Affichage de l’état de la source du catalogue de l’opérateur en utilisant le CLI

Catalogue source de calendrier des pod

2.4.1.2.2.1. Modèle d’image pour les sources de catalogue personnalisées

La compatibilité de l’opérateur avec le cluster sous-jacent peut être exprimée par une source de
catalogue de différentes manières. L’une des façons, qui est utilisée pour les sources de catalogue par
défaut de Red Hat, est d’identifier les balises d’image pour les images d’index qui sont spécifiquement
créées pour une version de la plate-forme particulière, par exemple OpenShift Dedicated 4.

Lors d’une mise à niveau de cluster, la balise d’image d’index pour les sources de catalogue par défaut
Red Hat est mise à jour automatiquement par l’opérateur de versions de cluster (CVO) de sorte que le
gestionnaire de cycle de vie de l’opérateur (OLM) tire la version mise à jour du catalogue. Lors d’une
mise à jour de OpenShift Dedicated 4.17 à 4, le champ spec.image de l’objet CatalogSource pour le
catalogue redhat-operators est mis à jour à partir de:

à:

Cependant, le CVO ne met pas automatiquement à jour les balises d’image pour les catalogues

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: example-operator
 namespace: example-namespace
spec:
 channel: stable
 name: example-operator
 source: example-catalog
 sourceNamespace: openshift-marketplace

registry.redhat.io/redhat/redhat-operator-index:v4.18

registry.redhat.io/redhat/redhat-operator-index:v4.18

OpenShift Dedicated 4 Opérateurs

28

Cependant, le CVO ne met pas automatiquement à jour les balises d’image pour les catalogues
personnalisés. Afin de s’assurer que les utilisateurs disposent d’une installation d’opérateur compatible
et prise en charge après une mise à niveau de cluster, les catalogues personnalisés doivent également
être mis à jour pour faire référence à une image d’index mise à jour.

À partir de OpenShift Dedicated 4.9, les administrateurs de clusters peuvent ajouter l’annotation
olm.catalogImageTemplate dans l’objet CatalogSource pour les catalogues personnalisés à une
référence d’image qui inclut un modèle. Les variables de version Kubernetes suivantes sont prises en
charge pour être utilisées dans le modèle:

kube_major_version

kube_minor_version

kube_patch_version

NOTE

Il faut spécifier la version du cluster Kubernetes et non une version de cluster dédié
OpenShift, car ce dernier n’est pas actuellement disponible pour templating.

À condition que vous ayez créé et poussé une image d’index avec une balise spécifiant la version mise à
jour de Kubernetes, le réglage de cette annotation permet de modifier automatiquement les versions
d’image d’index dans les catalogues personnalisés après une mise à niveau de cluster. La valeur
d’annotation est utilisée pour définir ou mettre à jour la référence d’image dans le champ spec.image de
l’objet CatalogSource. Cela permet d’éviter les mises à niveau de clusters laissant les installations de
l’opérateur dans des états non pris en charge ou sans chemin de mise à jour continue.

IMPORTANT

Assurez-vous que l’image d’index avec la balise mise à jour, quel que soit le registre dans
lequel elle est stockée, est accessible par le cluster au moment de la mise à jour du
cluster.

Exemple 2.11. Exemple de source de catalogue avec un modèle d’image

NOTE

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 generation: 1
 name: example-catalog
 namespace: openshift-marketplace
 annotations:
 olm.catalogImageTemplate:
 "quay.io/example-org/example-catalog:v{kube_major_version}.{kube_minor_version}"
spec:
 displayName: Example Catalog
 image: quay.io/example-org/example-catalog:v1.31
 priority: -400
 publisher: Example Org

CHAPITRE 2. COMPRENDRE LES OPÉRATEURS

29

NOTE

Lorsque le champ spec.image et l’annotation olm.catalogImageTemplate sont toutes
deux définies, le champ spec.image est écrasé par la valeur résolue de l’annotation.
Lorsque l’annotation ne se résout pas à une spécification de traction utilisable, la source
du catalogue revient à la valeur spec.image définie.

Lorsque le champ spec.image n’est pas défini et que l’annotation ne se résout pas à une
spécification de traction utilisable, OLM arrête la réconciliation de la source du catalogue
et le place dans une condition d’erreur lisible par l’homme.

Dans un cluster OpenShift Dedicated 4, qui utilise Kubernetes 1.31, l’annotation
olm.catalogImageTemplate dans l’exemple précédent résout la référence d’image suivante:

Dans le cas des futures versions d’OpenShift Dedicated, vous pouvez créer des images d’index mises à
jour pour vos catalogues personnalisés qui ciblent la version ultérieure de Kubernetes utilisée par la
version ultérieure OpenShift Dedicated. Avec l’annotation olm.catalogImageTemplate définie avant la
mise à niveau, la mise à niveau du cluster vers la version ultérieure OpenShift Dedicated mettrait alors
automatiquement à jour l’image d’index du catalogue.

2.4.1.2.2.2. Exigences en matière de santé du catalogue

Les catalogues d’opérateurs sur un cluster sont interchangeables du point de vue de la résolution
d’installation; un objet d’abonnement peut faire référence à un catalogue spécifique, mais les
dépendances sont résolues à l’aide de tous les catalogues du cluster.

À titre d’exemple, si Catalog A est malsain, un référencement d’abonnement Catalog A pourrait
résoudre une dépendance dans Catalog B, que l’administrateur du cluster n’aurait peut-être pas
attendu, car B avait normalement une priorité de catalogue inférieure à A.

En conséquence, OLM exige que tous les catalogues avec un espace de noms global donné (par
exemple, l’espace de noms openshift-marketplace par défaut ou un espace de noms global
personnalisé) soient sains. Lorsqu’un catalogue est malsain, toutes les opérations d’installation ou de
mise à jour de l’opérateur au sein de son espace de noms global partagé échoueront avec une condition
CatalogSourcesUnsanté. Lorsque ces opérations étaient autorisées dans un état malsain, OLM pourrait
prendre des décisions de résolution et d’installation qui étaient inattendues pour l’administrateur du
cluster.

En tant qu’administrateur de cluster, si vous observez un catalogue malsain et que vous souhaitez
considérer le catalogue comme invalide et reprendre les installations de l’opérateur, consultez les
sections "Supprimer les catalogues personnalisés" ou "Désactiver les sources de catalogue
OperatorHub par défaut" pour obtenir des informations sur la suppression du catalogue malsain.

2.4.1.2.3. Abonnement

L’abonnement, défini par un objet Abonnement, représente une intention d’installer un Opérateur. C’est
la ressource personnalisée qui relie un opérateur à une source de catalogue.

Les abonnements décrivent le canal d’un package Opérateur auquel s’abonner et s’il y a lieu d’effectuer
des mises à jour automatiquement ou manuellement. En cas de configuration automatique,
l’abonnement garantit que le gestionnaire de cycle de vie de l’opérateur (OLM) gère et met à niveau
l’opérateur pour s’assurer que la dernière version est toujours en cours d’exécution dans le cluster.

quay.io/example-org/example-catalog:v1.31

OpenShift Dedicated 4 Opérateurs

30

Exemple d’objet d’abonnement

Cet objet d’abonnement définit le nom et l’espace de noms de l’opérateur, ainsi que le catalogue à partir
duquel les données de l’opérateur peuvent être trouvées. Le canal, tel que alpha, bêta ou stable, aide à
déterminer quel flux d’opérateur doit être installé à partir de la source du catalogue.

Les noms des canaux dans un abonnement peuvent différer entre les opérateurs, mais le schéma de
dénomination doit suivre une convention commune au sein d’un opérateur donné. À titre d’exemple, les
noms de canaux peuvent suivre un flux de mise à jour de version mineure pour l’application fournie par
l’opérateur (1.2, 1.3) ou une fréquence de libération (stable, rapide).

En plus d’être facilement visible à partir de la console Web dédiée OpenShift, il est possible d’identifier
quand il y a une version plus récente d’un opérateur disponible en inspectant l’état de l’abonnement
connexe. La valeur associée au champ CurrentCSV est la version la plus récente connue de OLM, et
installéeCSV est la version installée sur le cluster.

Ressources supplémentaires

Affichage du statut d’abonnement de l’opérateur en utilisant le CLI

2.4.1.2.4. Installer le plan

Le plan d’installation, défini par un objet InstallPlan, décrit un ensemble de ressources créées par
Operator Lifecycle Manager (OLM) pour installer ou mettre à niveau une version spécifique d’un
opérateur. La version est définie par une version de service cluster (CSV).

L’installation d’un opérateur, d’un administrateur de cluster ou d’un utilisateur qui a obtenu les
autorisations d’installation de l’opérateur doit d’abord créer un objet d’abonnement. L’abonnement
représente l’intention de s’abonner à un flux de versions disponibles d’un opérateur à partir d’une source
de catalogue. L’abonnement crée ensuite un objet InstallPlan pour faciliter l’installation des ressources
pour l’opérateur.

Le plan d’installation doit ensuite être approuvé selon l’une des stratégies d’approbation suivantes:

Lorsque le champ spec.installPlanApproval de l’abonnement est défini sur Automatique, le plan
d’installation est approuvé automatiquement.

Lorsque le champ spec.installPlanApproval de l’abonnement est défini sur Manuel, le plan
d’installation doit être approuvé manuellement par un administrateur de cluster ou un utilisateur
avec les autorisations appropriées.

Après l’approbation du plan d’installation, OLM crée les ressources spécifiées et installe l’opérateur dans
l’espace de noms spécifié par l’abonnement.

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: example-operator
 namespace: example-namespace
spec:
 channel: stable
 name: example-operator
 source: example-catalog
 sourceNamespace: openshift-marketplace

CHAPITRE 2. COMPRENDRE LES OPÉRATEURS

31

Exemple 2.12. Exemple d’objet InstallPlan

apiVersion: operators.coreos.com/v1alpha1
kind: InstallPlan
metadata:
 name: install-abcde
 namespace: operators
spec:
 approval: Automatic
 approved: true
 clusterServiceVersionNames:
 - my-operator.v1.0.1
 generation: 1
status:
 ...
 catalogSources: []
 conditions:
 - lastTransitionTime: '2021-01-01T20:17:27Z'
 lastUpdateTime: '2021-01-01T20:17:27Z'
 status: 'True'
 type: Installed
 phase: Complete
 plan:
 - resolving: my-operator.v1.0.1
 resource:
 group: operators.coreos.com
 kind: ClusterServiceVersion
 manifest: >-
 ...
 name: my-operator.v1.0.1
 sourceName: redhat-operators
 sourceNamespace: openshift-marketplace
 version: v1alpha1
 status: Created
 - resolving: my-operator.v1.0.1
 resource:
 group: apiextensions.k8s.io
 kind: CustomResourceDefinition
 manifest: >-
 ...
 name: webservers.web.servers.org
 sourceName: redhat-operators
 sourceNamespace: openshift-marketplace
 version: v1beta1
 status: Created
 - resolving: my-operator.v1.0.1
 resource:
 group: ''
 kind: ServiceAccount
 manifest: >-
 ...
 name: my-operator
 sourceName: redhat-operators
 sourceNamespace: openshift-marketplace
 version: v1
 status: Created

OpenShift Dedicated 4 Opérateurs

32

2.4.1.2.5. Groupes d’opérateurs

Le groupe d’opérateurs, défini par la ressource OperatorGroup, fournit une configuration
multilocataires aux Opérateurs installés par OLM. Le groupe d’opérateur sélectionne les espaces de
noms cibles dans lesquels générer l’accès RBAC requis pour ses opérateurs membres.

L’ensemble des espaces de noms cibles est fourni par une chaîne délimitée par virgule stockée dans
l’annotation olm.targetNamespaces d’une version de service cluster (CSV). Cette annotation est
appliquée aux instances CSV des opérateurs membres et est projetée dans leurs déploiements.

Ressources supplémentaires

Groupes d’opérateurs

2.4.1.2.6. Conditions de l’opérateur

Dans le cadre de son rôle dans la gestion du cycle de vie d’un opérateur, Operator Lifecycle Manager
(OLM) infère l’état d’un opérateur à partir de l’état des ressources Kubernetes qui définissent
l’opérateur. Bien que cette approche fournisse un certain niveau d’assurance qu’un exploitant est dans
un état donné, il existe de nombreux cas où un opérateur pourrait avoir besoin de communiquer des
informations à OLM qui ne pourraient pas être déduits autrement. Ces informations peuvent ensuite
être utilisées par OLM pour mieux gérer le cycle de vie de l’opérateur.

L’ODM fournit une définition de ressource personnalisée (CRD) appelée OperatorCondition qui permet
aux opérateurs de communiquer les conditions à OLM. Il existe un ensemble de conditions supportées
qui influencent la gestion de l’opérateur par OLM lorsqu’elles sont présentes dans la gamme
Spec.Conditions d’une ressource OperatorCondition.

NOTE

 - resolving: my-operator.v1.0.1
 resource:
 group: rbac.authorization.k8s.io
 kind: Role
 manifest: >-
 ...
 name: my-operator.v1.0.1-my-operator-6d7cbc6f57
 sourceName: redhat-operators
 sourceNamespace: openshift-marketplace
 version: v1
 status: Created
 - resolving: my-operator.v1.0.1
 resource:
 group: rbac.authorization.k8s.io
 kind: RoleBinding
 manifest: >-
 ...
 name: my-operator.v1.0.1-my-operator-6d7cbc6f57
 sourceName: redhat-operators
 sourceNamespace: openshift-marketplace
 version: v1
 status: Created
 ...

CHAPITRE 2. COMPRENDRE LES OPÉRATEURS

33

NOTE

Le tableau Spec.Conditions n’est pas présent dans un objet OperatorCondition tant qu’il
n’est pas ajouté par un utilisateur ou à la suite de la logique personnalisée de l’opérateur.

Ressources supplémentaires

Conditions de l’opérateur

2.4.2. Architecture du gestionnaire de cycle de vie de l’opérateur

Ce guide décrit l’architecture des composants du gestionnaire de cycle de vie de l’opérateur (OLM)
dans OpenShift Dedicated.

2.4.2.1. Les responsabilités des composantes

Le gestionnaire du cycle de vie de l’opérateur (OLM) est composé de deux opérateurs : l’opérateur
OLM et l’opérateur de catalogue.

Les OLM et les opérateurs de catalogue sont responsables de la gestion des définitions de ressources
personnalisées (DRC) qui constituent la base du cadre OLM:

Tableau 2.3. CRDS géré par OLM et les opérateurs de catalogue

A) Ressources Cour
t
nom

Le
prop
riétai
re

Description

ClusterService
Version (CSV)

CSV LES
OLM

Les métadonnées de l’application: nom, version, icône, ressources
requises, installation, etc.

InstallPlan IP Catal
ogue

Liste calculée des ressources à créer pour installer ou mettre à jour
automatiquement un CSV.

CatalogueSo
urce

cats
rc

Catal
ogue

Dépôt de CSV, CRD et packages qui définissent une application.

Abonnement a)
Sou
s

Catal
ogue

Il est utilisé pour garder les CSV à jour en suivant un canal dans un
paquet.

Groupe
d’opérateurs

à
prop
os
de
OG

LES
OLM

Configure tous les opérateurs déployés dans le même espace de noms
que l’objet OperatorGroup pour surveiller leur ressource personnalisée
(CR) dans une liste d’espaces de noms ou à l’échelle du cluster.

Chacun de ces opérateurs est également responsable de la création des ressources suivantes:

Tableau 2.4. Les ressources créées par OLM et Catalog Operators

OpenShift Dedicated 4 Opérateurs

34

A) Ressources Le propriétaire

Déploiements LES OLM

Comptes de service

(Cluster)Roles

(Cluster)RoleBindings

CustomResourceDefinitions (CRD) Catalogue

ClusterServiceVersions

2.4.2.2. Opérateur OLM

L’opérateur OLM est responsable du déploiement des applications définies par les ressources CSV une
fois que les ressources requises spécifiées dans le CSV sont présentes dans le cluster.

L’opérateur OLM n’est pas concerné par la création des ressources requises; vous pouvez choisir de
créer manuellement ces ressources à l’aide du CLI ou à l’aide de l’opérateur de catalogue. Cette
séparation des préoccupations permet aux utilisateurs d’adhérer progressivement en fonction de la
quantité du cadre OLM qu’ils choisissent d’utiliser pour leur application.

L’opérateur OLM utilise le flux de travail suivant:

1. Consultez les versions de service cluster (CSV) dans un espace de noms et vérifiez que les
exigences sont satisfaites.

2. Lorsque les exigences sont remplies, exécutez la stratégie d’installation pour le CSV.

NOTE

Le CSV doit être un membre actif d’un groupe d’opérateurs pour que la stratégie
d’installation s’exécute.

2.4.2.3. Opérateur de catalogue

L’opérateur de catalogue est responsable de la résolution et de l’installation des versions de services de
cluster (CSV) et des ressources requises qu’ils spécifient. Il est également responsable de regarder les
sources de catalogue pour les mises à jour des paquets dans les canaux et de les mettre à niveau,
automatiquement si désiré, vers les dernières versions disponibles.

Afin de suivre un paquet dans un canal, vous pouvez créer un objet d’abonnement configurant le paquet,
le canal et l’objet CatalogSource que vous souhaitez utiliser pour tirer les mises à jour. Lorsque des mises
à jour sont trouvées, un objet InstallPlan approprié est écrit dans l’espace de noms pour le compte de
l’utilisateur.

L’opérateur de catalogue utilise le flux de travail suivant:

1. Connectez-vous à chaque source de catalogue dans le cluster.

CHAPITRE 2. COMPRENDRE LES OPÉRATEURS

35

2. Attention aux plans d’installation non résolus créés par un utilisateur, et s’il est trouvé:

a. Cherchez le CSV correspondant au nom demandé et ajoutez le CSV en tant que ressource
résolue.

b. Ajoutez le CRD en tant que ressource résolue pour chaque CRD géré ou requis.

c. Dans chaque CRD requis, trouvez le CSV qui le gère.

3. Consultez les plans d’installation résolus et créez toutes les ressources découvertes pour elle, si
elles sont approuvées par un utilisateur ou automatiquement.

4. Consultez les sources de catalogue et les abonnements et créez des plans d’installation basés
sur elles.

2.4.2.4. Registre du catalogue

Le registre de catalogue stocke les CSV et les CRD pour la création dans un cluster et stocke les
métadonnées sur les paquets et les canaux.

Le manifeste de paquet est une entrée dans le Registre de catalogue qui associe une identité de paquet
à des ensembles de CSV. Dans un paquet, les canaux pointent vers un CSV particulier. Comme les CSV
se réfèrent explicitement au CSV qu’ils remplacent, un manifeste de paquets fournit à l’opérateur de
catalogue toutes les informations nécessaires pour mettre à jour un CSV vers la dernière version d’un
canal, passant par chaque version intermédiaire.

2.4.3. Flux de travail du gestionnaire de cycle de vie de l’opérateur

Ce guide décrit le flux de travail du gestionnaire de cycle de vie de l’opérateur (OLM) dans OpenShift
Dedicated.

2.4.3.1. Installation de l’opérateur et mise à niveau du flux de travail dans OLM

Dans l’écosystème Gestionnaire du cycle de vie de l’opérateur (GLO), les ressources suivantes sont
utilisées pour résoudre les installations et les mises à niveau de l’opérateur:

ClusterServiceVersion (CSV)

CatalogueSource

Abonnement

Les métadonnées de l’opérateur, définies dans les CSV, peuvent être stockées dans une collection
appelée source de catalogue. L’OLM utilise des sources de catalogue, qui utilisent l’API de registre de
l’opérateur, pour interroger les opérateurs disponibles ainsi que des mises à niveau pour les opérateurs
installés.

Figure 2.3. Aperçu de la source du catalogue

OpenShift Dedicated 4 Opérateurs

36

Figure 2.3. Aperçu de la source du catalogue

Au sein d’une source de catalogue, les opérateurs sont organisés en paquets et en flux de mises à jour
appelées canaux, ce qui devrait être un modèle de mise à jour familier à partir d’OpenShift Dedicated ou
d’autres logiciels sur un cycle de libération continu comme les navigateurs Web.

Figure 2.4. Forfaits et canaux dans une source de catalogue

L’utilisateur indique un paquet et un canal particuliers dans une source de catalogue particulière dans un
abonnement, par exemple un paquet etcd et son canal alpha. Lorsqu’un abonnement est effectué à un
paquet qui n’a pas encore été installé dans l’espace de noms, le dernier opérateur de ce paquet est
installé.

NOTE

L’OLM évite délibérément les comparaisons de versions, de sorte que le "dernier" ou "plus
récent" Opérateur disponible à partir d’un catalogue donné → canal → chemin de paquet
n’a pas nécessairement besoin d’être le numéro de version le plus élevé. Il devrait être
plus considéré comme la référence en tête d’un canal, semblable à un dépôt Git.

Chaque CSV a un paramètre de remplacement qui indique quel opérateur il remplace. Cela crée un
graphique de CSV qui peut être interrogé par OLM, et les mises à jour peuvent être partagées entre les
canaux. Les canaux peuvent être considérés comme des points d’entrée dans le graphique des mises à

CHAPITRE 2. COMPRENDRE LES OPÉRATEURS

37

jour:

Figure 2.5. Graphique OLM des mises à jour des canaux disponibles

Exemples de canaux dans un paquet

Afin que OLM puisse interroger avec succès les mises à jour, compte tenu d’une source de catalogue,
d’un paquet, d’un canal et d’un CSV, un catalogue doit pouvoir retourner, sans ambiguïté et de façon
déterministe, un seul CSV qui remplace le CSV d’entrée.

2.4.3.1.1. Exemple de chemin de mise à niveau

Dans un exemple de scénario de mise à niveau, envisagez un opérateur installé correspondant à la
version 0.1.1 de CSV. L’OLM interroge la source du catalogue et détecte une mise à niveau dans le canal
souscrit avec la nouvelle version CSV 0.1.3 qui remplace une version CSV ancienne mais non installée
0.1.2, qui remplace à son tour la version CSV plus ancienne et installée 0.1.1.

L’OLM retourne de la tête du canal aux versions précédentes via le champ de remplacement spécifié
dans les CSV pour déterminer le chemin de mise à niveau 0.1.3 → 0.1.2 → 0.1.1; la direction de la flèche
indique que le premier remplace la seconde. L’OLM met à niveau l’opérateur une version à l’époque
jusqu’à ce qu’il atteigne la tête du canal.

Dans ce scénario donné, OLM installe la version 0.1.2 de l’opérateur pour remplacer la version 0.1.1 de
l’opérateur existant. Ensuite, il installe la version 0.1.3 de l’opérateur pour remplacer la version 0.1.2 de
l’opérateur précédemment installé. À ce stade, la version 0.1.3 de l’opérateur installé correspond à la tête
du canal et la mise à niveau est terminée.

packageName: example
channels:
- name: alpha
 currentCSV: example.v0.1.2
- name: beta
 currentCSV: example.v0.1.3
defaultChannel: alpha

OpenShift Dedicated 4 Opérateurs

38

2.4.3.1.2. Des mises à niveau de saut

Le chemin de base pour les mises à niveau dans OLM est:

La source du catalogue est mise à jour avec une ou plusieurs mises à jour d’un opérateur.

L’OLM traverse toutes les versions de l’Opérateur jusqu’à atteindre la dernière version que
contient la source du catalogue.

Cependant, parfois, ce n’est pas une opération sûre à effectuer. Il y aura des cas où une version publiée
d’un opérateur ne devrait jamais être installée sur un cluster s’il ne l’a pas déjà fait, par exemple parce
qu’une version introduit une vulnérabilité grave.

Dans ces cas, OLM doit tenir compte de deux états de cluster et fournir un graphique de mise à jour qui
prend en charge les deux:

Le "mauvais" opérateur intermédiaire a été vu par le cluster et installé.

Le "mauvais" opérateur intermédiaire n’a pas encore été installé sur le cluster.

En expédiant un nouveau catalogue et en ajoutant une version sautée, OLM est assuré qu’il peut
toujours obtenir une seule mise à jour unique quel que soit l’état du cluster et s’il a vu la mauvaise mise à
jour encore.

Exemple CSV avec version sautée

Considérez l’exemple suivant de Old CatalogSource et New CatalogSource.

Figure 2.6. Sauter les mises à jour

apiVersion: operators.coreos.com/v1alpha1
kind: ClusterServiceVersion
metadata:
 name: etcdoperator.v0.9.2
 namespace: placeholder
 annotations:
spec:
 displayName: etcd
 description: Etcd Operator
 replaces: etcdoperator.v0.9.0
 skips:
 - etcdoperator.v0.9.1

CHAPITRE 2. COMPRENDRE LES OPÉRATEURS

39

Figure 2.6. Sauter les mises à jour

Ce graphique maintient que:

Chaque opérateur trouvé dans Old CatalogSource a un seul remplacement dans New
CatalogSource.

Chaque opérateur trouvé dans New CatalogSource a un seul remplacement dans New
CatalogSource.

Lorsque la mauvaise mise à jour n’a pas encore été installée, elle ne le sera jamais.

2.4.3.1.3. Le remplacement de plusieurs opérateurs

Créer un nouveau catalogueSource comme décrit nécessite la publication de CSV qui remplacent un
opérateur, mais peuvent en sauter plusieurs. Cela peut être accompli en utilisant l’annotation de
skipRange:

lorsque <semver_range> a le format de plage de version pris en charge par la bibliothèque semver.

Lors de la recherche de catalogues pour les mises à jour, si la tête d’un canal a une annotation skipRange
et que l’opérateur actuellement installé a un champ de version qui tombe dans la plage, OLM met à jour
la dernière entrée dans le canal.

L’ordre de préséance est:

1. Tête de canal dans la source spécifiée par sourceName sur l’abonnement, si les autres critères

olm.skipRange: <semver_range>

OpenShift Dedicated 4 Opérateurs

40

1. Tête de canal dans la source spécifiée par sourceName sur l’abonnement, si les autres critères
de saut sont remplis.

2. L’opérateur suivant qui remplace le courant, dans la source spécifiée par sourceName.

3. Canal tête dans une autre source qui est visible à l’abonnement, si les autres critères de saut
sont remplis.

4. L’opérateur suivant qui remplace le courant dans n’importe quelle source visible à l’abonnement.

Exemple CSV avec skipRange

2.4.3.1.4. Le support Z-stream

La version z-stream ou patch doit remplacer toutes les versions précédentes de z-stream pour la même
version mineure. L’OLM ne considère pas les versions majeures, mineures ou patchées, il suffit de
construire le graphique correct dans un catalogue.

En d’autres termes, OLM doit pouvoir prendre un graphique comme dans Old CatalogSource et, comme
auparavant, générer un graphique comme dans New CatalogSource:

Figure 2.7. Le remplacement de plusieurs opérateurs

apiVersion: operators.coreos.com/v1alpha1
kind: ClusterServiceVersion
metadata:
 name: elasticsearch-operator.v4.1.2
 namespace: <namespace>
 annotations:
 olm.skipRange: '>=4.1.0 <4.1.2'

CHAPITRE 2. COMPRENDRE LES OPÉRATEURS

41

Figure 2.7. Le remplacement de plusieurs opérateurs

Ce graphique maintient que:

Chaque opérateur trouvé dans Old CatalogSource a un seul remplacement dans New
CatalogSource.

Chaque opérateur trouvé dans New CatalogSource a un seul remplacement dans New
CatalogSource.

Chaque version z-stream dans Old CatalogSource sera mise à jour vers la dernière version z-
stream dans New CatalogSource.

Les versions indisponibles peuvent être considérées comme des nœuds graphiques « virtuels » ;
leur contenu n’a pas besoin d’exister, le registre doit simplement répondre comme si le
graphique ressemblait à cela.

2.4.4. La résolution de dépendance du gestionnaire de cycle de vie de l’opérateur

Ce guide décrit la résolution des dépendances et la définition de ressources personnalisées (CRD) mises
à niveau des cycles de vie avec Operator Lifecycle Manager (OLM) dans OpenShift Dedicated.

2.4.4.1. À propos de la résolution de dépendance

Le gestionnaire de cycle de vie de l’opérateur (OLM) gère la résolution de dépendance et la mise à
niveau du cycle de vie des opérateurs en cours d’exécution. À bien des égards, les problèmes auxquels
OLM est confronté sont similaires à d’autres gestionnaires de systèmes ou de paquets linguistiques, tels

OpenShift Dedicated 4 Opérateurs

42

que yum et rpm.

Cependant, il y a une contrainte que les systèmes similaires n’ont généralement pas que OLM: parce que
les opérateurs sont toujours en cours d’exécution, OLM tente de s’assurer que vous ne restez jamais
avec un ensemble d’opérateurs qui ne fonctionnent pas les uns avec les autres.

En conséquence, OLM ne doit jamais créer les scénarios suivants:

Installer un ensemble d’opérateurs nécessitant des API qui ne peuvent pas être fournies

Actualisez un opérateur d’une manière qui en casse un autre qui en dépend

Cela est rendu possible avec deux types de données:

Les
propriétés

Dactylographié métadonnées sur l’opérateur qui constitue l’interface publique pour lui dans
le résolveur de dépendance. Les exemples incluent le groupe/version/type (GVK) des API
fournies par l’opérateur et la version sémantique (semver) de l’opérateur.

Contraintes
ou
dépendances

Les exigences d’un opérateur qui devraient être satisfaites par d’autres opérateurs qui
auraient pu ou non déjà été installés sur le cluster cible. Ceux-ci agissent comme des
requêtes ou des filtres sur tous les opérateurs disponibles et limitent la sélection lors de la
résolution et de l’installation de dépendance. Les exemples incluent le fait d’exiger qu’une
API spécifique soit disponible sur le cluster ou de s’attendre à ce qu’un opérateur particulier
avec une version particulière soit installé.

L’OLM convertit ces propriétés et contraintes en un système de formules booléennes et les transmet à
un solveur SAT, un programme qui établit la satisfaction booléenne, qui fait le travail de déterminer ce
que les opérateurs devraient être installés.

2.4.4.2. Les propriétés de l’opérateur

Les opérateurs d’un catalogue ont les propriétés suivantes:

emballage OLM.

Comprend le nom du paquet et la version de l’opérateur

à propos de OLM.gvk

D’une seule propriété pour chaque API fournie à partir de la version de service cluster (CSV)

Des propriétés supplémentaires peuvent également être déclarées directement par un auteur de
l’opérateur en incluant un fichier properties.yaml dans les métadonnées/annuaire du paquet Opérateur.

Exemple de propriété arbitraire

2.4.4.2.1. Des propriétés arbitraires

Les auteurs d’opérateurs peuvent déclarer des propriétés arbitraires dans un fichier properties.yaml
dans le répertoire métadonnées du paquet Opérateur. Ces propriétés sont traduites en une structure de

properties:
- type: olm.kubeversion
 value:
 version: "1.16.0"

CHAPITRE 2. COMPRENDRE LES OPÉRATEURS

43

données cartographiques qui est utilisée comme entrée pour le résolveur de cycle de vie de l’opérateur
(OLM) au moment de l’exécution.

Ces propriétés sont opaques pour le résolveur car il ne comprend pas les propriétés, mais il peut évaluer
les contraintes génériques par rapport à ces propriétés pour déterminer si les contraintes peuvent être
satisfaites compte tenu de la liste des propriétés.

Exemple de propriétés arbitraires

Cette structure peut être utilisée pour construire une expression du langage d’expression commune
(CEL) pour des contraintes génériques.

Ressources supplémentaires

Les contraintes du langage d’expression commune (CEL)

2.4.4.3. Dépendances des opérateurs

Les dépendances d’un opérateur sont listées dans un fichier de dépendances.yaml dans le dossier
métadonnées d’un bundle. Ce fichier est facultatif et actuellement utilisé uniquement pour spécifier des
dépendances explicites de version d’opérateur.

La liste de dépendances contient un champ de type pour chaque élément pour spécifier quel type de
dépendance il s’agit. Les types de dépendances des opérateurs suivants sont pris en charge:

emballage OLM.

Ce type indique une dépendance pour une version spécifique de l’opérateur. Les informations de
dépendance doivent inclure le nom du paquet et la version du paquet au format semver. À titre
d’exemple, vous pouvez spécifier une version exacte telle que 0.5.2 ou une gamme de versions telles
que >0.5.1.

à propos de OLM.gvk

Avec ce type, l’auteur peut spécifier une dépendance avec des informations de groupe/version/type
(GVK), similaire à l’utilisation existante CRD et API dans un CSV. Il s’agit d’un chemin permettant aux
auteurs de l’opérateur de consolider toutes les dépendances, API ou versions explicites, pour être au
même endroit.

limite OLM.

Ce type déclare des contraintes génériques sur les propriétés arbitraires de l’opérateur.

Dans l’exemple suivant, les dépendances sont spécifiées pour un opérateur Prometheus et etcd CRD:

properties:
 - property:
 type: color
 value: red
 - property:
 type: shape
 value: square
 - property:
 type: olm.gvk
 value:
 group: olm.coreos.io
 version: v1alpha1
 kind: myresource

OpenShift Dedicated 4 Opérateurs

44

Exemple de fichier dépendances.yaml

2.4.4.4. Contraintes génériques

La propriété olm.constraint déclare une contrainte de dépendance d’un type particulier, différenciant les
propriétés non contraintes et les propriétés de contrainte. Le champ de valeur est un objet contenant
un champ failMessage tenant une chaîne-représentation du message de contrainte. Ce message est
présenté comme un commentaire informatif aux utilisateurs si la contrainte n’est pas satisfaisante au
moment de l’exécution.

Les touches suivantes indiquent les types de contrainte disponibles:

GVK

Le type dont la valeur et l’interprétation sont identiques au type olm.gvk

forfait

Le type dont la valeur et l’interprétation sont identiques au type olm.package

CEL

Expression du langage d’expression commune (CEL) évaluée au cours de l’exécution par le résolveur
du gestionnaire du cycle de vie de l’opérateur (OLM) sur les propriétés arbitraires des faisceaux et les
informations de cluster

de tout, n’importe quoi, pas

Contraintes de conjonction, de disjonction et de négation, respectivement, contenant une ou
plusieurs contraintes concrètes, telles que gvk ou une contrainte composée imbriquée

2.4.4.4.1. Les contraintes du langage d’expression commune (CEL)

Le type de contrainte Cel prend en charge le langage d’expression commun (CEL) comme langage
d’expression. La structure de cel a un champ de règle qui contient la chaîne d’expression CEL qui est
évaluée par rapport aux propriétés de l’opérateur à l’exécution pour déterminer si l’opérateur satisfait à
la contrainte.

Exemple de contrainte cel

La syntaxe CEL prend en charge un large éventail d’opérateurs logiques, tels que AND et OR. En
conséquence, une seule expression CEL peut avoir plusieurs règles pour de multiples conditions qui sont

dependencies:
 - type: olm.package
 value:
 packageName: prometheus
 version: ">0.27.0"
 - type: olm.gvk
 value:
 group: etcd.database.coreos.com
 kind: EtcdCluster
 version: v1beta2

type: olm.constraint
value:
 failureMessage: 'require to have "certified"'
 cel:
 rule: 'properties.exists(p, p.type == "certified")'

CHAPITRE 2. COMPRENDRE LES OPÉRATEURS

45

liées entre elles par ces opérateurs logiques. Ces règles sont évaluées par rapport à un ensemble de
données de plusieurs propriétés différentes à partir d’un faisceau ou d’une source donnée, et la sortie
est résolue en un seul faisceau ou opérateur qui satisfait toutes ces règles à l’intérieur d’une seule
contrainte.

Exemple de contrainte cel avec plusieurs règles

2.4.4.4.2. Contraintes composées (toutes, toutes, pas)

Les types de contrainte composée sont évalués en fonction de leurs définitions logiques.

Ce qui suit est un exemple de contrainte conjonctive (tous) de deux paquets et d’un GVK. C’est-à-dire
qu’ils doivent tous être satisfaits par des paquets installés:

Exemple toutes les contraintes

Ce qui suit est un exemple d’une contrainte disjonctive (toute) de trois versions du même GVK. C’est-à-
dire qu’au moins un doit être satisfait par des paquets installés:

Exemple de toute contrainte

type: olm.constraint
value:
 failureMessage: 'require to have "certified" and "stable" properties'
 cel:
 rule: 'properties.exists(p, p.type == "certified") && properties.exists(p, p.type == "stable")'

schema: olm.bundle
name: red.v1.0.0
properties:
- type: olm.constraint
 value:
 failureMessage: All are required for Red because...
 all:
 constraints:
 - failureMessage: Package blue is needed for...
 package:
 name: blue
 versionRange: '>=1.0.0'
 - failureMessage: GVK Green/v1 is needed for...
 gvk:
 group: greens.example.com
 version: v1
 kind: Green

schema: olm.bundle
name: red.v1.0.0
properties:
- type: olm.constraint
 value:
 failureMessage: Any are required for Red because...
 any:
 constraints:
 - gvk:

OpenShift Dedicated 4 Opérateurs

46

Ce qui suit est un exemple de contrainte de négation (non) d’une version d’un GVK. C’est-à-dire que ce
GVK ne peut être fourni par aucun paquet dans l’ensemble de résultats:

Exemple non contrainte

La sémantique de négation peut sembler floue dans le contexte non de contrainte. Afin de clarifier, la
négation est vraiment d’ordonner au résolveur de supprimer toute solution possible qui inclut un GVK
particulier, un paquet dans une version, ou satisfait une contrainte composée d’enfants à partir de
l’ensemble de résultats.

En tant que corollaire, la contrainte non composée ne doit être utilisée que dans toutes les contraintes,
car la négation sans d’abord sélectionner un ensemble possible de dépendances n’a pas de sens.

2.4.4.4.3. Contraintes des composés imbriqués

La contrainte composée imbriquée, qui contient au moins une contrainte composée enfantine ainsi que
zéro ou plus contraintes simples, est évaluée à partir du bas vers le haut selon les procédures pour
chaque type de contrainte décrit précédemment.

Ce qui suit est un exemple de disjonction de conjonctions, où l’une, l’autre, ou les deux peuvent satisfaire
la contrainte:

Exemple de contrainte composée imbriquée

 group: blues.example.com
 version: v1beta1
 kind: Blue
 - gvk:
 group: blues.example.com
 version: v1beta2
 kind: Blue
 - gvk:
 group: blues.example.com
 version: v1
 kind: Blue

schema: olm.bundle
name: red.v1.0.0
properties:
- type: olm.constraint
 value:
 all:
 constraints:
 - failureMessage: Package blue is needed for...
 package:
 name: blue
 versionRange: '>=1.0.0'
 - failureMessage: Cannot be required for Red because...
 not:
 constraints:
 - gvk:
 group: greens.example.com
 version: v1alpha1
 kind: greens

CHAPITRE 2. COMPRENDRE LES OPÉRATEURS

47

NOTE

La taille brute maximale d’un type olm.constraint est de 64KB pour limiter les attaques
d’épuisement des ressources.

2.4.4.5. Les préférences de dépendance

Il peut y avoir de nombreuses options qui répondent également à une dépendance d’un opérateur. Le
résolveur de dépendance dans Operator Lifecycle Manager (OLM) détermine quelle option correspond
le mieux aux exigences de l’opérateur demandé. En tant qu’auteur ou utilisateur de l’opérateur, il peut
être important de comprendre comment ces choix sont faits afin que la résolution de dépendance soit
claire.

2.4.4.5.1. La priorité du catalogue

Dans OpenShift Dedicated cluster, OLM lit les sources du catalogue pour savoir quels opérateurs sont
disponibles pour l’installation.

Exemple d’objet CatalogSource

schema: olm.bundle
name: red.v1.0.0
properties:
- type: olm.constraint
 value:
 failureMessage: Required for Red because...
 any:
 constraints:
 - all:
 constraints:
 - package:
 name: blue
 versionRange: '>=1.0.0'
 - gvk:
 group: blues.example.com
 version: v1
 kind: Blue
 - all:
 constraints:
 - package:
 name: blue
 versionRange: '<1.0.0'
 - gvk:
 group: blues.example.com
 version: v1beta1
 kind: Blue

apiVersion: "operators.coreos.com/v1alpha1"
kind: "CatalogSource"
metadata:
 name: "my-operators"
 namespace: "operators"
spec:
 sourceType: grpc

OpenShift Dedicated 4 Opérateurs

48

1 Indiquez la valeur de l’héritage ou de la restriction. Lorsque le champ n’est pas défini, la valeur par
défaut est héritée. Dans une version ultérieure d’OpenShift Dedicated, il est prévu que la valeur par
défaut soit limitée. Dans le cas où votre catalogue ne peut pas fonctionner avec des autorisations
restreintes, il est recommandé de définir manuellement ce champ sur l’héritage.

L’objet CatalogSource a un champ de priorité, qui est utilisé par le résolveur pour savoir comment
préférer les options pour une dépendance.

Il y a deux règles qui régissent la préférence du catalogue:

Les options dans les catalogues à priorité élevée sont préférées aux options dans les catalogues
à priorité inférieure.

Les options dans le même catalogue que la personne dépendante sont préférées à tout autre
catalogue.

2.4.4.5.2. Commande de canaux

Le package Opérateur dans un catalogue est une collection de canaux de mise à jour auxquels un
utilisateur peut s’abonner dans un cluster dédié OpenShift. Les canaux peuvent être utilisés pour fournir
un flux particulier de mises à jour pour une libération mineure (1.2, 1.3) ou une fréquence de libération
(stable, rapide).

Il est probable qu’une dépendance pourrait être satisfaite par les opérateurs dans le même paquet, mais
différents canaux. À titre d’exemple, la version 1.2 d’un opérateur peut exister dans les canaux stables et
rapides.

Chaque paquet a un canal par défaut, qui est toujours préféré aux canaux non par défaut. Dans le cas où
aucune option dans le canal par défaut ne peut satisfaire une dépendance, des options sont envisagées
à partir des canaux restants dans l’ordre lexicographique du nom du canal.

2.4.4.5.3. Commandez à l’intérieur d’un canal

Il y a presque toujours plusieurs options pour satisfaire une dépendance au sein d’un seul canal. À titre
d’exemple, les opérateurs d’un seul paquet et d’un canal fournissent le même ensemble d’API.

Lorsqu’un utilisateur crée un abonnement, il indique quel canal recevoir des mises à jour. Cela réduit
immédiatement la recherche à ce seul canal. Cependant, à l’intérieur du canal, il est probable que de
nombreux opérateurs répondent à une dépendance.

Au sein d’un canal, les opérateurs plus récents qui sont plus haut dans le graphique de mise à jour sont
préférés. Lorsque la tête d’un canal satisfait à une dépendance, elle sera d’abord essayée.

2.4.4.5.4. Autres contraintes

En plus des contraintes fournies par les dépendances de paquets, OLM inclut des contraintes
supplémentaires pour représenter l’état utilisateur souhaité et imposer des invariants de résolution.

 grpcPodConfig:
 securityContextConfig: <security_mode> 1
 image: example.com/my/operator-index:v1
 displayName: "My Operators"
 priority: 100

CHAPITRE 2. COMPRENDRE LES OPÉRATEURS

49

2.4.4.5.4.1. Contrainte d’abonnement

La contrainte d’abonnement filtre l’ensemble des opérateurs qui peuvent satisfaire un abonnement. Les
abonnements sont des contraintes fournies par l’utilisateur pour le résolveur de dépendance. Ils
déclarent avoir l’intention soit d’installer un nouvel opérateur s’il n’est pas déjà sur le cluster, soit de tenir
à jour un opérateur existant.

2.4.4.5.4.2. Contrainte du paquet

Dans un espace de noms, aucun opérateur ne peut provenir du même paquet.

2.4.4.5.5. Ressources supplémentaires

Exigences en matière de santé du catalogue

2.4.4.6. Les mises à niveau de CRD

L’ODM met immédiatement à niveau une définition de ressource personnalisée (CRD) s’il appartient à
une version de service de cluster singulier (CSV). Lorsqu’un CRD est détenu par plusieurs CSV, le CRD
est mis à niveau lorsqu’il a satisfait à toutes les conditions suivantes:

Dans le nouveau CRD, toutes les versions de service existantes sont présentes dans le nouveau
CRD.

Les instances existantes, ou ressources personnalisées, associées aux versions de service du
CRD sont valides lorsqu’elles sont validées par rapport au schéma de validation du nouveau
CRD.

Ressources supplémentaires

Ajout d’une nouvelle version CRD

Dépréciation ou suppression d’une version CRD

2.4.4.7. Les meilleures pratiques en matière de dépendance

Lorsque vous spécifiez les dépendances, il existe des pratiques exemplaires que vous devriez considérer.

Dépendez des API ou d’une gamme de versions spécifique d’opérateurs

Les opérateurs peuvent ajouter ou supprimer des API à tout moment; toujours spécifier une
dépendance olm.gvk sur toutes les API requises par vos opérateurs. L’exception à cela est si vous
spécifiez les contraintes olm.package à la place.

Définir une version minimale

La documentation Kubernetes sur les modifications d’API décrit les changements autorisés pour les
opérateurs de style Kubernetes. Ces conventions de version permettent à un opérateur de mettre à
jour une API sans heurter la version API, tant que l’API est rétrocompatible.
En ce qui concerne les dépendances des opérateurs, cela signifie que connaître la version API d’une
dépendance peut ne pas suffire à s’assurer que l’opérateur dépendant fonctionne comme prévu.

À titre d’exemple:

Le TestOperator v1.0.0 fournit la version API v1alpha1 de la ressource MyObject.

Le TestOperator v1.0.1 ajoute un nouveau champ spec.newfield à MyObject, mais toujours à

OpenShift Dedicated 4 Opérateurs

50

Le TestOperator v1.0.1 ajoute un nouveau champ spec.newfield à MyObject, mais toujours à
v1alpha1.

Il se peut que votre opérateur ait besoin de la possibilité d’écrire spec.newfield dans la ressource
MyObject. À elle seule, une contrainte olm.gvk ne suffit pas à OLM pour déterminer que vous avez
besoin de TestOperator v1.0.1 et non TestOperator v1.0.0.

Dans la mesure du possible, si un opérateur spécifique qui fournit une API est connu à l’avance,
spécifiez une contrainte supplémentaire olm.package pour définir un minimum.

Omettre une version maximale ou permettre une très large gamme

Étant donné que les opérateurs fournissent des ressources en grappes telles que les services API et
les CRD, un opérateur qui spécifie une petite fenêtre pour une dépendance peut entraver
inutilement les mises à jour pour les autres consommateurs de cette dépendance.
Dans la mesure du possible, ne définissez pas une version maximale. Alternativement, définissez une
gamme sémantique très large pour éviter les conflits avec d’autres opérateurs. À titre d’exemple,
>1.0.0 <2.0.0.

Contrairement aux gestionnaires de paquets conventionnels, les auteurs d’opérateurs codent
explicitement que les mises à jour sont sûres via les canaux dans OLM. Lorsqu’une mise à jour est
disponible pour un abonnement existant, il est supposé que l’auteur de l’opérateur indique qu’il peut
mettre à jour à partir de la version précédente. La définition d’une version maximale pour une
dépendance remplace le flux de mise à jour de l’auteur en la tronquant inutilement à une limite
supérieure particulière.

NOTE

Les administrateurs de cluster ne peuvent pas remplacer les dépendances définies
par un auteur de l’opérateur.

Cependant, les versions maximales peuvent et doivent être définies s’il y a des incompatibilités
connues qui doivent être évitées. Les versions spécifiques peuvent être omises avec la syntaxe de la
plage de versions, par exemple > 1.0.0 !1.2.1.

Ressources supplémentaires

Documentation Kubernetes : Changer l’API

2.4.4.8. Avertissements de dépendance

Lorsque vous spécifiez des dépendances, il y a des mises en garde que vous devriez considérer.

Aucune contrainte composée (AND)

Il n’existe actuellement aucune méthode pour spécifier une relation ET entre les contraintes. En
d’autres termes, il n’y a aucun moyen de spécifier qu’un opérateur dépend d’un autre opérateur qui
fournit à la fois une API donnée et une version >1.1.0.
Cela signifie que lorsque vous spécifiez une dépendance telle que:

dependencies:
- type: olm.package
 value:
 packageName: etcd
 version: ">3.1.0"

CHAPITRE 2. COMPRENDRE LES OPÉRATEURS

51

Il serait possible pour OLM de satisfaire cela avec deux opérateurs : l’un qui fournit EtcdCluster et
l’autre qui a la version >3.1.0. La question de savoir si cela se produit, ou si un opérateur est
sélectionné qui satisfait aux deux contraintes, dépend de la commande que les options potentielles
sont visitées. Les préférences de dépendance et les options de commande sont bien définies et
peuvent être motivées, mais pour faire preuve de prudence, les opérateurs devraient s’en tenir à un
mécanisme ou à l’autre.

Compatibilité cross-namespace

L’ODM effectue une résolution de dépendance à la portée de l’espace de noms. Il est possible
d’entrer dans une impasse de mise à jour si la mise à jour d’un opérateur dans un espace de noms
serait un problème pour un opérateur dans un autre espace de noms, et vice-versa.

2.4.4.9. Exemples de scénarios de résolution de dépendance

Dans les exemples suivants, un fournisseur est un opérateur qui « possède » un service CRD ou API.

Exemple : Dépréciation des API dépendantes
A et B sont des API (CRD):

Le fournisseur de A dépend de B.

Le fournisseur de B a un abonnement.

Le fournisseur de mises à jour B pour fournir C mais déprécie B.

Il en résulte:

B n’a plus de fournisseur.

A ne fonctionne plus.

C’est un cas que OLM empêche avec sa stratégie de mise à niveau.

Exemple : dans l’impasse de version
A et B sont des API:

Le fournisseur de A nécessite B.

Le fournisseur de B nécessite A.

Le fournisseur de mises à jour A (fournir A2, nécessite B2) et déprécater A.

Le fournisseur de mises à jour B (fournir B2, nécessite A2) et déprécier B.

Lorsque OLM tente de mettre à jour A sans mettre à jour simultanément B, ou vice-versa, il est
impossible de passer à de nouvelles versions des Opérateurs, même si un nouvel ensemble compatible
peut être trouvé.

C’est un autre cas que OLM empêche avec sa stratégie de mise à niveau.

- type: olm.gvk
 value:
 group: etcd.database.coreos.com
 kind: EtcdCluster
 version: v1beta2

OpenShift Dedicated 4 Opérateurs

52

2.4.5. Groupes d’opérateurs

Ce guide décrit l’utilisation des groupes d’opérateurs avec le gestionnaire de cycle de vie de l’opérateur
(OLM) dans OpenShift Dedicated.

2.4.5.1. À propos des groupes d’opérateurs

Le groupe d’opérateurs, défini par la ressource OperatorGroup, fournit une configuration
multilocataires aux Opérateurs installés par OLM. Le groupe d’opérateur sélectionne les espaces de
noms cibles dans lesquels générer l’accès RBAC requis pour ses opérateurs membres.

L’ensemble des espaces de noms cibles est fourni par une chaîne délimitée par virgule stockée dans
l’annotation olm.targetNamespaces d’une version de service cluster (CSV). Cette annotation est
appliquée aux instances CSV des opérateurs membres et est projetée dans leurs déploiements.

2.4.5.2. Adhésion au groupe d’opérateurs

L’opérateur est considéré comme un membre d’un groupe d’opérateurs si les conditions suivantes sont
vraies:

Le CSV de l’Opérateur existe dans le même espace de noms que le groupe Opérateur.

Les modes d’installation dans le CSV de l’Opérateur prennent en charge l’ensemble d’espaces
de noms ciblés par le groupe Opérateur.

Le mode d’installation dans un CSV se compose d’un champ InstallModeType et d’un champ supporté
booléen. La spécification d’un CSV peut contenir un ensemble de modes d’installation de quatre
InstallModeTypes distincts:

Tableau 2.5. Installer des modes et des groupes d’opérateurs pris en charge

InstallerModeType Description

À propos de
OwnNamespace

L’opérateur peut être membre d’un groupe d’opérateurs qui sélectionne
son propre espace de noms.

Espace de SingleNam L’opérateur peut être membre d’un groupe d’opérateurs qui sélectionne
un espace de noms.

Espace MultiNam L’opérateur peut être membre d’un groupe d’opérateurs qui sélectionne
plus d’un espace de noms.

AllNamespaces L’opérateur peut être membre d’un groupe d’opérateurs qui sélectionne
tous les espaces de noms (le jeu d’espace de noms cible est la chaîne
vide "").

NOTE

Lorsque la spécification d’un CSV omet une entrée de InstallModeType, alors ce type est
considéré comme non pris en charge, sauf si le support peut être déduit par une entrée
existante qui le supporte implicitement.

2.4.5.3. Choix de l’espace de noms cible

CHAPITRE 2. COMPRENDRE LES OPÉRATEURS

53

Il est possible de nommer explicitement l’espace de noms cible pour un groupe d’opérateurs en utilisant
le paramètre spec.targetNamespaces:

Alternativement, vous pouvez spécifier un espace de noms à l’aide d’un sélecteur d’étiquettes avec le
paramètre spec.selector:

IMPORTANT

L’inscription de plusieurs espaces de noms via spec.targetNamespaces ou l’utilisation
d’un sélecteur d’étiquette via spec.selector n’est pas recommandée, car la prise en
charge de plus d’un espace de noms cible dans un groupe d’opérateurs sera
probablement supprimée dans une version ultérieure.

Lorsque spec.targetNamespaces et spec.selector sont définis, spec.selector est ignoré.
Alternativement, vous pouvez omettre à la fois spec.selector et spec.targetNamespaces pour spécifier
un groupe d’opérateur global, qui sélectionne tous les espaces de noms:

L’ensemble résolu d’espaces de noms sélectionnés est affiché dans le paramètre status.namespaces
d’un groupe Opeator. Le status.namespace d’un groupe d’opérateur mondial contient la chaîne vide (""),
qui signale à un opérateur consommant qu’il devrait regarder tous les espaces de noms.

2.4.5.4. Annotations du groupe d’opérateurs CSV

Les CSV membres d’un groupe d’opérateurs ont les annotations suivantes:

Annotation Description

groupe OLM.operator=<group_name> Contient le nom du groupe Opérateur.

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: my-group
 namespace: my-namespace
spec:
 targetNamespaces:
 - my-namespace

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: my-group
 namespace: my-namespace
spec:
 selector:
 cool.io/prod: "true"

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: my-group
 namespace: my-namespace

OpenShift Dedicated 4 Opérateurs

54

espace OLM.operatorNamespace=
<group_namespace>

Contient l’espace de noms du groupe Opérateur.

espaces
OLM.targetNamespaces=<target_namespa
ces>

Contient une chaîne délimitée par virgule qui
répertorie la sélection de l’espace de noms cible du
groupe Opérateur.

Annotation Description

NOTE

Les annotations sauf olm.targetNamespaces sont incluses avec des CSV copiés.
L’omission de l’annotation olm.targetNamespaces sur les CSV copiés empêche la
duplication des espaces de noms cibles entre les locataires.

2.4.5.5. Annotation d’API fournie

Groupe/version/type (GVK) est un identifiant unique pour une API Kubernetes. Les informations sur ce
que les GVK sont fournis par un groupe d’opérateurs sont affichées dans une annotation des API olm.
La valeur de l’annotation est une chaîne composée de <kind>.<version>.<group> délimitée
avec des virgules. Les GVK de CRD et les services API fournis par tous les CSV membres actifs d’un
groupe d’opérateurs sont inclus.

Examinez l’exemple suivant d’un objet OperatorGroup avec un seul membre actif CSV qui fournit la
ressource PackageManifest:

2.4.5.6. Contrôle d’accès basé sur le rôle

Lorsqu’un groupe d’opérateurs est créé, trois rôles de cluster sont générés. Chacune contient une seule
règle d’agrégation avec un sélecteur de rôle de cluster défini pour correspondre à une étiquette, comme
indiqué ci-dessous:

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 annotations:
 olm.providedAPIs: PackageManifest.v1alpha1.packages.apps.redhat.com
 name: olm-operators
 namespace: local
 ...
spec:
 selector: {}
 serviceAccountName:
 metadata:
 creationTimestamp: null
 targetNamespaces:
 - local
status:
 lastUpdated: 2019-02-19T16:18:28Z
 namespaces:
 - local

CHAPITRE 2. COMPRENDRE LES OPÉRATEURS

55

Le rôle des clusters Étiquette à assortir

<operatorgroup_name>-admin-
<hash_value>

accueil
OLM.opgroup.permissions/aggrégate-to-
admin: <operatorgroup_name>

<operatorgroup_name>-edit-
<hash_value>

accueil
OLM.opgroup.permissions/aggrégate-to-edit:
<operatorgroup_name>

> OLM.og.<operatorgroup_name>-
view-<hash_value>

accueil
OLM.opgroup.permissions/aggrégate-to-
view: <operatorgroup_name>

Les ressources RBAC suivantes sont générées lorsqu’un CSV devient un membre actif d’un groupe
d’opérateurs, tant que le CSV surveille tous les espaces de noms avec le mode d’installation
AllNamespaces et n’est pas dans un état défaillant avec la raison InterOperatorGroupOwnerConflict:

Les rôles de cluster pour chaque ressource API à partir d’un CRD

Les rôles de cluster pour chaque ressource API à partir d’un service API

Autres rôles et liens de rôle

Tableau 2.6. Les rôles de cluster générés pour chaque ressource API à partir d’un CRD

Le rôle des clusters Les paramètres

<kind>.<group>-<version>-admin Les verbes sur <kind>:

*

Étiquettes d’agrégation:

le RBAC.
Authorization.k8s.io/agrégate-to-
admin: true

accueil
OLM.opgroup.permissions/aggrégate
-to-admin:
<operatorgroup_name>

OpenShift Dedicated 4 Opérateurs

56

<kind>.<group>-<version>-edit Les verbes sur <kind>:

créer

la mise à jour

le patch

effacer

Étiquettes d’agrégation:

le RBAC.
Authorization.k8s.io/agrégate-to-edit:
true

accueil
OLM.opgroup.permissions/aggrégate
-to-edit: <operatorgroup_name>

<kind>.<group>-<version>-view Les verbes sur <kind>:

J’obtiens

liste

la montre

Étiquettes d’agrégation:

le RBAC.
Authorization.k8s.io/agrégate-to-
view: true

accueil
OLM.opgroup.permissions/aggrégate
-to-view:
<operatorgroup_name>

<kind>.<group>-<version>-view-
crdview

Les verbes sur apiextensions.k8s.io
customresourcedefinitions <crd-name>:

J’obtiens

Étiquettes d’agrégation:

le RBAC.
Authorization.k8s.io/agrégate-to-
view: true

accueil
OLM.opgroup.permissions/aggrégate
-to-view:
<operatorgroup_name>

Le rôle des clusters Les paramètres

CHAPITRE 2. COMPRENDRE LES OPÉRATEURS

57

Tableau 2.7. Les rôles de cluster générés pour chaque ressource API à partir d’un service API

Le rôle des clusters Les paramètres

<kind>.<group>-<version>-admin Les verbes sur <kind>:

*

Étiquettes d’agrégation:

le RBAC.
Authorization.k8s.io/agrégate-to-
admin: true

accueil
OLM.opgroup.permissions/aggrégate
-to-admin:
<operatorgroup_name>

<kind>.<group>-<version>-edit Les verbes sur <kind>:

créer

la mise à jour

le patch

effacer

Étiquettes d’agrégation:

le RBAC.
Authorization.k8s.io/agrégate-to-edit:
true

accueil
OLM.opgroup.permissions/aggrégate
-to-edit: <operatorgroup_name>

<kind>.<group>-<version>-view Les verbes sur <kind>:

J’obtiens

liste

la montre

Étiquettes d’agrégation:

le RBAC.
Authorization.k8s.io/agrégate-to-
view: true

accueil
OLM.opgroup.permissions/aggrégate
-to-view:
<operatorgroup_name>

OpenShift Dedicated 4 Opérateurs

58

Autres rôles et liens de rôle

Lorsque le CSV définit exactement un espace de noms cible qui contient *, un rôle de cluster et
une liaison de rôle de cluster correspondante sont générés pour chaque autorisation définie
dans le champ permissions du CSV. L’ensemble des ressources générées sont les étiquettes
olm.owner: <csv_name> et olm.owner.namespace: <csv_namespace>.

Lorsque le CSV ne définit pas exactement un espace de noms cible qui contient *, alors toutes
les liaisons de rôles et de rôles dans l’espace de noms de l’opérateur avec les étiquettes
olm.owner: <csv_name> et olm.owner.namespace: <csv_namespace> les étiquettes
sont copiées dans l’espace de noms cible.

2.4.5.7. CSV copiés

L’OLM crée des copies de tous les CSV membres actifs d’un groupe d’opérateurs dans chacun des
espaces de noms cibles de ce groupe d’opérateurs. Le but d’un CSV copié est de dire aux utilisateurs
d’un espace de noms cible qu’un opérateur spécifique est configuré pour regarder les ressources créées
là-bas.

Les CSV copiés ont une raison de statut Copié et sont mis à jour pour correspondre à l’état de leur CSV
source. L’annotation olm.targetNamespaces est dépouillée des CSV copiés avant qu’ils ne soient créés
sur le cluster. L’omission de la sélection de l’espace de noms cible évite la duplication des espaces de
noms cibles entre les locataires.

Les CSV copiés sont supprimés lorsque leur CSV source n’existe plus ou que le groupe Opérateur que
leur source CSV appartient à ne plus cibler l’espace de noms du CSV copié.

NOTE

CHAPITRE 2. COMPRENDRE LES OPÉRATEURS

59

NOTE

Le champ de désactivationCopiedCSVs est désactivé par défaut. Après avoir activé un
champ de désactivationCopiedCSVs, l’OMM supprime les CSV existants copiés sur un
cluster. Lorsqu’un champ de désactivationCopiedCSVs est désactivé, l’OMM ajoute à
nouveau des CSV copiés.

Désactiver le champ de désactivationCopiedCSVs:

Activer le champ de désactivationCopiedCSVs:

2.4.5.8. Groupes d’opérateurs statiques

Le groupe opérateur est statique si son champ spec.staticProvidedAPIs est défini sur true. En
conséquence, OLM ne modifie pas l’annotation olm.suppldAPIs d’un groupe d’opérateurs, ce qui signifie
qu’il peut être défini à l’avance. Ceci est utile lorsqu’un utilisateur souhaite utiliser un groupe
d’opérateurs pour empêcher la contention des ressources dans un ensemble d’espaces de noms, mais
n’a pas de CSV membre actif qui fournissent les API pour ces ressources.

Ci-dessous est un exemple d’un groupe d’opérateurs qui protège les ressources Prometheus dans tous
les espaces de noms avec le something.cool.io/cluster-monitoring: "vrai" annotation:

$ cat << EOF | oc apply -f -
apiVersion: operators.coreos.com/v1
kind: OLMConfig
metadata:
 name: cluster
spec:
 features:
 disableCopiedCSVs: false
EOF

$ cat << EOF | oc apply -f -
apiVersion: operators.coreos.com/v1
kind: OLMConfig
metadata:
 name: cluster
spec:
 features:
 disableCopiedCSVs: true
EOF

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: cluster-monitoring
 namespace: cluster-monitoring
 annotations:
 olm.providedAPIs:
Alertmanager.v1.monitoring.coreos.com,Prometheus.v1.monitoring.coreos.com,PrometheusRule.v1.mo
nitoring.coreos.com,ServiceMonitor.v1.monitoring.coreos.com
spec:
 staticProvidedAPIs: true

OpenShift Dedicated 4 Opérateurs

60

2.4.5.9. Intersection du groupe d’opérateurs

Deux groupes d’opérateurs auraient des API fournies si l’intersection de leurs jeux d’espace de noms
n’est pas vide et que l’intersection des jeux d’API fournis, définies par les annotations olm.providedAPIs,
n’est pas un ensemble vide.

Le problème potentiel réside dans le fait que les groupes d’opérateurs dotés d’API intersectées peuvent
rivaliser pour les mêmes ressources dans l’ensemble des espaces de noms croisés.

NOTE

Lors de la vérification des règles d’intersection, un espace de noms de groupe
d’opérateur est toujours inclus dans les espaces de noms cibles sélectionnés.

Les règles pour l’intersection
Chaque fois qu’un membre actif se synchronise, OLM interroge le cluster pour l’ensemble d’intersecting
fourni des API entre le groupe Opérateur du CSV et tous les autres. Ensuite, OLM vérifie si cet
ensemble est un jeu vide:

Lorsque true et les API fournies par le CSV sont un sous-ensemble du groupe d’opérateurs:

Continuez la transition.

Lorsque true et les API fournies par le CSV ne sont pas un sous-ensemble du groupe
d’opérateurs:

Lorsque le groupe d’opérateurs est statique:

Nettoyer tous les déploiements appartenant au CSV.

La transition du CSV vers un état défaillant avec la raison de statut
CannotModifierStaticOperatorGroupProvidedAPIs.

B) Si le groupe d’opérateurs n’est pas statique:

De remplacer l’annotation olm.fourdAPIs du groupe d’opérateurs par l’union de lui-
même et les API fournies par le CSV.

En cas de faux et les API fournies par le CSV ne sont pas un sous-ensemble du groupe
d’opérateurs:

Nettoyer tous les déploiements appartenant au CSV.

Faites passer le CSV à un état défaillant avec raison de statut
InterOperatorGroupOwnerConflict.

En cas de faux et les API fournies par le CSV sont un sous-ensemble du groupe d’opérateurs:

Lorsque le groupe d’opérateurs est statique:

Nettoyer tous les déploiements appartenant au CSV.

La transition du CSV vers un état défaillant avec la raison de statut

 selector:
 matchLabels:
 something.cool.io/cluster-monitoring: "true"

CHAPITRE 2. COMPRENDRE LES OPÉRATEURS

61

La transition du CSV vers un état défaillant avec la raison de statut
CannotModifierStaticOperatorGroupProvidedAPIs.

B) Si le groupe d’opérateurs n’est pas statique:

De remplacer l’annotation olm.fourdAPIs du groupe d’opérateurs par la différence entre
lui-même et les API fournies par le CSV.

NOTE

Les états de défaillance causés par les groupes d’opérateurs sont non-terminaux.

Les actions suivantes sont effectuées chaque fois qu’un groupe d’opérateurs synchronise:

L’ensemble d’API fournies à partir des CSV membres actifs est calculé à partir du cluster. Il est à
noter que les CSV copiés sont ignorés.

L’ensemble de clusters est comparé à olm.providedAPIs, et si olm.providedAPIs contient des
API supplémentaires, ces API sont taillées.

Les CSV qui fournissent les mêmes API dans tous les espaces de noms sont requeued. Cela
informe les CSV conflictuels des groupes croisés que leur conflit a pu être résolu, soit par le
redimensionnement ou par la suppression du CSV conflictuel.

2.4.5.10. Limites pour la gestion des opérateurs multilocataires

Le logiciel OpenShift Dedicated fournit une prise en charge limitée pour l’installation simultanée de
différentes versions d’un opérateur sur le même cluster. Le gestionnaire de cycle de vie de l’opérateur
(OLM) installe des opérateurs plusieurs fois dans différents espaces de noms. L’une des contraintes est
que les versions API de l’opérateur doivent être les mêmes.

Les opérateurs sont des extensions de plan de contrôle en raison de leur utilisation des objets
CustomResourceDefinition (CRD), qui sont des ressources globales dans Kubernetes. Différentes
versions majeures d’un opérateur ont souvent des CRD incompatibles. Cela les rend incompatibles à
installer simultanément dans différents espaces de noms sur un cluster.

Les locataires, ou espaces de noms, partagent le même plan de contrôle d’un cluster. Ainsi, les locataires
d’un cluster multilocataires partagent également des CRD mondiaux, ce qui limite les scénarios dans
lesquels différents cas d’un même opérateur peuvent être utilisés en parallèle sur le même cluster.

Les scénarios pris en charge comprennent les éléments suivants:

Les opérateurs de différentes versions qui envoient exactement la même définition CRD (dans
le cas des CRD versionnés, le même ensemble de versions)

Les opérateurs de différentes versions qui n’expédient pas de CRD, et ont plutôt leur CRD
disponible dans un paquet séparé sur OperatorHub

Les autres scénarios ne sont pas pris en charge, car l’intégrité des données du cluster ne peut pas être
garantie s’il existe plusieurs CRD concurrents ou qui se chevauchent de différentes versions de
l’opérateur à concilier sur le même cluster.

Ressources supplémentaires

Opérateurs en clusters multilocataires

OpenShift Dedicated 4 Opérateurs

62

2.4.5.11. Dépannage Groupes d’opérateurs

Adhésion

L’espace de noms d’un plan d’installation ne doit contenir qu’un seul groupe d’opérateurs. Lors
de la tentative de générer une version de service cluster (CSV) dans un espace de noms, un
plan d’installation considère un groupe opérateur invalide dans les scénarios suivants:

Aucun groupe d’opérateur n’existe dans l’espace de noms du plan d’installation.

Des groupes d’opérateurs multiples existent dans l’espace de noms du plan d’installation.

Le nom de compte de service incorrect ou inexistant est spécifié dans le groupe Opérateur.

Lorsqu’un plan d’installation rencontre un groupe d’opérateur invalide, le CSV n’est pas généré
et la ressource InstallPlan continue d’installer avec un message pertinent. À titre d’exemple, le
message suivant est fourni si plus d’un groupe d’opérateurs existe dans le même espace de
noms:

lorsque Count= spécifie le nombre de groupes d’opérateurs dans l’espace de noms.

Lorsque les modes d’installation d’un CSV ne prennent pas en charge la sélection de l’espace de
noms cible du groupe Opérateur dans son espace de noms, le CSV passe à un état de
défaillance avec la raison pour laquelle UnsupportedOperatorGroup. Les CSV dans un état
défaillant pour cette raison passent en attente après que la sélection de l’espace de noms cible
du groupe d’opérateurs modifie une configuration prise en charge, soit les modes d’installation
du CSV ont été modifiés pour prendre en charge la sélection de l’espace de noms cible.

2.4.6. Colocation multitenance et opérateur

Ce guide décrit la multitenance et la colocalisation de l’opérateur dans Operator Lifecycle Manager
(OLM).

2.4.6.1. Colocation d’opérateurs dans un espace de noms

Le gestionnaire de cycle de vie de l’opérateur (OLM) gère les opérateurs gérés par OLM qui sont
installés dans le même espace de noms, ce qui signifie que leurs ressources d’abonnement sont situées
dans le même espace de noms, que les opérateurs associés. Bien qu’ils ne soient pas réellement liés,
OLM considère leurs états, tels que leur version et leur politique de mise à jour, lorsque l’un d’entre eux
est mis à jour.

Ce comportement par défaut se manifeste de deux façons:

Les ressources InstallPlan des mises à jour en attente incluent les ressources
ClusterServiceVersion (CSV) de tous les autres opérateurs qui se trouvent dans le même
espace de noms.

Dans le même espace de noms, tous les opérateurs partagent la même stratégie de mise à jour.
À titre d’exemple, si un opérateur est configuré sur des mises à jour manuelles, toutes les
politiques de mise à jour des autres opérateurs sont également définies sur manuel.

Ces scénarios peuvent entraîner les problèmes suivants:

Il devient difficile de raisonner au sujet des plans d’installation pour les mises à jour de

attenuated service account query failed - more than one operator group(s) are managing this
namespace count=2

CHAPITRE 2. COMPRENDRE LES OPÉRATEURS

63

Il devient difficile de raisonner au sujet des plans d’installation pour les mises à jour de
l’opérateur, car il y a beaucoup plus de ressources définies en eux que l’opérateur mis à jour.

Il devient impossible d’avoir certains opérateurs dans une mise à jour de l’espace de noms
automatiquement tandis que d’autres sont mis à jour manuellement, ce qui est un désir commun
pour les administrateurs de clusters.

Ces problèmes apparaissent généralement parce que, lors de l’installation d’opérateurs avec la console
Web dédiée OpenShift, le comportement par défaut installe des opérateurs qui prennent en charge le
mode Tous les espaces de noms dans l’espace de noms global openshift-operators par défaut.

En tant qu’administrateur avec le rôle admin dédié, vous pouvez contourner ce comportement par
défaut manuellement en utilisant le flux de travail suivant:

1. Créer un projet pour l’installation de l’opérateur.

2. Créez un groupe d’opérateurs mondial personnalisé, qui est un groupe d’opérateurs qui surveille
tous les espaces de noms. En associant ce groupe d’opérateurs à l’espace de noms que vous
venez de créer, il fait de l’espace de noms d’installation un espace de noms global, ce qui rend
les opérateurs installés là-bas disponibles dans tous les espaces de noms.

3. Installez l’opérateur souhaité dans l’espace de noms d’installation.

Lorsque l’opérateur a des dépendances, les dépendances sont automatiquement installées dans
l’espace de noms pré-créé. En conséquence, il est alors valable pour les opérateurs de dépendance
d’avoir la même stratégie de mise à jour et des plans d’installation partagés. Dans le cadre d’une
procédure détaillée, voir « Installation des opérateurs mondiaux dans des espaces de noms
personnalisés ».

Ressources supplémentaires

Installation d’opérateurs globaux dans des espaces de noms personnalisés

Opérateurs en clusters multilocataires

2.4.7. Conditions de l’opérateur

Ce guide décrit comment le gestionnaire de cycle de vie de l’opérateur (OLM) utilise les conditions de
l’opérateur.

2.4.7.1. À propos des conditions de l’opérateur

Dans le cadre de son rôle dans la gestion du cycle de vie d’un opérateur, Operator Lifecycle Manager
(OLM) infère l’état d’un opérateur à partir de l’état des ressources Kubernetes qui définissent
l’opérateur. Bien que cette approche fournisse un certain niveau d’assurance qu’un exploitant est dans
un état donné, il existe de nombreux cas où un opérateur pourrait avoir besoin de communiquer des
informations à OLM qui ne pourraient pas être déduits autrement. Ces informations peuvent ensuite
être utilisées par OLM pour mieux gérer le cycle de vie de l’opérateur.

L’ODM fournit une définition de ressource personnalisée (CRD) appelée OperatorCondition qui permet
aux opérateurs de communiquer les conditions à OLM. Il existe un ensemble de conditions supportées
qui influencent la gestion de l’opérateur par OLM lorsqu’elles sont présentes dans la gamme
Spec.Conditions d’une ressource OperatorCondition.

NOTE

OpenShift Dedicated 4 Opérateurs

64

1

2

NOTE

Le tableau Spec.Conditions n’est pas présent dans un objet OperatorCondition tant qu’il
n’est pas ajouté par un utilisateur ou à la suite de la logique personnalisée de l’opérateur.

2.4.7.2. Conditions prises en charge

Gestionnaire de cycle de vie de l’opérateur (OLM) prend en charge les conditions suivantes de
l’opérateur.

2.4.7.2.1. Condition de mise à niveau

La condition de l’opérateur mis à niveau empêche une version existante de service de cluster (CSV)
d’être remplacée par une version plus récente du CSV. Cette condition est utile lorsque:

L’opérateur est sur le point de démarrer un processus critique et ne doit pas être mis à niveau
tant que le processus n’est pas terminé.

L’opérateur effectue une migration de ressources personnalisées (CR) qui doit être complétée
avant que l’opérateur ne soit prêt à être mis à niveau.

IMPORTANT

La mise à niveau de la condition de l’opérateur sur la valeur False n’évite pas la
perturbation de la pod. Dans le cas où vous devez vous assurer que vos pods ne sont pas
perturbés, consultez « Utiliser les budgets de perturbation de pods pour spécifier le
nombre de gousses qui doivent être en hausse » et « Termination Grace » dans la section
« Ressources supplémentaires ».

Exemple État de l’opérateur mis à niveau

Le nom de la condition.

La valeur fausse indique que l’opérateur n’est pas prêt à être mis à niveau. L’OLM empêche un CSV
qui remplace le CSV existant de l’opérateur de quitter la phase en attente. La valeur fausse ne
bloque pas les mises à niveau de cluster.

2.4.7.3. Ressources supplémentaires

Gestion des conditions de l’opérateur

apiVersion: operators.coreos.com/v1
kind: OperatorCondition
metadata:
 name: my-operator
 namespace: operators
spec:
 conditions:
 - type: Upgradeable 1
 status: "False" 2
 reason: "migration"
 message: "The Operator is performing a migration."
 lastTransitionTime: "2020-08-24T23:15:55Z"

CHAPITRE 2. COMPRENDRE LES OPÉRATEURS

65

Conditions d’activation de l’opérateur

2.4.8. Gestion du cycle de vie de l’opérateur

2.4.8.1. Les métriques exposées

Le gestionnaire du cycle de vie de l’opérateur (OLM) expose certaines ressources spécifiques aux OLM
destinées à être utilisées par la pile de surveillance du cluster OpenShift Dedicated basée sur
Prometheus.

Tableau 2.8. Les métriques exposées par OLM

Le nom Description

catalogue_sour
ce_count

Le nombre de sources de catalogue.

cataloguesourc
e_ready

État d’une source de catalogue. La valeur 1 indique que la source du catalogue est dans
un état READY. La valeur de 0 indique que la source du catalogue n’est pas dans un
état READY.

csv_abnormal Lors de la réconciliation d’une version de service cluster (CSV), présentez chaque fois
qu’une version CSV est dans un état autre que Succeed, par exemple lorsqu’elle n’est
pas installée. Inclut le nom, l’espace de noms, la phase, la raison et les étiquettes de
version. Lorsque cette métrique est présente, une alerte Prometheus est créée.

csv_count Le nombre de CSV enregistrés avec succès.

csv_succeed Lors de la réconciliation d’un CSV, représente si une version CSV est dans un état
Succeed (valeur 1) ou non (valeur 0). Inclut le nom, l’espace de noms et les étiquettes
de version.

csv_upgrade_c
ount

Comptage monotonique des mises à niveau CSV.

installer_plan_c
ount

Le nombre de plans d’installation.

installplan_aver
tissements_tota
l

Compte monotone des avertissements générés par les ressources, telles que les
ressources dépréciées, inclus dans un plan d’installation.

accueil >
olm_
resolution_dura
tion_seconds

La durée d’une tentative de résolution de dépendance.

abonnement_C
ompte

Le nombre d’abonnements.

OpenShift Dedicated 4 Opérateurs

66

abonnement_sy
nc_total

Comptage monotonique des synchronisations d’abonnement. Inclut le canal, les
étiquettes CSV installées et les étiquettes de nom d’abonnement.

Le nom Description

2.4.9. Gestion Webhook dans Operator Lifecycle Manager

Les webhooks permettent aux auteurs de l’opérateur d’intercepter, de modifier et d’accepter ou de
rejeter des ressources avant qu’elles ne soient enregistrées dans le magasin d’objets et traitées par le
contrôleur de l’opérateur. Le gestionnaire de cycle de vie de l’opérateur (OLM) peut gérer le cycle de
vie de ces webhooks lorsqu’ils sont expédiés aux côtés de votre opérateur.

Consultez Définir les versions de services de cluster (CSV) pour plus de détails sur la façon dont un
développeur d’opérateur peut définir des webhooks pour son opérateur, ainsi que des considérations
lors de l’exécution sur OLM.

2.4.9.1. Ressources supplémentaires

Documentation de Kubernetes:

Validation des webhooks d’admission

La mutation des webhooks d’admission

Conversion webhooks

2.5. COMPRENDRE L’OPÉRATEURHUB

2.5.1. À propos de OperatorHub

OperatorHub est l’interface de console Web d’OpenShift Dédicée que les administrateurs de cluster
utilisent pour découvrir et installer des Opérateurs. En un clic, un opérateur peut être tiré de sa source
hors-cluster, installé et abonné sur le cluster, et prêt pour les équipes d’ingénierie à gérer en libre-
service le produit dans les environnements de déploiement en utilisant Operator Lifecycle Manager
(OLM).

Les administrateurs de clusters peuvent choisir parmi les catalogues regroupés dans les catégories
suivantes:

Catégorie Description

Les opérateurs de
chapeaux rouges

Les produits Red Hat emballés et expédiés par Red Hat. Avec le soutien de Red Hat.

Des opérateurs
certifiés

Les produits des principaux fournisseurs de logiciels indépendants (ISV). Le Red Hat
s’associe à des ISV pour emballer et expédier. Avec le soutien de l’ISV.

La place de
marché Red Hat

Logiciel certifié qui peut être acheté chez Red Hat Marketplace.

CHAPITRE 2. COMPRENDRE LES OPÉRATEURS

67

https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#validatingadmissionwebhook
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#mutatingadmissionwebhook
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definition-versioning/#webhook-conversion

Les opérateurs
communautaires

Logiciel éventuellement visible par les représentants concernés dans le référentiel
GitHub de redhat-openshift-ecosystem/community-operators-prod/operators. Aucun
soutien officiel.

Des opérateurs
personnalisés

Les opérateurs que vous ajoutez au cluster vous-même. Dans le cas où vous n’avez pas
ajouté d’opérateurs personnalisés, la catégorie Custom n’apparaît pas dans la console
Web de votre OperatorHub.

Catégorie Description

Les opérateurs sur OperatorHub sont emballés pour fonctionner sur OLM. Cela inclut un fichier YAML
appelé une version de service de cluster (CSV) contenant tous les CRD, les règles RBAC, les
déploiements et les images de conteneur nécessaires pour installer et exécuter en toute sécurité
l’opérateur. Il contient également des informations visibles par l’utilisateur comme une description de
ses fonctionnalités et les versions prises en charge de Kubernetes.

Le SDK de l’opérateur peut être utilisé pour aider les développeurs à emballer leurs opérateurs pour une
utilisation sur OLM et OperatorHub. Lorsque vous avez une application commerciale que vous souhaitez
rendre accessible à vos clients, faites-le inclure en utilisant le flux de travail de certification fourni sur le
portail Red Hat Partner Connect sur connect.redhat.com.

2.5.2. Architecture OperatorHub

Le composant OperatorHub UI est piloté par l’opérateur Marketplace par défaut sur OpenShift
Dedicated dans l’espace de noms openshift-marketplace.

2.5.2.1. OperatorHub ressource personnalisée

L’opérateur Marketplace gère une ressource personnalisée OperatorHub (CR) nommée cluster qui gère
les objets CatalogSource par défaut fournis avec OperatorHub.

2.5.3. Ressources supplémentaires

Catalogue source

À propos de l’opérateur SDK

Définition des versions de service cluster (CSV)

Installation de l’opérateur et mise à niveau du flux de travail dans OLM

Connexion de Red Hat Partner

La place de marché Red Hat

2.6. CATALOGUES D’OPÉRATEURS RED HAT

Le Red Hat fournit plusieurs catalogues d’opérateurs qui sont inclus avec OpenShift Dedicated par
défaut.

IMPORTANT

OpenShift Dedicated 4 Opérateurs

68

https://connect.redhat.com
https://marketplace.redhat.com

IMPORTANT

À partir d’OpenShift Dedicated 4.11, le catalogue de l’opérateur par défaut Red Hat est
publié dans le format de catalogue basé sur des fichiers. Les catalogues d’opérateurs Red
Hat fournis par défaut pour OpenShift Dedicated 4.6 à 4.10 publiés dans le format de
base de données SQLite obsolète.

Les sous-commandes opm, les drapeaux et les fonctionnalités liés au format de base de
données SQLite sont également obsolètes et seront supprimés dans une version
ultérieure. Les fonctionnalités sont toujours prises en charge et doivent être utilisées
pour les catalogues utilisant le format de base de données SQLite obsolète.

La plupart des sous-commandes et des drapeaux opm pour travailler avec le format de
base de données SQLite, tels que le prune de l’index opm, ne fonctionnent pas avec le
format de catalogue basé sur des fichiers. Consultez Gérer les catalogues personnalisés
et le format d’emballage du cadre d’exploitation pour plus d’informations sur le travail
avec les catalogues basés sur les fichiers.

2.6.1. À propos des catalogues d’opérateurs

Le catalogue d’opérateurs est un référentiel de métadonnées que Operator Lifecycle Manager (OLM)
peut interroger pour découvrir et installer des opérateurs et leurs dépendances sur un cluster. L’OMM
installe toujours des opérateurs à partir de la dernière version d’un catalogue.

L’image d’index, basée sur le format du paquet Opérateur, est un instantané conteneurisé d’un
catalogue. Il s’agit d’un artefact immuable qui contient la base de données des pointeurs vers un
ensemble de contenus manifestes de l’opérateur. Le catalogue peut référencer une image d’index pour
trouver son contenu pour OLM sur le cluster.

Au fur et à mesure que les catalogues sont mis à jour, les dernières versions des Opérateurs changent et
les anciennes versions peuvent être supprimées ou modifiées. En outre, lorsque OLM s’exécute sur un
cluster dédié OpenShift dans un environnement réseau restreint, il est incapable d’accéder aux
catalogues directement à partir d’Internet pour tirer les derniers contenus.

En tant qu’administrateur de cluster, vous pouvez créer votre propre image d’index personnalisée, soit
sur la base d’un catalogue fourni par Red Hat, soit à partir de zéro, qui peut être utilisée pour
approvisionner le contenu du catalogue sur le cluster. La création et la mise à jour de votre propre image
d’index fournit une méthode pour personnaliser l’ensemble des opérateurs disponibles sur le cluster,
tout en évitant les problèmes d’environnement réseau restreint susmentionnés.

IMPORTANT

Kubernetes déprécie périodiquement certaines API qui sont supprimées dans les versions
ultérieures. En conséquence, les opérateurs ne peuvent pas utiliser les API supprimées à
partir de la version d’OpenShift Dedicated qui utilise la version Kubernetes qui a supprimé
l’API.

Lorsque votre cluster utilise des catalogues personnalisés, consultez la compatibilité de
Controlling Operator avec les versions dédiées d’OpenShift pour plus de détails sur la
façon dont les auteurs de l’opérateur peuvent mettre à jour leurs projets afin d’éviter les
problèmes de charge de travail et d’éviter les mises à niveau incompatibles.

NOTE

CHAPITRE 2. COMPRENDRE LES OPÉRATEURS

69

NOTE

La prise en charge du format de manifeste du paquet hérité pour les opérateurs, y
compris les catalogues personnalisés qui utilisaient le format hérité, est supprimée dans
OpenShift Dedicated 4.8 et ultérieure.

Lors de la création d’images de catalogue personnalisées, les versions précédentes
d’OpenShift Dedicated 4 requises à l’aide de la commande oc adm catalog build, qui a été
obsolète pour plusieurs versions et qui est maintenant supprimée. Avec la disponibilité
des images d’index fournies par Red Hat à partir de OpenShift Dedicated 4.6, les
constructeurs de catalogues doivent utiliser la commande d’index opm pour gérer les
images d’index.

Ressources supplémentaires

Gestion des catalogues personnalisés

Format d’emballage

2.6.2. À propos des catalogues d’opérateurs Red Hat

Les sources de catalogue fournies par Red Hat sont installées par défaut dans l’espace de noms
openshift-marketplace, ce qui rend les catalogues disponibles à l’échelle du cluster dans tous les
espaces de noms.

Les catalogues d’opérateurs suivants sont distribués par Red Hat:

Catalogue Image de l’index Description

les opérateurs
RedHat

Registry.redhat.io/redhat/redhat-operator-
index:v4

Les produits Red Hat
emballés et expédiés
par Red Hat. Avec le
soutien de Red Hat.

des opérateurs
certifiés

Registry.redhat.io/redhat/certified-operator-
index:v4

Les produits des
principaux fournisseurs
de logiciels
indépendants (ISV). Le
Red Hat s’associe à des
ISV pour emballer et
expédier. Avec le
soutien de l’ISV.

lieu de marché
RedHat

Registry.redhat.io/redhat/redhat-marketplace-
index:v4

Logiciel certifié qui peut
être acheté chez Red
Hat Marketplace.

OpenShift Dedicated 4 Opérateurs

70

les opérateurs
communautaire
s

Registry.redhat.io/redhat/community-operator-
index:v4

Logiciel géré par les
représentants
compétents dans le
référentiel GitHub de
redhat-openshift-
ecosystem/community-
operators-
prod/operators. Aucun
soutien officiel.

Catalogue Image de l’index Description

Lors d’une mise à niveau de cluster, la balise d’image d’index pour les sources de catalogue par défaut
Red Hat est mise à jour automatiquement par l’opérateur de versions de cluster (CVO) de sorte que le
gestionnaire de cycle de vie de l’opérateur (OLM) tire la version mise à jour du catalogue. Lors d’une
mise à jour de OpenShift Dedicated 4.8 à 4.9, le champ spec.image dans l’objet CatalogSource pour le
catalogue redhat-operators est mis à jour à partir de:

à:

2.7. OPÉRATEURS EN CLUSTERS MULTILOCATAIRES

Le comportement par défaut pour Operator Lifecycle Manager (OLM) vise à fournir une simplicité lors
de l’installation de l’opérateur. Cependant, ce comportement peut manquer de flexibilité, en particulier
dans les clusters multilocataires. Afin que plusieurs locataires sur un cluster dédié OpenShift utilisent un
opérateur, le comportement par défaut de OLM exige que les administrateurs installent l’opérateur en
mode Tous les espaces de noms, ce qui peut être considéré comme violant le principe du moindre
privilège.

Considérez les scénarios suivants pour déterminer quel flux de travail d’installation de l’opérateur
fonctionne le mieux pour votre environnement et vos exigences.

Ressources supplémentaires

Conditions communes: Multitenant

Limites pour la gestion des opérateurs multilocataires

2.7.1. L’opérateur par défaut installe les modes et le comportement

Lors de l’installation d’opérateurs avec la console Web en tant qu’administrateur, vous avez
généralement deux choix pour le mode d’installation, en fonction des capacités de l’opérateur:

Espace de noms unique

Installe l’Opérateur dans l’espace de noms unique choisi et met à disposition toutes les autorisations
que l’Opérateur demande dans cet espace de noms.

registry.redhat.io/redhat/redhat-operator-index:v4.8

registry.redhat.io/redhat/redhat-operator-index:v4.9

CHAPITRE 2. COMPRENDRE LES OPÉRATEURS

71

L’ensemble des espaces de noms

Installe l’opérateur dans l’espace de noms openshift-operators par défaut pour regarder et être mis à
la disposition de tous les espaces de noms du cluster. Fournit toutes les autorisations demandées par
l’Opérateur dans tous les espaces de noms. Dans certains cas, un auteur de l’opérateur peut définir
des métadonnées pour donner à l’utilisateur une deuxième option pour l’espace de noms suggéré par
cet opérateur.

Ce choix signifie également que les utilisateurs des espaces de noms concernés ont accès aux API
Opérateurs, qui peuvent tirer parti des ressources personnalisées (CR) qu’ils possèdent, en fonction de
leur rôle dans l’espace de noms:

Les rôles namespace-admin et namespace-edit peuvent lire/écrire dans les API de l’opérateur,
ce qui signifie qu’ils peuvent les utiliser.

Le rôle d’affichage de l’espace de noms peut lire les objets CR de cet opérateur.

En mode espace de noms unique, parce que l’opérateur lui-même installe dans l’espace de noms choisi,
son compte pod et service y sont également situés. Dans tous les modes d’espaces de noms, les
privilèges de l’opérateur sont tous automatiquement élevés à des rôles de cluster, ce qui signifie que
l’opérateur a ces autorisations dans tous les espaces de noms.

Ressources supplémentaires

Ajout d’opérateurs à un cluster

Installer les types de modes

Définition d’un espace de noms suggéré

2.7.2. La solution recommandée pour les clusters multilocataires

Bien qu’un mode d’installation Multinamespace existe, il est pris en charge par très peu d’opérateurs. En
tant que solution intermédiaire entre tous les espaces de noms standard et les modes d’installation de
l’espace de noms unique, vous pouvez installer plusieurs instances du même opérateur, une pour chaque
locataire, en utilisant le flux de travail suivant:

1. Créez un espace de noms pour l’opérateur locataire qui est séparé de l’espace de noms du
locataire. C’est ce que vous pouvez faire en créant un projet.

2. Créer un groupe d’opérateurs pour le locataire Opérateur étendu uniquement à l’espace de
noms du locataire.

3. Installez l’opérateur dans l’espace de noms de l’opérateur locataire.

En conséquence, l’Opérateur réside dans l’espace de noms de l’opérateur locataire et surveille l’espace
de noms du locataire, mais ni la pod de l’Opérateur ni son compte de service ne sont visibles ou
utilisables par le locataire.

Cette solution offre une meilleure séparation des locataires, moins un principe de privilège au coût de
l’utilisation des ressources, et une orchestration supplémentaire pour s’assurer que les contraintes sont
respectées. Dans le cas d’une procédure détaillée, voir « Préparation de multiples instances d’un
opérateur pour les clusters multilocataires ».

Limites et considérations

Cette solution ne fonctionne que lorsque les contraintes suivantes sont remplies:

OpenShift Dedicated 4 Opérateurs

72

Chaque instance d’un même opérateur doit être la même version.

L’opérateur ne peut pas avoir de dépendances à l’égard d’autres opérateurs.

L’opérateur ne peut pas expédier un webhook de conversion CRD.

IMPORTANT

Il est impossible d’utiliser différentes versions du même opérateur sur le même cluster.
Finalement, l’installation d’une autre instance de l’opérateur serait bloquée lorsqu’elle
remplit les conditions suivantes:

L’instance n’est pas la version la plus récente de l’opérateur.

L’instance expédie une révision plus ancienne des CRD qui manquent
d’informations ou de versions que les révisions les plus récentes ont déjà utilisées
sur le cluster.

Ressources supplémentaires

La préparation de plusieurs instances d’un opérateur pour les clusters multilocataires

2.7.3. Colocation d’opérateurs et groupes d’opérateurs

Le gestionnaire de cycle de vie de l’opérateur (OLM) gère les opérateurs gérés par OLM qui sont
installés dans le même espace de noms, ce qui signifie que leurs ressources d’abonnement sont situées
dans le même espace de noms, que les opérateurs associés. Bien qu’ils ne soient pas réellement liés,
OLM considère leurs états, tels que leur version et leur politique de mise à jour, lorsque l’un d’entre eux
est mis à jour.

Afin d’obtenir de plus amples informations sur la colocation de l’opérateur et l’utilisation efficace des
groupes d’opérateurs, consultez Operator Lifecycle Manager (OLM) → Multitenancy and Operator
colocation.

2.8. CRDS

2.8.1. Gestion des ressources à partir de définitions de ressources personnalisées

Ce guide décrit comment les développeurs peuvent gérer les ressources personnalisées (CR) qui
proviennent de définitions de ressources personnalisées (CRD).

2.8.1.1. Définitions de ressources personnalisées

Dans l’API Kubernetes, une ressource est un point de terminaison qui stocke une collection d’objets API
d’un certain type. À titre d’exemple, la ressource Pods intégrée contient une collection d’objets Pod.

L’objet de définition de ressource personnalisée (CRD) définit un nouveau type d’objet unique, appelé
type, dans le cluster et permet au serveur API Kubernetes de gérer tout son cycle de vie.

Les objets de ressources personnalisées (CR) sont créés à partir de CRD qui ont été ajoutés au cluster
par un administrateur de cluster, permettant à tous les utilisateurs de cluster d’ajouter le nouveau type
de ressource dans des projets.

Les opérateurs utilisent notamment les CRD en les emballant avec toute politique RBAC requise et

CHAPITRE 2. COMPRENDRE LES OPÉRATEURS

73

1

2

3

4

5

Les opérateurs utilisent notamment les CRD en les emballant avec toute politique RBAC requise et
d’autres logiques spécifiques au logiciel.

2.8.1.2. Créer des ressources personnalisées à partir d’un fichier

Après qu’une définition de ressource personnalisée (CRD) a été ajoutée au cluster, des ressources
personnalisées (CRs) peuvent être créées avec le CLI à partir d’un fichier en utilisant la spécification CR.

Procédure

1. Créez un fichier YAML pour le CR. Dans la définition d’exemple suivante, les champs
personnalisés cronSpec et image sont définis dans un CR de Kind: CronTab. Le genre provient
du champ spec.kind de l’objet CRD:

Exemple de fichier YAML pour un CR

Indiquez le nom du groupe et la version API (nom/version) à partir du CRD.

Indiquez le type dans le CRD.

Indiquez un nom pour l’objet.

Indiquez les finalisateurs de l’objet, le cas échéant. Les finalisateurs permettent aux
contrôleurs de mettre en œuvre des conditions qui doivent être remplies avant que l’objet
puisse être supprimé.

Indiquez des conditions spécifiques au type d’objet.

2. Après avoir créé le fichier, créez l’objet:

2.8.1.3. Inspecter les ressources personnalisées

Il est possible d’inspecter des objets de ressource personnalisée (CR) qui existent dans votre cluster à
l’aide du CLI.

Conditions préalables

Il existe un objet CR dans un espace de noms auquel vous avez accès.

Procédure

apiVersion: "stable.example.com/v1" 1
kind: CronTab 2
metadata:
 name: my-new-cron-object 3
 finalizers: 4
 - finalizer.stable.example.com
spec: 5
 cronSpec: "* * * * /5"
 image: my-awesome-cron-image

$ oc create -f <file_name>.yaml

OpenShift Dedicated 4 Opérateurs

74

1 2

1. Afin d’obtenir des informations sur un type spécifique de CR, exécutez:

À titre d’exemple:

Exemple de sortie

Les noms de ressource ne sont pas sensibles à la casse, et vous pouvez utiliser les formes
singulières ou plurielles définies dans le CRD, ainsi que tout nom court. À titre d’exemple:

2. Il est également possible de visualiser les données brutes YAML pour un CR:

À titre d’exemple:

Exemple de sortie

Données personnalisées à partir du YAML que vous avez utilisé pour créer l’objet s’affiche.

$ oc get <kind>

$ oc get crontab

NAME KIND
my-new-cron-object CronTab.v1.stable.example.com

$ oc get crontabs

$ oc get crontab

$ oc get ct

$ oc get <kind> -o yaml

$ oc get ct -o yaml

apiVersion: v1
items:
- apiVersion: stable.example.com/v1
 kind: CronTab
 metadata:
 clusterName: ""
 creationTimestamp: 2017-05-31T12:56:35Z
 deletionGracePeriodSeconds: null
 deletionTimestamp: null
 name: my-new-cron-object
 namespace: default
 resourceVersion: "285"
 selfLink: /apis/stable.example.com/v1/namespaces/default/crontabs/my-new-cron-object
 uid: 9423255b-4600-11e7-af6a-28d2447dc82b
 spec:
 cronSpec: '* * * * /5' 1
 image: my-awesome-cron-image 2

CHAPITRE 2. COMPRENDRE LES OPÉRATEURS

75

CHAPITRE 3. LES TÂCHES DE L’UTILISATEUR

3.1. CRÉATION D’APPLICATIONS À PARTIR D’OPÉRATEURS
INSTALLÉS

Ce guide guide les développeurs à travers un exemple de création d’applications à partir d’un opérateur
installé à l’aide de la console Web dédiée OpenShift.

3.1.1. Création d’un cluster etcd à l’aide d’un opérateur

Cette procédure passe par la création d’un nouveau cluster etcd à l’aide de l’opérateur etcd, géré par
Operator Lifecycle Manager (OLM).

Conditions préalables

Accès à un cluster dédié OpenShift.

L’opérateur etcd déjà installé à l’échelle du cluster par un administrateur.

Procédure

1. Créez un nouveau projet dans la console Web dédiée OpenShift pour cette procédure. Cet
exemple utilise un projet appelé my-etcd.

2. Accédez à la page Opérateurs installés → Opérateurs installés. Les opérateurs qui ont été
installés sur le cluster par l’administrateur dédié et qui sont disponibles pour utilisation sont
présentés ici sous la forme d’une liste de versions de services de cluster (CSV). Les CSV sont
utilisés pour lancer et gérer le logiciel fourni par l’opérateur.

ASTUCE

Cette liste peut être obtenue à partir du CLI en utilisant:

3. Dans la page Opérateurs installés, cliquez sur l’opérateur etcd pour voir plus de détails et les
actions disponibles.
Comme indiqué dans les API fournies, cet opérateur met à disposition trois nouveaux types de
ressources, dont un pour un cluster etcd (la ressource EtcdCluster). Ces objets fonctionnent
comme les Kubernetes natifs intégrés, tels que Déploiement ou ReplicaSet, mais contiennent
une logique spécifique à la gestion etcd.

4. Créer un nouveau cluster etcd:

a. Dans la zone API de cluster etcd, cliquez sur Créer une instance.

b. La page suivante vous permet d’apporter des modifications au modèle de démarrage
minimal d’un objet EtcdCluster, comme la taille du cluster. Cliquez pour l’instant sur Créer
pour finaliser. Cela déclenche l’opérateur pour démarrer les pods, services et autres
composants du nouveau cluster etcd.

5. Cliquez sur le cluster exemple etcd, puis cliquez sur l’onglet Ressources pour voir que votre

$ oc get csv

OpenShift Dedicated 4 Opérateurs

76

5. Cliquez sur le cluster exemple etcd, puis cliquez sur l’onglet Ressources pour voir que votre
projet contient maintenant un certain nombre de ressources créées et configurées
automatiquement par l’opérateur.
Assurez-vous qu’un service Kubernetes a été créé qui vous permet d’accéder à la base de
données à partir d’autres pods de votre projet.

6. L’ensemble des utilisateurs ayant le rôle d’édition dans un projet donné peuvent créer, gérer et
supprimer des instances d’application (un cluster etcd, dans cet exemple) gérées par des
opérateurs qui ont déjà été créés dans le projet, de manière en libre-service, tout comme un
service cloud. Lorsque vous souhaitez activer d’autres utilisateurs avec cette capacité, les
administrateurs de projet peuvent ajouter le rôle à l’aide de la commande suivante:

Il y a maintenant un cluster etcd qui va réagir aux défaillances et rééquilibrer les données à mesure que
les pods deviennent malsains ou sont migrés entre les nœuds du cluster. Le plus important, les
administrateurs dédiés ou les développeurs avec un accès approprié peuvent désormais facilement
utiliser la base de données avec leurs applications.

$ oc policy add-role-to-user edit <user> -n <target_project>

CHAPITRE 3. LES TÂCHES DE L’UTILISATEUR

77

CHAPITRE 4. LES TÂCHES D’ADMINISTRATEUR

4.1. AJOUT D’OPÉRATEURS À UN CLUSTER

En utilisant le gestionnaire de cycle de vie de l’opérateur (OLM), les administrateurs ayant le rôle
d’administrateur dédié peuvent installer des opérateurs basés sur OLM dans un cluster dédié OpenShift.

NOTE

Des informations sur la façon dont OLM gère les mises à jour pour les opérateurs installés
situés dans le même espace de noms, ainsi qu’une méthode alternative pour installer des
Opérateurs avec des groupes d’opérateurs mondiaux personnalisés, voir Multitenancy
and Operator colocation.

4.1.1. Installation de l’opérateur avec OperatorHub

OperatorHub est une interface utilisateur pour découvrir les Opérateurs ; elle fonctionne en
collaboration avec Operator Lifecycle Manager (OLM), qui installe et gère les Opérateurs sur un cluster.

En tant qu’administrateur dédié, vous pouvez installer un opérateur depuis OperatorHub en utilisant la
console Web OpenShift dédiée ou CLI. L’abonnement d’un opérateur à un ou plusieurs espaces de noms
met l’opérateur à la disposition des développeurs de votre cluster.

Lors de l’installation, vous devez déterminer les paramètres initiaux suivants pour l’opérateur:

Le mode d’installation

Choisissez Tous les espaces de noms du cluster (par défaut) pour que l’Opérateur soit installé sur
tous les espaces de noms ou choisissez des espaces de noms individuels, le cas échéant, pour
installer uniquement l’Opérateur sur les espaces de noms sélectionnés. Cet exemple choisit tous les
espaces de noms… pour mettre l’opérateur à la disposition de tous les utilisateurs et projets.

Canal de mise à jour

Lorsqu’un Opérateur est disponible via plusieurs canaux, vous pouvez choisir le canal auquel vous
souhaitez vous abonner. À titre d’exemple, pour déployer à partir du canal stable, s’il est disponible,
sélectionnez-le dans la liste.

La stratégie d’approbation

Choisissez des mises à jour automatiques ou manuelles.
Lorsque vous choisissez des mises à jour automatiques pour un opérateur installé, lorsqu’une nouvelle
version de cet opérateur est disponible dans le canal sélectionné, Operator Lifecycle Manager (OLM)
met automatiquement à niveau l’instance en cours d’exécution de votre opérateur sans intervention
humaine.

Lorsque vous sélectionnez des mises à jour manuelles, lorsqu’une version plus récente d’un opérateur
est disponible, OLM crée une demande de mise à jour. En tant qu’administrateur dédié, vous devez
ensuite approuver manuellement cette demande de mise à jour pour que l’opérateur soit mis à jour
vers la nouvelle version.

Ressources supplémentaires

Comprendre l’opérateurHub

4.1.2. Installation depuis OperatorHub à l’aide de la console Web

OpenShift Dedicated 4 Opérateurs

78

Il est possible d’installer et de s’abonner à un opérateur depuis OperatorHub à l’aide de la console Web
dédiée OpenShift.

Conditions préalables

Accès à un cluster dédié OpenShift à l’aide d’un compte avec le rôle d’administrateur dédié.

Procédure

1. Accédez à la console Web vers la page Opérateurs → OperatorHub.

2. Faites défiler ou tapez un mot clé dans la zone Filtrer par mot-clé pour trouver l’opérateur que
vous souhaitez. À titre d’exemple, tapez avancé pour trouver la gestion avancée des clusters
pour Kubernetes Operator.
Il est également possible de filtrer les options par Infrastructure Features. À titre d’exemple,
sélectionnez Déconnecté si vous souhaitez voir les opérateurs qui fonctionnent dans des
environnements déconnectés, également connus sous le nom d’environnements réseau
restreints.

3. Choisissez l’opérateur pour afficher des informations supplémentaires.

NOTE

Choisir un opérateur communautaire avertit que Red Hat ne certifie pas les
opérateurs communautaires; vous devez en tenir compte avant de continuer.

4. Lisez les informations sur l’opérateur et cliquez sur Installer.

5. Dans la page Installer l’opérateur, configurez l’installation de votre opérateur:

a. Dans le cas où vous souhaitez installer une version spécifique d’un opérateur, sélectionnez
un canal de mise à jour et une version dans les listes. Il est possible de parcourir les
différentes versions d’un opérateur sur tous les canaux qu’il peut avoir, d’afficher les
métadonnées de ce canal et de cette version, et de sélectionner la version exacte que vous
souhaitez installer.

NOTE

La sélection de la version par défaut à la dernière version pour le canal
sélectionné. Lorsque la dernière version du canal est sélectionnée, la
stratégie d’approbation automatique est activée par défaut. Dans le cas
contraire, l’approbation manuelle est requise lorsque vous n’installez pas la
dernière version du canal sélectionné.

L’installation d’un opérateur avec l’approbation manuelle fait que tous les
opérateurs installés dans l’espace de noms fonctionnent avec la stratégie
d’approbation manuelle et tous les opérateurs sont mis à jour ensemble. Dans
le cas où vous souhaitez mettre à jour les Opérateurs de manière
indépendante, installez les Opérateurs dans des espaces de noms distincts.

b. Confirmez le mode d’installation de l’opérateur:

L’ensemble des espaces de noms du cluster (par défaut) installe l’opérateur dans
l’espace de noms openshift-operators par défaut pour regarder et être mis à la
disposition de tous les espaces de noms du cluster. Cette option n’est pas toujours

CHAPITRE 4. LES TÂCHES D’ADMINISTRATEUR

79

disponible.

L’espace de noms spécifique sur le cluster vous permet de choisir un espace de noms
unique spécifique dans lequel installer l’opérateur. L’opérateur ne regardera et sera mis
à disposition que dans cet espace de noms unique.

c. Dans le cas des clusters sur les fournisseurs de cloud avec authentification de jetons activé:

Dans le cas où le cluster utilise AWS Security Token Service (mode STS dans la console
Web), entrez le nom de ressource Amazon (ARN) du rôle AWS IAM de votre compte de
service dans le champ ARN des rôles. Afin de créer l’ARN du rôle, suivez la procédure
décrite dans Préparer le compte AWS.

Lorsque le cluster utilise Microsoft Entra Workload ID (Workload Identity / Federated
Identity Mode dans la console Web), ajoutez l’ID client, l’ID du locataire et l’ID
d’abonnement dans les champs appropriés.

Lorsque le cluster utilise Google Cloud Platform Workload Identity (GCP Workload
Identity / Federated Identity) dans la console Web, ajoutez le numéro de projet, l’ID de
pool, l’ID du fournisseur et l’e-mail de compte de service dans les champs appropriés.

d. Dans le cas de l’approbation de mise à jour, sélectionnez soit la stratégie d’approbation
automatique ou la stratégie d’approbation manuelle.

IMPORTANT

Lorsque la console Web montre que le cluster utilise AWS STS, Microsoft
Entra Workload ID ou GCP Workload Identity, vous devez définir
l’approbation de mise à jour sur Manuel.

Les abonnements avec approbation automatique pour les mises à jour ne
sont pas recommandés car il peut y avoir des modifications d’autorisation à
apporter avant la mise à jour. Les abonnements avec approbation manuelle
pour les mises à jour garantissent que les administrateurs ont la possibilité de
vérifier les autorisations de la version ultérieure, de prendre toutes les
mesures nécessaires, puis de mettre à jour.

6. Cliquez sur Installer pour mettre l’opérateur à la disposition des espaces de noms sélectionnés
sur ce cluster dédié OpenShift:

a. Lorsque vous avez sélectionné une stratégie d’approbation manuelle, l’état de mise à niveau
de l’abonnement reste mis à jour jusqu’à ce que vous révisiez et approuvez le plan
d’installation.
Après avoir approuvé sur la page Plan d’installation, l’état de mise à jour de l’abonnement
passe à jour.

b. Lorsque vous avez sélectionné une stratégie d’approbation automatique, l’état de mise à
jour doit être résolu à jour sans intervention.

La vérification

Après que l’état de mise à jour de l’abonnement soit mis à jour, sélectionnez Opérateurs installés
→ Opérateurs installés pour vérifier que la version de service de cluster (CSV) de l’opérateur
installé s’affiche finalement. Le Statut devrait éventuellement résoudre à Succeed dans l’espace
de noms pertinent.

NOTE

OpenShift Dedicated 4 Opérateurs

80

NOTE

Dans le mode d’installation de Tous les espaces de noms, l’état se résout à
Succeed dans l’espace de noms openshift-operators, mais l’état est copié si vous
vérifiez d’autres espaces de noms.

Dans le cas contraire:

Consultez les journaux de tous les pods du projet openshift-operators (ou d’un autre
espace de noms pertinent si un espace de noms spécifique…​ mode d’installation a été
sélectionné) sur la page Charges de travail → Pods qui signalent des problèmes à résoudre
plus loin.

Lorsque l’opérateur est installé, les métadonnées indiquent quel canal et quelle version sont
installées.

NOTE

Les menus déroulants Channel et Version sont toujours disponibles pour
visualiser d’autres métadonnées de version dans ce contexte de catalogue.

Ressources supplémentaires

Approbation manuelle d’une mise à jour de l’opérateur en attente

4.1.3. Installation depuis OperatorHub en utilisant le CLI

Au lieu d’utiliser la console Web dédiée OpenShift, vous pouvez installer un opérateur depuis
OperatorHub en utilisant le CLI. La commande oc permet de créer ou de mettre à jour un objet
d’abonnement.

Dans le cas du mode d’installation de SingleNamespace, vous devez également vous assurer qu’un
groupe opérateur approprié existe dans l’espace de noms associé. Le groupe Opérateur, défini par un
objet OperatorGroup, sélectionne les espaces de noms cibles dans lesquels générer l’accès RBAC requis
pour tous les Opérateurs dans le même espace de noms que le groupe Opérateurs.

ASTUCE

Dans la plupart des cas, la méthode de la console web de cette procédure est préférée car elle
automatise les tâches en arrière-plan, telles que la gestion automatique de la création d’objets
OperatorGroup et Abonnement lors du choix du mode SingleNamespace.

Conditions préalables

Accès à un cluster dédié OpenShift à l’aide d’un compte avec le rôle d’administrateur dédié.

L’OpenShift CLI (oc) a été installé.

Procédure

1. Consultez la liste des opérateurs disponibles pour le cluster de OperatorHub:

$ oc get packagemanifests -n openshift-marketplace

CHAPITRE 4. LES TÂCHES D’ADMINISTRATEUR

81

Exemple 4.1. Exemple de sortie

Indiquez le catalogue de votre opérateur souhaité.

2. Inspectez l’opérateur souhaité pour vérifier les modes d’installation pris en charge et les canaux
disponibles:

Exemple 4.2. Exemple de sortie

NAME CATALOG AGE
3scale-operator Red Hat Operators 91m
advanced-cluster-management Red Hat Operators 91m
amq7-cert-manager Red Hat Operators 91m
...
couchbase-enterprise-certified Certified Operators 91m
crunchy-postgres-operator Certified Operators 91m
mongodb-enterprise Certified Operators 91m
...
etcd Community Operators 91m
jaeger Community Operators 91m
kubefed Community Operators 91m
...

$ oc describe packagemanifests <operator_name> -n openshift-marketplace

...
Kind: PackageManifest
...
 Install Modes: 1
 Supported: true
 Type: OwnNamespace
 Supported: true
 Type: SingleNamespace
 Supported: false
 Type: MultiNamespace
 Supported: true
 Type: AllNamespaces
...
 Entries:
 Name: example-operator.v3.7.11
 Version: 3.7.11
 Name: example-operator.v3.7.10
 Version: 3.7.10
 Name: stable-3.7 2
...
 Entries:
 Name: example-operator.v3.8.5
 Version: 3.8.5
 Name: example-operator.v3.8.4
 Version: 3.8.4
 Name: stable-3.8 3
 Default Channel: stable-3.8 4

OpenShift Dedicated 4 Opérateurs

82

1

2 3

4

Indique quels modes d’installation sont pris en charge.

Exemple de noms de canaux.

Le canal sélectionné par défaut si un canal n’est pas spécifié.

ASTUCE

Il est possible d’imprimer la version d’un opérateur et de canaliser les informations au format
YAML en exécutant la commande suivante:

Lorsque plus d’un catalogue est installé dans un espace de noms, exécutez la commande
suivante pour rechercher les versions et canaux disponibles d’un opérateur à partir d’un
catalogue spécifique:

IMPORTANT

Dans le cas où vous ne spécifiez pas le catalogue de l’opérateur, l’exécution
de l’oc get packagemanifest et la description des commandes de
packagemanifest peuvent renvoyer un paquet à partir d’un catalogue
inattendu si les conditions suivantes sont remplies:

Des catalogues multiples sont installés dans le même espace de noms.

Les catalogues contiennent les mêmes Opérateurs ou Opérateurs avec
le même nom.

3. Lorsque l’opérateur que vous avez l’intention d’installer prend en charge le mode d’installation
d’AllNamespaces, et que vous choisissez d’utiliser ce mode, passez cette étape, car l’espace de
noms openshift-operators dispose déjà d’un groupe d’opérateurs approprié en place par défaut,
appelé global-operators.
Lorsque l’opérateur que vous avez l’intention d’installer prend en charge le mode d’installation
de SingleNamespace et que vous choisissez d’utiliser ce mode, vous devez vous assurer qu’un
groupe d’opérateurs approprié existe dans l’espace de noms correspondant. Dans le cas
contraire, vous pouvez en créer une en suivant les étapes suivantes:

IMPORTANT

Il n’y a qu’un seul groupe d’opérateurs par espace de noms. Consultez « Groupes
d’opérateurs » pour plus d’informations.

a. Créer un fichier OperatorGroup objet YAML, par exemple operatorgroup.yaml, pour le
mode d’installation SingleNamespace:

Exemple d’objet OperatorGroup pour le mode d’installation de

$ oc get packagemanifests <operator_name> -n <catalog_namespace> -o yaml

$ oc get packagemanifest \
 --selector=catalog=<catalogsource_name> \
 --field-selector metadata.name=<operator_name> \
 -n <catalog_namespace> -o yaml

CHAPITRE 4. LES TÂCHES D’ADMINISTRATEUR

83

1 2

Exemple d’objet OperatorGroup pour le mode d’installation de
SingleNamespace

Dans le mode d’installation de SingleNamespace, utilisez la même valeur
<namespace> pour les champs métadonnées.namespace et
spec.targetNamespaces.

b. Créer l’objet OperatorGroup:

4. Créer un objet d’abonnement pour abonner un espace de noms à un opérateur:

a. Créer un fichier YAML pour l’objet Abonnement, par exemple subscription.yaml:

NOTE

Lorsque vous souhaitez vous abonner à une version spécifique d’un
opérateur, définissez le champ StartCSV sur la version souhaitée et
définissez le champ installPlanApproval sur Manuel pour empêcher
l’opérateur de mettre à niveau automatiquement si une version ultérieure
existe dans le catalogue. Afin de plus de détails, voir « Exemple Subscription
objet avec une version de départ spécifique de l’opérateur ».

Exemple 4.3. Exemple d’objet d’abonnement

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: <operatorgroup_name>
 namespace: <namespace> 1
spec:
 targetNamespaces:
 - <namespace> 2

$ oc apply -f operatorgroup.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: <subscription_name>
 namespace: <namespace_per_install_mode> 1
spec:
 channel: <channel_name> 2
 name: <operator_name> 3
 source: <catalog_name> 4
 sourceNamespace: <catalog_source_namespace> 5
 config:
 env: 6
 - name: ARGS
 value: "-v=10"
 envFrom: 7
 - secretRef:
 name: license-secret

OpenShift Dedicated 4 Opérateurs

84

1

2

3

4

5

6

7

8

9

10

11

12

Dans le cas de l’utilisation par défaut du mode d’installation d’AllNamespaces,
spécifiez l’espace de noms openshift-operators. Alternativement, vous pouvez
spécifier un espace de noms global personnalisé, si vous en avez créé un. Dans le
cas de l’utilisation du mode d’installation de SingleNamespace, spécifiez l’espace de
noms unique pertinent.

Le nom du canal auquel s’abonner.

Le nom de l’opérateur auquel s’abonner.

Le nom de la source du catalogue qui fournit l’opérateur.

Espace de noms de la source du catalogue. Utilisez openshift-marketplace pour les
sources de catalogue OperatorHub par défaut.

Le paramètre env définit une liste de variables d’environnement qui doivent exister
dans tous les conteneurs dans la pod créée par OLM.

Le paramètre envFrom définit une liste de sources pour peupler les variables
d’environnement dans le conteneur.

Le paramètre volumes définit une liste de volumes qui doivent exister sur le pod
créé par OLM.

Le paramètre VolumeMounts définit une liste de montages de volume qui doivent
exister dans tous les conteneurs dans la pod créée par OLM. Lorsqu’un
volumeMount fait référence à un volume qui n’existe pas, OLM ne parvient pas à
déployer l’opérateur.

Le paramètre de tolérance définit une liste de tolérances pour le pod créé par
OLM.

Le paramètre des ressources définit les contraintes de ressources pour tous les
conteneurs dans la pod créée par OLM.

Le paramètre nodeSelector définit un NodeSelector pour le pod créé par OLM.

 volumes: 8
 - name: <volume_name>
 configMap:
 name: <configmap_name>
 volumeMounts: 9
 - mountPath: <directory_name>
 name: <volume_name>
 tolerations: 10
 - operator: "Exists"
 resources: 11
 requests:
 memory: "64Mi"
 cpu: "250m"
 limits:
 memory: "128Mi"
 cpu: "500m"
 nodeSelector: 12
 foo: bar

CHAPITRE 4. LES TÂCHES D’ADMINISTRATEUR

85

1

2

1

Exemple 4.4. Exemple Objet d’abonnement avec une version de départ spécifique
de l’opérateur

Définissez la stratégie d’approbation sur Manuel dans le cas où votre version
spécifiée est remplacée par une version ultérieure dans le catalogue. Ce plan
empêche une mise à niveau automatique vers une version ultérieure et nécessite
une approbation manuelle avant que le CSV de démarrage puisse terminer
l’installation.

Définissez une version spécifique d’un opérateur CSV.

b. Dans le cas des clusters sur les fournisseurs de cloud avec authentification de jetons activés,
tels que Amazon Web Services (AWS) Security Token Service (STS), Microsoft Entra
Workload ID, ou Google Cloud Platform Workload Identity, configurez votre objet
Abonnement en suivant ces étapes:

i. Assurez-vous que l’objet Abonnement est configuré pour les approbations manuelles
de mise à jour:

Exemple 4.5. Exemple Objet d’abonnement avec approbations manuelles de
mise à jour

Les abonnements avec approbation automatique pour les mises à jour ne sont
pas recommandés car il peut y avoir des modifications d’autorisation à apporter
avant la mise à jour. Les abonnements avec approbation manuelle pour les
mises à jour garantissent que les administrateurs ont la possibilité de vérifier les
autorisations de la version ultérieure, de prendre toutes les mesures
nécessaires, puis de mettre à jour.

ii. Inclure les champs spécifiques aux fournisseurs de cloud pertinents dans la section
Configuration de l’objet Abonnement:

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: example-operator
 namespace: example-operator
spec:
 channel: stable-3.7
 installPlanApproval: Manual 1
 name: example-operator
 source: custom-operators
 sourceNamespace: openshift-marketplace
 startingCSV: example-operator.v3.7.10 2

kind: Subscription
...
spec:
 installPlanApproval: Manual 1

OpenShift Dedicated 4 Opérateurs

86

1

1

2

3

Lorsque le cluster est en mode AWS STS, incluez les champs suivants:

Exemple 4.6. Exemple d’objet d’abonnement avec des variables AWS STS

Inclure le rôle ARN détails.

Lorsque le cluster est en mode ID de charge de travail, incluez les champs suivants:

Exemple 4.7. Exemple Objet d’abonnement avec des variables ID de charge
de travail

Inclure l’identifiant du client.

Inclure l’identifiant du locataire.

Inclure l’identifiant d’abonnement.

Lorsque le cluster est en mode Identité de charge de travail GCP, incluez les
champs suivants:

Exemple 4.8. Exemple d’objet d’abonnement avec des variables d’identité
de charge de travail GCP

kind: Subscription
...
spec:
 config:
 env:
 - name: ROLEARN
 value: "<role_arn>" 1

kind: Subscription
...
spec:
 config:
 env:
 - name: CLIENTID
 value: "<client_id>" 1
 - name: TENANTID
 value: "<tenant_id>" 2
 - name: SUBSCRIPTIONID
 value: "<subscription_id>" 3

kind: Subscription
...
spec:
 config:
 env:
 - name: AUDIENCE
 value: "<audience_url>" 1
 - name: SERVICE_ACCOUNT_EMAIL
 value: "<service_account_email>" 2

CHAPITRE 4. LES TÂCHES D’ADMINISTRATEUR

87

là où:

<audience>

Créée en GCP par l’administrateur lors de la configuration de GCP Workload
Identity, la valeur AUDIENCE doit être une URL préformatée dans le format
suivant:

<service_account_email>

La valeur SERVICE_ACCOUNT_EMAIL est un e-mail de compte de service
GCP qui est usurpé lors de l’exploitation de l’opérateur, par exemple:

c. Créez l’objet Abonnement en exécutant la commande suivante:

5. Lorsque vous définissez le champ installPlanApproval sur Manuel, approuver manuellement le
plan d’installation en attente pour terminer l’installation de l’opérateur. En savoir plus, voir «
Approuver manuellement une mise à jour de l’opérateur en attente ».

À ce stade, OLM est maintenant au courant de l’opérateur sélectionné. La version de service de cluster
(CSV) pour l’opérateur devrait apparaître dans l’espace de noms cible, et les API fournies par l’opérateur
devraient être disponibles pour la création.

La vérification

1. Consultez l’état de l’objet Abonnement pour votre opérateur installé en exécutant la commande
suivante:

2. Lorsque vous avez créé un groupe d’opérateurs pour le mode d’installation de
SingleNamespace, vérifiez l’état de l’objet OperatorGroup en exécutant la commande suivante:

Ressources supplémentaires

À propos des groupes d’opérateurs

Installation d’opérateurs globaux dans des espaces de noms personnalisés

Approbation manuelle d’une mise à jour de l’opérateur en attente

4.1.4. La préparation de plusieurs instances d’un opérateur pour les clusters
multilocataires

//iam.googleapis.com/projects/<project_number>/locations/global/workloadId
entityPools/<pool_id>/providers/<provider_id>

<service_account_name>@<project_id>.iam.gserviceaccount.com

$ oc apply -f subscription.yaml

$ oc describe subscription <subscription_name> -n <namespace>

$ oc describe operatorgroup <operatorgroup_name> -n <namespace>

OpenShift Dedicated 4 Opérateurs

88

1 1

En tant qu’administrateur avec le rôle d’administrateur dédié, vous pouvez ajouter plusieurs instances
d’un opérateur pour une utilisation dans des clusters multilocataires. Il s’agit d’une solution alternative à
l’utilisation du mode d’installation standard Tous les espaces de noms, qui peut être considéré comme
violant le principe du moindre privilège, ou le mode Multinamespace, qui n’est pas largement adopté. En
savoir plus, voir « Opérations en grappes multilocataires ».

Dans la procédure suivante, le locataire est un utilisateur ou un groupe d’utilisateurs qui partagent un
accès et des privilèges communs pour un ensemble de charges de travail déployées. L’opérateur
locataire est l’instance d’un opérateur qui est destiné à être utilisé uniquement par ce locataire.

Conditions préalables

En tant qu’utilisateur, vous avez accès au cluster avec le rôle d’administrateur dédié.

Chaque instance de l’opérateur que vous souhaitez installer doit être la même version sur un
cluster donné.

IMPORTANT

Afin d’obtenir de plus amples renseignements sur cette question et sur d’autres
limites, voir « Opérations en grappes multilocataires ».

Procédure

1. Avant d’installer l’opérateur, créez un espace de noms pour l’opérateur locataire qui est séparé
de l’espace de noms du locataire. C’est ce que vous pouvez faire en créant un projet. Ainsi, si
l’espace de noms du locataire est team1, vous pouvez créer un projet team1-operator:

2. Créer un groupe d’opérateurs pour le locataire Opérateur étendu à l’espace de noms du
locataire, avec seulement une entrée d’espace de noms dans la liste spec.targetNamespaces:

a. Définissez une ressource OperatorGroup et enregistrez le fichier YAML, par exemple
team1-operatorgroup.yaml:

Définissez uniquement l’espace de noms du locataire dans la liste
spec.targetNamespaces.

b. Créez le groupe Opérateur en exécutant la commande suivante:

Les prochaines étapes

$ oc new-project team1-operator

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: team1-operatorgroup
 namespace: team1-operator
spec:
 targetNamespaces:
 - team1 1

$ oc create -f team1-operatorgroup.yaml

CHAPITRE 4. LES TÂCHES D’ADMINISTRATEUR

89

Installez l’opérateur dans l’espace de noms de l’opérateur locataire. Cette tâche est plus facile à
effectuer en utilisant le OperatorHub dans la console Web au lieu du CLI; pour une procédure
détaillée, voir Installing from OperatorHub à l’aide de la console Web.

NOTE

Après avoir terminé l’installation de l’Opérateur, l’Opérateur réside dans l’espace
de noms de l’opérateur locataire et surveille l’espace de noms du locataire, mais
ni la pod de l’Opérateur ni son compte de service ne sont visibles ou utilisables
par le locataire.

Ressources supplémentaires

Opérateurs en clusters multilocataires

4.1.5. Installation d’opérateurs globaux dans des espaces de noms personnalisés

Lors de l’installation des Opérateurs avec la console Web dédiée OpenShift, le comportement par
défaut installe les Opérateurs qui prennent en charge le mode d’installation de Tous les espaces de
noms dans l’espace de noms global openshift-operators par défaut. Cela peut causer des problèmes liés
aux plans d’installation partagés et aux stratégies de mise à jour entre tous les opérateurs dans l’espace
de noms. En savoir plus sur ces limitations, voir « Multiculturalité et colocation de l’opérateur ».

En tant qu’administrateur avec le rôle d’administrateur dédié, vous pouvez contourner manuellement ce
comportement par défaut en créant un espace de noms global personnalisé et en utilisant cet espace
de noms pour installer votre ensemble individuel ou étendu d’opérateurs et leurs dépendances.

Conditions préalables

En tant qu’utilisateur, vous avez accès au cluster avec le rôle d’administrateur dédié.

Procédure

1. Avant d’installer l’opérateur, créez un espace de noms pour l’installation de votre opérateur
souhaité. C’est ce que vous pouvez faire en créant un projet. L’espace de noms de ce projet
deviendra l’espace de noms global personnalisé:

2. Créer un groupe d’opérateurs mondial personnalisé, qui est un groupe d’opérateurs qui surveille
tous les espaces de noms:

a. Définissez une ressource OperatorGroup et enregistrez le fichier YAML, par exemple
global-operatorgroup.yaml. Évitez les champs spec.selector et spec.targetNamespaces
pour en faire un groupe d’opérateur global, qui sélectionne tous les espaces de noms:

NOTE

$ oc new-project global-operators

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: global-operatorgroup
 namespace: global-operators

OpenShift Dedicated 4 Opérateurs

90

NOTE

Le status.namespaces d’un groupe d’opérateur mondial créé contient la
chaîne vide (""), qui signale à un opérateur consommant qu’il devrait regarder
tous les espaces de noms.

b. Créez le groupe Opérateur en exécutant la commande suivante:

Les prochaines étapes

Installez l’opérateur souhaité dans votre espace de noms global personnalisé. Étant donné que
la console Web ne remplit pas le menu Namespace installé pendant l’installation de l’opérateur
avec des espaces de noms globaux personnalisés, cette tâche ne peut être effectuée qu’avec
l’OpenShift CLI (oc). Dans le cas d’une procédure détaillée, voir Installing from OperatorHub à
l’aide du CLI.

NOTE

Lorsque vous lancez l’installation de l’opérateur, si l’opérateur a des
dépendances, les dépendances sont également installées automatiquement dans
l’espace de noms global personnalisé. En conséquence, il est alors valable pour les
opérateurs de dépendance d’avoir la même stratégie de mise à jour et des plans
d’installation partagés.

Ressources supplémentaires

Colocation multitenance et opérateur

4.1.6. Emplacement de la pod des charges de travail de l’opérateur

Le gestionnaire de cycle de vie de l’opérateur (OLM) place des pods sur des nœuds de travail arbitraires
lors de l’installation d’un opérateur ou du déploiement de charges de travail Operand. En tant
qu’administrateur, vous pouvez utiliser des projets avec une combinaison de sélecteurs de nœuds, de
taintes et de tolérances pour contrôler le placement des Opérateurs et Operands sur des nœuds
spécifiques.

Le contrôle du placement des pods des charges de travail de l’opérateur et de l’exploitation comporte
les conditions préalables suivantes:

1. Déterminez un nœud ou un ensemble de nœuds à cibler pour les gousses selon vos besoins. Le
cas échéant, notez une étiquette existante, telle que node-role.kubernetes.io/app, qui identifie
le nœud ou les nœuds. Dans le cas contraire, ajoutez une étiquette, telle que myoperator, en
utilisant un ensemble de machines de calcul ou en éditant directement le nœud. Dans une étape
ultérieure, vous utiliserez cette étiquette comme sélecteur de nœud sur votre projet.

2. Lorsque vous voulez vous assurer que seuls les pods avec une certaine étiquette sont autorisés
à fonctionner sur les nœuds, tout en dirigeant des charges de travail non liées à d’autres nœuds,
ajoutez un taint au nœud ou aux nœuds en utilisant un ensemble de machines de calcul ou en
éditant le nœud directement. Faites appel à un effet qui garantit que les nouveaux pods qui ne
correspondent pas à la tainte ne peuvent pas être programmés sur les nœuds. À titre d’exemple,

$ oc create -f global-operatorgroup.yaml

CHAPITRE 4. LES TÂCHES D’ADMINISTRATEUR

91

une tainte myoperator:NoSchedule garantit que les nouveaux pods qui ne correspondent pas à
la tainte ne sont pas programmés sur ce nœud, mais les gousses existantes sur le nœud sont
autorisées à rester.

3. Créez un projet configuré avec un sélecteur de nœud par défaut et, si vous avez ajouté une
tainte, une tolérance correspondante.

À ce stade, le projet que vous avez créé peut être utilisé pour orienter les pods vers les nœuds spécifiés
dans les scénarios suivants:

Les pods d’opérateur

Les administrateurs peuvent créer un objet d’abonnement dans le projet comme décrit dans la
section suivante. En conséquence, les pods d’opérateur sont placés sur les nœuds spécifiés.

Les gousses d’opérand

À l’aide d’un opérateur installé, les utilisateurs peuvent créer une application dans le projet, qui place
la ressource personnalisée (CR) détenue par l’opérateur dans le projet. En conséquence, les pods
Operand sont placés sur les nœuds spécifiés, sauf si l’Opérateur déploie des objets ou des
ressources à l’échelle du cluster dans d’autres espaces de noms, auquel cas ce placement de pod
personnalisé ne s’applique pas.

Ressources supplémentaires

Création de sélecteurs de nœuds à l’échelle du projet

4.1.7. Contrôler l’endroit où un opérateur est installé

Lorsque vous installez un opérateur, OpenShift Dedicated installe par défaut la pod de l’opérateur sur
l’un de vos nœuds de travail au hasard. Cependant, il peut y avoir des situations où vous voulez que ce
pod soit programmé sur un nœud spécifique ou un ensemble de nœuds.

Les exemples suivants décrivent des situations où vous voudrez peut-être planifier un pod d’opérateur à
un nœud spécifique ou à un ensemble de nœuds:

Les opérateurs qui travaillent ensemble sur le même hôte ou sur des hôtes situés sur le même
rack

· si vous voulez que les opérateurs soient dispersés dans toute l’infrastructure pour éviter les
temps d’arrêt en raison de problèmes de réseau ou de matériel

Il est possible de contrôler l’installation d’une pod d’opérateur en ajoutant des contraintes d’affinité des
nœuds, d’affinité de pod ou de pod anti-affinité à l’objet Abonnement de l’opérateur. L’affinité des
nœuds est un ensemble de règles utilisées par le planificateur pour déterminer où un pod peut être
placé. L’affinité de pod vous permet de vous assurer que les gousses associées sont programmées au
même nœud. La pod anti-affinité vous permet d’empêcher une gousse d’être programmée sur un
nœud.

Les exemples suivants montrent comment utiliser l’affinité des nœuds ou la pod anti-affinité pour
installer une instance du Custom Metrics Autoscaler Operator à un nœud spécifique dans le cluster:

Exemple d’affinité des nœuds qui place la pod de l’opérateur sur un nœud spécifique

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-custom-metrics-autoscaler-operator

OpenShift Dedicated 4 Opérateurs

92

https://docs.redhat.com/en/documentation/openshift_dedicated/4/html-single/nodes/#nodes-scheduler-node-selectors-project_nodes-scheduler-node-selectors

1

1

Affinité du nœud qui exige que la gousse de l’opérateur soit programmée sur un nœud nommé ip-
10-0-163-94.us-west-2.compute.internal.

Exemple d’affinité des nœuds qui place le pod de l’opérateur sur un nœud avec une plate-
forme spécifique

Affinité du nœud qui exige que la gousse de l’opérateur soit programmée sur un nœud avec les
étiquettes kubernetes.io/arch=arm64 et kubernetes.io/os=linux.

Exemple d’affinité de pod qui place la pod de l’opérateur sur un ou plusieurs nœuds
spécifiques

 namespace: openshift-keda
spec:
 name: my-package
 source: my-operators
 sourceNamespace: operator-registries
 config:
 affinity:
 nodeAffinity: 1
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - ip-10-0-163-94.us-west-2.compute.internal
#...

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-custom-metrics-autoscaler-operator
 namespace: openshift-keda
spec:
 name: my-package
 source: my-operators
 sourceNamespace: operator-registries
 config:
 affinity:
 nodeAffinity: 1
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/arch
 operator: In
 values:
 - arm64
 - key: kubernetes.io/os
 operator: In
 values:
 - linux
#...

CHAPITRE 4. LES TÂCHES D’ADMINISTRATEUR

93

1

1

Affinité de pod qui place la gousse de l’opérateur sur un nœud qui a des pods avec l’étiquette
app=test.

Exemple de pod anti-affinité qui empêche la gousse d’opérateur d’un ou de plusieurs
nœuds spécifiques

La pod anti-affinité qui empêche la gousse de l’opérateur d’être programmée sur un nœud qui a
des pods avec l’étiquette cpu=haute.

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-custom-metrics-autoscaler-operator
 namespace: openshift-keda
spec:
 name: my-package
 source: my-operators
 sourceNamespace: operator-registries
 config:
 affinity:
 podAffinity: 1
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: app
 operator: In
 values:
 - test
 topologyKey: kubernetes.io/hostname
#...

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-custom-metrics-autoscaler-operator
 namespace: openshift-keda
spec:
 name: my-package
 source: my-operators
 sourceNamespace: operator-registries
 config:
 affinity:
 podAntiAffinity: 1
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: cpu
 operator: In
 values:
 - high
 topologyKey: kubernetes.io/hostname
#...

OpenShift Dedicated 4 Opérateurs

94

1

Procédure

Afin de contrôler le placement d’une gousse d’opérateur, remplissez les étapes suivantes:

1. Installez l’opérateur comme d’habitude.

2. Au besoin, assurez-vous que vos nœuds sont étiquetés pour répondre correctement à l’affinité.

3. Éditer l’objet d’abonnement opérateur pour ajouter une affinité:

Ajouter un nodeAffinity, podAffinity ou podAntiAffinity. Consultez la section Ressources
supplémentaires qui suit pour obtenir de l’information sur la création de l’affinité.

La vérification

Afin de s’assurer que le pod est déployé sur le nœud spécifique, exécutez la commande
suivante:

Exemple de sortie

Ressources supplémentaires

Comprendre l’affinité des gousses

Comprendre l’affinité des nœuds

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: openshift-custom-metrics-autoscaler-operator
 namespace: openshift-keda
spec:
 name: my-package
 source: my-operators
 sourceNamespace: operator-registries
 config:
 affinity: 1
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - ip-10-0-185-229.ec2.internal
#...

$ oc get pods -o wide

NAME READY STATUS RESTARTS AGE IP
NODE NOMINATED NODE READINESS GATES
custom-metrics-autoscaler-operator-5dcc45d656-bhshg 1/1 Running 0 50s
10.131.0.20 ip-10-0-185-229.ec2.internal <none> <none>

CHAPITRE 4. LES TÂCHES D’ADMINISTRATEUR

95

https://docs.redhat.com/en/documentation/openshift_dedicated/4/html-single/nodes/#nodes-scheduler-pod-affinity-about_nodes-scheduler-pod-affinity
https://docs.redhat.com/en/documentation/openshift_dedicated/4/html-single/nodes/#nodes-scheduler-node-affinity-about_nodes-scheduler-node-affinity

4.2. LA MISE À JOUR DES OPÉRATEURS INSTALLÉS

En tant qu’administrateur avec le rôle d’administrateur dédié, vous pouvez mettre à jour les opérateurs
qui ont déjà été installés à l’aide du gestionnaire de cycle de vie de l’opérateur (OLM) sur votre cluster
dédié OpenShift.

NOTE

Des informations sur la façon dont OLM gère les mises à jour pour les opérateurs installés
situés dans le même espace de noms, ainsi qu’une méthode alternative pour installer des
Opérateurs avec des groupes d’opérateurs mondiaux personnalisés, voir Multitenancy
and Operator colocation.

4.2.1. La préparation d’une mise à jour de l’opérateur

L’abonnement d’un opérateur installé spécifie un canal de mise à jour qui suit et reçoit des mises à jour
pour l’opérateur. Le canal de mise à jour peut être modifié pour commencer à suivre et recevoir des
mises à jour à partir d’un canal plus récent.

Les noms des canaux de mise à jour dans un abonnement peuvent différer entre les opérateurs, mais le
schéma de dénomination suit généralement une convention commune au sein d’un opérateur donné. À
titre d’exemple, les noms de canaux peuvent suivre un flux de mise à jour de version mineure pour
l’application fournie par l’opérateur (1.2, 1.3) ou une fréquence de libération (stable, rapide).

NOTE

Les opérateurs installés ne peuvent pas changer de canal plus ancien que le canal actuel.

Les laboratoires de portail client Red Hat incluent l’application suivante qui aide les administrateurs à se
préparer à mettre à jour leurs opérateurs:

Contrôle d’information de l’opérateur de mise à jour de la plate-forme de conteneur Red Hat
OpenShift

L’application permet de rechercher des opérateurs basés sur le gestionnaire de cycle de vie de
l’opérateur et de vérifier la version de l’opérateur disponible par canal de mise à jour sur différentes
versions d’OpenShift Dedicated. Les opérateurs basés sur les opérateurs ne sont pas inclus.

4.2.2. Changer le canal de mise à jour pour un opérateur

Il est possible de modifier le canal de mise à jour d’un opérateur à l’aide de la console Web OpenShift
Dedicated.

ASTUCE

Lorsque la stratégie d’approbation de l’abonnement est définie sur Automatique, le processus de mise à
jour démarre dès qu’une nouvelle version de l’opérateur est disponible dans le canal sélectionné.
Lorsque la stratégie d’approbation est définie sur Manuel, vous devez approuver manuellement les
mises à jour en attente.

Conditions préalables

Exploitant précédemment installé à l’aide du gestionnaire de cycle de vie de l’opérateur (OLM).

OpenShift Dedicated 4 Opérateurs

96

https://access.redhat.com/labs/ocpouic/

Procédure

1. Dans la perspective de l’administrateur de la console Web, accédez aux opérateurs →
Opérateurs installés.

2. Cliquez sur le nom de l’opérateur pour lequel vous souhaitez modifier le canal de mise à jour.

3. Cliquez sur l’onglet Subscription.

4. Cliquez sur le nom du canal de mise à jour sous le canal Mise à jour.

5. Cliquez sur le nouveau canal de mise à jour que vous souhaitez modifier, puis cliquez sur
Enregistrer.

6. Dans le cas des abonnements avec une stratégie d’approbation automatique, la mise à jour
commence automatiquement. Accédez à la page Opérateurs installés → Opérateurs installés
pour suivre l’avancement de la mise à jour. Lorsque vous avez terminé, le statut passe à
Succeeded et Up to date.
En ce qui concerne les abonnements avec une stratégie d’approbation manuelle, vous pouvez
approuver manuellement la mise à jour à partir de l’onglet Abonnement.

4.2.3. Approbation manuelle d’une mise à jour de l’opérateur en attente

Lorsqu’un opérateur installé a la stratégie d’approbation dans son abonnement à Manuel, lorsque de
nouvelles mises à jour sont publiées dans son canal de mise à jour actuel, la mise à jour doit être
approuvée manuellement avant le début de l’installation.

Conditions préalables

Exploitant précédemment installé à l’aide du gestionnaire de cycle de vie de l’opérateur (OLM).

Procédure

1. Dans la perspective de l’administrateur de la console Web dédiée OpenShift, accédez aux
opérateurs → Opérateurs installés.

2. Les opérateurs qui ont une mise à jour en attente affichent un statut avec Mise à niveau
disponible. Cliquez sur le nom de l’opérateur que vous souhaitez mettre à jour.

3. Cliquez sur l’onglet Subscription. Les mises à jour nécessitant l’approbation sont affichées à
côté de l’état de mise à niveau. Par exemple, 1 requires approval peut être affiché.

4. Cliquez sur 1 requires approval, puis sur Preview Install Plan.

5. Examinez les ressources qui sont énumérées comme disponibles pour mise à jour. Lorsque vous
êtes satisfait, cliquez sur Approuver.

6. Accédez à la page Opérateurs installés → Opérateurs installés pour suivre l’avancement de la
mise à jour. Lorsque vous avez terminé, le statut passe à Succeeded et Up to date.

4.3. LA SUPPRESSION DES OPÉRATEURS D’UN CLUSTER

Ce qui suit décrit comment supprimer, ou désinstaller, les opérateurs qui ont déjà été installés à l’aide de
Operator Lifecycle Manager (OLM) sur votre cluster OpenShift Dedicated.

IMPORTANT

CHAPITRE 4. LES TÂCHES D’ADMINISTRATEUR

97

IMPORTANT

Il faut désinstaller avec succès et complètement un Opérateur avant de tenter de
réinstaller le même Opérateur. Le défaut de désinstaller correctement l’opérateur peut
laisser des ressources, telles qu’un projet ou un espace de noms, bloquées dans un état
"Terminating" et provoquer l’observation des messages de « résolution d’erreur » lors de
la réinstallation de l’opérateur.

4.3.1. Suppression des opérateurs d’un cluster à l’aide de la console Web

Les administrateurs de clusters peuvent supprimer les opérateurs installés d’un espace de noms
sélectionné à l’aide de la console Web.

Conditions préalables

Accès à une console Web OpenShift Dedicated cluster à l’aide d’un compte doté
d’autorisations d’administration dédiées.

Procédure

1. Accédez à la page Opérateurs installés → Opérateurs installés.

2. Faites défiler ou entrez un mot clé dans le champ Filtrer par nom pour trouver l’opérateur que
vous souhaitez supprimer. Ensuite, cliquez dessus.

3. À droite de la page Détails de l’opérateur, sélectionnez Désinstaller l’opérateur dans la liste
Actions.
La boîte de dialogue Un opérateur de désinstallation? s’affiche.

4. Cliquez sur Désinstaller pour supprimer les déploiements de l’opérateur, de l’opérateur et des
pods. Après cette action, l’opérateur cesse de fonctionner et ne reçoit plus de mises à jour.

NOTE

Cette action ne supprime pas les ressources gérées par l’opérateur, y compris les
définitions de ressources personnalisées (CRD) et les ressources personnalisées
(CRs). Les tableaux de bord et les éléments de navigation activés par la console
Web et les ressources hors groupe qui continuent de fonctionner peuvent
nécessiter un nettoyage manuel. Afin de les supprimer après la désinstallation de
l’opérateur, vous devrez peut-être supprimer manuellement les CRD de
l’opérateur.

4.3.2. La suppression des opérateurs d’un cluster à l’aide du CLI

Les administrateurs de clusters peuvent supprimer les opérateurs installés d’un espace de noms
sélectionné en utilisant le CLI.

Conditions préalables

Accès à un cluster dédié OpenShift à l’aide d’un compte doté d’autorisations d’administration
dédiées.

L’OpenShift CLI (oc) est installé sur votre poste de travail.

Procédure

OpenShift Dedicated 4 Opérateurs

98

Procédure

1. Assurez-vous que la dernière version de l’opérateur souscrit (par exemple, l’opérateur sans
serveur) est identifiée dans le champ CSV actuel.

Exemple de sortie

2. Effacer l’abonnement (par exemple, l’opérateur sans serveur):

Exemple de sortie

3. Effacer le CSV pour l’opérateur dans l’espace de noms cible en utilisant la valeur actuelleCSV de
l’étape précédente:

Exemple de sortie

4.3.3. Abonnements défaillants rafraîchissants

Dans Operator Lifecycle Manager (OLM), si vous vous abonnez à un opérateur qui fait référence à des
images qui ne sont pas accessibles sur votre réseau, vous pouvez trouver des emplois dans l’espace de
noms openshift-marketplace qui échouent avec les erreurs suivantes:

Exemple de sortie

Exemple de sortie

En conséquence, l’abonnement est bloqué dans cet état défaillant et l’Opérateur est incapable
d’installer ou de mettre à niveau.

Il est possible d’actualiser un abonnement défaillant en supprimant l’abonnement, la version du service
cluster (CSV) et d’autres objets connexes. Après avoir recréé l’abonnement, OLM réinstalle ensuite la
version correcte de l’opérateur.

$ oc get subscription.operators.coreos.com serverless-operator -n openshift-serverless -o
yaml | grep currentCSV

 currentCSV: serverless-operator.v1.28.0

$ oc delete subscription.operators.coreos.com serverless-operator -n openshift-serverless

subscription.operators.coreos.com "serverless-operator" deleted

$ oc delete clusterserviceversion serverless-operator.v1.28.0 -n openshift-serverless

clusterserviceversion.operators.coreos.com "serverless-operator.v1.28.0" deleted

ImagePullBackOff for
Back-off pulling image "example.com/openshift4/ose-elasticsearch-operator-
bundle@sha256:6d2587129c846ec28d384540322b40b05833e7e00b25cca584e004af9a1d292e"

rpc error: code = Unknown desc = error pinging docker registry example.com: Get
"https://example.com/v2/": dial tcp: lookup example.com on 10.0.0.1:53: no such host

CHAPITRE 4. LES TÂCHES D’ADMINISTRATEUR

99

Conditions préalables

Il y a un abonnement défaillant qui est incapable de tirer une image de paquet inaccessible.

« vous avez confirmé que l’image de paquet correcte est accessible.

Procédure

1. Obtenez les noms des objets Abonnement et ClusterServiceVersion à partir de l’espace de
noms où l’opérateur est installé:

Exemple de sortie

2. Effacer l’abonnement:

3. Effacer la version du service cluster:

4. Bénéficiez des noms de tous les emplois défaillants et des cartes de configuration connexes
dans l’espace de noms openshift-marketplace:

Exemple de sortie

5. Effacer la tâche:

Cela garantit que les pods qui tentent de tirer l’image inaccessible ne sont pas recréés.

$ oc get sub,csv -n <namespace>

NAME PACKAGE SOURCE CHANNEL
subscription.operators.coreos.com/elasticsearch-operator elasticsearch-operator redhat-
operators 5.0

NAME DISPLAY VERSION
REPLACES PHASE
clusterserviceversion.operators.coreos.com/elasticsearch-operator.5.0.0-65 OpenShift
Elasticsearch Operator 5.0.0-65 Succeeded

$ oc delete subscription <subscription_name> -n <namespace>

$ oc delete csv <csv_name> -n <namespace>

$ oc get job,configmap -n openshift-marketplace

NAME COMPLETIONS DURATION AGE
job.batch/1de9443b6324e629ddf31fed0a853a121275806170e34c926d69e53a7fcbccb 1/1
26s 9m30s

NAME DATA AGE
configmap/1de9443b6324e629ddf31fed0a853a121275806170e34c926d69e53a7fcbccb 3
9m30s

$ oc delete job <job_name> -n openshift-marketplace

OpenShift Dedicated 4 Opérateurs

100

6. Effacer la carte de configuration:

7. Installez l’opérateur en utilisant OperatorHub dans la console Web.

La vérification

Assurez-vous que l’opérateur a été réinstallé avec succès:

4.4. CONFIGURATION DU SUPPORT PROXY DANS OPERATOR
LIFECYCLE MANAGER

Lorsqu’un proxy global est configuré sur le cluster dédié OpenShift, Operator Lifecycle Manager (OLM)
configure automatiquement les opérateurs qu’il gère avec le proxy à l’échelle du cluster. Cependant,
vous pouvez également configurer les opérateurs installés pour remplacer le proxy global ou injecter un
certificat CA personnalisé.

Ressources supplémentaires

Configuration d’un proxy à l’échelle du cluster

Développer des opérateurs qui prennent en charge les paramètres proxy pour Go, Ansible et
Helm

4.4.1. Dépassement des paramètres proxy d’un opérateur

En cas de configuration d’un proxy de sortie à l’échelle du cluster, les opérateurs s’exécutant avec
Operator Lifecycle Manager (OLM) héritent des paramètres proxy à l’échelle du cluster sur leurs
déploiements. Les administrateurs avec le rôle dédié-admin peuvent également remplacer ces
paramètres proxy en configurant l’abonnement d’un opérateur.

IMPORTANT

Les opérateurs doivent gérer les variables d’environnement de réglage pour les
paramètres proxy dans les pods pour tous les Operands gérés.

Conditions préalables

Accès à un cluster OpenShift dédié en tant qu’utilisateur avec le rôle d’administrateur dédié.

Procédure

1. Accédez à la console Web vers la page Opérateurs → OperatorHub.

2. Choisissez l’opérateur et cliquez sur Installer.

3. Dans la page Installer l’opérateur, modifier l’objet Abonnement pour inclure une ou plusieurs des
variables d’environnement suivantes dans la section Spécifications:

HTTP_PROXY

$ oc delete configmap <configmap_name> -n openshift-marketplace

$ oc get sub,csv,installplan -n <namespace>

CHAPITRE 4. LES TÂCHES D’ADMINISTRATEUR

101

https://docs.redhat.com/en/documentation/openshift_dedicated/4/html-single/networking/#configuring-a-cluster-wide-proxy-during-installation

HTTPS_PROXY

AUCUN_PROXY

À titre d’exemple:

L’objet d’abonnement avec le paramètre proxy remplace

NOTE

Ces variables d’environnement peuvent également être dédéfinies à l’aide d’une
valeur vide pour supprimer tous les paramètres de proxy définis précédemment à
l’échelle du cluster ou sur mesure.

L’ODM gère ces variables d’environnement en tant qu’unité; si au moins une d’entre elles est
définie, les trois sont considérés comme dépassés et les valeurs par défaut à l’échelle du cluster
ne sont pas utilisées pour les déploiements de l’opérateur souscrit.

4. Cliquez sur Installer pour rendre l’opérateur disponible dans les espaces de noms sélectionnés.

5. Après que le CSV pour l’opérateur s’affiche dans l’espace de noms pertinent, vous pouvez
vérifier que des variables d’environnement proxy personnalisées sont définies dans le
déploiement. À titre d’exemple, l’utilisation du CLI:

Exemple de sortie

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: etcd-config-test
 namespace: openshift-operators
spec:
 config:
 env:
 - name: HTTP_PROXY
 value: test_http
 - name: HTTPS_PROXY
 value: test_https
 - name: NO_PROXY
 value: test
 channel: clusterwide-alpha
 installPlanApproval: Automatic
 name: etcd
 source: community-operators
 sourceNamespace: openshift-marketplace
 startingCSV: etcdoperator.v0.9.4-clusterwide

$ oc get deployment -n openshift-operators \
 etcd-operator -o yaml \
 | grep -i "PROXY" -A 2

 - name: HTTP_PROXY
 value: test_http
 - name: HTTPS_PROXY

OpenShift Dedicated 4 Opérateurs

102

1

2

4.4.2. Injection d’un certificat CA personnalisé

Lorsqu’un administrateur avec le rôle d’administrateur dédié ajoute un certificat CA personnalisé à un
cluster à l’aide d’une carte de configuration, l’opérateur réseau de cluster fusionne les certificats fournis
par l’utilisateur et les certificats CA système en un seul paquet. Il est possible d’injecter ce paquet
fusionné dans votre opérateur fonctionnant sur Operator Lifecycle Manager (OLM), ce qui est utile si
vous avez un proxy HTTPS man-in-the-middle.

Conditions préalables

Accès à un cluster OpenShift dédié en tant qu’utilisateur avec le rôle d’administrateur dédié.

Certificat CA personnalisé ajouté au cluster à l’aide d’une carte de configuration.

L’opérateur désiré a installé et exécuté sur OLM.

Procédure

1. Créez une carte de configuration vide dans l’espace de noms où l’abonnement pour votre
opérateur existe et incluez l’étiquette suivante:

Le nom de la carte de configuration.

Demande au Cluster Network Operator d’injecter le paquet fusionné.

Après avoir créé cette carte de configuration, il est immédiatement rempli avec le contenu du
certificat du paquet fusionné.

2. Actualisez l’objet Abonnement pour inclure une section spec.config qui monte la carte de
configuration de confiance en tant que volume à chaque conteneur dans un pod qui nécessite
une CA personnalisée:

 value: test_https
 - name: NO_PROXY
 value: test
 image: quay.io/coreos/etcd-
operator@sha256:66a37fd61a06a43969854ee6d3e21088a98b93838e284a6086b13917f96b0
d9c
...

apiVersion: v1
kind: ConfigMap
metadata:
 name: trusted-ca 1
 labels:
 config.openshift.io/inject-trusted-cabundle: "true" 2

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: my-operator
spec:
 package: etcd
 channel: alpha

CHAPITRE 4. LES TÂCHES D’ADMINISTRATEUR

103

1

2

3

4

5

6

Ajoutez une section de configuration si elle n’existe pas.

Indiquez les étiquettes pour correspondre aux pods appartenant à l’opérateur.

Créez un volume de confiance.

ca-bundle.crt est nécessaire en tant que clé map de configuration.

le TLS-ca-bundle.pem est requis en tant que chemin de configuration de la carte.

Créez une monture de volume de confiance.

NOTE

Les déploiements d’un opérateur peuvent ne pas valider l’autorité et afficher un
certificat x509 signé par erreur d’autorité inconnue. Cette erreur peut se
produire même après l’injection d’un CA personnalisé lors de l’utilisation de
l’abonnement d’un opérateur. Dans ce cas, vous pouvez définir le MountPath
comme /etc/ssl/certs pour confiance-ca en utilisant l’abonnement d’un
opérateur.

4.5. STATUT DE L’OPÉRATEUR

Comprendre l’état du système dans Operator Lifecycle Manager (OLM) est important pour prendre des
décisions concernant et débogage des problèmes avec les opérateurs installés. L’OLM fournit un
aperçu des abonnements et des sources de catalogue connexes concernant leur état et les actions
effectuées. Cela aide les utilisateurs à mieux comprendre la santé de leurs opérateurs.

4.5.1. Conditions d’abonnement à l’opérateur

Les abonnements peuvent signaler les types d’état suivants:

Tableau 4.1. Conditions d’abonnement

 config: 1
 selector:
 matchLabels:
 <labels_for_pods> 2
 volumes: 3
 - name: trusted-ca
 configMap:
 name: trusted-ca
 items:
 - key: ca-bundle.crt 4
 path: tls-ca-bundle.pem 5
 volumeMounts: 6
 - name: trusted-ca
 mountPath: /etc/pki/ca-trust/extracted/pem
 readOnly: true

OpenShift Dedicated 4 Opérateurs

104

État de l’état Description

CatalogueSourcesUnsanté Certaines ou toutes les sources de catalogue à utiliser en résolution sont
malsaines.

InstallPlanMissing Il manque un plan d’installation pour un abonnement.

InstallPlanPending Le plan d’installation d’un abonnement est en attente d’installation.

InstallPlanFailed Le plan d’installation d’un abonnement a échoué.

La RésolutionFailed La résolution de dépendance pour un abonnement a échoué.

NOTE

Les opérateurs de cluster dédiés par défaut sont gérés par l’opérateur de versions de
cluster (CVO) et ils n’ont pas d’objet d’abonnement. Les opérateurs d’applications sont
gérés par Operator Lifecycle Manager (OLM) et ils ont un objet d’abonnement.

Ressources supplémentaires

Abonnements défaillants rafraîchissants

4.5.2. Affichage du statut d’abonnement de l’opérateur en utilisant le CLI

En utilisant le CLI, vous pouvez voir l’état de l’abonnement à l’opérateur.

Conditions préalables

En tant qu’utilisateur, vous avez accès au cluster avec le rôle d’administrateur dédié.

L’OpenShift CLI (oc) a été installé.

Procédure

1. Abonnements à l’opérateur de liste:

2. Consultez la commande de description d’oc pour inspecter une ressource d’abonnement:

3. Dans la sortie de commande, trouvez la section Conditions pour l’état des types de condition
d’abonnement Opérateur. Dans l’exemple suivant, le type de condition de
CatalogSourcesUnsanté a un statut de faux parce que toutes les sources de catalogue
disponibles sont saines:

Exemple de sortie

$ oc get subs -n <operator_namespace>

$ oc describe sub <subscription_name> -n <operator_namespace>

CHAPITRE 4. LES TÂCHES D’ADMINISTRATEUR

105

NOTE

Les opérateurs de cluster dédiés par défaut sont gérés par l’opérateur de versions de
cluster (CVO) et ils n’ont pas d’objet d’abonnement. Les opérateurs d’applications sont
gérés par Operator Lifecycle Manager (OLM) et ils ont un objet d’abonnement.

4.5.3. Affichage de l’état de la source du catalogue de l’opérateur en utilisant le CLI

Il est possible d’afficher l’état d’une source de catalogue de l’opérateur à l’aide du CLI.

Conditions préalables

En tant qu’utilisateur, vous avez accès au cluster avec le rôle d’administrateur dédié.

L’OpenShift CLI (oc) a été installé.

Procédure

1. Énumérez les sources du catalogue dans un espace de noms. À titre d’exemple, vous pouvez
vérifier l’espace de noms openshift-marketplace, qui est utilisé pour les sources de catalogue à
l’échelle du cluster:

Exemple de sortie

2. La commande oc described permet d’obtenir plus de détails et d’état sur une source de
catalogue:

Name: cluster-logging
Namespace: openshift-logging
Labels: operators.coreos.com/cluster-logging.openshift-logging=
Annotations: <none>
API Version: operators.coreos.com/v1alpha1
Kind: Subscription
...
Conditions:
 Last Transition Time: 2019-07-29T13:42:57Z
 Message: all available catalogsources are healthy
 Reason: AllCatalogSourcesHealthy
 Status: False
 Type: CatalogSourcesUnhealthy
...

$ oc get catalogsources -n openshift-marketplace

NAME DISPLAY TYPE PUBLISHER AGE
certified-operators Certified Operators grpc Red Hat 55m
community-operators Community Operators grpc Red Hat 55m
example-catalog Example Catalog grpc Example Org 2m25s
redhat-marketplace Red Hat Marketplace grpc Red Hat 55m
redhat-operators Red Hat Operators grpc Red Hat 55m

$ oc describe catalogsource example-catalog -n openshift-marketplace

OpenShift Dedicated 4 Opérateurs

106

Exemple de sortie

Dans l’exemple précédent, le dernier état observé est TRANSIENT_FAILURE. Cet état indique
qu’il y a un problème à établir une connexion pour la source du catalogue.

3. Énumérez les pods dans l’espace de noms où votre source de catalogue a été créée:

Exemple de sortie

Lorsqu’une source de catalogue est créée dans un espace de noms, un pod pour la source du
catalogue est créé dans cet espace de noms. Dans l’exemple précédent, l’état de la pod
example-catalog-bwt8z est ImagePullBackOff. Ce statut indique qu’il y a un problème à tirer
l’image de l’index de la source du catalogue.

4. Consultez la commande de description d’oc pour inspecter un pod pour obtenir des informations
plus détaillées:

Exemple de sortie

Name: example-catalog
Namespace: openshift-marketplace
Labels: <none>
Annotations: operatorframework.io/managed-by: marketplace-operator
 target.workload.openshift.io/management: {"effect": "PreferredDuringScheduling"}
API Version: operators.coreos.com/v1alpha1
Kind: CatalogSource
...
Status:
 Connection State:
 Address: example-catalog.openshift-marketplace.svc:50051
 Last Connect: 2021-09-09T17:07:35Z
 Last Observed State: TRANSIENT_FAILURE
 Registry Service:
 Created At: 2021-09-09T17:05:45Z
 Port: 50051
 Protocol: grpc
 Service Name: example-catalog
 Service Namespace: openshift-marketplace
...

$ oc get pods -n openshift-marketplace

NAME READY STATUS RESTARTS AGE
certified-operators-cv9nn 1/1 Running 0 36m
community-operators-6v8lp 1/1 Running 0 36m
marketplace-operator-86bfc75f9b-jkgbc 1/1 Running 0 42m
example-catalog-bwt8z 0/1 ImagePullBackOff 0 3m55s
redhat-marketplace-57p8c 1/1 Running 0 36m
redhat-operators-smxx8 1/1 Running 0 36m

$ oc describe pod example-catalog-bwt8z -n openshift-marketplace

Name: example-catalog-bwt8z
Namespace: openshift-marketplace

CHAPITRE 4. LES TÂCHES D’ADMINISTRATEUR

107

Dans l’exemple précédent, les messages d’erreur indiquent que l’image d’index de la source du
catalogue ne parvient pas à tirer avec succès en raison d’un problème d’autorisation. À titre
d’exemple, l’image d’index peut être stockée dans un registre qui nécessite des identifiants de
connexion.

Ressources supplémentaires

Concepts et ressources du gestionnaire de cycle de vie de l’opérateur → Source du catalogue

documentation du GRPC : États de connectivité

4.6. GESTION DES CONDITIONS DE L’OPÉRATEUR

En tant qu’administrateur avec le rôle d’administrateur dédié, vous pouvez gérer les conditions de
l’opérateur en utilisant Operator Lifecycle Manager (OLM).

4.6.1. Conditions primordiales de l’opérateur

En tant qu’administrateur avec le rôle d’administrateur dédié, vous voudrez peut-être ignorer une
condition d’opérateur prise en charge rapportée par un opérateur. Lorsqu’ils sont présents, les
conditions de l’opérateur dans le tableau Spec.Overrides remplacent les conditions du tableau
Spec.Conditions, permettant aux administrateurs dédiés de traiter les situations où un opérateur signale
incorrectement un état à Operator Lifecycle Manager (OLM).

NOTE

Le tableau Spec.Overrides n’est pas présent dans un objet OperatorCondition jusqu’à ce
qu’il soit ajouté par un administrateur avec le rôle dédié-admin . Le tableau
Spec.Conditions n’est pas non plus présent tant qu’il n’est pas ajouté par un utilisateur ou
à la suite de la logique personnalisée de l’opérateur.

À titre d’exemple, considérez une version connue d’un opérateur qui communique toujours qu’elle n’est
pas modifiable. Dans ce cas, vous voudrez peut-être mettre à niveau l’opérateur malgré la

Priority: 0
Node: ci-ln-jyryyg2-f76d1-ggdbq-worker-b-vsxjd/10.0.128.2
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled 48s default-scheduler Successfully assigned openshift-
marketplace/example-catalog-bwt8z to ci-ln-jyryyf2-f76d1-fgdbq-worker-b-vsxjd
 Normal AddedInterface 47s multus Add eth0 [10.131.0.40/23] from
openshift-sdn
 Normal BackOff 20s (x2 over 46s) kubelet Back-off pulling image
"quay.io/example-org/example-catalog:v1"
 Warning Failed 20s (x2 over 46s) kubelet Error: ImagePullBackOff
 Normal Pulling 8s (x3 over 47s) kubelet Pulling image "quay.io/example-
org/example-catalog:v1"
 Warning Failed 8s (x3 over 47s) kubelet Failed to pull image
"quay.io/example-org/example-catalog:v1": rpc error: code = Unknown desc = reading
manifest v1 in quay.io/example-org/example-catalog: unauthorized: access to the requested
resource is not authorized
 Warning Failed 8s (x3 over 47s) kubelet Error: ErrImagePull

OpenShift Dedicated 4 Opérateurs

108

1

communication de l’opérateur qu’il n’est pas mis à niveau. Cela pourrait être accompli en dépassant la
condition de l’opérateur en ajoutant le type et l’état de condition au tableau Spec.Overrides dans l’objet
OperatorCondition.

Conditions préalables

En tant qu’utilisateur, vous avez accès au cluster avec le rôle d’administrateur dédié.

Exploitant avec un objet OperatorCondition, installé à l’aide de OLM.

Procédure

1. Éditer l’objet OperatorCondition pour l’Opérateur:

2. Ajouter un tableau Spec.Overrides à l’objet:

Exemple de condition de l’opérateur

Permet à l’utilisateur dédié-admin de changer la disponibilité de mise à jour vers True.

4.6.2. La mise à jour de votre opérateur pour utiliser les conditions de l’opérateur

Le gestionnaire de cycle de vie de l’opérateur (OLM) crée automatiquement une ressource
OperatorCondition pour chaque ressource ClusterServiceVersion qu’elle concilie. L’ensemble des
comptes de service du CSV se voient accorder au RBAC d’interagir avec la Condition de l’Opérateur
détenue par l’Opérateur.

L’auteur d’un opérateur peut développer son opérateur pour utiliser la bibliothèque de l’opérateur de
sorte qu’une fois que l’opérateur a été déployé par OLM, il peut définir ses propres conditions.
Consultez la page Conditions de l’opérateur pour plus de ressources sur la configuration des conditions
de l’opérateur en tant qu’auteur de l’opérateur.

$ oc edit operatorcondition <name>

apiVersion: operators.coreos.com/v2
kind: OperatorCondition
metadata:
 name: my-operator
 namespace: operators
spec:
 overrides:
 - type: Upgradeable 1
 status: "True"
 reason: "upgradeIsSafe"
 message: "This is a known issue with the Operator where it always reports that it cannot
be upgraded."
 conditions:
 - type: Upgradeable
 status: "False"
 reason: "migration"
 message: "The operator is performing a migration."
 lastTransitionTime: "2020-08-24T23:15:55Z"

CHAPITRE 4. LES TÂCHES D’ADMINISTRATEUR

109

4.6.2.1. Définir les valeurs par défaut

Dans un effort pour rester rétrocompatible, OLM traite l’absence d’une ressource OperatorCondition
comme se désignant de la condition. En conséquence, un opérateur qui opte pour l’utilisation des
conditions de l’opérateur doit définir des conditions par défaut avant que la sonde prête pour le pod ne
soit définie à true. Cela fournit à l’opérateur un délai de grâce pour mettre à jour la condition à l’état
correct.

4.6.3. Ressources supplémentaires

Conditions de l’opérateur

4.7. GESTION DES CATALOGUES PERSONNALISÉS

Les administrateurs ayant le rôle d’administrateur dédié et les responsables du catalogue de l’opérateur
peuvent créer et gérer des catalogues personnalisés emballés à l’aide du format bundle sur Operator
Lifecycle Manager (OLM) dans OpenShift Dedicated.

IMPORTANT

Kubernetes déprécie périodiquement certaines API qui sont supprimées dans les versions
ultérieures. En conséquence, les opérateurs ne peuvent pas utiliser les API supprimées à
partir de la version d’OpenShift Dedicated qui utilise la version Kubernetes qui a supprimé
l’API.

Lorsque votre cluster utilise des catalogues personnalisés, consultez la compatibilité de
Controlling Operator avec les versions dédiées d’OpenShift pour plus de détails sur la
façon dont les auteurs de l’opérateur peuvent mettre à jour leurs projets afin d’éviter les
problèmes de charge de travail et d’éviter les mises à niveau incompatibles.

Ressources supplémentaires

Catalogues d’opérateurs Red Hat

4.7.1. Conditions préalables

C’est vous qui avez installé l’opm CLI.

4.7.2. Catalogues basés sur des fichiers

Les catalogues basés sur des fichiers sont la dernière itération du format de catalogue dans Operator
Lifecycle Manager (OLM). Il s’agit d’un texte simple (JSON ou YAML) et d’une évolution de
configuration déclarative du format de base de données SQLite antérieur, et il est entièrement
rétrocompatible.

IMPORTANT

OpenShift Dedicated 4 Opérateurs

110

1

IMPORTANT

À partir d’OpenShift Dedicated 4.11, le catalogue de l’opérateur par défaut Red Hat est
publié dans le format de catalogue basé sur des fichiers. Les catalogues d’opérateurs Red
Hat fournis par défaut pour OpenShift Dedicated 4.6 à 4.10 publiés dans le format de
base de données SQLite obsolète.

Les sous-commandes opm, les drapeaux et les fonctionnalités liés au format de base de
données SQLite sont également obsolètes et seront supprimés dans une version
ultérieure. Les fonctionnalités sont toujours prises en charge et doivent être utilisées
pour les catalogues utilisant le format de base de données SQLite obsolète.

La plupart des sous-commandes et des drapeaux opm pour travailler avec le format de
base de données SQLite, tels que le prune de l’index opm, ne fonctionnent pas avec le
format de catalogue basé sur des fichiers. Consultez le format d’emballage Operator
Framework pour plus d’informations sur le travail avec les catalogues basés sur des
fichiers.

4.7.2.1. Création d’une image de catalogue basée sur des fichiers

Il est possible d’utiliser l’opm CLI pour créer une image de catalogue qui utilise le format de catalogue
basé sur un fichier en texte brut (JSON ou YAML), qui remplace le format de base de données SQLite
obsolète.

Conditions préalables

C’est vous qui avez installé l’opm CLI.

Il y a la version 1.9.3+ de podman.

L’image groupée est construite et poussée vers un registre qui prend en charge Docker v2-2.

Procédure

1. Initialiser le catalogue:

a. Créer un répertoire pour le catalogue en exécutant la commande suivante:

b. Générer un Dockerfile qui peut construire une image de catalogue en exécutant la
commande opm générer dockerfile:

Indiquez l’image de base officielle Red Hat en utilisant le drapeau -i, sinon le Dockerfile
utilise l’image par défaut en amont.

Le Dockerfile doit être dans le même répertoire parent que le répertoire de catalogue que
vous avez créé à l’étape précédente:

Exemple de structure de répertoire

$ mkdir <catalog_dir>

$ opm generate dockerfile <catalog_dir> \
 -i registry.redhat.io/openshift4/ose-operator-registry-rhel9:v4 1

CHAPITRE 4. LES TÂCHES D’ADMINISTRATEUR

111

1

2

3

1

2

3

4

5

6

1

2

Annuaire parent

Annuaire du catalogue

Dockerfile généré par l’opm générer la commande dockerfile

c. Remplissez le catalogue avec la définition du paquet pour votre opérateur en exécutant la
commande opm init:

Exploitant, ou paquet, nom

Canal auquel les abonnements par défaut s’ils ne sont pas spécifiés

Chemin vers la documentation README.md de l’opérateur ou autre documentation

Chemin vers l’icône de l’opérateur

Format de sortie: JSON ou YAML

Chemin de création du fichier de configuration du catalogue

Cette commande génère un blob de configuration déclaratif olm.package dans le fichier de
configuration du catalogue spécifié.

2. Ajouter un paquet au catalogue en exécutant la commande de rendu opm:

Dessinez les spécifications pour l’image de paquet

Chemin d’accès au fichier de configuration du catalogue

NOTE

Les canaux doivent contenir au moins un paquet.

3. Ajoutez une entrée de canal pour le paquet. À titre d’exemple, modifiez l’exemple suivant à vos
spécifications et ajoutez-le à votre fichier <catalog_dir>/index.yaml:

. 1
├── <catalog_dir> 2
└── <catalog_dir>.Dockerfile 3

$ opm init <operator_name> \ 1
 --default-channel=preview \ 2
 --description=./README.md \ 3
 --icon=./operator-icon.svg \ 4
 --output yaml \ 5
 > <catalog_dir>/index.yaml 6

$ opm render <registry>/<namespace>/<bundle_image_name>:<tag> \ 1
 --output=yaml \
 >> <catalog_dir>/index.yaml 2

OpenShift Dedicated 4 Opérateurs

112

1

Exemple d’entrée de canal

Assurez-vous d’inclure la période (.) après <operator_name> mais avant le v dans la
version. Dans le cas contraire, l’entrée ne parvient pas à passer la commande de validation
opm.

4. De valider le catalogue basé sur les fichiers:

a. Exécutez la commande opm valider par rapport au répertoire du catalogue:

b. Assurez-vous que le code d’erreur est 0:

Exemple de sortie

5. Créez l’image du catalogue en exécutant la commande podman build:

6. Appuyez sur l’image du catalogue vers un registre:

a. Au besoin, authentifier avec votre registre cible en exécutant la commande de connexion
podman:

b. Appuyez sur l’image du catalogue en exécutant la commande podman push:

Ressources supplémentaires

CLI de référence OPM

4.7.2.2. La mise à jour ou le filtrage d’une image de catalogue basée sur des fichiers

Il est possible d’utiliser l’opm CLI pour mettre à jour ou filtrer une image de catalogue qui utilise le format

schema: olm.channel
package: <operator_name>
name: preview
entries:
 - name: <operator_name>.v0.1.0 1

$ opm validate <catalog_dir>

$ echo $?

0

$ podman build . \
 -f <catalog_dir>.Dockerfile \
 -t <registry>/<namespace>/<catalog_image_name>:<tag>

$ podman login <registry>

$ podman push <registry>/<namespace>/<catalog_image_name>:<tag>

CHAPITRE 4. LES TÂCHES D’ADMINISTRATEUR

113

https://docs.redhat.com/en/documentation/openshift_dedicated/4/html-single/cli_tools/#cli-opm-ref

Il est possible d’utiliser l’opm CLI pour mettre à jour ou filtrer une image de catalogue qui utilise le format
de catalogue basé sur des fichiers. En extrayant le contenu d’une image de catalogue existante, vous
pouvez modifier le catalogue au besoin, par exemple:

Ajout de paquets

En supprimant les paquets

La mise à jour des entrées de paquet existantes

Détail des messages de déprécation par paquet, canal et paquet

Ensuite, vous pouvez reconstruire l’image comme une version mise à jour du catalogue.

Conditions préalables

Il y a ce qui suit sur votre poste de travail:

L’opm CLI.

la version 1.9.3+ de Podman.

Image de catalogue basée sur des fichiers.

La structure d’un répertoire de catalogue a récemment initialisé sur votre poste de travail lié
à ce catalogue.
Lorsque vous n’avez pas de répertoire de catalogue initialisé, créez le répertoire et générez
le Dockerfile. Consultez l’étape "Initialiser le catalogue" à partir de la procédure "Créer une
image de catalogue basée sur un fichier".

Procédure

1. Extraire le contenu de l’image du catalogue au format YAML dans un fichier index.yaml dans
votre répertoire de catalogue:

NOTE

Alternativement, vous pouvez utiliser le drapeau -o json pour afficher au format
JSON.

2. Modifiez le contenu du fichier index.yaml résultant à vos spécifications:

IMPORTANT

Après la publication d’un paquet dans un catalogue, supposez que l’un de vos
utilisateurs l’a installé. Assurez-vous que tous les paquets publiés précédemment
dans un catalogue disposent d’un chemin de mise à jour vers la tête de canal
actuelle ou plus récente pour éviter d’échouer les utilisateurs qui ont cette
version installée.

Afin d’ajouter un opérateur, suivez les étapes de création de paquets, de paquets et de

$ opm render <registry>/<namespace>/<catalog_image_name>:<tag> \
 -o yaml > <catalog_dir>/index.yaml

OpenShift Dedicated 4 Opérateurs

114

Afin d’ajouter un opérateur, suivez les étapes de création de paquets, de paquets et de
canaux dans la procédure "Créer une image de catalogue basée sur un fichier".

Afin de supprimer un opérateur, supprimez les blobs olm.package, olm.channel et
olm.bundle qui se rapportent au paquet. L’exemple suivant montre un ensemble qui doit
être supprimé pour supprimer le package example-operator du catalogue:

Exemple 4.9. Exemple d’entrées supprimées

defaultChannel: release-2.7
icon:
 base64data: <base64_string>
 mediatype: image/svg+xml
name: example-operator
schema: olm.package

entries:
- name: example-operator.v2.7.0
 skipRange: '>=2.6.0 <2.7.0'
- name: example-operator.v2.7.1
 replaces: example-operator.v2.7.0
 skipRange: '>=2.6.0 <2.7.1'
- name: example-operator.v2.7.2
 replaces: example-operator.v2.7.1
 skipRange: '>=2.6.0 <2.7.2'
- name: example-operator.v2.7.3
 replaces: example-operator.v2.7.2
 skipRange: '>=2.6.0 <2.7.3'
- name: example-operator.v2.7.4
 replaces: example-operator.v2.7.3
 skipRange: '>=2.6.0 <2.7.4'
name: release-2.7
package: example-operator
schema: olm.channel

image: example.com/example-inc/example-operator-bundle@sha256:<digest>
name: example-operator.v2.7.0
package: example-operator
properties:
- type: olm.gvk
 value:
 group: example-group.example.io
 kind: MyObject
 version: v1alpha1
- type: olm.gvk
 value:
 group: example-group.example.io
 kind: MyOtherObject
 version: v1beta1
- type: olm.package
 value:
 packageName: example-operator
 version: 2.7.0
- type: olm.bundle.object
 value:
 data: <base64_string>

CHAPITRE 4. LES TÂCHES D’ADMINISTRATEUR

115

Afin d’ajouter ou de mettre à jour des messages de déprécation pour un opérateur, assurez-
vous qu’il y a un fichier déprecations.yaml dans le même répertoire que le fichier index.yaml
du paquet. Informations sur le format de fichier deprecations.yaml, voir "olm.deprecations
schema".

3. Enregistrez vos modifications.

4. De valider le catalogue:

5. Reconstruire le catalogue:

6. Appuyez sur l’image du catalogue mise à jour vers un registre:

La vérification

1. Dans la console Web, accédez à la ressource de configuration OperatorHub dans la page
Administration → Paramètres de cluster → Configuration.

2. Ajoutez la source du catalogue ou mettez à jour la source du catalogue existant pour utiliser la
spécification de traction pour votre image de catalogue mise à jour.
De plus amples informations, voir "Ajouter une source de catalogue à un cluster" dans les
"Ressources supplémentaires" de cette section.

3. Après que la source du catalogue est dans un état READY, accédez à la page Opérateurs →
OperatorHub et vérifiez que les modifications que vous avez apportées sont reflétées dans la
liste des Opérateurs.

4.7.3. Catalogues SQLite

IMPORTANT

- type: olm.bundle.object
 value:
 data: <base64_string>
relatedImages:
- image: example.com/example-inc/example-related-image@sha256:<digest>
 name: example-related-image
schema: olm.bundle

$ opm validate <catalog_dir>

$ podman build . \
 -f <catalog_dir>.Dockerfile \
 -t <registry>/<namespace>/<catalog_image_name>:<tag>

$ podman push <registry>/<namespace>/<catalog_image_name>:<tag>

OpenShift Dedicated 4 Opérateurs

116

1

2

3

IMPORTANT

Le format de base de données SQLite pour les catalogues Operator est une
fonctionnalité obsolète. La fonctionnalité obsolète est toujours incluse dans OpenShift
Dedicated et continue d’être prise en charge; cependant, elle sera supprimée dans une
version ultérieure de ce produit et n’est pas recommandée pour de nouveaux
déploiements.

Dans la liste la plus récente des fonctionnalités majeures qui ont été dépréciées ou
supprimées dans OpenShift Dedicated, faites référence à la section Fonctionnalités
obsolètes et supprimées des notes de sortie OpenShift Dedicated.

4.7.3.1. Création d’une image d’index SQLite

Il est possible de créer une image d’index basée sur le format de base de données SQLite à l’aide de
l’opm CLI.

Conditions préalables

C’est vous qui avez installé l’opm CLI.

Il y a la version 1.9.3+ de podman.

L’image groupée est construite et poussée vers un registre qui prend en charge Docker v2-2.

Procédure

1. Commencez un nouvel index:

Liste séparée par virgule d’images groupées à ajouter à l’index.

La balise d’image que vous voulez que l’image de l’index ait.

Facultatif: Une image de base de registre alternative à utiliser pour servir le catalogue.

2. Appuyez sur l’image de l’index vers un registre.

a. Au besoin, authentifier avec votre registre cible:

b. Appuyez sur l’image de l’index:

4.7.3.2. La mise à jour d’une image d’index SQLite

Après avoir configuré OperatorHub pour utiliser une source de catalogue qui fait référence à une image

$ opm index add \
 --bundles <registry>/<namespace>/<bundle_image_name>:<tag> \ 1
 --tag <registry>/<namespace>/<index_image_name>:<tag> \ 2
 [--binary-image <registry_base_image>] 3

$ podman login <registry>

$ podman push <registry>/<namespace>/<index_image_name>:<tag>

CHAPITRE 4. LES TÂCHES D’ADMINISTRATEUR

117

1

2

3

4

Après avoir configuré OperatorHub pour utiliser une source de catalogue qui fait référence à une image
d’index personnalisée, les administrateurs avec le rôle dédié-admin peuvent garder les opérateurs
disponibles sur leur cluster à jour en ajoutant des images groupées à l’image d’index.

Il est possible de mettre à jour une image d’index existante à l’aide de la commande Opm index add.

Conditions préalables

C’est vous qui avez installé l’opm CLI.

Il y a la version 1.9.3+ de podman.

L’image d’index est construite et poussée vers un registre.

Il existe une source de catalogue existante faisant référence à l’image de l’index.

Procédure

1. Actualisez l’index existant en ajoutant des images groupées:

L’indicateur --bundles spécifie une liste séparée par des virgules d’images de paquet
supplémentaires à ajouter à l’index.

L’indicateur --from-index spécifie l’index précédemment poussé.

L’indicateur --tag spécifie la balise image à appliquer à l’image d’index mise à jour.

Le drapeau --pull-outil spécifie l’outil utilisé pour tirer des images de conteneur.

là où:

<registre>

Indique le nom d’hôte du registre, tel que quay.io ou mirror.example.com.

<namespace>

Indique l’espace de noms du registre, tel que ocs-dev ou abc.

<new_bundle_image>

Indique la nouvelle image de paquet à ajouter au registre, comme ocs-operator.

<digest>

Indique l’ID d’image SHA, ou digérer, de l’image de faisceau, telle que
c7f11097a628f092d8bad148406a0e0951094a03445fd4bc0775431ef683a41.

<bx id="1" />

Indique l’image précédemment poussée, telle que abc-redhat-operator-index.

<bx id="1" />

Indique une balise d’image précédemment poussée, telle que 4.

<mise à jour_tag>

$ opm index add \
 --bundles <registry>/<namespace>/<new_bundle_image>@sha256:<digest> \ 1
 --from-index <registry>/<namespace>/<existing_index_image>:<existing_tag> \ 2
 --tag <registry>/<namespace>/<existing_index_image>:<updated_tag> \ 3
 --pull-tool podman 4

OpenShift Dedicated 4 Opérateurs

118

Indique la balise image à appliquer à l’image d’index mise à jour, telle que 4.1.

Commande d’exemple

2. Appuyez sur l’image de l’index mise à jour:

3. Après que Operator Lifecycle Manager (OLM) sonde automatiquement l’image de l’index
référencée dans la source du catalogue à son intervalle régulier, vérifiez que les nouveaux
paquets sont ajoutés avec succès:

4.7.3.3. Filtrage d’une image d’index SQLite

L’image d’index, basée sur le format du paquet Opérateur, est un instantané conteneurisé d’un
catalogue Opérateur. Il est possible de filtrer, ou tailler, un index de tous les paquets sauf une liste
spécifiée, qui crée une copie de l’index source contenant uniquement les Opérateurs que vous
souhaitez.

Conditions préalables

Il y a la version 1.9.3+ de podman.

Il y a grpcurl (outil de ligne de commande tiers).

C’est vous qui avez installé l’opm CLI.

Il y a accès à un registre qui prend en charge Docker v2-2.

Procédure

1. Authentifier avec votre registre cible:

2. Déterminez la liste des paquets que vous souhaitez inclure dans votre index élevé.

a. Exécutez l’image de l’index source que vous souhaitez tailler dans un conteneur. À titre
d’exemple:

$ opm index add \
 --bundles quay.io/ocs-dev/ocs-
operator@sha256:c7f11097a628f092d8bad148406aa0e0951094a03445fd4bc0775431ef683a
41 \
 --from-index mirror.example.com/abc/abc-redhat-operator-index:4 \
 --tag mirror.example.com/abc/abc-redhat-operator-index:4.1 \
 --pull-tool podman

$ podman push <registry>/<namespace>/<existing_index_image>:<updated_tag>

$ oc get packagemanifests -n openshift-marketplace

$ podman login <target_registry>

$ podman run -p50051:50051 \
 -it registry.redhat.io/redhat/redhat-operator-index:v4

CHAPITRE 4. LES TÂCHES D’ADMINISTRATEUR

119

1

2

3

4

Exemple de sortie

b. Dans une session terminale séparée, utilisez la commande grpcurl pour obtenir une liste des
paquets fournis par l’index:

c. Inspectez le fichier packages.out et identifiez les noms de paquets de cette liste que vous
souhaitez conserver dans votre index élevé. À titre d’exemple:

Exemples d’extraits de liste de paquets

d. Dans la session terminale où vous avez exécuté la commande podman exécuter, appuyez
sur Ctrl et C pour arrêter le processus de conteneur.

3. Exécutez la commande suivante pour tailler l’index source de tous les paquets sauf les paquets
spécifiés:

Index sur prune.

Liste des paquets séparés par les virgules à conserver.

Requis uniquement pour les images IBM Power® et IBM Z® : image de base du registre de
l’opérateur avec l’étiquette correspondant à la version majeure et mineure du cluster dédié
à OpenShift.

Balise personnalisée pour la nouvelle image d’index en cours de construction.

Trying to pull registry.redhat.io/redhat/redhat-operator-index:v4...
Getting image source signatures
Copying blob ae8a0c23f5b1 done
...
INFO[0000] serving registry database=/database/index.db port=50051

$ grpcurl -plaintext localhost:50051 api.Registry/ListPackages > packages.out

...
{
 "name": "advanced-cluster-management"
}
...
{
 "name": "jaeger-product"
}
...
{
{
 "name": "quay-operator"
}
...

$ opm index prune \
 -f registry.redhat.io/redhat/redhat-operator-index:v4 \ 1
 -p advanced-cluster-management,jaeger-product,quay-operator \ 2
 [-i registry.redhat.io/openshift4/ose-operator-registry-rhel9:v4] \ 3
 -t <target_registry>:<port>/<namespace>/redhat-operator-index:v4 4

OpenShift Dedicated 4 Opérateurs

120

4. Exécutez la commande suivante pour pousser la nouvelle image d’index vers votre registre cible:

lorsque <namespace> est un espace de noms existant sur le registre.

4.7.4. Catalogue sources et admission de sécurité de pod

L’admission à la sécurité des pod a été introduite dans OpenShift Dedicated 4.11 pour garantir les
normes de sécurité des pod. Les sources de catalogue construites à l’aide du format de catalogue
SQLite et d’une version de l’outil opm CLI publié avant OpenShift Dedicated 4.11 ne peuvent pas
fonctionner sous l’application de la sécurité des pods restreints.

Dans OpenShift Dedicated 4, les espaces de noms n’ont pas restreint l’application de la sécurité des
pod par défaut et le mode de sécurité source du catalogue par défaut est défini à l’héritage.

L’application restreinte par défaut pour tous les espaces de noms est prévue pour inclusion dans une
future version d’OpenShift Dedicated. Lorsque l’exécution restreinte se produit, le contexte de sécurité
de la spécification de la pod pour les gousses sources de catalogue doit correspondre à la norme de
sécurité de la gousse restreinte. Lorsque l’image source de votre catalogue nécessite une norme de
sécurité différente, l’étiquette d’entrées de sécurité de pod pour l’espace de noms doit être
explicitement définie.

NOTE

Dans le cas où vous ne souhaitez pas exécuter vos pods source de catalogue SQLite
comme restreints, vous n’avez pas besoin de mettre à jour votre source de catalogue
dans OpenShift Dedicated 4.

Cependant, il est recommandé de prendre des mesures dès maintenant pour s’assurer
que vos sources de catalogue s’exécutent sous l’application de la sécurité des pods
restreints. Lorsque vous ne prenez pas d’action pour vous assurer que vos sources de
catalogue s’exécutent sous l’application de la sécurité des pods restreints, vos sources de
catalogue pourraient ne pas fonctionner dans les futures versions d’OpenShift
Dedicated.

En tant qu’auteur de catalogue, vous pouvez activer la compatibilité avec l’application de la sécurité des
pods restreints en complétant l’une des actions suivantes:

Faites migrer votre catalogue vers le format de catalogue basé sur des fichiers.

Actualisez l’image de votre catalogue avec une version de l’outil opm CLI publié avec OpenShift
Dedicated 4.11 ou version ultérieure.

NOTE

Le format du catalogue de base de données SQLite est obsolète, mais toujours pris en
charge par Red Hat. Dans une version ultérieure, le format de base de données SQLite ne
sera pas pris en charge et les catalogues devront migrer vers le format de catalogue basé
sur les fichiers. À partir d’OpenShift Dedicated 4.11, le catalogue de l’opérateur par défaut
Red Hat est publié dans le format de catalogue basé sur les fichiers. Les catalogues basés
sur des fichiers sont compatibles avec l’application de la sécurité des pod restreints.

Lorsque vous ne souhaitez pas mettre à jour votre image de catalogue SQLite ou migrer votre

$ podman push <target_registry>:<port>/<namespace>/redhat-operator-index:v4

CHAPITRE 4. LES TÂCHES D’ADMINISTRATEUR

121

Lorsque vous ne souhaitez pas mettre à jour votre image de catalogue SQLite ou migrer votre
catalogue vers le format de catalogue basé sur des fichiers, vous pouvez configurer votre catalogue
pour fonctionner avec des autorisations élevées.

Ressources supplémentaires

Comprendre et gérer l’admission à la sécurité des pod

4.7.4.1. La migration des catalogues de base de données SQLite vers le format de
catalogue basé sur des fichiers

Il est possible de mettre à jour vos catalogues de format de base de données SQLite obsolètes au
format de catalogue basé sur des fichiers.

Conditions préalables

Il y a une source de catalogue de base de données SQLite.

En tant qu’utilisateur, vous avez accès au cluster avec le rôle d’administrateur dédié.

La dernière version de l’outil Opm CLI est disponible avec OpenShift Dedicated 4 sur votre
poste de travail.

Procédure

1. Faites migrer votre catalogue de base de données SQLite vers un catalogue basé sur des
fichiers en exécutant la commande suivante:

2. Générez un Dockerfile pour votre catalogue basé sur des fichiers en exécutant la commande
suivante:

Les prochaines étapes

Le Dockerfile généré peut être construit, étiqueté et poussé à votre registre.

Ressources supplémentaires

Ajout d’une source de catalogue à un cluster

4.7.4.2. La reconstruction des images du catalogue SQLite

Il est possible de reconstruire l’image de votre catalogue SQLite avec la dernière version de l’outil Opm
CLI qui est publié avec votre version d’OpenShift Dedicated.

Conditions préalables

Il y a une source de catalogue de base de données SQLite.

$ opm migrate <registry_image> <fbc_directory>

$ opm generate dockerfile <fbc_directory> \
 --binary-image \
 registry.redhat.io/openshift4/ose-operator-registry-rhel9:v4

OpenShift Dedicated 4 Opérateurs

122

https://docs.redhat.com/en/documentation/openshift_dedicated/4/html-single/authentication_and_authorization/#understanding-and-managing-pod-security-admission

En tant qu’utilisateur, vous avez accès au cluster avec le rôle d’administrateur dédié.

La dernière version de l’outil Opm CLI est disponible avec OpenShift Dedicated 4 sur votre
poste de travail.

Procédure

Exécutez la commande suivante pour reconstruire votre catalogue avec une version plus
récente de l’outil Opm CLI:

4.7.4.3. Configuration des catalogues à exécuter avec des autorisations élevées

Dans le cas où vous ne souhaitez pas mettre à jour votre image de catalogue SQLite ou migrer votre
catalogue vers le format de catalogue basé sur des fichiers, vous pouvez effectuer les actions suivantes
pour vous assurer que votre source de catalogue s’exécute lorsque l’application de la sécurité de la pod
par défaut est limitée:

Définissez manuellement le mode de sécurité du catalogue à l’héritage dans la définition de
votre source de catalogue. Cette action garantit que votre catalogue s’exécute avec des
autorisations héritées même si le mode de sécurité du catalogue par défaut change à restreint.

Étiqueter l’espace de noms source du catalogue pour l’application de la sécurité de base ou de
pod privilégié.

NOTE

Le format du catalogue de base de données SQLite est obsolète, mais toujours pris en
charge par Red Hat. Dans une version ultérieure, le format de base de données SQLite ne
sera pas pris en charge et les catalogues devront migrer vers le format de catalogue basé
sur les fichiers. Les catalogues basés sur des fichiers sont compatibles avec l’application
de la sécurité des pod restreints.

Conditions préalables

Il y a une source de catalogue de base de données SQLite.

En tant qu’utilisateur, vous avez accès au cluster avec le rôle d’administrateur dédié.

Il y a un espace de noms cible qui prend en charge les pods en cours d’exécution avec la norme
d’admission de sécurité élevée de base ou privilégiée.

Procédure

1. Editez la définition de CatalogSource en définissant l’étiquette
spec.grpcPodConfig.securityContextConfig sur l’héritage, comme indiqué dans l’exemple
suivant:

Exemple de CatalogSource Définition

$ opm index add --binary-image \
 registry.redhat.io/openshift4/ose-operator-registry-rhel9:v4 \
 --from-index <your_registry_image> \
 --bundles "" -t \<your_registry_image>

CHAPITRE 4. LES TÂCHES D’ADMINISTRATEUR

123

1

2

ASTUCE

Dans OpenShift Dedicated 4, le champ spec.grpcPodConfig.securityContextConfig est défini à
l’héritage par défaut. Dans une version ultérieure d’OpenShift Dedicated, il est prévu que le
paramètre par défaut change pour être limité. Dans le cas où votre catalogue ne peut pas
fonctionner sous une application restreinte, il est recommandé de définir manuellement ce
champ sur l’héritage.

2. Modifiez votre fichier <namespace>.yaml pour ajouter des normes d’admission de sécurité
de pod élevées à votre espace de noms source de catalogue, comme indiqué dans l’exemple
suivant:

Exemple <namespace>.yaml fichier

Désactivez la synchronisation des étiquettes de sécurité de pod en ajoutant l’étiquette
security.openshift.io/scc.podSecurityLabelSync=false à l’espace de noms.

Appliquez l’étiquette pod-security.kubernetes.io/enforce. Définissez l’étiquette en ligne de
base ou privilégiée. Utilisez le profil de sécurité de la pod de base, sauf si d’autres charges
de travail dans l’espace de noms nécessitent un profil privilégié.

4.7.5. Ajout d’une source de catalogue à un cluster

L’ajout d’une source de catalogue à un cluster dédié OpenShift permet la découverte et l’installation
des opérateurs pour les utilisateurs. Les administrateurs avec le rôle dédié-admin peuvent créer un objet
CatalogSource qui fait référence à une image d’index. OperatorHub utilise des sources de catalogue
pour peupler l’interface utilisateur.

ASTUCE

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 name: my-catsrc
 namespace: my-ns
spec:
 sourceType: grpc
 grpcPodConfig:
 securityContextConfig: legacy
 image: my-image:latest

apiVersion: v1
kind: Namespace
metadata:
...
 labels:
 security.openshift.io/scc.podSecurityLabelSync: "false" 1
 openshift.io/cluster-monitoring: "true"
 pod-security.kubernetes.io/enforce: baseline 2
 name: "<namespace_name>"

OpenShift Dedicated 4 Opérateurs

124

1

2

3

ASTUCE

Alternativement, vous pouvez utiliser la console Web pour gérer les sources de catalogue. Dans la page
Accueil → Rechercher, sélectionnez un projet, cliquez sur la liste déroulante Ressources et recherchez
CatalogSource. Il est possible de créer, mettre à jour, supprimer, désactiver et activer des sources
individuelles.

Conditions préalables

« vous avez construit et poussé une image d’index vers un registre.

En tant qu’utilisateur, vous avez accès au cluster avec le rôle d’administrateur dédié.

Procédure

1. Créez un objet CatalogSource qui fait référence à votre image d’index.

a. Modifiez ce qui suit à vos spécifications et enregistrez-le sous forme de fichier
catalogSource.yaml:

Lorsque vous souhaitez que la source du catalogue soit disponible à l’échelle mondiale
pour les utilisateurs de tous les espaces de noms, spécifiez l’espace de noms
openshift-marketplace. Dans le cas contraire, vous pouvez spécifier un espace de
noms différent pour le catalogue à portée et disponible uniquement pour cet espace
de noms.

Facultatif: Définir l’annotation olm.catalogImageTempler sur votre nom d’image
d’index et utiliser une ou plusieurs des variables de version du cluster Kubernetes
comme indiqué lors de la construction du modèle pour la balise d’image.

Indiquez la valeur de l’héritage ou de la restriction. Lorsque le champ n’est pas défini, la
valeur par défaut est héritée. Dans une version ultérieure d’OpenShift Dedicated, il est
prévu que la valeur par défaut soit limitée. Dans le cas où votre catalogue ne peut pas
fonctionner avec des autorisations restreintes, il est recommandé de définir
manuellement ce champ sur l’héritage.

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 name: my-operator-catalog
 namespace: openshift-marketplace 1
 annotations:
 olm.catalogImageTemplate: 2
 "<registry>/<namespace>/<index_image_name>:v{kube_major_version}.
{kube_minor_version}.{kube_patch_version}"
spec:
 sourceType: grpc
 grpcPodConfig:
 securityContextConfig: <security_mode> 3
 image: <registry>/<namespace>/<index_image_name>:<tag> 4
 displayName: My Operator Catalog
 publisher: <publisher_name> 5
 updateStrategy:
 registryPoll: 6
 interval: 30m

CHAPITRE 4. LES TÂCHES D’ADMINISTRATEUR

125

4

5

6

Indiquez votre image d’index. Lorsque vous spécifiez une balise après le nom de
l’image, par exemple :v4, la source du catalogue utilise une stratégie de traction

Indiquez votre nom ou un nom d’organisation qui publie le catalogue.

Les sources du catalogue peuvent vérifier automatiquement les nouvelles versions
pour se tenir à jour.

b. Créez l’objet CatalogSource:

2. Assurez-vous que les ressources suivantes sont créées avec succès.

a. Consultez les gousses:

Exemple de sortie

b. Consultez la source du catalogue:

Exemple de sortie

c. Consultez le manifeste du paquet:

Exemple de sortie

Désormais, vous pouvez installer les Opérateurs à partir de la page OperatorHub sur votre console Web
dédiée OpenShift.

Ressources supplémentaires

Concepts et ressources du gestionnaire de cycle de vie de l’opérateur → Source du catalogue

4.7.6. La suppression des catalogues personnalisés

En tant qu’administrateur avec le rôle d’administrateur dédié, vous pouvez supprimer les catalogues

$ oc apply -f catalogSource.yaml

$ oc get pods -n openshift-marketplace

NAME READY STATUS RESTARTS AGE
my-operator-catalog-6njx6 1/1 Running 0 28s
marketplace-operator-d9f549946-96sgr 1/1 Running 0 26h

$ oc get catalogsource -n openshift-marketplace

NAME DISPLAY TYPE PUBLISHER AGE
my-operator-catalog My Operator Catalog grpc 5s

$ oc get packagemanifest -n openshift-marketplace

NAME CATALOG AGE
jaeger-product My Operator Catalog 93s

OpenShift Dedicated 4 Opérateurs

126

En tant qu’administrateur avec le rôle d’administrateur dédié, vous pouvez supprimer les catalogues
d’opérateur personnalisés qui ont déjà été ajoutés à votre cluster en supprimant la source du catalogue
connexe.

Conditions préalables

En tant qu’utilisateur, vous avez accès au cluster avec le rôle d’administrateur dédié.

Procédure

1. Dans la perspective de l’administrateur de la console Web, accédez à Home → Rechercher.

2. Choisissez un projet dans la liste Projet:

3. Choisissez CatalogSource dans la liste Ressources.

4. Choisissez le menu Options du catalogue que vous souhaitez supprimer, puis cliquez sur
Supprimer CatalogSource.

4.8. CATALOGUE SOURCE DE CALENDRIER DES POD

Lorsqu’un gestionnaire de cycle de vie d’opérateur (OLM) source de type de source grpc définit une
image spec.image, l’opérateur de catalogue crée un pod qui sert le contenu de l’image définie. Ce pod
définit par défaut ce qui suit dans sa spécification:

Il n’y a que le sélecteur de nœuds kubernetes.io/os=linux.

Le nom de classe prioritaire par défaut: system-cluster-critique.

Aucune tolérance.

En tant qu’administrateur, vous pouvez remplacer ces valeurs en modifiant les champs dans la section
optionnelle spec.grpcPodConfig de l’objet CatalogSource.

IMPORTANT

L’opérateur Marketplace, openshift-marketplace, gère la ressource personnalisée (CR)
par défaut OperatorHub. Ce CR gère les objets CatalogSource. Lorsque vous tentez de
modifier les champs de la section spec.grpcPodConfig de l’objet CatalogSource,
l’opérateur Marketplace retourne automatiquement ces modifications.

Afin d’appliquer des modifications persistantes à l’objet CatalogSource, vous devez
d’abord désactiver un objet CatalogSource par défaut.

Ressources supplémentaires

Concepts et ressources OLM → Source du catalogue

4.8.1. Désactivation des objets CatalogSource par défaut au niveau local

Il est possible d’appliquer des modifications persistantes à un objet CatalogSource, comme les pods
source de catalogue, au niveau local, en désactivant un objet CatalogSource par défaut. Considérez la
configuration par défaut dans les situations où la configuration de l’objet CatalogSource par défaut ne

CHAPITRE 4. LES TÂCHES D’ADMINISTRATEUR

127

répond pas aux besoins de votre organisation. Lorsque vous modifiez les champs dans la section
spec.grpcPodConfig de l’objet CatalogSource, l’opérateur Marketplace retourne automatiquement ces
modifications.

L’opérateur Marketplace, openshift-marketplace, gère les ressources personnalisées (CR) par défaut de
l’opérateur OperatorHub. L’opérateurHub gère les objets CatalogSource.

Afin d’appliquer des modifications persistantes à l’objet CatalogSource, vous devez d’abord désactiver
un objet CatalogSource par défaut.

Procédure

Afin de désactiver tous les objets CatalogSource par défaut au niveau local, entrez la
commande suivante:

NOTE

Il est également possible de configurer le OperatorHub CR par défaut pour
désactiver tous les objets CatalogSource ou désactiver un objet spécifique.

Ressources supplémentaires

OperatorHub ressource personnalisée

4.8.2. Écraser le sélecteur de nœud pour les pods sources de catalogue

Conditions préalables

L’objet CatalogSource de type source grpc avec spec.image est défini.

En tant qu’utilisateur, vous avez accès au cluster avec le rôle d’administrateur dédié.

Procédure

Éditez l’objet CatalogSource et ajoutez ou modifiez la section spec.grpcPodConfig pour inclure
ce qui suit:

lorsque <label> est l’étiquette du sélecteur de nœuds que vous souhaitez que les pods
source du catalogue utilisent pour la planification.

Ressources supplémentaires

Placer des pods sur des nœuds spécifiques à l’aide de sélecteurs de nœuds

4.8.3. Dépassement du nom de classe prioritaire pour les pods sources de catalogue

Conditions préalables

$ oc patch operatorhub cluster -p '{"spec": {"disableAllDefaultSources": true}}' --type=merge

 grpcPodConfig:
 nodeSelector:
 custom_label: <label>

OpenShift Dedicated 4 Opérateurs

128

https://docs.redhat.com/en/documentation/openshift_dedicated/4/html-single/nodes/#nodes-scheduler-node-selectors

L’objet CatalogSource de type source grpc avec spec.image est défini.

En tant qu’utilisateur, vous avez accès au cluster avec le rôle d’administrateur dédié.

Procédure

Éditez l’objet CatalogSource et ajoutez ou modifiez la section spec.grpcPodConfig pour inclure
ce qui suit:

lorsque <priority_class> est l’un des éléments suivants:

L’une des classes de priorité par défaut fournies par Kubernetes: system-cluster-critique ou
system-node-critique

Ensemble vide ("") pour attribuer la priorité par défaut

Classe de priorité préexistante et définie sur mesure

NOTE

Auparavant, le seul paramètre de planification des pod qui pouvait être dépassé était
priorityClassName. Cela a été fait en ajoutant l’annotation de classe de priorité à l’objet
CatalogSource. À titre d’exemple:

Lorsqu’un objet CatalogSource définit à la fois l’annotation et
spec.grpcPodConfig.priorityClassName, l’annotation prime sur le paramètre de
configuration.

Ressources supplémentaires

Classes prioritaires de pod

4.8.4. Les tolérances primordiales pour les pods sources de catalogue

Conditions préalables

L’objet CatalogSource de type source grpc avec spec.image est défini.

En tant qu’utilisateur, vous avez accès au cluster avec le rôle d’administrateur dédié.

Procédure

Éditez l’objet CatalogSource et ajoutez ou modifiez la section spec.grpcPodConfig pour inclure

 grpcPodConfig:
 priorityClassName: <priority_class>

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 name: example-catalog
 namespace: openshift-marketplace
 annotations:
 operatorframework.io/priorityclass: system-cluster-critical

CHAPITRE 4. LES TÂCHES D’ADMINISTRATEUR

129

https://docs.redhat.com/en/documentation/openshift_dedicated/4/html-single/nodes/#admin-guide-priority-preemption-priority-class_nodes-pods-priority

Éditez l’objet CatalogSource et ajoutez ou modifiez la section spec.grpcPodConfig pour inclure
ce qui suit:

4.9. DÉPANNAGE DES PROBLÈMES DE L’OPÉRATEUR

Lorsque vous rencontrez des problèmes d’opérateur, vérifiez l’état de l’abonnement de l’opérateur.
Consultez la santé de la pod de l’opérateur à travers le cluster et rassemblez les journaux de l’opérateur
pour le diagnostic.

4.9.1. Conditions d’abonnement à l’opérateur

Les abonnements peuvent signaler les types d’état suivants:

Tableau 4.2. Conditions d’abonnement

État de l’état Description

CatalogueSourcesUnsanté Certaines ou toutes les sources de catalogue à utiliser en résolution sont
malsaines.

InstallPlanMissing Il manque un plan d’installation pour un abonnement.

InstallPlanPending Le plan d’installation d’un abonnement est en attente d’installation.

InstallPlanFailed Le plan d’installation d’un abonnement a échoué.

La RésolutionFailed La résolution de dépendance pour un abonnement a échoué.

NOTE

Les opérateurs de cluster dédiés par défaut sont gérés par l’opérateur de versions de
cluster (CVO) et ils n’ont pas d’objet d’abonnement. Les opérateurs d’applications sont
gérés par Operator Lifecycle Manager (OLM) et ils ont un objet d’abonnement.

Ressources supplémentaires

Exigences en matière de santé du catalogue

4.9.2. Affichage du statut d’abonnement de l’opérateur en utilisant le CLI

En utilisant le CLI, vous pouvez voir l’état de l’abonnement à l’opérateur.

Conditions préalables

 grpcPodConfig:
 tolerations:
 - key: "<key_name>"
 operator: "<operator_type>"
 value: "<value>"
 effect: "<effect>"

OpenShift Dedicated 4 Opérateurs

130

En tant qu’utilisateur, vous avez accès au cluster avec le rôle d’administrateur dédié.

L’OpenShift CLI (oc) a été installé.

Procédure

1. Abonnements à l’opérateur de liste:

2. Consultez la commande de description d’oc pour inspecter une ressource d’abonnement:

3. Dans la sortie de commande, trouvez la section Conditions pour l’état des types de condition
d’abonnement Opérateur. Dans l’exemple suivant, le type de condition de
CatalogSourcesUnsanté a un statut de faux parce que toutes les sources de catalogue
disponibles sont saines:

Exemple de sortie

NOTE

Les opérateurs de cluster dédiés par défaut sont gérés par l’opérateur de versions de
cluster (CVO) et ils n’ont pas d’objet d’abonnement. Les opérateurs d’applications sont
gérés par Operator Lifecycle Manager (OLM) et ils ont un objet d’abonnement.

4.9.3. Affichage de l’état de la source du catalogue de l’opérateur en utilisant le CLI

Il est possible d’afficher l’état d’une source de catalogue de l’opérateur à l’aide du CLI.

Conditions préalables

En tant qu’utilisateur, vous avez accès au cluster avec le rôle d’administrateur dédié.

L’OpenShift CLI (oc) a été installé.

Procédure

1. Énumérez les sources du catalogue dans un espace de noms. À titre d’exemple, vous pouvez

$ oc get subs -n <operator_namespace>

$ oc describe sub <subscription_name> -n <operator_namespace>

Name: cluster-logging
Namespace: openshift-logging
Labels: operators.coreos.com/cluster-logging.openshift-logging=
Annotations: <none>
API Version: operators.coreos.com/v1alpha1
Kind: Subscription
...
Conditions:
 Last Transition Time: 2019-07-29T13:42:57Z
 Message: all available catalogsources are healthy
 Reason: AllCatalogSourcesHealthy
 Status: False
 Type: CatalogSourcesUnhealthy
...

CHAPITRE 4. LES TÂCHES D’ADMINISTRATEUR

131

1. Énumérez les sources du catalogue dans un espace de noms. À titre d’exemple, vous pouvez
vérifier l’espace de noms openshift-marketplace, qui est utilisé pour les sources de catalogue à
l’échelle du cluster:

Exemple de sortie

2. La commande oc described permet d’obtenir plus de détails et d’état sur une source de
catalogue:

Exemple de sortie

Dans l’exemple précédent, le dernier état observé est TRANSIENT_FAILURE. Cet état indique
qu’il y a un problème à établir une connexion pour la source du catalogue.

3. Énumérez les pods dans l’espace de noms où votre source de catalogue a été créée:

Exemple de sortie

$ oc get catalogsources -n openshift-marketplace

NAME DISPLAY TYPE PUBLISHER AGE
certified-operators Certified Operators grpc Red Hat 55m
community-operators Community Operators grpc Red Hat 55m
example-catalog Example Catalog grpc Example Org 2m25s
redhat-marketplace Red Hat Marketplace grpc Red Hat 55m
redhat-operators Red Hat Operators grpc Red Hat 55m

$ oc describe catalogsource example-catalog -n openshift-marketplace

Name: example-catalog
Namespace: openshift-marketplace
Labels: <none>
Annotations: operatorframework.io/managed-by: marketplace-operator
 target.workload.openshift.io/management: {"effect": "PreferredDuringScheduling"}
API Version: operators.coreos.com/v1alpha1
Kind: CatalogSource
...
Status:
 Connection State:
 Address: example-catalog.openshift-marketplace.svc:50051
 Last Connect: 2021-09-09T17:07:35Z
 Last Observed State: TRANSIENT_FAILURE
 Registry Service:
 Created At: 2021-09-09T17:05:45Z
 Port: 50051
 Protocol: grpc
 Service Name: example-catalog
 Service Namespace: openshift-marketplace
...

$ oc get pods -n openshift-marketplace

NAME READY STATUS RESTARTS AGE

OpenShift Dedicated 4 Opérateurs

132

Lorsqu’une source de catalogue est créée dans un espace de noms, un pod pour la source du
catalogue est créé dans cet espace de noms. Dans l’exemple précédent, l’état de la pod
example-catalog-bwt8z est ImagePullBackOff. Ce statut indique qu’il y a un problème à tirer
l’image de l’index de la source du catalogue.

4. Consultez la commande de description d’oc pour inspecter un pod pour obtenir des informations
plus détaillées:

Exemple de sortie

Dans l’exemple précédent, les messages d’erreur indiquent que l’image d’index de la source du
catalogue ne parvient pas à tirer avec succès en raison d’un problème d’autorisation. À titre
d’exemple, l’image d’index peut être stockée dans un registre qui nécessite des identifiants de
connexion.

Ressources supplémentaires

documentation du GRPC : États de connectivité

4.9.4. État de la pod de l’opérateur d’interrogation

Il est possible de répertorier les pods d’opérateur dans un cluster et leur statut. Il est également possible

certified-operators-cv9nn 1/1 Running 0 36m
community-operators-6v8lp 1/1 Running 0 36m
marketplace-operator-86bfc75f9b-jkgbc 1/1 Running 0 42m
example-catalog-bwt8z 0/1 ImagePullBackOff 0 3m55s
redhat-marketplace-57p8c 1/1 Running 0 36m
redhat-operators-smxx8 1/1 Running 0 36m

$ oc describe pod example-catalog-bwt8z -n openshift-marketplace

Name: example-catalog-bwt8z
Namespace: openshift-marketplace
Priority: 0
Node: ci-ln-jyryyg2-f76d1-ggdbq-worker-b-vsxjd/10.0.128.2
...
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled 48s default-scheduler Successfully assigned openshift-
marketplace/example-catalog-bwt8z to ci-ln-jyryyf2-f76d1-fgdbq-worker-b-vsxjd
 Normal AddedInterface 47s multus Add eth0 [10.131.0.40/23] from
openshift-sdn
 Normal BackOff 20s (x2 over 46s) kubelet Back-off pulling image
"quay.io/example-org/example-catalog:v1"
 Warning Failed 20s (x2 over 46s) kubelet Error: ImagePullBackOff
 Normal Pulling 8s (x3 over 47s) kubelet Pulling image "quay.io/example-
org/example-catalog:v1"
 Warning Failed 8s (x3 over 47s) kubelet Failed to pull image
"quay.io/example-org/example-catalog:v1": rpc error: code = Unknown desc = reading
manifest v1 in quay.io/example-org/example-catalog: unauthorized: access to the requested
resource is not authorized
 Warning Failed 8s (x3 over 47s) kubelet Error: ErrImagePull

CHAPITRE 4. LES TÂCHES D’ADMINISTRATEUR

133

Il est possible de répertorier les pods d’opérateur dans un cluster et leur statut. Il est également possible
de recueillir un résumé détaillé de la pod de l’opérateur.

Conditions préalables

En tant qu’utilisateur, vous avez accès au cluster avec le rôle d’administrateur dédié.

Le service API est toujours fonctionnel.

L’OpenShift CLI (oc) a été installé.

Procédure

1. Liste Opérateurs fonctionnant dans le cluster. La sortie comprend la version de l’opérateur, la
disponibilité et les informations de disponibilité:

2. Liste Les pods d’opérateur s’exécutant dans l’espace de noms de l’opérateur, plus le statut du
pod, le redémarrage et l’âge:

3. Afficher un résumé détaillé de la pod de l’opérateur:

4.9.5. Collecte des journaux de l’opérateur

Lorsque vous rencontrez des problèmes d’opérateur, vous pouvez recueillir des informations de
diagnostic détaillées à partir des journaux de pod de l’opérateur.

Conditions préalables

En tant qu’utilisateur, vous avez accès au cluster avec le rôle d’administrateur dédié.

Le service API est toujours fonctionnel.

L’OpenShift CLI (oc) a été installé.

Les noms de domaine entièrement qualifiés des machines de plan de contrôle ou de contrôle
sont disponibles.

Procédure

1. Énumérez les pods d’opérateur qui s’exécutent dans l’espace de noms de l’opérateur, ainsi que
le statut, le redémarrage et l’âge du pod:

2. Journaux d’examen pour une pod d’opérateur:

$ oc get clusteroperators

$ oc get pod -n <operator_namespace>

$ oc describe pod <operator_pod_name> -n <operator_namespace>

$ oc get pods -n <operator_namespace>

$ oc logs pod/<pod_name> -n <operator_namespace>

OpenShift Dedicated 4 Opérateurs

134

Dans le cas où une pod d’opérateur a plusieurs conteneurs, la commande précédente produira
une erreur qui inclut le nom de chaque conteneur. Journal de requête à partir d’un conteneur
individuel:

3. Lorsque l’API n’est pas fonctionnelle, examinez la pod et le conteneur de l’opérateur sur chaque
nœud de plan de contrôle en utilisant SSH à la place. <master-
node>.<cluster_name>.<base_domain> par des valeurs appropriées.

a. Liste des gousses sur chaque nœud de plan de contrôle:

b. Dans le cas de n’importe quelle gousse d’opérateur qui ne montre pas d’état prêt, inspectez
en détail l’état de la gousse. <operator_pod_id> par l’ID du pod de l’opérateur listé
dans la sortie de la commande précédente:

c. Liste des conteneurs liés à une pod d’opérateur:

d. Dans le cas d’un conteneur de l’opérateur qui ne montre pas d’état prêt, inspectez en détail
l’état du conteneur. <container_id> par un identifiant de conteneur listé dans la sortie
de la commande précédente:

e. Examinez les journaux pour tous les conteneurs de l’opérateur qui ne montrent pas d’état
prêt. <container_id> par un identifiant de conteneur listé dans la sortie de la
commande précédente:

NOTE

Les 4 nœuds de cluster de Red Hat Enterprise Linux CoreOS (RHCOS) sont
immuables et comptent sur les opérateurs pour appliquer des modifications
de cluster. L’accès aux nœuds de cluster en utilisant SSH n’est pas
recommandé. Avant d’essayer de recueillir des données diagnostiques sur
SSH, vérifiez si les données recueillies en exécutant oc adm doivent recueillir
et si d’autres commandes oc sont suffisantes à la place. Cependant, si l’API
dédiée OpenShift n’est pas disponible, ou si le kubelet ne fonctionne pas
correctement sur le nœud cible, les opérations oc seront affectées. Dans de
telles situations, il est possible d’accéder à des nœuds en utilisant ssh
core@<node>.<cluster_name>.<base_domain>.

$ oc logs pod/<operator_pod_name> -c <container_name> -n <operator_namespace>

$ ssh core@<master-node>.<cluster_name>.<base_domain> sudo crictl pods

$ ssh core@<master-node>.<cluster_name>.<base_domain> sudo crictl inspectp
<operator_pod_id>

$ ssh core@<master-node>.<cluster_name>.<base_domain> sudo crictl ps --pod=
<operator_pod_id>

$ ssh core@<master-node>.<cluster_name>.<base_domain> sudo crictl inspect
<container_id>

$ ssh core@<master-node>.<cluster_name>.<base_domain> sudo crictl logs -f
<container_id>

CHAPITRE 4. LES TÂCHES D’ADMINISTRATEUR

135

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

5.1. À PROPOS DE L’OPÉRATEUR SDK

Le Cadre d’opérateur est une boîte à outils open source pour gérer les applications natives Kubernetes,
appelées Opérateurs, de manière efficace, automatisée et évolutive. Les opérateurs profitent de
l’extensibilité de Kubernetes pour offrir les avantages d’automatisation des services cloud, tels que le
provisionnement, la mise à l’échelle, la sauvegarde et la restauration, tout en étant en mesure
d’exécuter n’importe où Kubernetes peut fonctionner.

Les opérateurs facilitent la gestion d’applications complexes et étatiques au-dessus de Kubernetes.
Cependant, écrire un opérateur aujourd’hui peut être difficile en raison de défis tels que l’utilisation
d’API de bas niveau, l’écriture de plaque de chaudière et un manque de modularité, ce qui conduit à la
duplication.

Le SDK de l’opérateur, un composant du Cadre d’opérateur, fournit un outil d’interface de ligne de
commande (CLI) que les développeurs d’opérateurs peuvent utiliser pour construire, tester et déployer
un opérateur.

IMPORTANT

La version prise en charge par Red Hat de l’outil Operator SDK CLI, y compris les outils
d’échafaudage et de test connexes pour les projets d’opérateur, est dépréciée et devrait
être supprimée dans une version ultérieure d’OpenShift Dedicated. Le Red Hat fournira
des corrections de bogues et une prise en charge de cette fonctionnalité pendant le
cycle de vie de la version actuelle, mais cette fonctionnalité ne recevra plus
d’améliorations et sera supprimée des futures versions d’OpenShift Dedicated.

La version prise en charge par Red Hat du SDK de l’opérateur n’est pas recommandée
pour la création de nouveaux projets d’opérateur. Les auteurs d’opérateurs avec des
projets d’opérateur existants peuvent utiliser la version de l’outil Operator SDK CLI publié
avec OpenShift Dedicated 4 pour maintenir leurs projets et créer des versions
d’opérateur ciblant des versions plus récentes d’OpenShift Dedicated.

Les images de base suivantes pour les projets d’opérateur ne sont pas dépréciées. Les
fonctionnalités d’exécution et les API de configuration de ces images de base sont
toujours prises en charge pour les corrections de bogues et pour l’adressage des CVE.

L’image de base pour les projets d’opérateurs basés sur Ansible

L’image de base pour les projets d’opérateur basé sur Helm

Afin d’obtenir de l’information sur la version non prise en charge et gérée par la
communauté du SDK de l’opérateur, voir Operator SDK (Operator Framework).

Comment utiliser le SDK de l’opérateur?

Le SDK de l’opérateur simplifie ce processus de création d’applications natives Kubernetes, ce qui peut
nécessiter des connaissances opérationnelles approfondies et spécifiques à l’application. Le SDK de
l’opérateur réduit non seulement cette barrière, mais il aide également à réduire la quantité de code de
plaque de chaudière nécessaire pour de nombreuses capacités de gestion communes, telles que le
comptage ou la surveillance.

Le SDK de l’opérateur est un framework qui utilise la bibliothèque d’exécution du contrôleur pour
faciliter l’écriture des opérateurs en fournissant les fonctionnalités suivantes:

OpenShift Dedicated 4 Opérateurs

136

API de haut niveau et abstractions pour écrire la logique opérationnelle plus intuitivement

Des outils pour l’échafaudage et la génération de code pour démarrer rapidement un nouveau
projet

Intégration avec Operator Lifecycle Manager (OLM) pour rationaliser l’emballage, l’installation
et l’exécution des opérateurs sur un cluster

Extensions pour couvrir les cas communs d’utilisation de l’opérateur

Les métriques configurées automatiquement dans n’importe quel opérateur Go-based généré
pour une utilisation sur des clusters où l’opérateur Prometheus est déployé

Les auteurs d’opérateurs disposant d’un accès administrateur dédié à OpenShift Dedicated peuvent
utiliser l’opérateur SDK CLI pour développer leurs propres opérateurs basés sur Go, Ansible, Java ou
Helm. Kubebuilder est intégré dans le SDK de l’opérateur en tant que solution d’échafaudage pour les
opérateurs Go, ce qui signifie que les projets Kubebuilder existants peuvent être utilisés comme avec le
SDK de l’opérateur et continuer à fonctionner.

NOTE

Le logiciel OpenShift Dedicated 4 prend en charge le SDK 1.38.0 de l’opérateur.

5.1.1. En quoi consistent les opérateurs?

Afin d’obtenir un aperçu des concepts et de la terminologie de base de l’opérateur, voir Comprendre les
opérateurs.

5.1.2. Flux de travail de développement

Le SDK de l’opérateur fournit le flux de travail suivant pour développer un nouvel opérateur:

1. Créez un projet d’opérateur à l’aide de l’interface de ligne de commande de l’opérateur SDK
(CLI).

2. Définissez de nouvelles API de ressource en ajoutant des définitions de ressources
personnalisées (CRD).

3. Indiquez les ressources à surveiller à l’aide de l’API d’opérateur SDK.

4. Définissez la logique de rapprochement de l’opérateur dans un gestionnaire désigné et utilisez
l’API d’opérateur SDK pour interagir avec les ressources.

5. Faites appel à l’opérateur SDK CLI pour créer et générer les manifestes de déploiement de
l’opérateur.

Figure 5.1. Flux de travail de l’opérateur SDK

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

137

Figure 5.1. Flux de travail de l’opérateur SDK

À un niveau élevé, un opérateur qui utilise l’opérateur SDK traite les événements pour les ressources
surveillées dans un gestionnaire défini par l’opérateur et prend des mesures pour concilier l’état de
l’application.

5.1.3. Ressources supplémentaires

Guide de construction d’opérateur certifié

5.2. INSTALLATION DE L’OPÉRATEUR SDK CLI

Le SDK de l’opérateur fournit un outil d’interface de ligne de commande (CLI) que les développeurs
d’opérateurs peuvent utiliser pour construire, tester et déployer un opérateur. Il est possible d’installer
le SDK CLI de l’opérateur sur votre poste de travail afin que vous soyez prêt à commencer à créer vos
propres opérateurs.

IMPORTANT

OpenShift Dedicated 4 Opérateurs

138

https://redhat-connect.gitbook.io/certified-operator-guide/

IMPORTANT

La version prise en charge par Red Hat de l’outil Operator SDK CLI, y compris les outils
d’échafaudage et de test connexes pour les projets d’opérateur, est dépréciée et devrait
être supprimée dans une version ultérieure d’OpenShift Dedicated. Le Red Hat fournira
des corrections de bogues et une prise en charge de cette fonctionnalité pendant le
cycle de vie de la version actuelle, mais cette fonctionnalité ne recevra plus
d’améliorations et sera supprimée des futures versions d’OpenShift Dedicated.

La version prise en charge par Red Hat du SDK de l’opérateur n’est pas recommandée
pour la création de nouveaux projets d’opérateur. Les auteurs d’opérateurs avec des
projets d’opérateur existants peuvent utiliser la version de l’outil Operator SDK CLI publié
avec OpenShift Dedicated 4 pour maintenir leurs projets et créer des versions
d’opérateur ciblant des versions plus récentes d’OpenShift Dedicated.

Les images de base suivantes pour les projets d’opérateur ne sont pas dépréciées. Les
fonctionnalités d’exécution et les API de configuration de ces images de base sont
toujours prises en charge pour les corrections de bogues et pour l’adressage des CVE.

L’image de base pour les projets d’opérateurs basés sur Ansible

L’image de base pour les projets d’opérateur basé sur Helm

Afin d’obtenir de l’information sur la version non prise en charge et gérée par la
communauté du SDK de l’opérateur, voir Operator SDK (Operator Framework).

Les auteurs d’opérateurs disposant d’un accès administrateur dédié à OpenShift Dedicated peuvent
utiliser l’opérateur SDK CLI pour développer leurs propres opérateurs basés sur Go, Ansible, Java ou
Helm. Kubebuilder est intégré dans le SDK de l’opérateur en tant que solution d’échafaudage pour les
opérateurs Go, ce qui signifie que les projets Kubebuilder existants peuvent être utilisés comme avec le
SDK de l’opérateur et continuer à fonctionner.

NOTE

Le logiciel OpenShift Dedicated 4 prend en charge le SDK 1.38.0 de l’opérateur.

5.2.1. Installation de l’opérateur SDK CLI sur Linux

L’outil OpenShift SDK CLI peut être installé sur Linux.

Conditions préalables

Aller v1.19+

Docker v17.03+, podman v1.9.3+, ou buildah v1.7+

Procédure

1. Accédez au site miroir OpenShift.

2. À partir du dernier répertoire 4, téléchargez la dernière version du tarball pour Linux.

3. Décompressez l’archive:

$ tar xvf operator-sdk-v1.38.0-ocp-linux-x86_64.tar.gz

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

139

4. Faire le fichier exécutable:

5. Déplacez le binaire opérateur-sdk extrait vers un répertoire qui se trouve sur votre PATH.

ASTUCE

Afin de vérifier votre PATH:

La vérification

Après avoir installé l’opérateur SDK CLI, vérifiez qu’il est disponible:

Exemple de sortie

5.2.2. Installation de l’opérateur SDK CLI sur macOS

L’outil OpenShift SDK CLI peut être installé sur macOS.

Conditions préalables

Aller v1.19+

Docker v17.03+, podman v1.9.3+, ou buildah v1.7+

Procédure

1. En ce qui concerne l’architecture amd64, accédez au site miroir OpenShift pour l’architecture
amd64.

2. À partir du dernier répertoire 4, téléchargez la dernière version du tarball pour macOS.

3. Décompressez l’archive de l’opérateur SDK pour l’architecture amd64 en exécutant la
commande suivante:

4. Faites le fichier exécutable en exécutant la commande suivante:

5. Déplacez le binaire opérateur-sdk extrait vers un répertoire qui est sur votre PATH en

$ chmod +x operator-sdk

$ echo $PATH

$ sudo mv ./operator-sdk /usr/local/bin/operator-sdk

$ operator-sdk version

operator-sdk version: "v1.38.0-ocp", ...

$ tar xvf operator-sdk-v1.38.0-ocp-darwin-x86_64.tar.gz

$ chmod +x operator-sdk

OpenShift Dedicated 4 Opérateurs

140

5. Déplacez le binaire opérateur-sdk extrait vers un répertoire qui est sur votre PATH en
exécutant la commande suivante:

ASTUCE

Cochez votre PATH en exécutant la commande suivante:

La vérification

Après avoir installé l’opérateur SDK CLI, vérifiez qu’il est disponible en exécutant la commande
suivante:

Exemple de sortie

5.3. OPÉRATEURS BASÉS SUR GO

5.3.1. Didacticiel d’opérateur SDK pour les opérateurs Go-based

Les développeurs d’opérateurs peuvent profiter de la prise en charge du langage de programmation Go
dans le SDK de l’opérateur pour créer un exemple d’opérateur Go pour Memcached, un magasin à valeur
clé distribué, et gérer son cycle de vie.

IMPORTANT

$ echo $PATH

$ sudo mv ./operator-sdk /usr/local/bin/operator-sdk

$ operator-sdk version

operator-sdk version: "v1.38.0-ocp", ...

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

141

IMPORTANT

La version prise en charge par Red Hat de l’outil Operator SDK CLI, y compris les outils
d’échafaudage et de test connexes pour les projets d’opérateur, est dépréciée et devrait
être supprimée dans une version ultérieure d’OpenShift Dedicated. Le Red Hat fournira
des corrections de bogues et une prise en charge de cette fonctionnalité pendant le
cycle de vie de la version actuelle, mais cette fonctionnalité ne recevra plus
d’améliorations et sera supprimée des futures versions d’OpenShift Dedicated.

La version prise en charge par Red Hat du SDK de l’opérateur n’est pas recommandée
pour la création de nouveaux projets d’opérateur. Les auteurs d’opérateurs avec des
projets d’opérateur existants peuvent utiliser la version de l’outil Operator SDK CLI publié
avec OpenShift Dedicated 4 pour maintenir leurs projets et créer des versions
d’opérateur ciblant des versions plus récentes d’OpenShift Dedicated.

Les images de base suivantes pour les projets d’opérateur ne sont pas dépréciées. Les
fonctionnalités d’exécution et les API de configuration de ces images de base sont
toujours prises en charge pour les corrections de bogues et pour l’adressage des CVE.

L’image de base pour les projets d’opérateurs basés sur Ansible

L’image de base pour les projets d’opérateur basé sur Helm

Afin d’obtenir de l’information sur la version non prise en charge et gérée par la
communauté du SDK de l’opérateur, voir Operator SDK (Operator Framework).

Ce processus est réalisé à l’aide de deux pièces maîtresses du cadre opérateur:

Le SDK de l’opérateur

L’outil operator-sdk CLI et l’API de bibliothèque de contrôleurs

Gestionnaire du cycle de vie de l’opérateur (OLM)

Installation, mise à niveau et contrôle d’accès basé sur les rôles (RBAC) des opérateurs sur un cluster

NOTE

Ce tutoriel va plus en détail que commencer avec Operator SDK pour les opérateurs Go
dans la documentation OpenShift Container Platform.

5.3.1.1. Conditions préalables

L’opérateur SDK CLI installé

Installation d’OpenShift CLI (oc) 4+

Aller 1.21+

Connecté à un cluster OpenShift dédié avec oc avec un compte qui dispose d’autorisations
d’administration dédiées

Afin de permettre au cluster de tirer l’image, le référentiel où vous poussez votre image doit
être défini comme public, ou vous devez configurer une image pull secret

Ressources supplémentaires

Installation de l’opérateur SDK CLI

OpenShift Dedicated 4 Opérateurs

142

Débuter avec l’OpenShift CLI

5.3.1.2. Créer un projet

Faites appel à l’opérateur SDK CLI pour créer un projet appelé memcached-operator.

Procédure

1. Créer un répertoire pour le projet:

2. Changement dans le répertoire:

3. Activer la prise en charge des modules Go:

4. Exécutez la commande operator-sdk init pour initialiser le projet:

NOTE

La commande operator-sdk init utilise le plugin Go par défaut.

La commande operator-sdk init génère un fichier go.mod à utiliser avec les modules Go.
L’indicateur --repo est requis lors de la création d’un projet en dehors de $GOPATH/src/, car
les fichiers générés nécessitent un chemin de chemin de module valide.

5.3.1.2.1. Fichier PROJET

Il y a parmi les fichiers générés par la commande operator-sdk init un fichier Kubebuilder PROJECT. Les
commandes ultérieures de l’opérateur-sdk, ainsi que la sortie d’aide, qui sont exécutées à partir de la
racine du projet lisent ce fichier et sont conscientes que le type de projet est Go. À titre d’exemple:

5.3.1.2.2. À propos du gestionnaire

$ mkdir -p $HOME/projects/memcached-operator

$ cd $HOME/projects/memcached-operator

$ export GO111MODULE=on

$ operator-sdk init \
 --domain=example.com \
 --repo=github.com/example-inc/memcached-operator

domain: example.com
layout:
- go.kubebuilder.io/v3
projectName: memcached-operator
repo: github.com/example-inc/memcached-operator
version: "3"
plugins:
 manifests.sdk.operatorframework.io/v2: {}
 scorecard.sdk.operatorframework.io/v2: {}
 sdk.x-openshift.io/v1: {}

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

143

https://docs.redhat.com/en/documentation/openshift_dedicated/4/html-single/cli_tools/#getting-started-cli

1

2

Le programme principal pour l’opérateur est le fichier main.go, qui initialise et exécute le gestionnaire.
Le gestionnaire enregistre automatiquement le Schéma pour toutes les définitions de l’API de
ressources personnalisées (CR) et configure et exécute des contrôleurs et des webhooks.

Le gestionnaire peut restreindre l’espace de noms que tous les contrôleurs surveillent pour les
ressources:

Le gestionnaire surveille par défaut l’espace de noms où l’opérateur s’exécute. Afin de regarder tous les
espaces de noms, vous pouvez laisser l’option namespace vide:

Il est également possible d’utiliser la fonction MultiNamespacedCacheBuilder pour regarder un
ensemble spécifique d’espaces de noms:

Liste des espaces de noms.

Crée une structure Cmd pour fournir des dépendances partagées et des composants de
démarrage.

5.3.1.2.3. À propos des API multi-groupes

Avant de créer une API et un contrôleur, examinez si votre opérateur nécessite plusieurs groupes d’API.
Ce tutoriel couvre le cas par défaut d’une API de groupe unique, mais pour modifier la mise en page de
votre projet pour prendre en charge les API multi-groupes, vous pouvez exécuter la commande suivante:

Cette commande met à jour le fichier PROJECT, qui devrait ressembler à l’exemple suivant:

Dans le cas des projets multigroupes, les fichiers de type API Go sont créés dans le répertoire
apis/<group>/<version>/ et les contrôleurs sont créés dans le répertoire Controllers/<group>/ /. Le
Dockerfile est ensuite mis à jour en conséquence.

B) Ressources supplémentaires

Consultez la documentation Kubebuilder pour plus de détails sur la migration vers un projet
multigroupe.

5.3.1.3. Création d’une API et d’un contrôleur

mgr, err := ctrl.NewManager(cfg, manager.Options{Namespace: namespace})

mgr, err := ctrl.NewManager(cfg, manager.Options{Namespace: ""})

var namespaces []string 1
mgr, err := ctrl.NewManager(cfg, manager.Options{ 2
 NewCache: cache.MultiNamespacedCacheBuilder(namespaces),
})

$ operator-sdk edit --multigroup=true

domain: example.com
layout: go.kubebuilder.io/v3
multigroup: true
...

OpenShift Dedicated 4 Opérateurs

144

Faites appel à l’opérateur SDK CLI pour créer une API et un contrôleur de définition de ressources
personnalisées (CRD).

Procédure

1. Exécutez la commande suivante pour créer une API avec le cache de groupe, version, v1, et
sortez Memcached:

2. Lorsque vous l’invitez, entrez y pour créer à la fois la ressource et le contrôleur:

Exemple de sortie

Ce processus génère l’API de ressource Memcached sur api/v1/memcached_types.go et le contrôleur à
Controllers/memcached_controller.go.

5.3.1.3.1. Définir l’API

Définissez l’API pour la ressource personnalisée Memcached (CR).

Procédure

1. De modifier les définitions de type Go sur api/v1/memcached_types.go pour avoir les
spécifications et le statut suivants:

2. Actualisez le code généré pour le type de ressource:

$ operator-sdk create api \
 --group=cache \
 --version=v1 \
 --kind=Memcached

Create Resource [y/n]
y
Create Controller [y/n]
y

Writing scaffold for you to edit...
api/v1/memcached_types.go
controllers/memcached_controller.go
...

// MemcachedSpec defines the desired state of Memcached
type MemcachedSpec struct {
 // +kubebuilder:validation:Minimum=0
 // Size is the size of the memcached deployment
 Size int32 `json:"size"`
}

// MemcachedStatus defines the observed state of Memcached
type MemcachedStatus struct {
 // Nodes are the names of the memcached pods
 Nodes []string `json:"nodes"`
}

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

145

ASTUCE

Après avoir modifié un fichier *_types.go, vous devez exécuter la commande make Generator
pour mettre à jour le code généré pour ce type de ressource.

La cible Makefile ci-dessus invoque l’utilitaire Controller-gen pour mettre à jour le fichier
api/v1/zz_generated.deepcopy.go. Cela garantit que vos définitions de type API Go
implémentent l’interface runtime.Object que tous les types de type doivent implémenter.

5.3.1.3.2. Générer des manifestes CRD

Après que l’API est définie avec des champs de spécification et d’état et des marqueurs de validation de
la définition de ressources personnalisées (CRD), vous pouvez générer des manifestes CRD.

Procédure

Exécutez la commande suivante pour générer et mettre à jour les manifestes CRD:

Cette cible Makefile invoque l’utilitaire Controller-gen pour générer les manifestes CRD dans le
fichier config/crd/bases/cache.example.com_memcacheds.yaml.

5.3.1.3.2.1. À propos de la validation OpenAPI

Les schémas OpenAPIv3 sont ajoutés aux manifestes CRD dans le bloc spec.validation lorsque les
manifestes sont générés. Ce bloc de validation permet à Kubernetes de valider les propriétés dans une
ressource personnalisée Memcached (CR) lorsqu’elle est créée ou mise à jour.

Des marqueurs, ou annotations, sont disponibles pour configurer les validations de votre API. Ces
marqueurs ont toujours un préfixe +kubebuilder:validation.

Ressources supplémentaires

Consultez la documentation Kubebuilder suivante pour plus de détails sur l’utilisation des
marqueurs dans le code API:

Génération de CRD

Les marqueurs

Liste des marqueurs de validation OpenAPIv3

Consultez la documentation Kubernetes pour plus de détails sur les schémas de validation
OpenAPIv3.

5.3.1.4. Implémentation du contrôleur

Après avoir créé une nouvelle API et un nouveau contrôleur, vous pouvez implémenter la logique du
contrôleur.

Procédure

$ make generate

$ make manifests

OpenShift Dedicated 4 Opérateurs

146

https://book.kubebuilder.io/reference/generating-crd.html
https://book.kubebuilder.io/reference/markers.html
https://book.kubebuilder.io/reference/markers/crd-validation.html

Dans cet exemple, remplacez les contrôleurs de fichiers de contrôleur
générés/memcached_controller.go par une implémentation d’exemple suivante:

Exemple 5.1. Exemple memcached_controller.go

/*
Copyright 2020.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/

package controllers

import (
 appsv1 "k8s.io/api/apps/v1"
 corev1 "k8s.io/api/core/v1"
 "k8s.io/apimachinery/pkg/api/errors"
 metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
 "k8s.io/apimachinery/pkg/types"
 "reflect"

 "context"

 "github.com/go-logr/logr"
 "k8s.io/apimachinery/pkg/runtime"
 ctrl "sigs.k8s.io/controller-runtime"
 "sigs.k8s.io/controller-runtime/pkg/client"
 ctrllog "sigs.k8s.io/controller-runtime/pkg/log"

 cachev1 "github.com/example-inc/memcached-operator/api/v1"
)

// MemcachedReconciler reconciles a Memcached object
type MemcachedReconciler struct {
 client.Client
 Log logr.Logger
 Scheme *runtime.Scheme
}

//
+kubebuilder:rbac:groups=cache.example.com,resources=memcacheds,verbs=get;list;watch
;create;update;patch;delete
//
+kubebuilder:rbac:groups=cache.example.com,resources=memcacheds/status,verbs=get;up
date;patch
//
+kubebuilder:rbac:groups=cache.example.com,resources=memcacheds/finalizers,verbs=upd

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

147

ate
//
+kubebuilder:rbac:groups=apps,resources=deployments,verbs=get;list;watch;create;update;
patch;delete
// +kubebuilder:rbac:groups=core,resources=pods,verbs=get;list;

// Reconcile is part of the main kubernetes reconciliation loop which aims to
// move the current state of the cluster closer to the desired state.
// TODO(user): Modify the Reconcile function to compare the state specified by
// the Memcached object against the actual cluster state, and then
// perform operations to make the cluster state reflect the state specified by
// the user.
//
// For more details, check Reconcile and its Result here:
// - https://pkg.go.dev/sigs.k8s.io/controller-runtime@v0.7.0/pkg/reconcile
func (r *MemcachedReconciler) Reconcile(ctx context.Context, req ctrl.Request)
(ctrl.Result, error) {
 //log := r.Log.WithValues("memcached", req.NamespacedName)
 log := ctrllog.FromContext(ctx)
 // Fetch the Memcached instance
 memcached := &cachev1.Memcached{}
 err := r.Get(ctx, req.NamespacedName, memcached)
 if err != nil {
 if errors.IsNotFound(err) {
 // Request object not found, could have been deleted after reconcile
request.
 // Owned objects are automatically garbage collected. For additional
cleanup logic use finalizers.
 // Return and don't requeue
 log.Info("Memcached resource not found. Ignoring since object must be
deleted")
 return ctrl.Result{}, nil
 }
 // Error reading the object - requeue the request.
 log.Error(err, "Failed to get Memcached")
 return ctrl.Result{}, err
 }

 // Check if the deployment already exists, if not create a new one
 found := &appsv1.Deployment{}
 err = r.Get(ctx, types.NamespacedName{Name: memcached.Name, Namespace:
memcached.Namespace}, found)
 if err != nil && errors.IsNotFound(err) {
 // Define a new deployment
 dep := r.deploymentForMemcached(memcached)
 log.Info("Creating a new Deployment", "Deployment.Namespace",
dep.Namespace, "Deployment.Name", dep.Name)
 err = r.Create(ctx, dep)
 if err != nil {
 log.Error(err, "Failed to create new Deployment",
"Deployment.Namespace", dep.Namespace, "Deployment.Name", dep.Name)
 return ctrl.Result{}, err
 }
 // Deployment created successfully - return and requeue
 return ctrl.Result{Requeue: true}, nil
 } else if err != nil {

OpenShift Dedicated 4 Opérateurs

148

 log.Error(err, "Failed to get Deployment")
 return ctrl.Result{}, err
 }

 // Ensure the deployment size is the same as the spec
 size := memcached.Spec.Size
 if *found.Spec.Replicas != size {
 found.Spec.Replicas = &size
 err = r.Update(ctx, found)
 if err != nil {
 log.Error(err, "Failed to update Deployment", "Deployment.Namespace",
found.Namespace, "Deployment.Name", found.Name)
 return ctrl.Result{}, err
 }
 // Spec updated - return and requeue
 return ctrl.Result{Requeue: true}, nil
 }

 // Update the Memcached status with the pod names
 // List the pods for this memcached's deployment
 podList := &corev1.PodList{}
 listOpts := []client.ListOption{
 client.InNamespace(memcached.Namespace),
 client.MatchingLabels(labelsForMemcached(memcached.Name)),
 }
 if err = r.List(ctx, podList, listOpts...); err != nil {
 log.Error(err, "Failed to list pods", "Memcached.Namespace",
memcached.Namespace, "Memcached.Name", memcached.Name)
 return ctrl.Result{}, err
 }
 podNames := getPodNames(podList.Items)

 // Update status.Nodes if needed
 if !reflect.DeepEqual(podNames, memcached.Status.Nodes) {
 memcached.Status.Nodes = podNames
 err := r.Status().Update(ctx, memcached)
 if err != nil {
 log.Error(err, "Failed to update Memcached status")
 return ctrl.Result{}, err
 }
 }

 return ctrl.Result{}, nil
}

// deploymentForMemcached returns a memcached Deployment object
func (r *MemcachedReconciler) deploymentForMemcached(m *cachev1.Memcached)
*appsv1.Deployment {
 ls := labelsForMemcached(m.Name)
 replicas := m.Spec.Size

 dep := &appsv1.Deployment{
 ObjectMeta: metav1.ObjectMeta{
 Name: m.Name,
 Namespace: m.Namespace,
 },

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

149

Le contrôleur d’exemple exécute la logique de réconciliation suivante pour chaque ressource
personnalisée Memcached (CR):

 Spec: appsv1.DeploymentSpec{
 Replicas: &replicas,
 Selector: &metav1.LabelSelector{
 MatchLabels: ls,
 },
 Template: corev1.PodTemplateSpec{
 ObjectMeta: metav1.ObjectMeta{
 Labels: ls,
 },
 Spec: corev1.PodSpec{
 Containers: []corev1.Container{{
 Image: "memcached:1.4.36-alpine",
 Name: "memcached",
 Command: []string{"memcached", "-m=64", "-o", "modern",
"-v"},
 Ports: []corev1.ContainerPort{{
 ContainerPort: 11211,
 Name: "memcached",
 }},
 }},
 },
 },
 },
 }
 // Set Memcached instance as the owner and controller
 ctrl.SetControllerReference(m, dep, r.Scheme)
 return dep
}

// labelsForMemcached returns the labels for selecting the resources
// belonging to the given memcached CR name.
func labelsForMemcached(name string) map[string]string {
 return map[string]string{"app": "memcached", "memcached_cr": name}
}

// getPodNames returns the pod names of the array of pods passed in
func getPodNames(pods []corev1.Pod) []string {
 var podNames []string
 for _, pod := range pods {
 podNames = append(podNames, pod.Name)
 }
 return podNames
}

// SetupWithManager sets up the controller with the Manager.
func (r *MemcachedReconciler) SetupWithManager(mgr ctrl.Manager) error {
 return ctrl.NewControllerManagedBy(mgr).
 For(&cachev1.Memcached{}).
 Owns(&appsv1.Deployment{}).
 Complete(r)
}

OpenShift Dedicated 4 Opérateurs

150

Créez un déploiement Memcached s’il n’existe pas.

Assurez-vous que la taille de déploiement est la même que celle spécifiée par la
spécification CR Memcached.

Actualisez le statut de Memcached CR avec les noms des pods memcached.

Les sous-sections suivantes expliquent comment le contrôleur dans l’exemple de mise en œuvre
surveille les ressources et comment la boucle de rapprochement est déclenchée. Ces sous-sections
peuvent passer directement à Running the Operator.

5.3.1.4.1. Les ressources surveillées par le contrôleur

La fonction SetupWithManager() dans Controllers/memcached_controller.go spécifie comment le
contrôleur est conçu pour regarder un CR et d’autres ressources qui sont détenues et gérées par ce
contrôleur.

Le NewControllerManagedBy() fournit un constructeur de contrôleur qui permet diverses
configurations de contrôleur.

For(&cachev1.Memcached{}) spécifie le type Memcached comme ressource principale à regarder.
Dans chaque événement Ajouter, mettre à jour ou Supprimer pour un type Memcached, la boucle de
réconciliation reçoit un argument Demande réconciliée, qui se compose d’un espace de noms et d’une
clé de nom, pour cet objet Memcached.

Owns(&appsv1.Deployment{}) spécifie le type de déploiement comme ressource secondaire à
regarder. Dans chaque type de déploiement Ajouter, mettre à jour ou supprimer un événement, le
gestionnaire d’événements cartographie chaque événement à une demande de rapprochement pour le
propriétaire du déploiement. Dans ce cas, le propriétaire est l’objet Memcached pour lequel le
déploiement a été créé.

5.3.1.4.2. Configurations du contrôleur

Il est possible d’initialiser un contrôleur en utilisant de nombreuses autres configurations utiles. À titre
d’exemple:

Définissez le nombre maximal de rapprochements simultanés pour le contrôleur en utilisant
l’option MaxConcurrentReconciles, qui par défaut à 1:

import (
 ...
 appsv1 "k8s.io/api/apps/v1"
 ...
)

func (r *MemcachedReconciler) SetupWithManager(mgr ctrl.Manager) error {
 return ctrl.NewControllerManagedBy(mgr).
 For(&cachev1.Memcached{}).
 Owns(&appsv1.Deployment{}).
 Complete(r)
}

func (r *MemcachedReconciler) SetupWithManager(mgr ctrl.Manager) error {
 return ctrl.NewControllerManagedBy(mgr).
 For(&cachev1.Memcached{}).
 Owns(&appsv1.Deployment{}).

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

151

Filtrez les événements à l’aide de prédicats.

Choisissez le type d’EventHandler pour changer la façon dont un événement montre se traduit
pour concilier les demandes de la boucle de réconciliation. Dans le cas des relations avec les
opérateurs qui sont plus complexes que les ressources primaires et secondaires, vous pouvez
utiliser le gestionnaire EnqueueRequestsFromMapFunc pour transformer un événement de
montre en un ensemble arbitraire de demandes de rapprochement.

Consultez le Builder et le contrôleur GoDocs en amont pour plus de détails sur ces configurations et
d’autres.

5.3.1.4.3. Boucle de réconciliation

Chaque contrôleur a un objet réconciliateur avec une méthode Reconcile() qui implémente la boucle de
réconciliation. La boucle de réconciliation est passée l’argument Demande, qui est un espace de noms
et la clé de nom utilisé pour trouver l’objet de ressource primaire, Memcached, à partir du cache:

Basé sur les valeurs de retour, le résultat et l’erreur, la requête peut être requeued et la boucle de
réconciliation peut être déclenchée à nouveau:

Après une période de grâce, vous pouvez définir le résultat.Requeue Après avoir requelé la demande:

NOTE

 WithOptions(controller.Options{
 MaxConcurrentReconciles: 2,
 }).
 Complete(r)
}

import (
 ctrl "sigs.k8s.io/controller-runtime"

 cachev1 "github.com/example-inc/memcached-operator/api/v1"
 ...
)

func (r *MemcachedReconciler) Reconcile(ctx context.Context, req ctrl.Request) (ctrl.Result, error) {
 // Lookup the Memcached instance for this reconcile request
 memcached := &cachev1.Memcached{}
 err := r.Get(ctx, req.NamespacedName, memcached)
 ...
}

// Reconcile successful - don't requeue
return ctrl.Result{}, nil
// Reconcile failed due to error - requeue
return ctrl.Result{}, err
// Requeue for any reason other than an error
return ctrl.Result{Requeue: true}, nil

import "time"

// Reconcile for any reason other than an error after 5 seconds
return ctrl.Result{RequeueAfter: time.Second*5}, nil

OpenShift Dedicated 4 Opérateurs

152

NOTE

Il est possible de retourner Résultat avec Requeue après ensemble pour réconcilier
périodiquement un CR.

En savoir plus sur les réconciliateurs, les clients et les interactions avec les événements de ressources,
consultez la documentation de l’API Controller Runtime Client.

5.3.1.4.4. Autorisations et manifestations RBAC

Le contrôleur nécessite certaines autorisations RBAC pour interagir avec les ressources qu’il gère.
Ceux-ci sont spécifiés à l’aide de marqueurs RBAC, tels que les suivants:

Le manifeste de l’objet ClusterRole à config/rbac/role.yaml est généré à partir des marqueurs
précédents en utilisant l’utilitaire Controller-gen chaque fois que la commande make manifests est
exécutée.

5.3.1.5. Activer le support proxy

Les auteurs d’opérateurs peuvent développer des opérateurs qui prennent en charge les proxys réseau.
Les administrateurs dotés du rôle d’administrateur dédié configurent la prise en charge du proxy pour
les variables d’environnement qui sont gérées par Operator Lifecycle Manager (OLM). Afin de prendre
en charge les clusters proxiés, votre opérateur doit inspecter l’environnement pour les variables proxy
standard suivantes et transmettre les valeurs à Operands:

HTTP_PROXY

HTTPS_PROXY

AUCUN_PROXY

NOTE

Ce tutoriel utilise HTTP_PROXY comme exemple de variable d’environnement.

Conditions préalables

C’est un cluster doté d’un proxy de sortie à l’échelle du cluster activé.

//
+kubebuilder:rbac:groups=cache.example.com,resources=memcacheds,verbs=get;list;watch;create;upd
ate;patch;delete
//
+kubebuilder:rbac:groups=cache.example.com,resources=memcacheds/status,verbs=get;update;patch

// +kubebuilder:rbac:groups=cache.example.com,resources=memcacheds/finalizers,verbs=update
//
+kubebuilder:rbac:groups=apps,resources=deployments,verbs=get;list;watch;create;update;patch;delete

// +kubebuilder:rbac:groups=core,resources=pods,verbs=get;list;

func (r *MemcachedReconciler) Reconcile(ctx context.Context, req ctrl.Request) (ctrl.Result, error) {
 ...
}

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

153

Procédure

1. Éditez le fichier Controllers/memcached_controller.go pour inclure ce qui suit:

a. Importer le paquet proxy à partir de la bibliothèque de l’opérateur-lib:

b. Ajouter la fonction d’aide proxy.ReadProxyVarsFromEnv à la boucle de réconciliation et
ajouter les résultats aux environnements Operand:

2. Définissez la variable d’environnement sur le déploiement de l’opérateur en ajoutant ce qui suit
au fichier config/manager/manager.yaml:

5.3.1.6. Exécution de l’opérateur

Afin de construire et d’exécuter votre opérateur, utilisez l’opérateur SDK CLI pour regrouper votre
opérateur, puis utilisez le gestionnaire de cycle de vie de l’opérateur (OLM) pour le déploiement sur le
cluster.

NOTE

Lorsque vous souhaitez déployer votre opérateur sur un cluster OpenShift Container
Platform au lieu d’un cluster dédié OpenShift, deux options de déploiement
supplémentaires sont disponibles:

Exécutez localement en dehors du cluster en tant que programme Go.

Exécutez comme un déploiement sur le cluster.

NOTE

Avant d’exécuter votre opérateur Go-based en tant que paquet utilisant OLM, assurez-
vous que votre projet a été mis à jour pour utiliser les images prises en charge.

import (
 ...
 "github.com/operator-framework/operator-lib/proxy"
)

for i, container := range dep.Spec.Template.Spec.Containers {
 dep.Spec.Template.Spec.Containers[i].Env = append(container.Env,
proxy.ReadProxyVarsFromEnv()...)
}
...

containers:
 - args:
 - --leader-elect
 - --leader-election-id=ansible-proxy-demo
 image: controller:latest
 name: manager
 env:
 - name: "HTTP_PROXY"
 value: "http_proxy_test"

OpenShift Dedicated 4 Opérateurs

154

Ressources supplémentaires

Exécution locale en dehors du cluster (document OpenShift Container Platform)

Exécution en tant que déploiement sur le cluster (document OpenShift Container Platform)

5.3.1.6.1. Groupement d’un opérateur et déploiement avec le gestionnaire du cycle de vie de
l’opérateur

5.3.1.6.1.1. Groupement d’un opérateur

Le format de paquet Opérateur est la méthode d’emballage par défaut pour Operator SDK et Operator
Lifecycle Manager (OLM). En utilisant le SDK de l’opérateur, vous pouvez préparer votre opérateur à
une utilisation sur OLM pour construire et pousser votre projet Opérateur en tant qu’image groupée.

Conditions préalables

L’opérateur SDK CLI installé sur un poste de travail de développement

Installation d’OpenShift CLI (oc) v4+

Le projet d’opérateur initialisé à l’aide du SDK de l’opérateur

Dans le cas où votre opérateur est Go-based, votre projet doit être mis à jour pour utiliser les
images prises en charge pour s’exécuter sur OpenShift Dedicated

Procédure

1. Exécutez les commandes suivantes dans votre répertoire de projet Opérateur pour construire
et pousser l’image de votre opérateur. Modifiez l’argument IMG dans les étapes suivantes pour
faire référence à un référentiel auquel vous avez accès. Il est possible d’obtenir un compte de
stockage des conteneurs sur des sites de dépôt tels que Quay.io.

a. Construire l’image:

NOTE

Le Dockerfile généré par le SDK pour l’opérateur renvoie explicitement
GOARCH=amd64 pour la construction de go. Cela peut être modifié à
GOARCH=$TARGETARCH pour les architectures non-AMD64. Docker
définira automatiquement la variable d’environnement à la valeur spécifiée
par -platform. Avec Buildah, le -build-arg devra être utilisé à cet effet. En
savoir plus, consultez Multiple Architectures.

b. Appuyez sur l’image vers un référentiel:

2. Créez votre paquet Opérateur manifeste en exécutant la commande make bundle, qui invoque
plusieurs commandes, y compris l’opérateur SDK génère des paquets et des sous-commandes
validant:

$ make docker-build IMG=<registry>/<user>/<operator_image_name>:<tag>

$ make docker-push IMG=<registry>/<user>/<operator_image_name>:<tag>

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

155

Les manifestes de paquets pour un opérateur décrivent comment afficher, créer et gérer une
application. La commande make bundle crée les fichiers et répertoires suivants dans votre
projet Opérateur:

Le bundle manifeste un répertoire nommé bundle/manifests qui contient un objet
ClusterServiceVersion

Annuaire de métadonnées groupé nommé bundle/metadata

L’ensemble des définitions de ressources personnalisées (CRD) dans un répertoire
config/crd

Dockerfile bundle.Dockerfile

Ces fichiers sont ensuite automatiquement validés en utilisant le bundle opérateur-sdk valide
pour s’assurer que la représentation des faisceaux sur disque est correcte.

3. Créez et poussez votre image de paquet en exécutant les commandes suivantes. L’OLM
consomme des faisceaux d’opérateurs à l’aide d’une image d’index, qui référence à une ou
plusieurs images groupées.

a. Construisez l’image du bundle. Définissez BUNDLE_IMG avec les détails du registre, de
l’espace de noms d’utilisateur et de la balise d’image où vous avez l’intention de pousser
l’image:

b. Appuyez sur l’image du paquet:

5.3.1.6.1.2. Déploiement d’un opérateur avec le gestionnaire du cycle de vie de l’opérateur

Le gestionnaire de cycle de vie de l’opérateur (OLM) vous aide à installer, mettre à jour et gérer le cycle
de vie des Opérateurs et de leurs services associés sur un cluster Kubernetes. Le système OLM est
installé par défaut sur OpenShift Dedicated et s’exécute sous forme d’extension Kubernetes afin que
vous puissiez utiliser la console Web et l’OpenShift CLI (oc) pour toutes les fonctions de gestion du
cycle de vie de l’opérateur sans outils supplémentaires.

Le format de paquet opérateur est la méthode d’emballage par défaut pour l’opérateur SDK et OLM. Le
SDK de l’opérateur permet d’exécuter rapidement une image groupée sur OLM afin de s’assurer qu’elle
fonctionne correctement.

Conditions préalables

L’opérateur SDK CLI installé sur un poste de travail de développement

Ensemble d’image de l’opérateur construit et poussé à un registre

Installation OLM sur un cluster basé sur Kubernetes (v1.16.0 ou version ultérieure si vous utilisez
apiextensions.k8s.io/v1 CRD, par exemple OpenShift Dedicated 4)

Connexion au cluster avec oc à l’aide d’un compte avec des autorisations d’administration

$ make bundle IMG=<registry>/<user>/<operator_image_name>:<tag>

$ make bundle-build BUNDLE_IMG=<registry>/<user>/<bundle_image_name>:<tag>

$ docker push <registry>/<user>/<bundle_image_name>:<tag>

OpenShift Dedicated 4 Opérateurs

156

1

2

3

Connexion au cluster avec oc à l’aide d’un compte avec des autorisations d’administration
dédiées

Dans le cas où votre opérateur est Go-based, votre projet doit être mis à jour pour utiliser les
images prises en charge pour s’exécuter sur OpenShift Dedicated

Procédure

Entrez la commande suivante pour exécuter l’opérateur sur le cluster:

La commande run bundle crée un catalogue basé sur des fichiers valide et installe le paquet
Opérateur sur votre cluster en utilisant OLM.

Facultatif: Par défaut, la commande installe l’opérateur dans le projet actuellement actif
dans votre fichier ~/.kube/config. Il est possible d’ajouter le drapeau -n pour définir un
espace de noms différent pour l’installation.

Dans le cas où vous ne spécifiez pas une image, la commande utilise quay.io/operator-
framework/opm:latest comme image d’index par défaut. Lorsque vous spécifiez une
image, la commande utilise l’image du faisceau lui-même comme image d’index.

IMPORTANT

À partir d’OpenShift Dedicated 4.11, la commande run bundle prend en charge le
format de catalogue basé sur des fichiers pour les catalogues Opérateur par
défaut. Le format de base de données SQLite obsolète pour les catalogues
d’opérateurs continue d’être pris en charge; cependant, il sera supprimé dans une
version ultérieure. Il est recommandé aux auteurs de l’opérateur de migrer leurs
flux de travail vers le format de catalogue basé sur les fichiers.

Cette commande effectue les actions suivantes:

Créez une image d’index faisant référence à votre image de paquet. L’image de l’index est
opaque et éphémère, mais reflète avec précision comment un paquet serait ajouté à un
catalogue en production.

Créez une source de catalogue qui pointe vers votre nouvelle image d’index, ce qui permet
à OperatorHub de découvrir votre opérateur.

Déployez votre opérateur dans votre cluster en créant un groupe d’opérateurs, un
abonnement, un plan d’installation et toutes les autres ressources requises, y compris
RBAC.

5.3.1.7. Créer une ressource personnalisée

Après l’installation de votre opérateur, vous pouvez le tester en créant une ressource personnalisée
(CR) qui est maintenant fournie sur le cluster par l’opérateur.

Conditions préalables

$ operator-sdk run bundle \ 1
 -n <namespace> \ 2
 <registry>/<user>/<bundle_image_name>:<tag> 3

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

157

Exemple Memcached Operator, qui fournit le Memcached CR, installé sur un cluster

Procédure

1. Changer l’espace de noms où votre opérateur est installé. À titre d’exemple, si vous avez
déployé l’opérateur à l’aide de la commande make deployment:

2. Éditer l’échantillon Memcached CR manifeste à config/samples/cache_v1_memcached.yaml
pour contenir les spécifications suivantes:

3. Créer le CR:

4. Assurez-vous que l’opérateur Memcached crée le déploiement de l’échantillon CR avec la
bonne taille:

Exemple de sortie

5. Consultez le statut des pods et CR pour confirmer que le statut est mis à jour avec les noms de
pod de Memcached.

a. Consultez les gousses:

Exemple de sortie

b. Consultez l’état CR:

$ oc project memcached-operator-system

apiVersion: cache.example.com/v1
kind: Memcached
metadata:
 name: memcached-sample
...
spec:
...
 size: 3

$ oc apply -f config/samples/cache_v1_memcached.yaml

$ oc get deployments

NAME READY UP-TO-DATE AVAILABLE AGE
memcached-operator-controller-manager 1/1 1 1 8m
memcached-sample 3/3 3 3 1m

$ oc get pods

NAME READY STATUS RESTARTS AGE
memcached-sample-6fd7c98d8-7dqdr 1/1 Running 0 1m
memcached-sample-6fd7c98d8-g5k7v 1/1 Running 0 1m
memcached-sample-6fd7c98d8-m7vn7 1/1 Running 0 1m

$ oc get memcached/memcached-sample -o yaml

OpenShift Dedicated 4 Opérateurs

158

Exemple de sortie

6. Actualisez la taille du déploiement.

a. Actualisez le fichier config/samples/cache_v1_memcached.yaml pour modifier le champ
spec.size dans le CR Memcached de 3 à 5:

b. Confirmez que l’opérateur modifie la taille du déploiement:

Exemple de sortie

7. Supprimez le CR en exécutant la commande suivante:

8. Nettoyez les ressources qui ont été créées dans le cadre de ce tutoriel.

Lorsque vous avez utilisé la commande make deployment pour tester l’opérateur, exécutez
la commande suivante:

Lorsque vous avez utilisé la commande operator-sdk run bundle pour tester l’opérateur,
exécutez la commande suivante:

apiVersion: cache.example.com/v1
kind: Memcached
metadata:
...
 name: memcached-sample
...
spec:
 size: 3
status:
 nodes:
 - memcached-sample-6fd7c98d8-7dqdr
 - memcached-sample-6fd7c98d8-g5k7v
 - memcached-sample-6fd7c98d8-m7vn7

$ oc patch memcached memcached-sample \
 -p '{"spec":{"size": 5}}' \
 --type=merge

$ oc get deployments

NAME READY UP-TO-DATE AVAILABLE AGE
memcached-operator-controller-manager 1/1 1 1 10m
memcached-sample 5/5 5 5 3m

$ oc delete -f config/samples/cache_v1_memcached.yaml

$ make undeploy

$ operator-sdk cleanup <project_name>

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

159

5.3.1.8. Ressources supplémentaires

Consultez la mise en page du projet pour les opérateurs basés sur Go pour en savoir plus sur les
structures d’annuaire créées par le SDK de l’opérateur.

Lorsqu’un proxy de sortie à l’échelle du cluster est configuré, les administrateurs ayant le rôle
d’administrateur dédié peuvent outrepasser les paramètres proxy ou injecter un certificat CA
personnalisé pour des opérateurs spécifiques fonctionnant sur Operator Lifecycle Manager
(OLM).

5.3.2. Aménagement du projet pour les opérateurs Go-based

L’opérateur-sdk CLI peut générer, ou échafauder, un certain nombre de paquets et de fichiers pour
chaque projet d’opérateur.

IMPORTANT

La version prise en charge par Red Hat de l’outil Operator SDK CLI, y compris les outils
d’échafaudage et de test connexes pour les projets d’opérateur, est dépréciée et devrait
être supprimée dans une version ultérieure d’OpenShift Dedicated. Le Red Hat fournira
des corrections de bogues et une prise en charge de cette fonctionnalité pendant le
cycle de vie de la version actuelle, mais cette fonctionnalité ne recevra plus
d’améliorations et sera supprimée des futures versions d’OpenShift Dedicated.

La version prise en charge par Red Hat du SDK de l’opérateur n’est pas recommandée
pour la création de nouveaux projets d’opérateur. Les auteurs d’opérateurs avec des
projets d’opérateur existants peuvent utiliser la version de l’outil Operator SDK CLI publié
avec OpenShift Dedicated 4 pour maintenir leurs projets et créer des versions
d’opérateur ciblant des versions plus récentes d’OpenShift Dedicated.

Les images de base suivantes pour les projets d’opérateur ne sont pas dépréciées. Les
fonctionnalités d’exécution et les API de configuration de ces images de base sont
toujours prises en charge pour les corrections de bogues et pour l’adressage des CVE.

L’image de base pour les projets d’opérateurs basés sur Ansible

L’image de base pour les projets d’opérateur basé sur Helm

Afin d’obtenir de l’information sur la version non prise en charge et gérée par la
communauté du SDK de l’opérateur, voir Operator SDK (Operator Framework).

5.3.2.1. Configuration du projet Go-based

Les projets Go-based Operator, le type par défaut, générés à l’aide de la commande operator-sdk init
contiennent les fichiers et répertoires suivants:

Fichier ou
répertoire

But

à propos de
Main.go

Le programme principal de l’opérateur. Ceci instancie un nouveau gestionnaire qui
enregistre toutes les définitions de ressources personnalisées (CRD) dans le répertoire
apis/ et démarre tous les contrôleurs dans le répertoire contrôleurs / répertoire.

OpenShift Dedicated 4 Opérateurs

160

APIs/ Arbre de répertoire qui définit les API des CRDs. Il faut modifier les fichiers
apis/<version>/<kind>_types.go pour définir l’API pour chaque type de
ressource et importer ces paquets dans vos contrôleurs pour surveiller ces types de
ressources.

contrôleurs/ Implémentations de contrôleur. Éditez les fichiers Controller/<kind>_controller.go
pour définir la logique de réconciliation du contrôleur pour gérer un type de ressource
du type spécifié.

configuration/ Kubernetes se manifeste utilisé pour déployer votre contrôleur sur un cluster, y compris
les CRD, RBAC et les certificats.

À propos de
Makefile

Cibles utilisées pour construire et déployer votre contrôleur.

Dockerfile Instructions utilisées par un moteur de conteneur pour construire votre opérateur.

les manifestes/ Kubernetes se manifeste pour l’enregistrement des CRD, la mise en place de RBAC et
le déploiement de l’opérateur en tant que déploiement.

Fichier ou
répertoire

But

5.3.3. La mise à jour des projets d’opérateur Go-based pour les versions SDK plus
récentes de l’opérateur

Le logiciel OpenShift Dedicated 4 prend en charge le SDK 1.38.0 de l’opérateur. Lorsque vous disposez
déjà du 1.36.1 CLI installé sur votre poste de travail, vous pouvez mettre à jour le CLI à 1.38.0 en installant
la dernière version.

IMPORTANT

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

161

1

IMPORTANT

La version prise en charge par Red Hat de l’outil Operator SDK CLI, y compris les outils
d’échafaudage et de test connexes pour les projets d’opérateur, est dépréciée et devrait
être supprimée dans une version ultérieure d’OpenShift Dedicated. Le Red Hat fournira
des corrections de bogues et une prise en charge de cette fonctionnalité pendant le
cycle de vie de la version actuelle, mais cette fonctionnalité ne recevra plus
d’améliorations et sera supprimée des futures versions d’OpenShift Dedicated.

La version prise en charge par Red Hat du SDK de l’opérateur n’est pas recommandée
pour la création de nouveaux projets d’opérateur. Les auteurs d’opérateurs avec des
projets d’opérateur existants peuvent utiliser la version de l’outil Operator SDK CLI publié
avec OpenShift Dedicated 4 pour maintenir leurs projets et créer des versions
d’opérateur ciblant des versions plus récentes d’OpenShift Dedicated.

Les images de base suivantes pour les projets d’opérateur ne sont pas dépréciées. Les
fonctionnalités d’exécution et les API de configuration de ces images de base sont
toujours prises en charge pour les corrections de bogues et pour l’adressage des CVE.

L’image de base pour les projets d’opérateurs basés sur Ansible

L’image de base pour les projets d’opérateur basé sur Helm

Afin d’obtenir de l’information sur la version non prise en charge et gérée par la
communauté du SDK de l’opérateur, voir Operator SDK (Operator Framework).

Cependant, pour s’assurer que vos projets d’opérateur existants maintiennent la compatibilité avec le
SDK 1.38.0 de l’opérateur, des étapes de mise à jour sont nécessaires pour les modifications de rupture
associées introduites depuis 1.36.1. Les étapes de mise à jour doivent être exécutées manuellement dans
l’un de vos projets Opérateurs qui ont été précédemment créés ou maintenus avec 1.36.1.

5.3.3.1. La mise à jour des projets d’opérateurs Go-based pour l’opérateur SDK 1.38.0

La procédure suivante met à jour un projet existant d’opérateur basé sur Go pour la compatibilité avec
1.38.0.

Conditions préalables

L’opérateur SDK 1.38.0 installé

Création ou maintenance d’un projet opérateur avec l’opérateur SDK 1.36.1

Procédure

1. Éditez le Makefile de votre projet Opérateur pour mettre à jour la version SDK de l’opérateur
vers 1.38.0, comme indiqué dans l’exemple suivant:

Exemple de Makefile

Changer la version de 1.36.1 à 1.38.0.

Set the Operator SDK version to use. By default, what is installed on the system is used.
This is useful for CI or a project to utilize a specific version of the operator-sdk toolkit.
OPERATOR_SDK_VERSION ?= v1.38.0 1

OpenShift Dedicated 4 Opérateurs

162

2. Il faut mettre à niveau les versions Kubernetes de votre projet Opérateur pour utiliser 1.30 et
Kubebuilder v4.

ASTUCE

Cette mise à jour comprend des changements complexes d’échafaudage en raison de
l’élimination du kube-rbac-proxy. Lorsque ces migrations deviennent difficiles à suivre,
échafauder un nouveau projet d’échantillon à des fins de comparaison.

a. Actualisez votre fichier go.mod avec les modifications suivantes pour mettre à jour vos
dépendances:

b. Les dépendances mises à niveau sont téléchargées en exécutant la commande suivante:

c. Actualisez votre Makefile avec les modifications suivantes:

go 1.22.0

github.com/onsi/ginkgo/v2 v2.17.1
github.com/onsi/gomega v1.32.0
k8s.io/api v0.30.1
k8s.io/apimachinery v0.30.1
k8s.io/client-go v0.30.1
sigs.k8s.io/controller-runtime v0.18.4

$ go mod tidy

- ENVTEST_K8S_VERSION = 1.29.0
+ ENVTEST_K8S_VERSION = 1.30.0

- KUSTOMIZE ?= $(LOCALBIN)/kustomize-$(KUSTOMIZE_VERSION)
- CONTROLLER_GEN ?= $(LOCALBIN)/controller-gen-
$(CONTROLLER_TOOLS_VERSION)
- ENVTEST ?= $(LOCALBIN)/setup-envtest-$(ENVTEST_VERSION)
- GOLANGCI_LINT = $(LOCALBIN)/golangci-lint-$(GOLANGCI_LINT_VERSION)
+ KUSTOMIZE ?= $(LOCALBIN)/kustomize
+ CONTROLLER_GEN ?= $(LOCALBIN)/controller-gen
+ ENVTEST ?= $(LOCALBIN)/setup-envtest
+ GOLANGCI_LINT = $(LOCALBIN)/golangci-lint

- KUSTOMIZE_VERSION ?= v5.3.0
- CONTROLLER_TOOLS_VERSION ?= v0.14.0
- ENVTEST_VERSION ?= release-0.17
- GOLANGCI_LINT_VERSION ?= v1.57.2
+ KUSTOMIZE_VERSION ?= v5.4.2
+ CONTROLLER_TOOLS_VERSION ?= v0.15.0
+ ENVTEST_VERSION ?= release-0.18
+ GOLANGCI_LINT_VERSION ?= v1.59.1

- $(call go-install-tool,$(GOLANGCI_LINT),github.com/golangci/golangci-
lint/cmd/golangci-lint,${GOLANGCI_LINT_VERSION})
+ $(call go-install-tool,$(GOLANGCI_LINT),github.com/golangci/golangci-
lint/cmd/golangci-lint,$(GOLANGCI_LINT_VERSION))

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

163

d. Actualisez votre fichier .golangci.yml avec les modifications suivantes:

e. Actualisez votre Dockerfile avec les modifications suivantes:

f. Actualisez votre fichier main.go avec les modifications suivantes:

- $(call go-install-tool,$(GOLANGCI_LINT),github.com/golangci/golangci-
lint/cmd/golangci-lint,${GOLANGCI_LINT_VERSION})
+ $(call go-install-tool,$(GOLANGCI_LINT),github.com/golangci/golangci-
lint/cmd/golangci-lint,$(GOLANGCI_LINT_VERSION))

- @[-f $(1)] || { \
+ @[-f "$(1)-$(3)"] || { \
 echo "Downloading $${package}" ;\
+ rm -f $(1) || true ;\
- mv "$$(echo "$(1)" | sed "s/-$(3)$$//")" $(1) ;\
- }
+ mv $(1) $(1)-$(3) ;\
+ } ;\
+ ln -sf $(1)-$(3) $(1)

- exportloopref
+ - ginkgolinter
 - prealloc
+ - revive
+
+ linters-settings:
+ revive:
+ rules:
+ - name: comment-spacings

- FROM golang:1.21 AS builder
+ FROM golang:1.22 AS builder

 "sigs.k8s.io/controller-runtime/pkg/log/zap"
+ "sigs.k8s.io/controller-runtime/pkg/metrics/filters"

 var enableHTTP2 bool
- flag.StringVar(&metricsAddr, "metrics-bind-address", ":8080", "The address the metric
endpoint binds to.")
+ var tlsOpts []func(*tls.Config)
+ flag.StringVar(&metricsAddr, "metrics-bind-address", "0", "The address the metrics
endpoint binds to. "+
+ "Use :8443 for HTTPS or :8080 for HTTP, or leave as 0 to disable the metrics
service.")
 flag.StringVar(&probeAddr, "health-probe-bind-address", ":8081", "The address the
probe endpoint binds to.")
 flag.BoolVar(&enableLeaderElection, "leader-elect", false,
 "Enable leader election for controller manager. "+
 "Enabling this will ensure there is only one active controller manager.")
- flag.BoolVar(&secureMetrics, "metrics-secure", false,
- "If set the metrics endpoint is served securely")
+ flag.BoolVar(&secureMetrics, "metrics-secure", true,
+ "If set, the metrics endpoint is served securely via HTTPS. Use --metrics-

OpenShift Dedicated 4 Opérateurs

164

g. Actualisez votre fichier config/default/kustomization.yaml avec les modifications suivantes:

secure=false to use HTTP instead.")

- tlsOpts := []func(*tls.Config){}

+ // Metrics endpoint is enabled in 'config/default/kustomization.yaml'. The Metrics
options configure the server.
+ // More info:
+ // - https://pkg.go.dev/sigs.k8s.io/controller-runtime@v0.18.4/pkg/metrics/server
+ // - https://book.kubebuilder.io/reference/metrics.html
+ metricsServerOptions := metricsserver.Options{
+ BindAddress: metricsAddr,
+ SecureServing: secureMetrics,
+ // TODO(user): TLSOpts is used to allow configuring the TLS config used for the
server. If certificates are
+ // not provided, self-signed certificates will be generated by default. This option is
not recommended for
+ // production environments as self-signed certificates do not offer the same level of
trust and security
+ // as certificates issued by a trusted Certificate Authority (CA). The primary risk is
potentially allowing
+ // unauthorized access to sensitive metrics data. Consider replacing with CertDir,
CertName, and KeyName
+ // to provide certificates, ensuring the server communicates using trusted and
secure certificates.
+ TLSOpts: tlsOpts,
+ }
+
+ if secureMetrics {
+ // FilterProvider is used to protect the metrics endpoint with authn/authz.
+ // These configurations ensure that only authorized users and service accounts
+ // can access the metrics endpoint. The RBAC are configured in
'config/rbac/kustomization.yaml'. More info:
+ // https://pkg.go.dev/sigs.k8s.io/controller-
runtime@v0.18.4/pkg/metrics/filters#WithAuthenticationAndAuthorization
+ metricsServerOptions.FilterProvider = filters.WithAuthenticationAndAuthorization
+ }
+
 mgr, err := ctrl.NewManager(ctrl.GetConfigOrDie(), ctrl.Options{
- Scheme: scheme,
- Metrics: metricsserver.Options{
- BindAddress: metricsAddr,
- SecureServing: secureMetrics,
- TLSOpts: tlsOpts,
- },
+ Scheme: scheme,
+ Metrics: metricsServerOptions,

 # [PROMETHEUS] To enable prometheus monitor, uncomment all sections with
'PROMETHEUS'.
 #- ../prometheus
+ # [METRICS] Expose the controller manager metrics service.
+ - metrics_service.yaml

+ # Uncomment the patches line if you enable Metrics, and/or are using webhooks and

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

165

h. Enlevez les fichiers config/default/manager_auth_proxy_patch.yaml et
config/default/manager_config_patch.yaml.

i. Créez un fichier config/default/manager_metrics_patch.yaml avec le contenu suivant:

j. Créez un fichier config/default/metrics_service.yaml avec le contenu suivant:

k. Actualisez votre fichier config/manager/manager.yaml avec les modifications suivantes:

l. Actualisez votre fichier config/prometheus/monitor.yaml avec les modifications suivantes:

cert-manager
 patches:
- # Protect the /metrics endpoint by putting it behind auth.
- # If you want your controller-manager to expose the /metrics
- # endpoint w/o any authn/z, please comment the following line.
- - path: manager_auth_proxy_patch.yaml
+ # [METRICS] The following patch will enable the metrics endpoint using HTTPS and
the port :8443.
+ # More info: https://book.kubebuilder.io/reference/metrics
+ - path: manager_metrics_patch.yaml
+ target:
+ kind: Deployment

This patch adds the args to allow exposing the metrics endpoint using HTTPS
- op: add
 path: /spec/template/spec/containers/0/args/0
 value: --metrics-bind-address=:8443

apiVersion: v1
kind: Service
metadata:
 labels:
 control-plane: controller-manager
 app.kubernetes.io/name: <operator-name>
 app.kubernetes.io/managed-by: kustomize
 name: controller-manager-metrics-service
 namespace: system
spec:
 ports:
 - name: https
 port: 8443
 protocol: TCP
 targetPort: 8443
 selector:
 control-plane: controller-manager

 - --leader-elect
+ - --health-probe-bind-address=:8081

 - path: /metrics
- port: https
+ port: https # Ensure this is the name of the port that exposes HTTPS metrics
 tlsConfig:
+ # TODO(user): The option insecureSkipVerify: true is not recommended for

OpenShift Dedicated 4 Opérateurs

166

m. Supprimez les fichiers suivants du répertoire config/rbac/:

auth_proxy_client_clusterrole.yaml

auth_proxy_role.yaml

auth_proxy_role_binding.yaml

auth_proxy_service.yaml

n. Actualisez votre fichier config/rbac/kustomization.yaml avec les modifications suivantes:

o. Créez un fichier config/rbac/metrics_auth_role_binding.yaml avec le contenu suivant:

production since it disables
+ # certificate verification. This poses a significant security risk by making the system
vulnerable to
+ # man-in-the-middle attacks, where an attacker could intercept and manipulate the
communication between
+ # Prometheus and the monitored services. This could lead to unauthorized access
to sensitive metrics data,
+ # compromising the integrity and confidentiality of the information.
+ # Please use the following options for secure configurations:
+ # caFile: /etc/metrics-certs/ca.crt
+ # certFile: /etc/metrics-certs/tls.crt
+ # keyFile: /etc/metrics-certs/tls.key
 insecureSkipVerify: true

 - leader_election_role_binding.yaml
- # Comment the following 4 lines if you want to disable
- # the auth proxy (https://github.com/brancz/kube-rbac-proxy)
- # which protects your /metrics endpoint.
- - auth_proxy_service.yaml
- - auth_proxy_role.yaml
- - auth_proxy_role_binding.yaml
- - auth_proxy_client_clusterrole.yaml
+ # The following RBAC configurations are used to protect
+ # the metrics endpoint with authn/authz. These configurations
+ # ensure that only authorized users and service accounts
+ # can access the metrics endpoint. Comment the following
+ # permissions if you want to disable this protection.
+ # More info: https://book.kubebuilder.io/reference/metrics.html
+ - metrics_auth_role.yaml
+ - metrics_auth_role_binding.yaml
+ - metrics_reader_role.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: metrics-auth-rolebinding
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: metrics-auth-role
subjects:

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

167

p. Créez un fichier config/rbac/metrics_reader_role.yaml avec le contenu suivant:

5.3.3.2. Ressources supplémentaires

La mise à jour des projets Go-based pour l’opérateur SDK 1.36.1 (OpenShift dédié 4.17)

Les projets de manifestation de paquets migratoires au format de paquetage

5.4. OPÉRATEURS BASÉS SUR ANSIBLE

5.4.1. Didacticiel d’opérateur SDK pour les opérateurs basés sur Ansible

Les développeurs d’opérateurs peuvent profiter du support Ansible dans le SDK de l’opérateur pour
créer un exemple d’opérateur Ansible pour Memcached, un magasin à valeur clé distribué, et gérer son
cycle de vie. Ce tutoriel passe par le processus suivant:

Créer un déploiement Memcached

Assurez-vous que la taille de déploiement est la même que celle spécifiée par la spécification
Memcached Custom Resource (CR)

Actualisez le statut de Memcached CR en utilisant l’auteur de statut avec les noms des pods
memcached

IMPORTANT

 - kind: ServiceAccount
 name: controller-manager
 namespace: system

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: metrics-reader
rules:
- nonResourceURLs:
 - "/metrics"
 verbs:
 - get

OpenShift Dedicated 4 Opérateurs

168

IMPORTANT

La version prise en charge par Red Hat de l’outil Operator SDK CLI, y compris les outils
d’échafaudage et de test connexes pour les projets d’opérateur, est dépréciée et devrait
être supprimée dans une version ultérieure d’OpenShift Dedicated. Le Red Hat fournira
des corrections de bogues et une prise en charge de cette fonctionnalité pendant le
cycle de vie de la version actuelle, mais cette fonctionnalité ne recevra plus
d’améliorations et sera supprimée des futures versions d’OpenShift Dedicated.

La version prise en charge par Red Hat du SDK de l’opérateur n’est pas recommandée
pour la création de nouveaux projets d’opérateur. Les auteurs d’opérateurs avec des
projets d’opérateur existants peuvent utiliser la version de l’outil Operator SDK CLI publié
avec OpenShift Dedicated 4 pour maintenir leurs projets et créer des versions
d’opérateur ciblant des versions plus récentes d’OpenShift Dedicated.

Les images de base suivantes pour les projets d’opérateur ne sont pas dépréciées. Les
fonctionnalités d’exécution et les API de configuration de ces images de base sont
toujours prises en charge pour les corrections de bogues et pour l’adressage des CVE.

L’image de base pour les projets d’opérateurs basés sur Ansible

L’image de base pour les projets d’opérateur basé sur Helm

Afin d’obtenir de l’information sur la version non prise en charge et gérée par la
communauté du SDK de l’opérateur, voir Operator SDK (Operator Framework).

Ce processus est réalisé en utilisant deux pièces maîtresses du Cadre opérateur:

Le SDK de l’opérateur

L’outil operator-sdk CLI et l’API de bibliothèque de contrôleurs

Gestionnaire du cycle de vie de l’opérateur (OLM)

Installation, mise à niveau et contrôle d’accès basé sur les rôles (RBAC) des opérateurs sur un cluster

NOTE

Ce tutoriel va plus en détail que commencer avec Operator SDK pour les opérateurs
basés sur Ansible dans la documentation OpenShift Container Platform.

5.4.1.1. Conditions préalables

L’opérateur SDK CLI installé

Installation d’OpenShift CLI (oc) 4+

Ansible 2.15.0

Ansible Runner 2.3.3+

Ansible Runner HTTP Event Emitter plugin 1.0.0+

3,9 + Python

Client Python Kubernetes

Connecté à un cluster OpenShift dédié avec oc avec un compte qui dispose d’autorisations

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

169

https://pypi.org/project/kubernetes/

Connecté à un cluster OpenShift dédié avec oc avec un compte qui dispose d’autorisations
d’administration dédiées

Afin de permettre au cluster de tirer l’image, le référentiel où vous poussez votre image doit
être défini comme public, ou vous devez configurer une image pull secret

Ressources supplémentaires

Installation de l’opérateur SDK CLI

Débuter avec l’OpenShift CLI

5.4.1.2. Créer un projet

Faites appel à l’opérateur SDK CLI pour créer un projet appelé memcached-operator.

Procédure

1. Créer un répertoire pour le projet:

2. Changement dans le répertoire:

3. Exécutez la commande operator-sdk init avec le plugin ansible pour initialiser le projet:

5.4.1.2.1. Fichier PROJET

Il y a parmi les fichiers générés par la commande operator-sdk init un fichier Kubebuilder PROJECT. Les
commandes ultérieures de l’opérateur-sdk, ainsi que la sortie d’aide, qui sont exécutées à partir de la
racine du projet lisent ce fichier et sont conscientes que le type de projet est Ansible. À titre d’exemple:

5.4.1.3. Création d’une API

Faites appel à l’opérateur SDK CLI pour créer une API Memcached.

Procédure

$ mkdir -p $HOME/projects/memcached-operator

$ cd $HOME/projects/memcached-operator

$ operator-sdk init \
 --plugins=ansible \
 --domain=example.com

domain: example.com
layout:
- ansible.sdk.operatorframework.io/v1
plugins:
 manifests.sdk.operatorframework.io/v2: {}
 scorecard.sdk.operatorframework.io/v2: {}
 sdk.x-openshift.io/v1: {}
projectName: memcached-operator
version: "3"

OpenShift Dedicated 4 Opérateurs

170

https://docs.redhat.com/en/documentation/openshift_dedicated/4/html-single/cli_tools/#getting-started-cli

1

Exécutez la commande suivante pour créer une API avec le cache de groupe, version, v1, et
sortez Memcached:

Génère un rôle Ansible pour l’API.

Après avoir créé l’API, votre projet Opérateur se met à jour avec la structure suivante:

À propos de Memcached CRD

Inclut un échantillon de ressource Memcached

Gestionnaire

Le programme qui réconcilie l’état du cluster avec l’état souhaité en utilisant:

Conciliateur, soit un rôle Ansible ou un playbook

Fichier watch.yaml, qui connecte la ressource Memcached au rôle memcached Ansible

5.4.1.4. La modification du gestionnaire

Actualisez votre projet Opérateur pour fournir la logique de rapprochement, sous la forme d’un rôle
Ansible, qui s’exécute chaque fois qu’une ressource Memcached est créée, mise à jour ou supprimée.

Procédure

1. Actualisez le fichier role/memcached/tasks/main.yml avec la structure suivante:

$ operator-sdk create api \
 --group cache \
 --version v1 \
 --kind Memcached \
 --generate-role 1

- name: start memcached
 k8s:
 definition:
 kind: Deployment
 apiVersion: apps/v1
 metadata:
 name: '{{ ansible_operator_meta.name }}-memcached'
 namespace: '{{ ansible_operator_meta.namespace }}'
 spec:
 replicas: "{{size}}"
 selector:
 matchLabels:
 app: memcached
 template:
 metadata:
 labels:
 app: memcached
 spec:
 containers:
 - name: memcached
 command:

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

171

Ce rôle memcached assure l’existence d’un déploiement mémcached et définit la taille du
déploiement.

2. Définissez les valeurs par défaut pour les variables utilisées dans votre rôle Ansible en éditant le
fichier role/memcached/defaults/main.yml:

3. Actualisez la ressource de l’échantillon Memcached dans le fichier
config/samples/cache_v1_memcached.yaml avec la structure suivante:

Les paires clé-valeur dans la spécification de ressource personnalisée (CR) sont transmises à
Ansible sous forme de variables supplémentaires.

NOTE

Les noms de toutes les variables dans le champ spec sont convertis en cas de serpent,
c’est-à-dire minuscules avec un accent, par l’opérateur avant d’exécuter Ansible. À titre
d’exemple, serviceAccount dans la spécification devient service_account dans Ansible.

Dans votre fichier watch.yaml, vous pouvez désactiver cette conversion en paramétrant
l’optionnakCaseParameters. Il est recommandé d’effectuer une validation de type dans
Ansible sur les variables pour vous assurer que votre application reçoit les entrées
attendues.

5.4.1.5. Activer le support proxy

Les auteurs d’opérateurs peuvent développer des opérateurs qui prennent en charge les proxys réseau.
Les administrateurs dotés du rôle d’administrateur dédié configurent la prise en charge du proxy pour
les variables d’environnement qui sont gérées par Operator Lifecycle Manager (OLM). Afin de prendre

 - memcached
 - -m=64
 - -o
 - modern
 - -v
 image: "docker.io/memcached:1.4.36-alpine"
 ports:
 - containerPort: 11211

defaults file for Memcached
size: 1

apiVersion: cache.example.com/v1
kind: Memcached
metadata:
 labels:
 app.kubernetes.io/name: memcached
 app.kubernetes.io/instance: memcached-sample
 app.kubernetes.io/part-of: memcached-operator
 app.kubernetes.io/managed-by: kustomize
 app.kubernetes.io/created-by: memcached-operator
 name: memcached-sample
spec:
 size: 3

OpenShift Dedicated 4 Opérateurs

172

en charge les clusters proxiés, votre opérateur doit inspecter l’environnement pour les variables proxy
standard suivantes et transmettre les valeurs à Operands:

HTTP_PROXY

HTTPS_PROXY

AUCUN_PROXY

NOTE

Ce tutoriel utilise HTTP_PROXY comme exemple de variable d’environnement.

Conditions préalables

C’est un cluster doté d’un proxy de sortie à l’échelle du cluster activé.

Procédure

1. Ajoutez les variables d’environnement au déploiement en mettant à jour le fichier
role/memcached/tasks/main.yml avec ce qui suit:

2. Définissez la variable d’environnement sur le déploiement de l’opérateur en ajoutant ce qui suit
au fichier config/manager/manager.yaml:

5.4.1.6. Exécution de l’opérateur

Afin de construire et d’exécuter votre opérateur, utilisez l’opérateur SDK CLI pour regrouper votre
opérateur, puis utilisez le gestionnaire de cycle de vie de l’opérateur (OLM) pour le déploiement sur le
cluster.

NOTE

...
env:
 - name: HTTP_PROXY
 value: '{{ lookup("env", "HTTP_PROXY") | default("", True) }}'
 - name: http_proxy
 value: '{{ lookup("env", "HTTP_PROXY") | default("", True) }}'
...

containers:
 - args:
 - --leader-elect
 - --leader-election-id=ansible-proxy-demo
 image: controller:latest
 name: manager
 env:
 - name: "HTTP_PROXY"
 value: "http_proxy_test"

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

173

NOTE

Lorsque vous souhaitez déployer votre opérateur sur un cluster OpenShift Container
Platform au lieu d’un cluster dédié OpenShift, deux options de déploiement
supplémentaires sont disponibles:

Exécutez localement en dehors du cluster en tant que programme Go.

Exécutez comme un déploiement sur le cluster.

Ressources supplémentaires

Exécution locale en dehors du cluster (document OpenShift Container Platform)

Exécution en tant que déploiement sur le cluster (document OpenShift Container Platform)

5.4.1.6.1. Groupement d’un opérateur et déploiement avec le gestionnaire du cycle de vie de
l’opérateur

5.4.1.6.1.1. Groupement d’un opérateur

Le format de paquet Opérateur est la méthode d’emballage par défaut pour Operator SDK et Operator
Lifecycle Manager (OLM). En utilisant le SDK de l’opérateur, vous pouvez préparer votre opérateur à
une utilisation sur OLM pour construire et pousser votre projet Opérateur en tant qu’image groupée.

Conditions préalables

L’opérateur SDK CLI installé sur un poste de travail de développement

Installation d’OpenShift CLI (oc) v4+

Le projet d’opérateur initialisé à l’aide du SDK de l’opérateur

Procédure

1. Exécutez les commandes suivantes dans votre répertoire de projet Opérateur pour construire
et pousser l’image de votre opérateur. Modifiez l’argument IMG dans les étapes suivantes pour
faire référence à un référentiel auquel vous avez accès. Il est possible d’obtenir un compte de
stockage des conteneurs sur des sites de dépôt tels que Quay.io.

a. Construire l’image:

NOTE

Le Dockerfile généré par le SDK pour l’opérateur renvoie explicitement
GOARCH=amd64 pour la construction de go. Cela peut être modifié à
GOARCH=$TARGETARCH pour les architectures non-AMD64. Docker
définira automatiquement la variable d’environnement à la valeur spécifiée
par -platform. Avec Buildah, le -build-arg devra être utilisé à cet effet. En
savoir plus, consultez Multiple Architectures.

b. Appuyez sur l’image vers un référentiel:

$ make docker-build IMG=<registry>/<user>/<operator_image_name>:<tag>

OpenShift Dedicated 4 Opérateurs

174

2. Créez votre paquet Opérateur manifeste en exécutant la commande make bundle, qui invoque
plusieurs commandes, y compris l’opérateur SDK génère des paquets et des sous-commandes
validant:

Les manifestes de paquets pour un opérateur décrivent comment afficher, créer et gérer une
application. La commande make bundle crée les fichiers et répertoires suivants dans votre
projet Opérateur:

Le bundle manifeste un répertoire nommé bundle/manifests qui contient un objet
ClusterServiceVersion

Annuaire de métadonnées groupé nommé bundle/metadata

L’ensemble des définitions de ressources personnalisées (CRD) dans un répertoire
config/crd

Dockerfile bundle.Dockerfile

Ces fichiers sont ensuite automatiquement validés en utilisant le bundle opérateur-sdk valide
pour s’assurer que la représentation des faisceaux sur disque est correcte.

3. Créez et poussez votre image de paquet en exécutant les commandes suivantes. L’OLM
consomme des faisceaux d’opérateurs à l’aide d’une image d’index, qui référence à une ou
plusieurs images groupées.

a. Construisez l’image du bundle. Définissez BUNDLE_IMG avec les détails du registre, de
l’espace de noms d’utilisateur et de la balise d’image où vous avez l’intention de pousser
l’image:

b. Appuyez sur l’image du paquet:

5.4.1.6.1.2. Déploiement d’un opérateur avec le gestionnaire du cycle de vie de l’opérateur

Le gestionnaire de cycle de vie de l’opérateur (OLM) vous aide à installer, mettre à jour et gérer le cycle
de vie des Opérateurs et de leurs services associés sur un cluster Kubernetes. Le système OLM est
installé par défaut sur OpenShift Dedicated et s’exécute sous forme d’extension Kubernetes afin que
vous puissiez utiliser la console Web et l’OpenShift CLI (oc) pour toutes les fonctions de gestion du
cycle de vie de l’opérateur sans outils supplémentaires.

Le format de paquet opérateur est la méthode d’emballage par défaut pour l’opérateur SDK et OLM. Le
SDK de l’opérateur permet d’exécuter rapidement une image groupée sur OLM afin de s’assurer qu’elle
fonctionne correctement.

Conditions préalables

L’opérateur SDK CLI installé sur un poste de travail de développement

$ make docker-push IMG=<registry>/<user>/<operator_image_name>:<tag>

$ make bundle IMG=<registry>/<user>/<operator_image_name>:<tag>

$ make bundle-build BUNDLE_IMG=<registry>/<user>/<bundle_image_name>:<tag>

$ docker push <registry>/<user>/<bundle_image_name>:<tag>

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

175

1

2

3

Ensemble d’image de l’opérateur construit et poussé à un registre

Installation OLM sur un cluster basé sur Kubernetes (v1.16.0 ou version ultérieure si vous utilisez
apiextensions.k8s.io/v1 CRD, par exemple OpenShift Dedicated 4)

Connexion au cluster avec oc à l’aide d’un compte avec des autorisations d’administration
dédiées

Procédure

Entrez la commande suivante pour exécuter l’opérateur sur le cluster:

La commande run bundle crée un catalogue basé sur des fichiers valide et installe le paquet
Opérateur sur votre cluster en utilisant OLM.

Facultatif: Par défaut, la commande installe l’opérateur dans le projet actuellement actif
dans votre fichier ~/.kube/config. Il est possible d’ajouter le drapeau -n pour définir un
espace de noms différent pour l’installation.

Dans le cas où vous ne spécifiez pas une image, la commande utilise quay.io/operator-
framework/opm:latest comme image d’index par défaut. Lorsque vous spécifiez une
image, la commande utilise l’image du faisceau lui-même comme image d’index.

IMPORTANT

À partir d’OpenShift Dedicated 4.11, la commande run bundle prend en charge le
format de catalogue basé sur des fichiers pour les catalogues Opérateur par
défaut. Le format de base de données SQLite obsolète pour les catalogues
d’opérateurs continue d’être pris en charge; cependant, il sera supprimé dans une
version ultérieure. Il est recommandé aux auteurs de l’opérateur de migrer leurs
flux de travail vers le format de catalogue basé sur les fichiers.

Cette commande effectue les actions suivantes:

Créez une image d’index faisant référence à votre image de paquet. L’image de l’index est
opaque et éphémère, mais reflète avec précision comment un paquet serait ajouté à un
catalogue en production.

Créez une source de catalogue qui pointe vers votre nouvelle image d’index, ce qui permet
à OperatorHub de découvrir votre opérateur.

Déployez votre opérateur dans votre cluster en créant un groupe d’opérateurs, un
abonnement, un plan d’installation et toutes les autres ressources requises, y compris
RBAC.

5.4.1.7. Créer une ressource personnalisée

Après l’installation de votre opérateur, vous pouvez le tester en créant une ressource personnalisée
(CR) qui est maintenant fournie sur le cluster par l’opérateur.

$ operator-sdk run bundle \ 1
 -n <namespace> \ 2
 <registry>/<user>/<bundle_image_name>:<tag> 3

OpenShift Dedicated 4 Opérateurs

176

Conditions préalables

Exemple Memcached Operator, qui fournit le Memcached CR, installé sur un cluster

Procédure

1. Changer l’espace de noms où votre opérateur est installé. À titre d’exemple, si vous avez
déployé l’opérateur à l’aide de la commande make deployment:

2. Éditer l’échantillon Memcached CR manifeste à config/samples/cache_v1_memcached.yaml
pour contenir les spécifications suivantes:

3. Créer le CR:

4. Assurez-vous que l’opérateur Memcached crée le déploiement de l’échantillon CR avec la
bonne taille:

Exemple de sortie

5. Consultez le statut des pods et CR pour confirmer que le statut est mis à jour avec les noms de
pod de Memcached.

a. Consultez les gousses:

Exemple de sortie

b. Consultez l’état CR:

$ oc project memcached-operator-system

apiVersion: cache.example.com/v1
kind: Memcached
metadata:
 name: memcached-sample
...
spec:
...
 size: 3

$ oc apply -f config/samples/cache_v1_memcached.yaml

$ oc get deployments

NAME READY UP-TO-DATE AVAILABLE AGE
memcached-operator-controller-manager 1/1 1 1 8m
memcached-sample 3/3 3 3 1m

$ oc get pods

NAME READY STATUS RESTARTS AGE
memcached-sample-6fd7c98d8-7dqdr 1/1 Running 0 1m
memcached-sample-6fd7c98d8-g5k7v 1/1 Running 0 1m
memcached-sample-6fd7c98d8-m7vn7 1/1 Running 0 1m

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

177

Exemple de sortie

6. Actualisez la taille du déploiement.

a. Actualisez le fichier config/samples/cache_v1_memcached.yaml pour modifier le champ
spec.size dans le CR Memcached de 3 à 5:

b. Confirmez que l’opérateur modifie la taille du déploiement:

Exemple de sortie

7. Supprimez le CR en exécutant la commande suivante:

8. Nettoyez les ressources qui ont été créées dans le cadre de ce tutoriel.

Lorsque vous avez utilisé la commande make deployment pour tester l’opérateur, exécutez
la commande suivante:

Lorsque vous avez utilisé la commande operator-sdk run bundle pour tester l’opérateur,
exécutez la commande suivante:

$ oc get memcached/memcached-sample -o yaml

apiVersion: cache.example.com/v1
kind: Memcached
metadata:
...
 name: memcached-sample
...
spec:
 size: 3
status:
 nodes:
 - memcached-sample-6fd7c98d8-7dqdr
 - memcached-sample-6fd7c98d8-g5k7v
 - memcached-sample-6fd7c98d8-m7vn7

$ oc patch memcached memcached-sample \
 -p '{"spec":{"size": 5}}' \
 --type=merge

$ oc get deployments

NAME READY UP-TO-DATE AVAILABLE AGE
memcached-operator-controller-manager 1/1 1 1 10m
memcached-sample 5/5 5 5 3m

$ oc delete -f config/samples/cache_v1_memcached.yaml

$ make undeploy

$ operator-sdk cleanup <project_name>

OpenShift Dedicated 4 Opérateurs

178

5.4.1.8. Ressources supplémentaires

Consultez la mise en page du projet pour les opérateurs basés sur Ansible pour en apprendre
davantage sur les structures d’annuaire créées par le SDK de l’opérateur.

Lorsqu’un proxy de sortie à l’échelle du cluster est configuré, les administrateurs ayant le rôle
d’administrateur dédié peuvent outrepasser les paramètres proxy ou injecter un certificat CA
personnalisé pour des opérateurs spécifiques fonctionnant sur Operator Lifecycle Manager
(OLM).

5.4.2. Aménagement du projet pour les opérateurs basés sur Ansible

L’opérateur-sdk CLI peut générer, ou échafauder, un certain nombre de paquets et de fichiers pour
chaque projet d’opérateur.

IMPORTANT

La version prise en charge par Red Hat de l’outil Operator SDK CLI, y compris les outils
d’échafaudage et de test connexes pour les projets d’opérateur, est dépréciée et devrait
être supprimée dans une version ultérieure d’OpenShift Dedicated. Le Red Hat fournira
des corrections de bogues et une prise en charge de cette fonctionnalité pendant le
cycle de vie de la version actuelle, mais cette fonctionnalité ne recevra plus
d’améliorations et sera supprimée des futures versions d’OpenShift Dedicated.

La version prise en charge par Red Hat du SDK de l’opérateur n’est pas recommandée
pour la création de nouveaux projets d’opérateur. Les auteurs d’opérateurs avec des
projets d’opérateur existants peuvent utiliser la version de l’outil Operator SDK CLI publié
avec OpenShift Dedicated 4 pour maintenir leurs projets et créer des versions
d’opérateur ciblant des versions plus récentes d’OpenShift Dedicated.

Les images de base suivantes pour les projets d’opérateur ne sont pas dépréciées. Les
fonctionnalités d’exécution et les API de configuration de ces images de base sont
toujours prises en charge pour les corrections de bogues et pour l’adressage des CVE.

L’image de base pour les projets d’opérateurs basés sur Ansible

L’image de base pour les projets d’opérateur basé sur Helm

Afin d’obtenir de l’information sur la version non prise en charge et gérée par la
communauté du SDK de l’opérateur, voir Operator SDK (Operator Framework).

5.4.2.1. Disposition de projet basée sur Ansible

Les projets d’opérateur basés sur Ansible générés à l’aide de la commande operator-sdk init --plugins
ansible contiennent les répertoires et fichiers suivants:

Fichier ou
répertoire

But

Dockerfile Dockerfile pour la construction de l’image du conteneur pour l’opérateur.

À propos de
Makefile

Cibles pour la construction, la publication, le déploiement de l’image du conteneur qui
enveloppe le binaire Opérateur, et les cibles pour l’installation et la désinstallation de la
définition de ressources personnalisées (CRD).

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

179

LE PROJET Fichier YAML contenant des informations de métadonnées pour l’opérateur.

configuration/cr
d

Les fichiers CRD de base et les paramètres de fichier kustomization.yaml.

configuration/d
éfaut

Collecte tous les manifestes de l’opérateur pour le déploiement. À utiliser par la
commande make deployment.

configuration/g
estionnaire

Déploiement du gestionnaire de contrôleur.

configuration/pr
ométhée

La ressource ServiceMonitor pour la surveillance de l’opérateur.

config/rbac Lien de rôle et de rôle pour le proxy d’élection et d’authentification du leader.

configuration/éc
hantillons

Échantillons de ressources créées pour les CRD.

configuration/te
st

Configurations d’échantillons pour les tests.

livres de
lecture/

C’est un sous-répertoire pour que les playbooks s’exécutent.

les rôles/ Le sous-répertoire de l’arborescence des rôles s’exécute.

les
montres.yaml

Groupe/version/type (GVK) des ressources à surveiller, et la méthode d’invocation
Ansible. De nouvelles entrées sont ajoutées à l’aide de la commande create api.

exigences.yml Fichier YAML contenant les collections Ansibles et les dépendances de rôles à installer
lors d’une construction.

la molécule/ Des scénarios de molécules pour tester de bout en bout votre rôle et votre opérateur.

Fichier ou
répertoire

But

5.4.3. La mise à jour des projets pour les versions SDK plus récentes de l’opérateur

Le logiciel OpenShift Dedicated 4 prend en charge le SDK 1.38.0 de l’opérateur. Lorsque vous disposez
déjà du 1.36.1 CLI installé sur votre poste de travail, vous pouvez mettre à jour le CLI à 1.38.0 en installant
la dernière version.

IMPORTANT

OpenShift Dedicated 4 Opérateurs

180

1

IMPORTANT

La version prise en charge par Red Hat de l’outil Operator SDK CLI, y compris les outils
d’échafaudage et de test connexes pour les projets d’opérateur, est dépréciée et devrait
être supprimée dans une version ultérieure d’OpenShift Dedicated. Le Red Hat fournira
des corrections de bogues et une prise en charge de cette fonctionnalité pendant le
cycle de vie de la version actuelle, mais cette fonctionnalité ne recevra plus
d’améliorations et sera supprimée des futures versions d’OpenShift Dedicated.

La version prise en charge par Red Hat du SDK de l’opérateur n’est pas recommandée
pour la création de nouveaux projets d’opérateur. Les auteurs d’opérateurs avec des
projets d’opérateur existants peuvent utiliser la version de l’outil Operator SDK CLI publié
avec OpenShift Dedicated 4 pour maintenir leurs projets et créer des versions
d’opérateur ciblant des versions plus récentes d’OpenShift Dedicated.

Les images de base suivantes pour les projets d’opérateur ne sont pas dépréciées. Les
fonctionnalités d’exécution et les API de configuration de ces images de base sont
toujours prises en charge pour les corrections de bogues et pour l’adressage des CVE.

L’image de base pour les projets d’opérateurs basés sur Ansible

L’image de base pour les projets d’opérateur basé sur Helm

Afin d’obtenir de l’information sur la version non prise en charge et gérée par la
communauté du SDK de l’opérateur, voir Operator SDK (Operator Framework).

Cependant, pour s’assurer que vos projets d’opérateur existants maintiennent la compatibilité avec le
SDK 1.38.0 de l’opérateur, des étapes de mise à jour sont nécessaires pour les modifications de rupture
associées introduites depuis 1.36.1. Les étapes de mise à jour doivent être exécutées manuellement dans
l’un de vos projets Opérateurs qui ont été précédemment créés ou maintenus avec 1.36.1.

5.4.3.1. La mise à jour des projets d’opérateurs accessibles pour l’opérateur SDK 1.38.0

La procédure suivante met à jour un projet existant d’opérateur basé sur Ansible pour la compatibilité
avec 1.38.0.

Conditions préalables

L’opérateur SDK 1.38.0 installé

Création ou maintenance d’un projet opérateur avec l’opérateur SDK 1.36.1

Procédure

1. Éditez le Makefile de votre projet Opérateur pour mettre à jour la version SDK de l’opérateur
vers 1.38.0, comme indiqué dans l’exemple suivant:

Exemple de Makefile

Changer la version de 1.36.1 à 1.38.0.

Set the Operator SDK version to use. By default, what is installed on the system is used.
This is useful for CI or a project to utilize a specific version of the operator-sdk toolkit.
OPERATOR_SDK_VERSION ?= v1.38.0 1

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

181

2. Éditez le Dockerfile de votre projet Opérateur pour mettre à jour la balise image ose-ansible-
operator à 4, comme indiqué dans l’exemple suivant:

Exemple Dockerfile

3. Il faut mettre à niveau les versions Kubernetes de votre projet Opérateur pour utiliser 1.30 et
Kubebuilder v4.

ASTUCE

Cette mise à jour comprend des changements complexes d’échafaudage en raison de
l’élimination du kube-rbac-proxy. Lorsque ces migrations deviennent difficiles à suivre,
échafauder un nouveau projet d’échantillon à des fins de comparaison.

a. Actualisez la version Kustomize dans votre Makefile en apportant les modifications
suivantes:

b. Actualisez votre fichier config/default/kustomization.yaml avec les modifications suivantes:

c. Enlevez les fichiers config/default/manager_auth_proxy_patch.yaml et
config/default/manager_config_patch.yaml.

d. Créez un fichier config/default/manager_metrics_patch.yaml avec le contenu suivant:

FROM registry.redhat.io/openshift4/ose-ansible-operator:v4

- curl -sSLo - https://github.com/kubernetes-
sigs/kustomize/releases/download/kustomize/v5.3.0/kustomize_v5.3.0_$(OS)_$(ARCH).tar.
gz | \
+ curl -sSLo - https://github.com/kubernetes-
sigs/kustomize/releases/download/kustomize/v5.4.2/kustomize_v5.4.2_$(OS)_$(ARCH).tar.
gz | \

 # [PROMETHEUS] To enable prometheus monitor, uncomment all sections with
'PROMETHEUS'.
 #- ../prometheus
+ # [METRICS] Expose the controller manager metrics service.
+ - metrics_service.yaml

+ # Uncomment the patches line if you enable Metrics, and/or are using webhooks and
cert-manager
 patches:
- # Protect the /metrics endpoint by putting it behind auth.
- # If you want your controller-manager to expose the /metrics
- # endpoint w/o any authn/z, please comment the following line.
- - path: manager_auth_proxy_patch.yaml
+ # [METRICS] The following patch will enable the metrics endpoint using HTTPS and
the port :8443.
+ # More info: https://book.kubebuilder.io/reference/metrics
+ - path: manager_metrics_patch.yaml
+ target:
+ kind: Deployment

This patch adds the args to allow exposing the metrics endpoint using HTTPS

OpenShift Dedicated 4 Opérateurs

182

e. Créez un fichier config/default/metrics_service.yaml avec le contenu suivant:

f. Actualisez votre fichier config/manager/manager.yaml avec les modifications suivantes:

g. Actualisez votre fichier config/prometheus/monitor.yaml avec les modifications suivantes:

- op: add
 path: /spec/template/spec/containers/0/args/0
 value: --metrics-bind-address=:8443
This patch adds the args to allow securing the metrics endpoint
- op: add
 path: /spec/template/spec/containers/0/args/0
 value: --metrics-secure
This patch adds the args to allow RBAC-based authn/authz the metrics endpoint
- op: add
 path: /spec/template/spec/containers/0/args/0
 value: --metrics-require-rbac

apiVersion: v1
kind: Service
metadata:
 labels:
 control-plane: controller-manager
 app.kubernetes.io/name: <operator-name>
 app.kubernetes.io/managed-by: kustomize
 name: controller-manager-metrics-service
 namespace: system
spec:
 ports:
 - name: https
 port: 8443
 protocol: TCP
 targetPort: 8443
 selector:
 control-plane: controller-manager

 - --leader-elect
+ - --health-probe-bind-address=:6789

 - path: /metrics
- port: https
+ port: https # Ensure this is the name of the port that exposes HTTPS metrics
 tlsConfig:
+ # TODO(user): The option insecureSkipVerify: true is not recommended for
production since it disables
+ # certificate verification. This poses a significant security risk by making the system
vulnerable to
+ # man-in-the-middle attacks, where an attacker could intercept and manipulate the
communication between
+ # Prometheus and the monitored services. This could lead to unauthorized access
to sensitive metrics data,
+ # compromising the integrity and confidentiality of the information.
+ # Please use the following options for secure configurations:
+ # caFile: /etc/metrics-certs/ca.crt

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

183

h. Supprimez les fichiers suivants du répertoire config/rbac/:

auth_proxy_client_clusterrole.yaml

auth_proxy_role.yaml

auth_proxy_role_binding.yaml

auth_proxy_service.yaml

i. Actualisez votre fichier config/rbac/kustomization.yaml avec les modifications suivantes:

j. Créez un fichier config/rbac/metrics_auth_role_binding.yaml avec le contenu suivant:

k. Créez un fichier config/rbac/metrics_reader_role.yaml avec le contenu suivant:

+ # certFile: /etc/metrics-certs/tls.crt
+ # keyFile: /etc/metrics-certs/tls.key
 insecureSkipVerify: true

 - leader_election_role_binding.yaml
- # Comment the following 4 lines if you want to disable
- # the auth proxy (https://github.com/brancz/kube-rbac-proxy)
- # which protects your /metrics endpoint.
- - auth_proxy_service.yaml
- - auth_proxy_role.yaml
- - auth_proxy_role_binding.yaml
- - auth_proxy_client_clusterrole.yaml
+ # The following RBAC configurations are used to protect
+ # the metrics endpoint with authn/authz. These configurations
+ # ensure that only authorized users and service accounts
+ # can access the metrics endpoint. Comment the following
+ # permissions if you want to disable this protection.
+ # More info: https://book.kubebuilder.io/reference/metrics.html
+ - metrics_auth_role.yaml
+ - metrics_auth_role_binding.yaml
+ - metrics_reader_role.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: metrics-auth-rolebinding
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: metrics-auth-role
subjects:
 - kind: ServiceAccount
 name: controller-manager
 namespace: system

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: metrics-reader

OpenShift Dedicated 4 Opérateurs

184

5.4.3.2. Ressources supplémentaires

La mise à jour des projets d’opérateurs accessibles pour l’opérateur SDK 1.36.1 (OpenShift Dédié
4.17)

Les projets de manifestation de paquets migratoires au format de paquetage

5.4.4. Assistance Ansible dans le SDK de l’opérateur

IMPORTANT

La version prise en charge par Red Hat de l’outil Operator SDK CLI, y compris les outils
d’échafaudage et de test connexes pour les projets d’opérateur, est dépréciée et devrait
être supprimée dans une version ultérieure d’OpenShift Dedicated. Le Red Hat fournira
des corrections de bogues et une prise en charge de cette fonctionnalité pendant le
cycle de vie de la version actuelle, mais cette fonctionnalité ne recevra plus
d’améliorations et sera supprimée des futures versions d’OpenShift Dedicated.

La version prise en charge par Red Hat du SDK de l’opérateur n’est pas recommandée
pour la création de nouveaux projets d’opérateur. Les auteurs d’opérateurs avec des
projets d’opérateur existants peuvent utiliser la version de l’outil Operator SDK CLI publié
avec OpenShift Dedicated 4 pour maintenir leurs projets et créer des versions
d’opérateur ciblant des versions plus récentes d’OpenShift Dedicated.

Les images de base suivantes pour les projets d’opérateur ne sont pas dépréciées. Les
fonctionnalités d’exécution et les API de configuration de ces images de base sont
toujours prises en charge pour les corrections de bogues et pour l’adressage des CVE.

L’image de base pour les projets d’opérateurs basés sur Ansible

L’image de base pour les projets d’opérateur basé sur Helm

Afin d’obtenir de l’information sur la version non prise en charge et gérée par la
communauté du SDK de l’opérateur, voir Operator SDK (Operator Framework).

5.4.4.1. Fichiers de ressources personnalisés

Les opérateurs utilisent le mécanisme d’extension Kubernetes, les définitions de ressources
personnalisées (CRD), de sorte que votre ressource personnalisée (CR) ressemble et agit comme les
objets Kubernetes natifs intégrés.

Le format de fichier CR est un fichier de ressource Kubernetes. L’objet a des champs obligatoires et
facultatifs:

Tableau 5.1. Champs de ressources personnalisés

rules:
- nonResourceURLs:
 - "/metrics"
 verbs:
 - get

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

185

Le champ Description

apiVersion La version du CR à créer.

kind C’est une sorte de CR à créer.

les métadonnées Des métadonnées spécifiques à Kubernetes à créer.

caractéristiques (facultatif) Liste de valeurs clés des variables qui sont transmises à Ansible. Ce champ
est vide par défaut.

status Il résume l’état actuel de l’objet. Dans le cas des opérateurs basés sur
Ansible, la sous-ressource d’état est activée pour les CRD et gérée par
l’opérateur_sdk.util.k8s_status module Ansible par défaut, qui inclut des
informations de condition au statut CR.

annotations Les annotations spécifiques à Kubernetes doivent être ajoutées au CR.

La liste suivante des annotations CR modifie le comportement de l’Opérateur:

Tableau 5.2. Annotations d’opérateur basées sur Ansible

Annotation Description

Ansible.operator-
sdk/réconcile-période

Indique l’intervalle de rapprochement pour le CR. Cette valeur est analysée
en utilisant le temps standard du paquet Golang. En particulier,
ParseDuration est utilisé qui applique le suffixe par défaut de s, donnant la
valeur en quelques secondes.

Exemple Ansible-basé sur l’annotation de l’opérateur

5.4.4.2. fichier Watch.yaml

Groupe/version/type (GVK) est un identifiant unique pour une API Kubernetes. Le fichier watch.yaml
contient une liste de cartographies à partir de ressources personnalisées (CRs), identifiées par son GVK,
à un rôle ou un playbook Ansible. L’opérateur s’attend à ce fichier mappage dans un emplacement
prédéfini à /opt/ansible/watches.yaml.

Tableau 5.3. cartographie des fichiers Watch.yaml

apiVersion: "test1.example.com/v1alpha1"
kind: "Test1"
metadata:
 name: "example"
annotations:
 ansible.operator-sdk/reconcile-period: "30s"

OpenShift Dedicated 4 Opérateurs

186

1

2

3

Le champ Description

groupe de travail Groupe de CR à regarder.

la version La version de CR à regarder.

kind Genre de CR à regarder

le rôle (par défaut) Chemin vers le rôle Ansible ajouté au conteneur. À titre d’exemple, si votre
répertoire de rôles est à /opt/ansible/roles/ et que votre rôle est nommé
busybox, cette valeur serait /opt/ansible/roles/busybox. Ce champ s’exclut
mutuellement avec le champ de playbook.

livre de lecture Chemin vers le livre de lecture Ansible ajouté au conteneur. Ce livre de
lecture devrait être un moyen d’appeler des rôles. Ce champ s’exclut
mutuellement avec le domaine des rôles.

concilier la Période (facultatif) L’intervalle de réconciliation, la fréquence à laquelle le rôle ou le playbook
est exécuté, pour un CR donné.

GérerStatus (facultatif) Lorsqu’il est défini sur true (par défaut), l’opérateur gère le statut du CR
génériquement. Lorsqu’il est défini sur false, le statut du CR est géré
ailleurs, par le rôle ou le playbook spécifié ou dans un contrôleur séparé.

Exemple watch.yaml fichier

Exemple simple de cartographie Test1 au rôle test1.

Exemple simple de mappage Test2 vers un playbook.

Exemple plus complexe pour le type Test3. Désactive la re-requête et la gestion du statut CR dans
le livre de lecture.

- version: v1alpha1 1
 group: test1.example.com
 kind: Test1
 role: /opt/ansible/roles/Test1

- version: v1alpha1 2
 group: test2.example.com
 kind: Test2
 playbook: /opt/ansible/playbook.yml

- version: v1alpha1 3
 group: test3.example.com
 kind: Test3
 playbook: /opt/ansible/test3.yml
 reconcilePeriod: 0
 manageStatus: false

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

187

5.4.4.2.1. Des options avancées

Les fonctionnalités avancées peuvent être activées en les ajoutant à votre fichier watch.yaml par GVK.
Ils peuvent aller sous le groupe, la version, le genre et le playbook ou les champs de rôle.

Certaines fonctionnalités peuvent être remplacées par ressource à l’aide d’une annotation sur ce CR.
Les options qui peuvent être remplacées ont l’annotation spécifiée ci-dessous.

Tableau 5.4. Advanced watch.yaml options de fichier

Caractéristique Clé YAML Description Annotation
pour la
surcharge

La
vale
ur
par
défa
ut

Concilier la période concilier la
période

Le temps entre réconcilier court
pour un CR particulier.

Ansible.oper
ator-
sdk/réconcil
e-période

1M

Gérer le statut gérer le
statut

Il permet à l’opérateur de gérer la
section conditions de chaque
section d’état CR.

 C’es
t
vrai

Surveiller les ressources
dépendantes

les
ressources
de
WatchDepen
dentResourc
es

Il permet à l’opérateur de
surveiller dynamiquement les
ressources créées par Ansible.

 C’es
t
vrai

Examiner les ressources
en grappes

accueil >
WatchCluste
rScopedRes
ources

Il permet à l’opérateur de
regarder les ressources en
grappes créées par Ansible.

 faux

Artéfacts Max runner à propos de
maxRunnerA
rtifacts

Gère le nombre de répertoires
d’artefacts qu’Ansible Runner
conserve dans le conteneur de
l’opérateur pour chaque
ressource individuelle.

Ansible.oper
ator-
sdk/max-
runner-
artefacts

20

Exemple de fichier watch.yml avec des options avancées

- version: v1alpha1
 group: app.example.com
 kind: AppService
 playbook: /opt/ansible/playbook.yml
 maxRunnerArtifacts: 30

OpenShift Dedicated 4 Opérateurs

188

5.4.4.3. Des variables supplémentaires envoyées à Ansible

Des variables supplémentaires peuvent être envoyées à Ansible, qui sont ensuite gérées par l’opérateur.
La section Spécification de la ressource personnalisée (CR) passe le long des paires clé-valeur en tant
que variables supplémentaires. Cela équivaut à des variables supplémentaires passées à la commande
ansible-playbook.

L’opérateur passe également le long de variables supplémentaires sous le champ méta pour le nom du
CR et l’espace de noms du CR.

C) pour l’exemple suivant:

La structure passée à Ansible en tant que variables supplémentaires est:

Le message et les champs newParamètre sont définis dans le niveau supérieur en tant que variables
supplémentaires, et méta fournit les métadonnées pertinentes pour le CR telles que définies dans
l’opérateur. Les champs méta peuvent être consultés à l’aide de la notation par point dans Ansible, par
exemple:

5.4.4.4. Ansible Runner Ansible Ansible

Ansible Runner conserve des informations sur les courses Ansible dans le conteneur. Ceci est situé à
/tmp/ansible-operator/runner/<group>/<version>/<kind>/<namespace>/<name>.

Ressources supplémentaires

En savoir plus sur le répertoire des coureurs, consultez la documentation Ansible Runner.

 reconcilePeriod: 5s
 manageStatus: False
 watchDependentResources: False

apiVersion: "app.example.com/v1alpha1"
kind: "Database"
metadata:
 name: "example"
spec:
 message: "Hello world 2"
 newParameter: "newParam"

{ "meta": {
 "name": "<cr_name>",
 "namespace": "<cr_namespace>",
 },
 "message": "Hello world 2",
 "new_parameter": "newParam",
 "_app_example_com_database": {
 <full_crd>
 },
}

- debug:
 msg: "name: {{ ansible_operator_meta.name }}, {{ ansible_operator_meta.namespace }}"

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

189

5.4.5. Collection Kubernetes pour Ansible

Afin de gérer le cycle de vie de votre application sur Kubernetes à l’aide d’Ansible, vous pouvez utiliser la
collection Kubernetes pour Ansible. Cette collection de modules Ansible permet à un développeur de
tirer parti de ses fichiers de ressources Kubernetes existants écrits dans YAML ou d’exprimer la gestion
du cycle de vie dans Ansible natif.

IMPORTANT

La version prise en charge par Red Hat de l’outil Operator SDK CLI, y compris les outils
d’échafaudage et de test connexes pour les projets d’opérateur, est dépréciée et devrait
être supprimée dans une version ultérieure d’OpenShift Dedicated. Le Red Hat fournira
des corrections de bogues et une prise en charge de cette fonctionnalité pendant le
cycle de vie de la version actuelle, mais cette fonctionnalité ne recevra plus
d’améliorations et sera supprimée des futures versions d’OpenShift Dedicated.

La version prise en charge par Red Hat du SDK de l’opérateur n’est pas recommandée
pour la création de nouveaux projets d’opérateur. Les auteurs d’opérateurs avec des
projets d’opérateur existants peuvent utiliser la version de l’outil Operator SDK CLI publié
avec OpenShift Dedicated 4 pour maintenir leurs projets et créer des versions
d’opérateur ciblant des versions plus récentes d’OpenShift Dedicated.

Les images de base suivantes pour les projets d’opérateur ne sont pas dépréciées. Les
fonctionnalités d’exécution et les API de configuration de ces images de base sont
toujours prises en charge pour les corrections de bogues et pour l’adressage des CVE.

L’image de base pour les projets d’opérateurs basés sur Ansible

L’image de base pour les projets d’opérateur basé sur Helm

Afin d’obtenir de l’information sur la version non prise en charge et gérée par la
communauté du SDK de l’opérateur, voir Operator SDK (Operator Framework).

L’un des plus grands avantages de l’utilisation d’Ansible en conjonction avec les fichiers de ressources
Kubernetes existants est la possibilité d’utiliser Jinja tentant afin que vous puissiez personnaliser les
ressources avec la simplicité de quelques variables dans Ansible.

Cette section détaille l’utilisation de la collection Kubernetes. Installez la collection sur votre poste de
travail local et testez-la à l’aide d’un livre de lecture avant de l’utiliser au sein d’un opérateur.

5.4.5.1. Installation de la collection Kubernetes pour Ansible

Il est possible d’installer la collection Kubernetes pour Ansible sur votre poste de travail local.

Procédure

1. Installer Ansible 2.15+:

2. Installez le package client Python Kubernetes:

$ sudo dnf install ansible

$ pip install kubernetes

OpenShift Dedicated 4 Opérateurs

190

1

2

3. Installez la collection Kubernetes en utilisant l’une des méthodes suivantes:

La collection peut être installée directement à partir d’Ansible Galaxy:

Lorsque vous avez déjà initialisé votre opérateur, vous pourriez avoir un fichier
requirements.yml au niveau supérieur de votre projet. Ce fichier spécifie les dépendances
anonymes qui doivent être installées pour que votre opérateur fonctionne. Ce fichier installe
par défaut la collection community.kubernetes ainsi que la collection operator_sdk.util, qui
fournit des modules et des plugins pour les fonctions spécifiques à l’opérateur.
Installer les modules dépendants à partir du fichier requirements.yml:

5.4.5.2. Tester la collection Kubernetes localement

Les développeurs d’opérateurs peuvent exécuter le code Ansible à partir de leur machine locale plutôt
que d’exécuter et de reconstruire l’opérateur à chaque fois.

Conditions préalables

Initialiser un projet d’opérateur basé sur Ansible et créer une API qui a un rôle Ansible généré en
utilisant le SDK de l’opérateur

Installer la collection Kubernetes pour Ansible

Procédure

1. Dans votre répertoire de projet Opérateur Ansible, modifiez le fichier
role/<kind>/tasks/main.yml avec la logique Ansible que vous souhaitez. Le répertoire
role/<kind>/ est créé lorsque vous utilisez le drapeau --generate-role lors de la création
d’une API. Le <kind> remplaçable correspond au type que vous avez spécifié pour l’API.
L’exemple suivant crée et supprime une carte de configuration basée sur la valeur d’une variable
nommée état:

Indiquez l’espace de noms où vous souhaitez créer la carte de configuration.

La configuration d’ignorer_erreurs: true s’assure que la suppression d’une carte de
configuration inexistante ne échoue pas.

2. Changer le fichier role/<kind>/defaults/main.yml pour définir l’état à présenter par défaut:

$ ansible-galaxy collection install community.kubernetes

$ ansible-galaxy collection install -r requirements.yml

- name: set ConfigMap example-config to {{ state }}
 community.kubernetes.k8s:
 api_version: v1
 kind: ConfigMap
 name: example-config
 namespace: <operator_namespace> 1
 state: "{{ state }}"
 ignore_errors: true 2

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

191

3. Créez un playbook Ansible en créant un fichier playbook.yml dans le niveau supérieur de votre
répertoire de projet, et incluez votre rôle <kind>:

4. Exécutez le livre de lecture:

Exemple de sortie

5. Assurez-vous que la carte de configuration a été créée:

Exemple de sortie

6. Exécutez à nouveau l’état de réglage du livre de lecture à l’absence:

Exemple de sortie

state: present

- hosts: localhost
 roles:
 - <kind>

$ ansible-playbook playbook.yml

[WARNING]: provided hosts list is empty, only localhost is available. Note that the implicit
localhost does not match 'all'

PLAY [localhost] **

TASK [Gathering Facts]
**
ok: [localhost]

TASK [memcached : set ConfigMap example-config to present]
**
changed: [localhost]

PLAY RECAP **
localhost : ok=2 changed=1 unreachable=0 failed=0 skipped=0
rescued=0 ignored=0

$ oc get configmaps

NAME DATA AGE
example-config 0 2m1s

$ ansible-playbook playbook.yml --extra-vars state=absent

[WARNING]: provided hosts list is empty, only localhost is available. Note that the implicit
localhost does not match 'all'

OpenShift Dedicated 4 Opérateurs

192

7. Assurez-vous que la carte de configuration a été supprimée:

5.4.5.3. Les prochaines étapes

Consultez Utiliser Ansible à l’intérieur d’un opérateur pour plus de détails sur le déclenchement
de votre logique personnalisée Ansible à l’intérieur d’un opérateur lorsqu’une ressource
personnalisée (CR) change.

5.4.6. En utilisant Ansible à l’intérieur d’un opérateur

Après avoir connu l’utilisation locale de la collection Kubernetes pour Ansible, vous pouvez déclencher la
même logique Ansible à l’intérieur d’un opérateur lorsqu’une ressource personnalisée (CR) change. Cet
exemple cartographie un rôle Ansible à une ressource spécifique de Kubernetes que l’opérateur regarde.
Ce mappage se fait dans le fichier watch.yaml.

IMPORTANT

PLAY [localhost] **

TASK [Gathering Facts]
**
ok: [localhost]

TASK [memcached : set ConfigMap example-config to absent]
**
changed: [localhost]

PLAY RECAP **
localhost : ok=2 changed=1 unreachable=0 failed=0 skipped=0
rescued=0 ignored=0

$ oc get configmaps

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

193

IMPORTANT

La version prise en charge par Red Hat de l’outil Operator SDK CLI, y compris les outils
d’échafaudage et de test connexes pour les projets d’opérateur, est dépréciée et devrait
être supprimée dans une version ultérieure d’OpenShift Dedicated. Le Red Hat fournira
des corrections de bogues et une prise en charge de cette fonctionnalité pendant le
cycle de vie de la version actuelle, mais cette fonctionnalité ne recevra plus
d’améliorations et sera supprimée des futures versions d’OpenShift Dedicated.

La version prise en charge par Red Hat du SDK de l’opérateur n’est pas recommandée
pour la création de nouveaux projets d’opérateur. Les auteurs d’opérateurs avec des
projets d’opérateur existants peuvent utiliser la version de l’outil Operator SDK CLI publié
avec OpenShift Dedicated 4 pour maintenir leurs projets et créer des versions
d’opérateur ciblant des versions plus récentes d’OpenShift Dedicated.

Les images de base suivantes pour les projets d’opérateur ne sont pas dépréciées. Les
fonctionnalités d’exécution et les API de configuration de ces images de base sont
toujours prises en charge pour les corrections de bogues et pour l’adressage des CVE.

L’image de base pour les projets d’opérateurs basés sur Ansible

L’image de base pour les projets d’opérateur basé sur Helm

Afin d’obtenir de l’information sur la version non prise en charge et gérée par la
communauté du SDK de l’opérateur, voir Operator SDK (Operator Framework).

5.4.6.1. Fichiers de ressources personnalisés

Les opérateurs utilisent le mécanisme d’extension Kubernetes, les définitions de ressources
personnalisées (CRD), de sorte que votre ressource personnalisée (CR) ressemble et agit comme les
objets Kubernetes natifs intégrés.

Le format de fichier CR est un fichier de ressource Kubernetes. L’objet a des champs obligatoires et
facultatifs:

Tableau 5.5. Champs de ressources personnalisés

Le champ Description

apiVersion La version du CR à créer.

kind C’est une sorte de CR à créer.

les métadonnées Des métadonnées spécifiques à Kubernetes à créer.

caractéristiques (facultatif) Liste de valeurs clés des variables qui sont transmises à Ansible. Ce champ
est vide par défaut.

status Il résume l’état actuel de l’objet. Dans le cas des opérateurs basés sur
Ansible, la sous-ressource d’état est activée pour les CRD et gérée par
l’opérateur_sdk.util.k8s_status module Ansible par défaut, qui inclut des
informations de condition au statut CR.

annotations Les annotations spécifiques à Kubernetes doivent être ajoutées au CR.

OpenShift Dedicated 4 Opérateurs

194

Le champ Description

La liste suivante des annotations CR modifie le comportement de l’Opérateur:

Tableau 5.6. Annotations d’opérateur basées sur Ansible

Annotation Description

Ansible.operator-
sdk/réconcile-période

Indique l’intervalle de rapprochement pour le CR. Cette valeur est analysée
en utilisant le temps standard du paquet Golang. En particulier,
ParseDuration est utilisé qui applique le suffixe par défaut de s, donnant la
valeur en quelques secondes.

Exemple Ansible-basé sur l’annotation de l’opérateur

5.4.6.2. Tester un opérateur basé sur Ansible localement

Il est possible de tester la logique à l’intérieur d’un opérateur basé sur Ansible qui s’exécute localement
en utilisant la commande make run à partir du répertoire de haut niveau de votre projet Opérateur. La
cible Makefile exécute localement le binaire ansible-operator, qui lit à partir du fichier watch.yaml et
utilise votre fichier ~/.kube/config pour communiquer avec un cluster Kubernetes tout comme le font
les modules k8s.

NOTE

Il est possible de personnaliser le chemin des rôles en définissant la variable
d’environnement ANSIBLE_ROLES_PATH ou en utilisant le drapeau ansible-roles-path.
Dans le cas où le rôle n’est pas trouvé dans la valeur ANSIBLE_ROLES_PATH, l’opérateur
le recherche dans {{annuaire de courant}}/roles.

Conditions préalables

Ansible Runner v2.3.3+

Ansible Runner HTTP Event Emitter plugin v1.0.0+

A effectué les étapes précédentes pour tester la collection Kubernetes localement

Procédure

1. Installez votre définition de ressources personnalisées (CRD) et les définitions appropriées du
contrôle d’accès basé sur les rôles (RBAC) pour votre ressource personnalisée (CR):

apiVersion: "test1.example.com/v1alpha1"
kind: "Test1"
metadata:
 name: "example"
annotations:
 ansible.operator-sdk/reconcile-period: "30s"

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

195

Exemple de sortie

2. Exécutez la commande make run:

Exemple de sortie

Avec l’opérateur qui surveille maintenant votre CR pour les événements, la création d’un CR
déclenchera votre rôle Ansible à exécuter.

NOTE

$ make install

/usr/bin/kustomize build config/crd | kubectl apply -f -
customresourcedefinition.apiextensions.k8s.io/memcacheds.cache.example.com created

$ make run

/home/user/memcached-operator/bin/ansible-operator run
{"level":"info","ts":1612739145.2871568,"logger":"cmd","msg":"Version","Go
Version":"go1.15.5","GOOS":"linux","GOARCH":"amd64","ansible-
operator":"v1.10.1","commit":"1abf57985b43bf6a59dcd18147b3c574fa57d3f6"}
...
{"level":"info","ts":1612739148.347306,"logger":"controller-runtime.metrics","msg":"metrics
server is starting to listen","addr":":8080"}
{"level":"info","ts":1612739148.3488882,"logger":"watches","msg":"Environment variable not
set; using default
value","envVar":"ANSIBLE_VERBOSITY_MEMCACHED_CACHE_EXAMPLE_COM","default":
2}
{"level":"info","ts":1612739148.3490262,"logger":"cmd","msg":"Environment variable not set;
using default
value","Namespace":"","envVar":"ANSIBLE_DEBUG_LOGS","ANSIBLE_DEBUG_LOGS":fals
e}
{"level":"info","ts":1612739148.3490646,"logger":"ansible-controller","msg":"Watching
resource","Options.Group":"cache.example.com","Options.Version":"v1","Options.Kind":"Memc
ached"}
{"level":"info","ts":1612739148.350217,"logger":"proxy","msg":"Starting to
serve","Address":"127.0.0.1:8888"}
{"level":"info","ts":1612739148.3506632,"logger":"controller-runtime.manager","msg":"starting
metrics server","path":"/metrics"}
{"level":"info","ts":1612739148.350784,"logger":"controller-
runtime.manager.controller.memcached-controller","msg":"Starting
EventSource","source":"kind source: cache.example.com/v1, Kind=Memcached"}
{"level":"info","ts":1612739148.5511978,"logger":"controller-
runtime.manager.controller.memcached-controller","msg":"Starting Controller"}
{"level":"info","ts":1612739148.5512562,"logger":"controller-
runtime.manager.controller.memcached-controller","msg":"Starting workers","worker
count":8}

OpenShift Dedicated 4 Opérateurs

196

NOTE

Considérez un exemple de config/samples/<gvk>.yaml CR manifeste:

Comme le champ spec n’est pas défini, Ansible est invoqué sans variables
supplémentaires. Le passage de variables supplémentaires d’un CR à Ansible est
couvert dans une autre section. Il est important de fixer des défauts raisonnables
pour l’opérateur.

3. Créez une instance de votre CR avec l’état variable par défaut défini pour présenter:

4. Assurez-vous que la carte de configuration example-config a été créée:

Exemple de sortie

5. Modifiez votre fichier config/samples/<gvk>.yaml pour définir le champ d’état à absent. À titre
d’exemple:

6. Appliquer les modifications:

7. Confirmez que la carte de configuration est supprimée:

5.4.6.3. Essai d’un opérateur Ansible sur le cluster

Après avoir testé votre logique Ansible personnalisée localement à l’intérieur d’un opérateur, vous
pouvez tester l’opérateur à l’intérieur d’un pod sur un cluster dédié OpenShift, qui est préféré pour une
utilisation de production.

En tant que déploiement sur votre cluster, vous pouvez exécuter votre projet Opérateur.

apiVersion: <group>.example.com/v1alpha1
kind: <kind>
metadata:
 name: "<kind>-sample"

$ oc apply -f config/samples/<gvk>.yaml

$ oc get configmaps

NAME STATUS AGE
example-config Active 3s

apiVersion: cache.example.com/v1
kind: Memcached
metadata:
 name: memcached-sample
spec:
 state: absent

$ oc apply -f config/samples/<gvk>.yaml

$ oc get configmap

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

197

Procédure

1. Exécutez les commandes suivantes pour construire et pousser l’image de l’opérateur. Modifiez
l’argument IMG dans les étapes suivantes pour faire référence à un référentiel auquel vous avez
accès. Il est possible d’obtenir un compte de stockage des conteneurs sur des sites de dépôt
tels que Quay.io.

a. Construire l’image:

NOTE

Le Dockerfile généré par le SDK pour l’opérateur renvoie explicitement
GOARCH=amd64 pour la construction de go. Cela peut être modifié à
GOARCH=$TARGETARCH pour les architectures non-AMD64. Docker
définira automatiquement la variable d’environnement à la valeur spécifiée
par -platform. Avec Buildah, le -build-arg devra être utilisé à cet effet. En
savoir plus, consultez Multiple Architectures.

b. Appuyez sur l’image vers un référentiel:

NOTE

Le nom et la balise de l’image, par exemple
IMG=<registry>/<user>/<image_name>:<tag>, dans les
deux commandes peuvent également être définis dans votre Makefile.
Changez la valeur IMG ?= Controller:dernière valeur pour définir votre nom
d’image par défaut.

2. Exécutez la commande suivante pour déployer l’opérateur:

Cette commande crée un espace de noms avec le nom de votre projet Opérateur dans le
formulaire <project_name>-system et est utilisée pour le déploiement. Cette commande
installe également les manifestes RBAC à partir de config/rbac.

3. Exécutez la commande suivante pour vérifier que l’opérateur est en cours d’exécution:

Exemple de sortie

5.4.6.4. Journaux Ansibles

Les opérateurs basés sur Ansible fournissent des journaux sur l’exécution Ansible, ce qui peut être utile

$ make docker-build IMG=<registry>/<user>/<image_name>:<tag>

$ make docker-push IMG=<registry>/<user>/<image_name>:<tag>

$ make deploy IMG=<registry>/<user>/<image_name>:<tag>

$ oc get deployment -n <project_name>-system

NAME READY UP-TO-DATE AVAILABLE AGE
<project_name>-controller-manager 1/1 1 1 8m

OpenShift Dedicated 4 Opérateurs

198

1

2

Les opérateurs basés sur Ansible fournissent des journaux sur l’exécution Ansible, ce qui peut être utile
pour déboger vos tâches Ansible. Les journaux peuvent également contenir des informations détaillées
sur les internes de l’opérateur et ses interactions avec Kubernetes.

5.4.6.4.1. Affichage des journaux Ansibles

Conditions préalables

Opérateur basé sur Ansible s’exécutant comme déploiement sur un cluster

Procédure

Afin d’afficher les journaux d’un opérateur basé sur Ansible, exécutez la commande suivante:

Afficher les journaux du conteneur gestionnaire.

Lorsque vous avez utilisé la commande make deployment pour exécuter l’opérateur en tant
que déploiement, utilisez l’espace de noms <project_name>-system.

Exemple de sortie

$ oc logs deployment/<project_name>-controller-manager \
 -c manager \ 1
 -n <namespace> 2

{"level":"info","ts":1612732105.0579333,"logger":"cmd","msg":"Version","Go
Version":"go1.15.5","GOOS":"linux","GOARCH":"amd64","ansible-
operator":"v1.10.1","commit":"1abf57985b43bf6a59dcd18147b3c574fa57d3f6"}
{"level":"info","ts":1612732105.0587437,"logger":"cmd","msg":"WATCH_NAMESPACE
environment variable not set. Watching all namespaces.","Namespace":""}
I0207 21:08:26.110949 7 request.go:645] Throttling request took 1.035521578s, request:
GET:https://172.30.0.1:443/apis/flowcontrol.apiserver.k8s.io/v1alpha1?timeout=32s
{"level":"info","ts":1612732107.768025,"logger":"controller-runtime.metrics","msg":"metrics
server is starting to listen","addr":"127.0.0.1:8080"}
{"level":"info","ts":1612732107.768796,"logger":"watches","msg":"Environment variable not
set; using default
value","envVar":"ANSIBLE_VERBOSITY_MEMCACHED_CACHE_EXAMPLE_COM","default":
2}
{"level":"info","ts":1612732107.7688773,"logger":"cmd","msg":"Environment variable not set;
using default
value","Namespace":"","envVar":"ANSIBLE_DEBUG_LOGS","ANSIBLE_DEBUG_LOGS":fals
e}
{"level":"info","ts":1612732107.7688901,"logger":"ansible-controller","msg":"Watching
resource","Options.Group":"cache.example.com","Options.Version":"v1","Options.Kind":"Memc
ached"}
{"level":"info","ts":1612732107.770032,"logger":"proxy","msg":"Starting to
serve","Address":"127.0.0.1:8888"}
I0207 21:08:27.770185 7 leaderelection.go:243] attempting to acquire leader lease
memcached-operator-system/memcached-operator...
{"level":"info","ts":1612732107.770202,"logger":"controller-runtime.manager","msg":"starting
metrics server","path":"/metrics"}
I0207 21:08:27.784854 7 leaderelection.go:253] successfully acquired lease
memcached-operator-system/memcached-operator
{"level":"info","ts":1612732107.7850506,"logger":"controller-

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

199

5.4.6.4.2. Activer des résultats complets Ansibles dans les journaux

La variable d’environnement ANSIBLE_DEBUG_LOGS sur True permet de vérifier le résultat complet
Ansible dans les journaux, ce qui peut être utile lors du débogage.

Procédure

Éditer les fichiers config/manager/manager.yaml et
config/default/manager_metrics_patch.yaml pour inclure la configuration suivante:

5.4.6.4.3. Activer le débogage verbeux dans les journaux

Lors du développement d’un opérateur basé sur Ansible, il peut être utile d’activer un débogage
supplémentaire dans les journaux.

Procédure

Ajoutez l’annotation ansible.sdk.operatorframework.io/verbosity à votre ressource
personnalisée pour activer le niveau de verbosité que vous souhaitez. À titre d’exemple:

5.4.7. Gestion de l’état des ressources personnalisées

IMPORTANT

runtime.manager.controller.memcached-controller","msg":"Starting
EventSource","source":"kind source: cache.example.com/v1, Kind=Memcached"}
{"level":"info","ts":1612732107.8853772,"logger":"controller-
runtime.manager.controller.memcached-controller","msg":"Starting Controller"}
{"level":"info","ts":1612732107.8854098,"logger":"controller-
runtime.manager.controller.memcached-controller","msg":"Starting workers","worker
count":4}

 containers:
 - name: manager
 env:
 - name: ANSIBLE_DEBUG_LOGS
 value: "True"

apiVersion: "cache.example.com/v1alpha1"
kind: "Memcached"
metadata:
 name: "example-memcached"
 annotations:
 "ansible.sdk.operatorframework.io/verbosity": "4"
spec:
 size: 4

OpenShift Dedicated 4 Opérateurs

200

IMPORTANT

La version prise en charge par Red Hat de l’outil Operator SDK CLI, y compris les outils
d’échafaudage et de test connexes pour les projets d’opérateur, est dépréciée et devrait
être supprimée dans une version ultérieure d’OpenShift Dedicated. Le Red Hat fournira
des corrections de bogues et une prise en charge de cette fonctionnalité pendant le
cycle de vie de la version actuelle, mais cette fonctionnalité ne recevra plus
d’améliorations et sera supprimée des futures versions d’OpenShift Dedicated.

La version prise en charge par Red Hat du SDK de l’opérateur n’est pas recommandée
pour la création de nouveaux projets d’opérateur. Les auteurs d’opérateurs avec des
projets d’opérateur existants peuvent utiliser la version de l’outil Operator SDK CLI publié
avec OpenShift Dedicated 4 pour maintenir leurs projets et créer des versions
d’opérateur ciblant des versions plus récentes d’OpenShift Dedicated.

Les images de base suivantes pour les projets d’opérateur ne sont pas dépréciées. Les
fonctionnalités d’exécution et les API de configuration de ces images de base sont
toujours prises en charge pour les corrections de bogues et pour l’adressage des CVE.

L’image de base pour les projets d’opérateurs basés sur Ansible

L’image de base pour les projets d’opérateur basé sur Helm

Afin d’obtenir de l’information sur la version non prise en charge et gérée par la
communauté du SDK de l’opérateur, voir Operator SDK (Operator Framework).

5.4.7.1. À propos de l’état des ressources personnalisées dans Ansible-based Operators

Les opérateurs basés sur Ansible mettent automatiquement à jour les sous-ressources d’état des
ressources personnalisées (CR) avec des informations génériques sur l’exécution Ansible précédente.
Cela inclut le nombre de tâches réussies et échouées et les messages d’erreur pertinents comme
indiqué:

Les opérateurs basés sur Ansible permettent également aux auteurs de l’opérateur de fournir des
valeurs d’état personnalisées avec le module k8s_status Ansible, qui est inclus dans la collection
operator_sdk.util. Cela permet à l’auteur de mettre à jour l’état à partir de l’intérieur d’Ansible avec

status:
 conditions:
 - ansibleResult:
 changed: 3
 completion: 2018-12-03T13:45:57.13329
 failures: 1
 ok: 6
 skipped: 0
 lastTransitionTime: 2018-12-03T13:45:57Z
 message: 'Status code was -1 and not [200]: Request failed: <urlopen error [Errno
 113] No route to host>'
 reason: Failed
 status: "True"
 type: Failure
 - lastTransitionTime: 2018-12-03T13:46:13Z
 message: Running reconciliation
 reason: Running
 status: "True"
 type: Running

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

201

n’importe quelle paire clé-valeur comme souhaité.

Les opérateurs basés sur Ansible incluent toujours la sortie générique d’exécution Ansible comme
indiqué ci-dessus. Lorsque vous préférez que votre application n’ait pas mis à jour l’état avec la sortie
Ansible, vous pouvez suivre l’état manuellement à partir de votre application.

5.4.7.2. Le suivi manuel de l’état des ressources personnalisées

La collection operator_sdk.util permet de modifier votre opérateur Ansible afin de suivre manuellement
l’état de la ressource personnalisée (CR) depuis votre application.

Conditions préalables

Le projet d’opérateur basé sur Ansible créé à l’aide du SDK de l’opérateur

Procédure

1. Actualisez le fichier watch.yaml avec un champ ManagStatus défini à false:

2. Utilisez le module operator_sdk.util.k8s_status Ansible pour mettre à jour la sous-ressource. À
titre d’exemple, pour mettre à jour avec les données clés de test et de valeur, operator_sdk.util
peut être utilisé comme indiqué:

3. Il est possible de déclarer les collections dans le fichier meta/main.yml pour le rôle, qui est inclus
pour les opérateurs échafaudés basés sur Ansible:

4. Après avoir déclaré les collections dans la méta de rôle, vous pouvez invoquer le module
k8s_status directement:

5.5. OPÉRATEURS BASÉS SUR LE BARREAU

- version: v1
 group: api.example.com
 kind: <kind>
 role: <role>
 manageStatus: false

- operator_sdk.util.k8s_status:
 api_version: app.example.com/v1
 kind: <kind>
 name: "{{ ansible_operator_meta.name }}"
 namespace: "{{ ansible_operator_meta.namespace }}"
 status:
 test: data

collections:
 - operator_sdk.util

k8s_status:
 ...
 status:
 key1: value1

OpenShift Dedicated 4 Opérateurs

202

5.5.1. Didacticiel SDK opérateur pour les opérateurs basés sur Helm

Les développeurs d’opérateurs peuvent profiter du support Helm dans le SDK de l’opérateur pour
construire un exemple d’opérateur basé sur Helm pour Nginx et gérer son cycle de vie. Ce tutoriel passe
par le processus suivant:

Créer un déploiement Nginx

Assurez-vous que la taille de déploiement est la même que celle spécifiée par la spécification de
ressources personnalisées Nginx (CR)

Actualisez le statut Nginx CR en utilisant l’auteur de statut avec les noms des nginx pods

IMPORTANT

La version prise en charge par Red Hat de l’outil Operator SDK CLI, y compris les outils
d’échafaudage et de test connexes pour les projets d’opérateur, est dépréciée et devrait
être supprimée dans une version ultérieure d’OpenShift Dedicated. Le Red Hat fournira
des corrections de bogues et une prise en charge de cette fonctionnalité pendant le
cycle de vie de la version actuelle, mais cette fonctionnalité ne recevra plus
d’améliorations et sera supprimée des futures versions d’OpenShift Dedicated.

La version prise en charge par Red Hat du SDK de l’opérateur n’est pas recommandée
pour la création de nouveaux projets d’opérateur. Les auteurs d’opérateurs avec des
projets d’opérateur existants peuvent utiliser la version de l’outil Operator SDK CLI publié
avec OpenShift Dedicated 4 pour maintenir leurs projets et créer des versions
d’opérateur ciblant des versions plus récentes d’OpenShift Dedicated.

Les images de base suivantes pour les projets d’opérateur ne sont pas dépréciées. Les
fonctionnalités d’exécution et les API de configuration de ces images de base sont
toujours prises en charge pour les corrections de bogues et pour l’adressage des CVE.

L’image de base pour les projets d’opérateurs basés sur Ansible

L’image de base pour les projets d’opérateur basé sur Helm

Afin d’obtenir de l’information sur la version non prise en charge et gérée par la
communauté du SDK de l’opérateur, voir Operator SDK (Operator Framework).

Ce processus est réalisé à l’aide de deux pièces maîtresses du cadre opérateur:

Le SDK de l’opérateur

L’outil operator-sdk CLI et l’API de bibliothèque de contrôleurs

Gestionnaire du cycle de vie de l’opérateur (OLM)

Installation, mise à niveau et contrôle d’accès basé sur les rôles (RBAC) des opérateurs sur un cluster

NOTE

Ce tutoriel va plus en détail que commencer avec Operator SDK pour les opérateurs
basés sur Helm dans la documentation OpenShift Container Platform.

5.5.1.1. Conditions préalables

L’opérateur SDK CLI installé

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

203

Installation d’OpenShift CLI (oc) 4+

Connecté à un cluster OpenShift dédié avec oc avec un compte qui dispose d’autorisations
d’administration dédiées

Afin de permettre au cluster de tirer l’image, le référentiel où vous poussez votre image doit
être défini comme public, ou vous devez configurer une image pull secret

Ressources supplémentaires

Installation de l’opérateur SDK CLI

Débuter avec l’OpenShift CLI

5.5.1.2. Créer un projet

Faites appel à l’opérateur SDK CLI pour créer un projet appelé nginx-operator.

Procédure

1. Créer un répertoire pour le projet:

2. Changement dans le répertoire:

3. Exécutez la commande operator-sdk init avec le plugin de barre pour initialiser le projet:

NOTE

Le plugin de barre initialise par défaut un projet à l’aide d’un graphique Helm en
plaque de chaudière. Il est possible d’utiliser des drapeaux supplémentaires, tels
que le drapeau --helm-chart, pour initialiser un projet à l’aide d’un graphique
Helm existant.

La commande init crée le projet nginx-operator spécifiquement pour regarder une ressource
avec la version API example.com/v1 et genre Nginx.

4. Dans le cas des projets Helm, la commande init génère les règles RBAC dans le fichier
config/rbac/role.yaml en fonction des ressources qui seraient déployées par le manifeste par
défaut pour le graphique. Assurez-vous que les règles générées dans ce fichier répondent aux
exigences d’autorisation de l’opérateur.

5.5.1.2.1. Graphiques Helm existants

$ mkdir -p $HOME/projects/nginx-operator

$ cd $HOME/projects/nginx-operator

$ operator-sdk init \
 --plugins=helm \
 --domain=example.com \
 --group=demo \
 --version=v1 \
 --kind=Nginx

OpenShift Dedicated 4 Opérateurs

204

https://docs.redhat.com/en/documentation/openshift_dedicated/4/html-single/cli_tools/#getting-started-cli

Au lieu de créer votre projet avec un graphique Helm, vous pouvez utiliser un graphique existant, que ce
soit à partir de votre système de fichiers local ou d’un référentiel de graphiques distants, en utilisant les
drapeaux suivants:

--helm-chart

--helm-chart-repo

--helm-chart-version

Lorsque le drapeau --helm-chart est spécifié, les drapeaux --group, --version et --kind deviennent
facultatifs. Dans le cas où unset est laissé, les valeurs par défaut suivantes sont utilisées:

Drapeau La valeur

--domaine à propos de My.domain

--groupe graphiques

--version à propos de v1

--le genre Déduit du graphique spécifié

Lorsque l’indicateur --helm-chart spécifie une archive graphique locale, par exemple-chart-1.2.0.tgz, ou
un répertoire, le graphique est validé et non emballé ou copié dans le projet. Dans le cas contraire, le
SDK de l’opérateur tente de récupérer le graphique d’un référentiel distant.

Lorsqu’une URL de référentiel personnalisé n’est pas spécifiée par le drapeau --helm-chart-repo, les
formats de référence de graphique suivants sont pris en charge:

Format Description

<repo_name&
gt;/<chart_na
me>

Cherchez le graphique Helm nommé <chart_name> à partir du référentiel du
graphique helm nommé <repo_name>, comme spécifié dans le fichier
$HELM_HOME/repositories/repositories.yaml. À l’aide de la commande helm repo add
pour configurer ce fichier.

<URL> Chercher l’archive du graphique Helm à l’URL spécifiée.

Lorsqu’une URL de référentiel personnalisé est spécifiée par --helm-chart-repo, le format de référence
graphique suivant est pris en charge:

Format Description

<chart_name
>

Cherchez le graphique Helm nommé <chart_name> dans le référentiel du
graphique Helm spécifié par la valeur d’URL --helm-chart-repo.

Lorsque le drapeau --helm-chart-version n’est pas défini, le SDK de l’opérateur obtient la dernière
version disponible du graphique Helm. Dans le cas contraire, il reprend la version spécifiée. L’option --

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

205

helm-chart-version flag n’est pas utilisée lorsque le graphique spécifié avec le drapeau --helm-chart se
réfère à une version spécifique, par exemple lorsqu’il s’agit d’un chemin local ou d’une URL.

Afin de plus de détails et d’exemples, exécutez:

5.5.1.2.2. Fichier PROJET

Il y a parmi les fichiers générés par la commande operator-sdk init un fichier Kubebuilder PROJECT. Les
commandes ultérieures de l’opérateur-sdk, ainsi que la sortie d’aide, qui sont exécutées à partir de la
racine du projet lisent ce fichier et sont conscientes que le type de projet est Helm. À titre d’exemple:

5.5.1.3. Comprendre la logique de l’opérateur

Dans cet exemple, le projet nginx-operator exécute la logique de réconciliation suivante pour chaque
ressource personnalisée Nginx (CR):

Créez un déploiement Nginx s’il n’existe pas.

Créez un service Nginx s’il n’existe pas.

Créez une entrée Nginx si elle est activée et n’existe pas.

Assurez-vous que le déploiement, le service et l’entrée optionnelle correspondent à la
configuration souhaitée comme spécifié par le Nginx CR, par exemple le nombre de répliques,
l’image et le type de service.

Le projet nginx-operator regarde par défaut les événements de ressource Nginx comme indiqué dans le
fichier watch.yaml et exécute les versions Helm en utilisant le graphique spécifié:

$ operator-sdk init --plugins helm --help

domain: example.com
layout:
- helm.sdk.operatorframework.io/v1
plugins:
 manifests.sdk.operatorframework.io/v2: {}
 scorecard.sdk.operatorframework.io/v2: {}
 sdk.x-openshift.io/v1: {}
projectName: nginx-operator
resources:
- api:
 crdVersion: v1
 namespaced: true
 domain: example.com
 group: demo
 kind: Nginx
 version: v1
version: "3"

Use the 'create api' subcommand to add watches to this file.
- group: demo
 version: v1

OpenShift Dedicated 4 Opérateurs

206

5.5.1.3.1. Exemple de graphique Helm

Lorsqu’un projet Helm Operator est créé, le SDK de l’opérateur crée un graphique Helm contenant un
ensemble de modèles pour une version simple de Nginx.

Dans cet exemple, des modèles sont disponibles pour le déploiement, le service et les ressources
d’entrée, ainsi qu’un modèle NOTES.txt, que les développeurs de graphiques Helm utilisent pour
transmettre des informations utiles sur une version.

Consultez la documentation du développeur Helm si vous n’êtes pas déjà familier avec les graphiques
Helm.

5.5.1.3.2. La modification de la spécification des ressources personnalisées

Helm utilise un concept appelé valeurs pour fournir des personnalisations aux valeurs par défaut d’un
graphique Helm, qui sont définis dans le fichier values.yaml.

Il est possible de remplacer ces valeurs par défaut en définissant les valeurs souhaitées dans la
spécification de ressource personnalisée (CR). Comme exemple, vous pouvez utiliser le nombre de
répliques.

Procédure

1. Le fichier helm-charts/nginx/values.yaml a une valeur appelée replicaCount définie à 1 par
défaut. Afin d’avoir deux instances Nginx dans votre déploiement, votre spécification CR doit
contenir replicaCount : 2.
Éditer le fichier config/samples/demo_v1_nginx.yaml pour définir replicaCount: 2:

2. De même, le port de service par défaut est réglé sur 80. À l’aide de 8080, modifiez le fichier
config/samples/demo_v1_nginx.yaml pour définir spec.port: 8080, qui ajoute le port de service
de remplacement:

 kind: Nginx
 chart: helm-charts/nginx
+kubebuilder:scaffold:watch

apiVersion: demo.example.com/v1
kind: Nginx
metadata:
 name: nginx-sample
...
spec:
...
 replicaCount: 2

apiVersion: demo.example.com/v1
kind: Nginx
metadata:
 name: nginx-sample
spec:
 replicaCount: 2
 service:
 port: 8080

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

207

L’opérateur Helm applique l’ensemble de la spécification comme s’il s’agissait du contenu d’un fichier de
valeurs, tout comme la commande helm install -f/overrides.yaml.

5.5.1.4. Activer le support proxy

Les auteurs d’opérateurs peuvent développer des opérateurs qui prennent en charge les proxys réseau.
Les administrateurs dotés du rôle d’administrateur dédié configurent la prise en charge du proxy pour
les variables d’environnement qui sont gérées par Operator Lifecycle Manager (OLM). Afin de prendre
en charge les clusters proxiés, votre opérateur doit inspecter l’environnement pour les variables proxy
standard suivantes et transmettre les valeurs à Operands:

HTTP_PROXY

HTTPS_PROXY

AUCUN_PROXY

NOTE

Ce tutoriel utilise HTTP_PROXY comme exemple de variable d’environnement.

Conditions préalables

C’est un cluster doté d’un proxy de sortie à l’échelle du cluster activé.

Procédure

1. Editez le fichier watch.yaml pour inclure des overrides en fonction d’une variable
d’environnement en ajoutant le champ OverrideValues:

2. Ajoutez la valeur proxy.http dans le fichier helm-charts/nginx/values.yaml:

3. Afin de s’assurer que le modèle de graphique prend en charge l’utilisation des variables, modifiez
le modèle de graphique dans le fichier helm-charts/nginx/templates/deployment.yaml pour
contenir ce qui suit:

...
- group: demo.example.com
 version: v1alpha1
 kind: Nginx
 chart: helm-charts/nginx
 overrideValues:
 proxy.http: $HTTP_PROXY
...

...
proxy:
 http: ""
 https: ""
 no_proxy: ""

containers:
 - name: {{ .Chart.Name }}
 securityContext:

OpenShift Dedicated 4 Opérateurs

208

4. Définissez la variable d’environnement sur le déploiement de l’opérateur en ajoutant ce qui suit
au fichier config/manager/manager.yaml:

5.5.1.5. Exécution de l’opérateur

Afin de construire et d’exécuter votre opérateur, utilisez l’opérateur SDK CLI pour regrouper votre
opérateur, puis utilisez le gestionnaire de cycle de vie de l’opérateur (OLM) pour le déploiement sur le
cluster.

NOTE

Lorsque vous souhaitez déployer votre opérateur sur un cluster OpenShift Container
Platform au lieu d’un cluster dédié OpenShift, deux options de déploiement
supplémentaires sont disponibles:

Exécutez localement en dehors du cluster en tant que programme Go.

Exécutez comme un déploiement sur le cluster.

Ressources supplémentaires

Exécution locale en dehors du cluster (document OpenShift Container Platform)

Exécution en tant que déploiement sur le cluster (document OpenShift Container Platform)

5.5.1.5.1. Groupement d’un opérateur et déploiement avec le gestionnaire du cycle de vie de
l’opérateur

5.5.1.5.1.1. Groupement d’un opérateur

Le format de paquet Opérateur est la méthode d’emballage par défaut pour Operator SDK et Operator
Lifecycle Manager (OLM). En utilisant le SDK de l’opérateur, vous pouvez préparer votre opérateur à
une utilisation sur OLM pour construire et pousser votre projet Opérateur en tant qu’image groupée.

Conditions préalables

L’opérateur SDK CLI installé sur un poste de travail de développement

 - toYaml {{ .Values.securityContext | nindent 12 }}
 image: "{{ .Values.image.repository }}:{{ .Values.image.tag | default .Chart.AppVersion }}"
 imagePullPolicy: {{ .Values.image.pullPolicy }}
 env:
 - name: http_proxy
 value: "{{ .Values.proxy.http }}"

containers:
 - args:
 - --leader-elect
 - --leader-election-id=ansible-proxy-demo
 image: controller:latest
 name: manager
 env:
 - name: "HTTP_PROXY"
 value: "http_proxy_test"

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

209

Installation d’OpenShift CLI (oc) v4+

Le projet d’opérateur initialisé à l’aide du SDK de l’opérateur

Procédure

1. Exécutez les commandes suivantes dans votre répertoire de projet Opérateur pour construire
et pousser l’image de votre opérateur. Modifiez l’argument IMG dans les étapes suivantes pour
faire référence à un référentiel auquel vous avez accès. Il est possible d’obtenir un compte de
stockage des conteneurs sur des sites de dépôt tels que Quay.io.

a. Construire l’image:

NOTE

Le Dockerfile généré par le SDK pour l’opérateur renvoie explicitement
GOARCH=amd64 pour la construction de go. Cela peut être modifié à
GOARCH=$TARGETARCH pour les architectures non-AMD64. Docker
définira automatiquement la variable d’environnement à la valeur spécifiée
par -platform. Avec Buildah, le -build-arg devra être utilisé à cet effet. En
savoir plus, consultez Multiple Architectures.

b. Appuyez sur l’image vers un référentiel:

2. Créez votre paquet Opérateur manifeste en exécutant la commande make bundle, qui invoque
plusieurs commandes, y compris l’opérateur SDK génère des paquets et des sous-commandes
validant:

Les manifestes de paquets pour un opérateur décrivent comment afficher, créer et gérer une
application. La commande make bundle crée les fichiers et répertoires suivants dans votre
projet Opérateur:

Le bundle manifeste un répertoire nommé bundle/manifests qui contient un objet
ClusterServiceVersion

Annuaire de métadonnées groupé nommé bundle/metadata

L’ensemble des définitions de ressources personnalisées (CRD) dans un répertoire
config/crd

Dockerfile bundle.Dockerfile

Ces fichiers sont ensuite automatiquement validés en utilisant le bundle opérateur-sdk valide
pour s’assurer que la représentation des faisceaux sur disque est correcte.

3. Créez et poussez votre image de paquet en exécutant les commandes suivantes. L’OLM
consomme des faisceaux d’opérateurs à l’aide d’une image d’index, qui référence à une ou
plusieurs images groupées.

a. Construisez l’image du bundle. Définissez BUNDLE_IMG avec les détails du registre, de

$ make docker-build IMG=<registry>/<user>/<operator_image_name>:<tag>

$ make docker-push IMG=<registry>/<user>/<operator_image_name>:<tag>

$ make bundle IMG=<registry>/<user>/<operator_image_name>:<tag>

OpenShift Dedicated 4 Opérateurs

210

1

2

3

a. Construisez l’image du bundle. Définissez BUNDLE_IMG avec les détails du registre, de
l’espace de noms d’utilisateur et de la balise d’image où vous avez l’intention de pousser
l’image:

b. Appuyez sur l’image du paquet:

5.5.1.5.1.2. Déploiement d’un opérateur avec le gestionnaire du cycle de vie de l’opérateur

Le gestionnaire de cycle de vie de l’opérateur (OLM) vous aide à installer, mettre à jour et gérer le cycle
de vie des Opérateurs et de leurs services associés sur un cluster Kubernetes. Le système OLM est
installé par défaut sur OpenShift Dedicated et s’exécute sous forme d’extension Kubernetes afin que
vous puissiez utiliser la console Web et l’OpenShift CLI (oc) pour toutes les fonctions de gestion du
cycle de vie de l’opérateur sans outils supplémentaires.

Le format de paquet opérateur est la méthode d’emballage par défaut pour l’opérateur SDK et OLM. Le
SDK de l’opérateur permet d’exécuter rapidement une image groupée sur OLM afin de s’assurer qu’elle
fonctionne correctement.

Conditions préalables

L’opérateur SDK CLI installé sur un poste de travail de développement

Ensemble d’image de l’opérateur construit et poussé à un registre

Installation OLM sur un cluster basé sur Kubernetes (v1.16.0 ou version ultérieure si vous utilisez
apiextensions.k8s.io/v1 CRD, par exemple OpenShift Dedicated 4)

Connexion au cluster avec oc à l’aide d’un compte avec des autorisations d’administration
dédiées

Procédure

Entrez la commande suivante pour exécuter l’opérateur sur le cluster:

La commande run bundle crée un catalogue basé sur des fichiers valide et installe le paquet
Opérateur sur votre cluster en utilisant OLM.

Facultatif: Par défaut, la commande installe l’opérateur dans le projet actuellement actif
dans votre fichier ~/.kube/config. Il est possible d’ajouter le drapeau -n pour définir un
espace de noms différent pour l’installation.

Dans le cas où vous ne spécifiez pas une image, la commande utilise quay.io/operator-
framework/opm:latest comme image d’index par défaut. Lorsque vous spécifiez une
image, la commande utilise l’image du faisceau lui-même comme image d’index.

IMPORTANT

$ make bundle-build BUNDLE_IMG=<registry>/<user>/<bundle_image_name>:<tag>

$ docker push <registry>/<user>/<bundle_image_name>:<tag>

$ operator-sdk run bundle \ 1
 -n <namespace> \ 2
 <registry>/<user>/<bundle_image_name>:<tag> 3

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

211

IMPORTANT

À partir d’OpenShift Dedicated 4.11, la commande run bundle prend en charge le
format de catalogue basé sur des fichiers pour les catalogues Opérateur par
défaut. Le format de base de données SQLite obsolète pour les catalogues
d’opérateurs continue d’être pris en charge; cependant, il sera supprimé dans une
version ultérieure. Il est recommandé aux auteurs de l’opérateur de migrer leurs
flux de travail vers le format de catalogue basé sur les fichiers.

Cette commande effectue les actions suivantes:

Créez une image d’index faisant référence à votre image de paquet. L’image de l’index est
opaque et éphémère, mais reflète avec précision comment un paquet serait ajouté à un
catalogue en production.

Créez une source de catalogue qui pointe vers votre nouvelle image d’index, ce qui permet
à OperatorHub de découvrir votre opérateur.

Déployez votre opérateur dans votre cluster en créant un groupe d’opérateurs, un
abonnement, un plan d’installation et toutes les autres ressources requises, y compris
RBAC.

5.5.1.6. Créer une ressource personnalisée

Après l’installation de votre opérateur, vous pouvez le tester en créant une ressource personnalisée
(CR) qui est maintenant fournie sur le cluster par l’opérateur.

Conditions préalables

Exemple Nginx Operator, qui fournit le Nginx CR, installé sur un cluster

Procédure

1. Changer l’espace de noms où votre opérateur est installé. À titre d’exemple, si vous avez
déployé l’opérateur à l’aide de la commande make deployment:

2. Éditer l’échantillon Nginx CR manifeste à config/samples/demo_v1_nginx.yaml pour contenir les
spécifications suivantes:

3. Le compte de service Nginx nécessite un accès privilégié pour s’exécuter dans OpenShift
Dedicated. Ajouter la contrainte de contexte de sécurité suivante (SCC) au compte de service
pour l’échantillon nginx:

$ oc project nginx-operator-system

apiVersion: demo.example.com/v1
kind: Nginx
metadata:
 name: nginx-sample
...
spec:
...
 replicaCount: 3

OpenShift Dedicated 4 Opérateurs

212

4. Créer le CR:

5. Assurez-vous que l’opérateur Nginx crée le déploiement de l’échantillon CR avec la bonne taille:

Exemple de sortie

6. Consultez le statut des pods et CR pour confirmer que le statut est mis à jour avec les noms de
pod Nginx.

a. Consultez les gousses:

Exemple de sortie

b. Consultez l’état CR:

Exemple de sortie

7. Actualisez la taille du déploiement.

$ oc adm policy add-scc-to-user \
 anyuid system:serviceaccount:nginx-operator-system:nginx-sample

$ oc apply -f config/samples/demo_v1_nginx.yaml

$ oc get deployments

NAME READY UP-TO-DATE AVAILABLE AGE
nginx-operator-controller-manager 1/1 1 1 8m
nginx-sample 3/3 3 3 1m

$ oc get pods

NAME READY STATUS RESTARTS AGE
nginx-sample-6fd7c98d8-7dqdr 1/1 Running 0 1m
nginx-sample-6fd7c98d8-g5k7v 1/1 Running 0 1m
nginx-sample-6fd7c98d8-m7vn7 1/1 Running 0 1m

$ oc get nginx/nginx-sample -o yaml

apiVersion: demo.example.com/v1
kind: Nginx
metadata:
...
 name: nginx-sample
...
spec:
 replicaCount: 3
status:
 nodes:
 - nginx-sample-6fd7c98d8-7dqdr
 - nginx-sample-6fd7c98d8-g5k7v
 - nginx-sample-6fd7c98d8-m7vn7

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

213

a. Actualisez le fichier config/samples/demo_v1_nginx.yaml pour modifier le champ spec.size
dans le CR Nginx de 3 à 5:

b. Confirmez que l’opérateur modifie la taille du déploiement:

Exemple de sortie

8. Supprimez le CR en exécutant la commande suivante:

9. Nettoyez les ressources qui ont été créées dans le cadre de ce tutoriel.

Lorsque vous avez utilisé la commande make deployment pour tester l’opérateur, exécutez
la commande suivante:

Lorsque vous avez utilisé la commande operator-sdk run bundle pour tester l’opérateur,
exécutez la commande suivante:

5.5.1.7. Ressources supplémentaires

Consultez la mise en page du projet pour les opérateurs basés sur Helm pour en savoir plus sur
les structures d’annuaire créées par le SDK de l’opérateur.

Lorsqu’un proxy de sortie à l’échelle du cluster est configuré, les administrateurs ayant le rôle
d’administrateur dédié peuvent outrepasser les paramètres proxy ou injecter un certificat CA
personnalisé pour des opérateurs spécifiques fonctionnant sur Operator Lifecycle Manager
(OLM).

5.5.2. Aménagement du projet pour les opérateurs basés sur Helm

L’opérateur-sdk CLI peut générer, ou échafauder, un certain nombre de paquets et de fichiers pour
chaque projet d’opérateur.

IMPORTANT

$ oc patch nginx nginx-sample \
 -p '{"spec":{"replicaCount": 5}}' \
 --type=merge

$ oc get deployments

NAME READY UP-TO-DATE AVAILABLE AGE
nginx-operator-controller-manager 1/1 1 1 10m
nginx-sample 5/5 5 5 3m

$ oc delete -f config/samples/demo_v1_nginx.yaml

$ make undeploy

$ operator-sdk cleanup <project_name>

OpenShift Dedicated 4 Opérateurs

214

IMPORTANT

La version prise en charge par Red Hat de l’outil Operator SDK CLI, y compris les outils
d’échafaudage et de test connexes pour les projets d’opérateur, est dépréciée et devrait
être supprimée dans une version ultérieure d’OpenShift Dedicated. Le Red Hat fournira
des corrections de bogues et une prise en charge de cette fonctionnalité pendant le
cycle de vie de la version actuelle, mais cette fonctionnalité ne recevra plus
d’améliorations et sera supprimée des futures versions d’OpenShift Dedicated.

La version prise en charge par Red Hat du SDK de l’opérateur n’est pas recommandée
pour la création de nouveaux projets d’opérateur. Les auteurs d’opérateurs avec des
projets d’opérateur existants peuvent utiliser la version de l’outil Operator SDK CLI publié
avec OpenShift Dedicated 4 pour maintenir leurs projets et créer des versions
d’opérateur ciblant des versions plus récentes d’OpenShift Dedicated.

Les images de base suivantes pour les projets d’opérateur ne sont pas dépréciées. Les
fonctionnalités d’exécution et les API de configuration de ces images de base sont
toujours prises en charge pour les corrections de bogues et pour l’adressage des CVE.

L’image de base pour les projets d’opérateurs basés sur Ansible

L’image de base pour les projets d’opérateur basé sur Helm

Afin d’obtenir de l’information sur la version non prise en charge et gérée par la
communauté du SDK de l’opérateur, voir Operator SDK (Operator Framework).

5.5.2.1. Disposition de projet basée sur le helm

Les projets d’opérateur basés sur le helm générés à l’aide de la commande operator-sdk init --plugins
helm contiennent les répertoires et fichiers suivants:

Fichier/dossiers But

configuration/ Kustomize se manifeste pour le déploiement de l’opérateur sur un cluster Kubernetes.

fléchettes à
barres/

Le diagramme de helm initialisé avec la commande operator-sdk crée api.

Dockerfile Il est utilisé pour construire l’image de l’opérateur avec la commande docker-build.

les
montres.yaml

Groupe/version/type (GVK) et localisation du graphique Helm.

À propos de
Makefile

Cibles utilisées pour gérer le projet.

LE PROJET Fichier YAML contenant des informations de métadonnées pour l’opérateur.

5.5.3. La mise à jour des projets basés sur Helm pour les versions SDK plus récentes
de l’opérateur

Le logiciel OpenShift Dedicated 4 prend en charge le SDK 1.38.0 de l’opérateur. Lorsque vous disposez

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

215

Le logiciel OpenShift Dedicated 4 prend en charge le SDK 1.38.0 de l’opérateur. Lorsque vous disposez
déjà du 1.36.1 CLI installé sur votre poste de travail, vous pouvez mettre à jour le CLI à 1.38.0 en installant
la dernière version.

IMPORTANT

La version prise en charge par Red Hat de l’outil Operator SDK CLI, y compris les outils
d’échafaudage et de test connexes pour les projets d’opérateur, est dépréciée et devrait
être supprimée dans une version ultérieure d’OpenShift Dedicated. Le Red Hat fournira
des corrections de bogues et une prise en charge de cette fonctionnalité pendant le
cycle de vie de la version actuelle, mais cette fonctionnalité ne recevra plus
d’améliorations et sera supprimée des futures versions d’OpenShift Dedicated.

La version prise en charge par Red Hat du SDK de l’opérateur n’est pas recommandée
pour la création de nouveaux projets d’opérateur. Les auteurs d’opérateurs avec des
projets d’opérateur existants peuvent utiliser la version de l’outil Operator SDK CLI publié
avec OpenShift Dedicated 4 pour maintenir leurs projets et créer des versions
d’opérateur ciblant des versions plus récentes d’OpenShift Dedicated.

Les images de base suivantes pour les projets d’opérateur ne sont pas dépréciées. Les
fonctionnalités d’exécution et les API de configuration de ces images de base sont
toujours prises en charge pour les corrections de bogues et pour l’adressage des CVE.

L’image de base pour les projets d’opérateurs basés sur Ansible

L’image de base pour les projets d’opérateur basé sur Helm

Afin d’obtenir de l’information sur la version non prise en charge et gérée par la
communauté du SDK de l’opérateur, voir Operator SDK (Operator Framework).

Cependant, pour s’assurer que vos projets d’opérateur existants maintiennent la compatibilité avec le
SDK 1.38.0 de l’opérateur, des étapes de mise à jour sont nécessaires pour les modifications de rupture
associées introduites depuis 1.36.1. Les étapes de mise à jour doivent être exécutées manuellement dans
l’un de vos projets Opérateurs qui ont été précédemment créés ou maintenus avec 1.36.1.

5.5.3.1. La mise à jour des projets d’opérateur basé sur Helm pour l’opérateur SDK 1.38.0

La procédure suivante met à jour un projet existant d’opérateur basé sur Helm pour la compatibilité avec
1.38.0.

Conditions préalables

L’opérateur SDK 1.38.0 installé

Création ou maintenance d’un projet opérateur avec l’opérateur SDK 1.36.1

Procédure

1. Éditez le Makefile de votre projet Opérateur pour mettre à jour la version SDK de l’opérateur
vers 1.38.0, comme indiqué dans l’exemple suivant:

Exemple de Makefile

OpenShift Dedicated 4 Opérateurs

216

1 Changer la version de 1.36.1 à 1.38.0.

2. Éditez le Makefile de votre projet Opérateur pour mettre à jour la balise image ose-helm-rhel9-
operator à 4, comme indiqué dans l’exemple suivant:

Exemple Dockerfile

3. Il faut mettre à niveau les versions Kubernetes de votre projet Opérateur pour utiliser 1.30 et
Kubebuilder v4.

ASTUCE

Cette mise à jour comprend des changements complexes d’échafaudage en raison de
l’élimination du kube-rbac-proxy. Lorsque ces migrations deviennent difficiles à suivre,
échafauder un nouveau projet d’échantillon à des fins de comparaison.

a. Actualisez la version Kustomize dans votre Makefile en apportant les modifications
suivantes:

b. Actualisez votre fichier config/default/kustomization.yaml avec les modifications suivantes:

Set the Operator SDK version to use. By default, what is installed on the system is used.
This is useful for CI or a project to utilize a specific version of the operator-sdk toolkit.
OPERATOR_SDK_VERSION ?= v1.38.0 1

FROM registry.redhat.io/openshift4/ose-helm-rhel9-operator:v4

- curl -sSLo - https://github.com/kubernetes-
sigs/kustomize/releases/download/kustomize/v5.3.0/kustomize_v5.3.0_$(OS)_$(ARCH).tar.
gz | \
+ curl -sSLo - https://github.com/kubernetes-
sigs/kustomize/releases/download/kustomize/v5.4.2/kustomize_v5.4.2_$(OS)_$(ARCH).tar.
gz | \

 # [PROMETHEUS] To enable prometheus monitor, uncomment all sections with
'PROMETHEUS'.
 #- ../prometheus
+ # [METRICS] Expose the controller manager metrics service.
+ - metrics_service.yaml

+ # Uncomment the patches line if you enable Metrics, and/or are using webhooks and
cert-manager
 patches:
- # Protect the /metrics endpoint by putting it behind auth.
- # If you want your controller-manager to expose the /metrics
- # endpoint w/o any authn/z, please comment the following line.
- - path: manager_auth_proxy_patch.yaml
+ # [METRICS] The following patch will enable the metrics endpoint using HTTPS and
the port :8443.
+ # More info: https://book.kubebuilder.io/reference/metrics
+ - path: manager_metrics_patch.yaml
+ target:
+ kind: Deployment

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

217

c. Enlevez les fichiers config/default/manager_auth_proxy_patch.yaml et
config/default/manager_config_patch.yaml.

d. Créez un fichier config/default/manager_metrics_patch.yaml avec le contenu suivant:

e. Créez un fichier config/default/metrics_service.yaml avec le contenu suivant:

f. Actualisez votre fichier config/manager/manager.yaml avec les modifications suivantes:

g. Actualisez votre fichier config/prometheus/monitor.yaml avec les modifications suivantes:

This patch adds the args to allow exposing the metrics endpoint using HTTPS
- op: add
 path: /spec/template/spec/containers/0/args/0
 value: --metrics-bind-address=:8443
This patch adds the args to allow securing the metrics endpoint
- op: add
 path: /spec/template/spec/containers/0/args/0
 value: --metrics-secure
This patch adds the args to allow RBAC-based authn/authz the metrics endpoint
- op: add
 path: /spec/template/spec/containers/0/args/0
 value: --metrics-require-rbac

apiVersion: v1
kind: Service
metadata:
 labels:
 control-plane: controller-manager
 app.kubernetes.io/name: <operator-name>
 app.kubernetes.io/managed-by: kustomize
 name: controller-manager-metrics-service
 namespace: system
spec:
 ports:
 - name: https
 port: 8443
 protocol: TCP
 targetPort: 8443
 selector:
 control-plane: controller-manager

 - --leader-elect
+ - --health-probe-bind-address=:8081

 - path: /metrics
- port: https
+ port: https # Ensure this is the name of the port that exposes HTTPS metrics
 tlsConfig:
+ # TODO(user): The option insecureSkipVerify: true is not recommended for
production since it disables
+ # certificate verification. This poses a significant security risk by making the system
vulnerable to
+ # man-in-the-middle attacks, where an attacker could intercept and manipulate the

OpenShift Dedicated 4 Opérateurs

218

h. Supprimez les fichiers suivants du répertoire config/rbac/:

auth_proxy_client_clusterrole.yaml

auth_proxy_role.yaml

auth_proxy_role_binding.yaml

auth_proxy_service.yaml

i. Actualisez votre fichier config/rbac/kustomization.yaml avec les modifications suivantes:

j. Créez un fichier config/rbac/metrics_auth_role_binding.yaml avec le contenu suivant:

k. Créez un fichier config/rbac/metrics_reader_role.yaml avec le contenu suivant:

communication between
+ # Prometheus and the monitored services. This could lead to unauthorized access
to sensitive metrics data,
+ # compromising the integrity and confidentiality of the information.
+ # Please use the following options for secure configurations:
+ # caFile: /etc/metrics-certs/ca.crt
+ # certFile: /etc/metrics-certs/tls.crt
+ # keyFile: /etc/metrics-certs/tls.key
 insecureSkipVerify: true

 - leader_election_role_binding.yaml
- # Comment the following 4 lines if you want to disable
- # the auth proxy (https://github.com/brancz/kube-rbac-proxy)
- # which protects your /metrics endpoint.
- - auth_proxy_service.yaml
- - auth_proxy_role.yaml
- - auth_proxy_role_binding.yaml
- - auth_proxy_client_clusterrole.yaml
+ # The following RBAC configurations are used to protect
+ # the metrics endpoint with authn/authz. These configurations
+ # ensure that only authorized users and service accounts
+ # can access the metrics endpoint. Comment the following
+ # permissions if you want to disable this protection.
+ # More info: https://book.kubebuilder.io/reference/metrics.html
+ - metrics_auth_role.yaml
+ - metrics_auth_role_binding.yaml
+ - metrics_reader_role.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: metrics-auth-rolebinding
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: metrics-auth-role
subjects:
 - kind: ServiceAccount
 name: controller-manager
 namespace: system

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

219

5.5.3.2. Ressources supplémentaires

La mise à jour des projets d’opérateur basé sur Helm pour l’opérateur SDK 1.36.1 (OpenShift
Dédié 4.17)

Les projets de manifestation de paquets migratoires au format de paquetage

5.5.4. Appui à la barre dans le SDK de l’opérateur

IMPORTANT

La version prise en charge par Red Hat de l’outil Operator SDK CLI, y compris les outils
d’échafaudage et de test connexes pour les projets d’opérateur, est dépréciée et devrait
être supprimée dans une version ultérieure d’OpenShift Dedicated. Le Red Hat fournira
des corrections de bogues et une prise en charge de cette fonctionnalité pendant le
cycle de vie de la version actuelle, mais cette fonctionnalité ne recevra plus
d’améliorations et sera supprimée des futures versions d’OpenShift Dedicated.

La version prise en charge par Red Hat du SDK de l’opérateur n’est pas recommandée
pour la création de nouveaux projets d’opérateur. Les auteurs d’opérateurs avec des
projets d’opérateur existants peuvent utiliser la version de l’outil Operator SDK CLI publié
avec OpenShift Dedicated 4 pour maintenir leurs projets et créer des versions
d’opérateur ciblant des versions plus récentes d’OpenShift Dedicated.

Les images de base suivantes pour les projets d’opérateur ne sont pas dépréciées. Les
fonctionnalités d’exécution et les API de configuration de ces images de base sont
toujours prises en charge pour les corrections de bogues et pour l’adressage des CVE.

L’image de base pour les projets d’opérateurs basés sur Ansible

L’image de base pour les projets d’opérateur basé sur Helm

Afin d’obtenir de l’information sur la version non prise en charge et gérée par la
communauté du SDK de l’opérateur, voir Operator SDK (Operator Framework).

5.5.4.1. Cartes de barre

L’une des options SDK de l’opérateur pour générer un projet d’opérateur comprend l’exploitation d’un
graphique Helm existant pour déployer les ressources Kubernetes en tant qu’application unifiée, sans
avoir à écrire de code Go. Ces opérateurs basés sur Helm sont conçus pour exceller dans des
applications apatrides qui nécessitent très peu de logique lorsqu’elles sont déployées, car les
modifications doivent être appliquées aux objets Kubernetes générés dans le cadre du graphique. Cela
peut sembler limitatif, mais peut être suffisant pour une quantité surprenante de cas d’utilisation comme
le montre la prolifération des graphiques Helm construits par la communauté Kubernetes.

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: metrics-reader
rules:
- nonResourceURLs:
 - "/metrics"
 verbs:
 - get

OpenShift Dedicated 4 Opérateurs

220

La fonction principale d’un opérateur est de lire à partir d’un objet personnalisé qui représente votre
instance d’application et dont l’état souhaité correspond à ce qui est en cours d’exécution. Dans le cas
d’un opérateur basé sur Helm, le champ spec de l’objet est une liste d’options de configuration qui sont
généralement décrites dans le fichier Helm values.yaml. Au lieu de définir ces valeurs avec des drapeaux
à l’aide du Helm CLI (par exemple, l’installation helm -f valeurs.yaml), vous pouvez les exprimer dans une
ressource personnalisée (CR), qui, en tant qu’objet Kubernetes natif, permet les avantages de RBAC
appliqué à elle et une piste d’audit.

Exemple d’un simple CR appelé Tomcat:

La valeur replicaCount, 2 dans ce cas, est propagée dans le modèle du graphique où les éléments
suivants sont utilisés:

Après la construction et le déploiement d’un opérateur, vous pouvez déployer une nouvelle instance
d’une application en créant une nouvelle instance d’un CR, ou répertorier les différentes instances
s’exécutant dans tous les environnements en utilisant la commande oc:

Il n’y a pas besoin d’utiliser le Helm CLI ou d’installer Tiller; Les opérateurs basés sur Helm importent le
code du projet Helm. Il vous suffit d’avoir une instance de l’opérateur qui exécute et enregistre le CR
avec une définition de ressource personnalisée (CRD). Comme il obéit à RBAC, vous pouvez plus
facilement prévenir les changements de production.

5.6. DÉFINITION DES VERSIONS DE SERVICE CLUSTER (CSV)

La version de service de cluster (CSV), définie par un objet ClusterServiceVersion, est un manifeste
YAML créé à partir des métadonnées de l’opérateur qui aide le gestionnaire de cycle de vie de
l’opérateur (OLM) à exécuter l’opérateur dans un cluster. Ce sont les métadonnées qui accompagnent
une image de conteneur d’opérateur, utilisée pour peupler les interfaces utilisateur avec des
informations telles que son logo, sa description et sa version. C’est aussi une source d’informations
techniques qui est nécessaire pour exécuter l’opérateur, comme les règles RBAC qu’il exige et de quelles
ressources personnalisées (CR) il gère ou dépend.

Le SDK de l’opérateur comprend le générateur CSV pour générer un CSV pour le projet opérateur
actuel, personnalisé à l’aide des informations contenues dans les manifestes YAML et les fichiers source
de l’opérateur.

IMPORTANT

apiVersion: apache.org/v1alpha1
kind: Tomcat
metadata:
 name: example-app
spec:
 replicaCount: 2

{{ .Values.replicaCount }}

$ oc get Tomcats --all-namespaces

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

221

IMPORTANT

La version prise en charge par Red Hat de l’outil Operator SDK CLI, y compris les outils
d’échafaudage et de test connexes pour les projets d’opérateur, est dépréciée et devrait
être supprimée dans une version ultérieure d’OpenShift Dedicated. Le Red Hat fournira
des corrections de bogues et une prise en charge de cette fonctionnalité pendant le
cycle de vie de la version actuelle, mais cette fonctionnalité ne recevra plus
d’améliorations et sera supprimée des futures versions d’OpenShift Dedicated.

La version prise en charge par Red Hat du SDK de l’opérateur n’est pas recommandée
pour la création de nouveaux projets d’opérateur. Les auteurs d’opérateurs avec des
projets d’opérateur existants peuvent utiliser la version de l’outil Operator SDK CLI publié
avec OpenShift Dedicated 4 pour maintenir leurs projets et créer des versions
d’opérateur ciblant des versions plus récentes d’OpenShift Dedicated.

Les images de base suivantes pour les projets d’opérateur ne sont pas dépréciées. Les
fonctionnalités d’exécution et les API de configuration de ces images de base sont
toujours prises en charge pour les corrections de bogues et pour l’adressage des CVE.

L’image de base pour les projets d’opérateurs basés sur Ansible

L’image de base pour les projets d’opérateur basé sur Helm

Afin d’obtenir de l’information sur la version non prise en charge et gérée par la
communauté du SDK de l’opérateur, voir Operator SDK (Operator Framework).

La commande génératrice de CSV supprime la responsabilité des auteurs de l’opérateur ayant des
connaissances approfondies en OLM afin que leur opérateur interagisse avec OLM ou publie des
métadonnées dans le Registre de catalogue. De plus, étant donné que la spécification CSV changera
probablement avec le temps à mesure que de nouvelles fonctionnalités Kubernetes et OLM seront
mises en œuvre, le SDK de l’opérateur est équipé pour étendre facilement son système de mise à jour
afin de gérer de nouvelles fonctionnalités CSV à l’avenir.

5.6.1. Comment fonctionne la génération de CSV

Les manifestes de paquets d’opérateurs, qui incluent des versions de service cluster (CSV), décrivent
comment afficher, créer et gérer une application avec Operator Lifecycle Manager (OLM). Le
générateur CSV dans le SDK de l’opérateur, appelé par la sous-commande de groupement génératrice,
est la première étape vers la publication de votre opérateur dans un catalogue et le déployer avec OLM.
La sous-commande nécessite certains manifestes d’entrée pour construire un manifeste CSV; toutes
les entrées sont lues lorsque la commande est invoquée, avec une base CSV, pour générer ou régénérer
idempotentement un CSV.

En règle générale, la sous-commande des manifestes de kustomize génératrice serait exécutée en
premier pour générer les bases Kustomize d’entrée qui sont consommées par la sous-commande de
paquets génératrices. Cependant, le SDK de l’opérateur fournit la commande make bundle, qui
automatise plusieurs tâches, y compris l’exécution des sous-commandes suivantes dans l’ordre:

1. générer des manifestes de kustomize

2. générer des paquets

3. la validation du paquet

Ressources supplémentaires

Consultez Bundling un opérateur pour une procédure complète qui comprend la génération d’un

OpenShift Dedicated 4 Opérateurs

222

Consultez Bundling un opérateur pour une procédure complète qui comprend la génération d’un
paquet et d’un CSV.

5.6.1.1. Fichiers et ressources générés

La commande make bundle crée les fichiers et répertoires suivants dans votre projet Opérateur:

Le bundle manifeste un répertoire nommé bundle/manifests qui contient un objet
ClusterServiceVersion (CSV)

Annuaire de métadonnées groupé nommé bundle/metadata

L’ensemble des définitions de ressources personnalisées (CRD) dans un répertoire config/crd

Dockerfile bundle.Dockerfile

Les ressources suivantes sont généralement incluses dans un CSV:

Le rôle

Définit les autorisations de l’opérateur dans un espace de noms.

ClusterRole

Définit les autorisations de l’opérateur à l’échelle du cluster.

Déploiement

Définit comment un Operand d’un opérateur est exécuté en pods.

CustomResourceDefinition (CRD)

Définit des ressources personnalisées que votre opérateur réconcilie.

Exemples de ressources personnalisées

Exemples de ressources adhérant à la spécification d’un CRD particulier.

5.6.1.2. Gestion des versions

L’indicateur --version pour la sous-commande de paquet génératrice fournit une version sémantique
pour votre paquet lors de la création d’un pour la première fois et lors de la mise à niveau d’une version
existante.

En définissant la variable VERSION dans votre Makefile, l’indicateur --version est automatiquement
invoqué à l’aide de cette valeur lorsque la sous-commande de paquet généré est exécutée par la
commande make bundle. La version CSV est la même que la version de l’opérateur, et un nouveau CSV
est généré lors de la mise à niveau des versions de l’opérateur.

5.6.2. Champs CSV définis manuellement

De nombreux champs CSV ne peuvent pas être peuplés à l’aide de manifestes génériques générés qui
ne sont pas spécifiques à l’opérateur SDK. Ces champs sont principalement des métadonnées écrites
par l’homme sur l’opérateur et diverses définitions de ressources personnalisées (CRD).

Les auteurs de l’opérateur doivent modifier directement leur fichier YAML version de service de cluster
(CSV) en ajoutant des données personnalisées aux champs requis suivants. Le SDK d’opérateur donne
un avertissement lors de la génération de CSV lorsqu’un manque de données dans l’un des champs
requis est détecté.

Les tableaux suivants détaillent les champs CSV définis manuellement et qui sont facultatifs.

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

223

Tableau 5.7. Champs CSV obligatoires

Le champ Description

les
métadonnées.n
ame

C’est un nom unique pour ce CSV. La version de l’opérateur doit être incluse dans le
nom pour assurer l’unicité, par exemple app-operator.v0.1.1.

les
métadonnées.c
apabilitys

Le niveau de capacité selon le modèle de maturité de l’opérateur. Les options incluent
l’installation de base, les mises à niveau sans soudure, le cycle de vie complet, les
informations approfondies et le pilote automatique.

caractéristiques
Spéc.displayNa
me

Le nom public permettant d’identifier l’opérateur.

description
Spéc.descriptio
n

Brève description de la fonctionnalité de l’opérateur.

caractéristiques
de Sp.keywords

Les mots clés décrivant l’opérateur.

caractéristiques
Sp.maintainers

Entités humaines ou organisationnelles qui maintiennent l’opérateur, avec un nom et un
courriel.

fournisseur de
Spécification

Le fournisseur de l’opérateur (généralement une organisation), avec un nom.

caractéristiques
Sp.labels

Paires clés-valeur à utiliser par les internes de l’opérateur.

caractéristiques
de Sp.version

La version sémantique de l’opérateur, par exemple 0.1.1.

définition des
ressources de
Spéc.custom

Les CRD que l’Opérateur utilise. Ce champ est rempli automatiquement par le SDK de
l’opérateur si des fichiers YAML CRD sont présents dans le déploiement/. Cependant,
plusieurs champs qui ne figurent pas dans la spécification du manifeste CRD
nécessitent l’entrée de l’utilisateur:

description: description de la CRD.

les ressources: toutes les ressources Kubernetes mises à profit par le CRD, par
exemple Pod et StatefulSet objets.

description des spécifications: Conseils d’interface utilisateur pour les entrées
et les sorties de l’opérateur.

Tableau 5.8. Champs CSV optionnels

OpenShift Dedicated 4 Opérateurs

224

Le champ Description

caractéristiques
Sp.replaces

Le nom du CSV étant remplacé par ce CSV.

liens Spéc.links Les URL (par exemple, sites Web et documentation) relatives à l’opérateur ou à
l’application gérée, chacune avec un nom et une url.

caractéristiques
Spéc.selector

Les sélecteurs par lesquels l’opérateur peut associer des ressources dans un cluster.

le Spéc.icon Icône encodée base64 unique à l’opérateur, définie dans un champ de données base64
avec un type média.

caractéristiques
Sp.maturity

Le niveau de maturité que le logiciel a atteint à cette version. Les options comprennent
la planification, pré-alpha, alpha, bêta, stable, mature, inactive et dépréciée.

De plus amples détails sur les données que chaque champ ci-dessus devrait contenir sont trouvés dans
la spécification CSV.

NOTE

À l’heure actuelle, plusieurs champs YAML nécessitant une intervention de l’utilisateur
peuvent potentiellement être analysés à partir du code opérateur.

Ressources supplémentaires

Le modèle de maturité de l’opérateur

5.6.3. Annotations de métadonnées de l’opérateur

Les développeurs d’opérateurs peuvent définir certaines annotations dans les métadonnées d’une
version de service de cluster (CSV) pour activer des fonctionnalités ou mettre en évidence des
fonctionnalités dans les interfaces utilisateur (UI), telles que OperatorHub ou Red Hat Ecosystem
Catalog. Les annotations de métadonnées de l’opérateur sont définies manuellement en définissant le
champ métadonnées.annotations dans le fichier CSV YAML.

5.6.3.1. L’infrastructure comporte des annotations

Les annotations dans le groupe features.operators.openshift.io détaillent les fonctionnalités
d’infrastructure qu’un opérateur peut prendre en charge, spécifiées en définissant une valeur "vraie" ou
"faux". Les utilisateurs peuvent visualiser et filtrer par ces fonctionnalités lors de la découverte des
opérateurs via OperatorHub dans la console Web ou dans le catalogue de l’écosystème Red Hat. Ces
annotations sont prises en charge dans OpenShift Dedicated 4.10 et ultérieure.

IMPORTANT

L’infrastructure features.operators.openshift.io comporte des annotations déprécater les
annotations.openshift.io/infrastructures utilisées dans les versions antérieures
d’OpenShift Dedicated. Consultez « Annotations de fonctionnalités d’infrastructure
dépréciée » pour plus d’informations.

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

225

Tableau 5.9. L’infrastructure comporte des annotations

Annotation Description Les valeurs valides[1]

Features.operators.openshif
t.io/déconnecté

Indiquez si un opérateur prend en charge la
mise en miroir dans des catalogues
déconnectés, y compris toutes les
dépendances, et ne nécessite pas d’accès à
Internet. L’opérateur utilise le champ
spec.relatedImages CSV pour se référer à
toute image liée par son digeste.

"vrai" ou "faux"

caractéristiques.operators.o
penshift.io/fips-compliant

Indiquez si un opérateur accepte la
configuration FIPS-140 de la plate-forme
sous-jacente et fonctionne sur des nœuds
qui sont démarrés en mode FIPS. Dans ce
mode, l’opérateur et toutes les charges de
travail qu’il gère (opérateurs) appellent
uniquement la bibliothèque
cryptographique Red Hat Enterprise Linux
(RHEL) soumise pour validation FIPS-140.

"vrai" ou "faux"

caractéristiques.operators.o
penshift.io/proxy-aware

Indiquez si un opérateur prend en charge
l’exécution d’un cluster derrière un proxy en
acceptant les variables d’environnement
proxy HTTP_PROXY et HTTPS_PROXY
standard. Le cas échéant, l’opérateur
transmet ces informations à la charge de
travail qu’il gère (opérateurs).

"vrai" ou "faux"

Features.operators.openshif
t.io/tls-profiles

Indiquez si un opérateur met en œuvre des
réglages bien connus pour modifier la suite
de chiffrement TLS utilisée par l’opérateur
et, le cas échéant, l’une des charges de
travail qu’il gère (opérateurs).

"vrai" ou "faux"

caractéristiques.operators.o
penshift.io/token-auth-aws

Indiquez si un opérateur prend en charge la
configuration pour l’authentification
tokenized avec les API AWS via AWS
Secure Token Service (STS) à l’aide de
l’opérateur d’identification en nuage (CCO).

"vrai" ou "faux"

caractéristiques.operators.o
penshift.io/token-auth-azure

Indiquez si un opérateur prend en charge la
configuration pour l’authentification
tokenized avec les API Azure via Azure
Managed Identity à l’aide de l’opérateur
d’identification en nuage (CCO).

"vrai" ou "faux"

OpenShift Dedicated 4 Opérateurs

226

caractéristiques.operators.o
penshift.io/token-auth-gcp

Indiquez si un opérateur prend en charge la
configuration pour l’authentification
tokenized avec les API Google Cloud via
GCP Workload Identity Foundation (WIF) à
l’aide de l’opérateur d’identification en
nuage (CCO).

"vrai" ou "faux"

caractéristiques.operators.o
penshift.io/cnf

Indiquez si un opérateur fournit un plugin
Kubernetes (Native Network Function)
Cloud-Native Network Function (CNF).

"vrai" ou "faux"

caractéristiques.operators.o
penshift.io/cni

Indiquez si un opérateur fournit un plugin
Kubernetes (Container Network Interface)
(CNI).

"vrai" ou "faux"

caractéristiques.operators.o
penshift.io/csi

Indiquez si un opérateur fournit un plugin
Kubernetes (CSI) Kubernetes.

"vrai" ou "faux"

Annotation Description Les valeurs valides[1]

1. Les valeurs valides sont affichées intentionnellement avec des guillemets doubles, car les
annotations Kubernetes doivent être des chaînes.

Exemple CSV avec des annotations de fonctionnalités d’infrastructure

Ressources supplémentaires

Activer votre opérateur pour les environnements réseau restreints (mode déconnecté)

5.6.3.2. L’infrastructure dépréciée comporte des annotations

À partir d’OpenShift Dedicated 4.14, le groupe d’annotations operator.openshift.io/infrastructure-
features est déprécié par le groupe d’annotations avec l’espace de noms
features.operators.openshift.io. Bien que vous soyez encouragé à utiliser les annotations les plus
récentes, les deux groupes sont actuellement acceptés lorsqu’ils sont utilisés en parallèle.

Ces annotations détaillent les caractéristiques de l’infrastructure qu’un opérateur prend en charge. Les
utilisateurs peuvent visualiser et filtrer par ces fonctionnalités lors de la découverte des opérateurs via
OperatorHub dans la console Web ou dans le catalogue de l’écosystème Red Hat.

Tableau 5.10. Les opérateurs désappropriés.openshift.io/infrastructure-fonctionnements

apiVersion: operators.coreos.com/v1alpha1
kind: ClusterServiceVersion
metadata:
 annotations:
 features.operators.openshift.io/disconnected: "true"
 features.operators.openshift.io/fips-compliant: "false"
 features.operators.openshift.io/proxy-aware: "false"
 features.operators.openshift.io/tls-profiles: "false"
 features.operators.openshift.io/token-auth-aws: "false"
 features.operators.openshift.io/token-auth-azure: "false"
 features.operators.openshift.io/token-auth-gcp: "false"

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

227

Tableau 5.10. Les opérateurs désappropriés.openshift.io/infrastructure-fonctionnements
annotations

Les valeurs d’annotation valides Description

déconnecté L’opérateur prend en charge la mise en miroir dans des catalogues
déconnectés, y compris toutes les dépendances, et ne nécessite pas
d’accès à Internet. Les images associées requises pour la mise en miroir
sont répertoriées par l’opérateur.

CNF L’opérateur fournit un plugin Kubernetes (CNF) dans le Cloud-Native
Network Functions (CNF).

CNI L’opérateur fournit un plugin Kubernetes de Container Network
Interface (CNI).

CSI L’opérateur fournit un plugin Kubernetes d’interface de stockage de
conteneurs (CSI).

FIPS L’opérateur accepte le mode FIPS de la plate-forme sous-jacente et
fonctionne sur des nœuds qui sont démarrés en mode FIPS.

IMPORTANT

Lors de l’exécution Red Hat Enterprise Linux (RHEL) ou
Red Hat Enterprise Linux CoreOS (RHCOS) démarré en
mode FIPS, les composants de base dédiés OpenShift
utilisent les bibliothèques cryptographiques RHEL qui
ont été soumises au NIST pour FIPS 140-2/140-3
Validation sur seulement les architectures x86_64,
ppc64le et s390x.

logiciel proxy-aware L’opérateur prend en charge l’exécution d’un cluster derrière un proxy.
L’opérateur accepte les variables d’environnement proxy standard
HTTP_PROXY et HTTPS_PROXY, que le gestionnaire de cycle de vie de
l’opérateur (OLM) fournit automatiquement à l’opérateur lorsque le
cluster est configuré pour utiliser un proxy. Les variables
d’environnement requises sont transmises à Operands pour les charges
de travail gérées.

Exemple CSV avec support déconnecté et proxy-aware

5.6.3.3. Autres annotations facultatives

Les annotations suivantes de l’opérateur sont facultatives.

apiVersion: operators.coreos.com/v1alpha1
kind: ClusterServiceVersion
metadata:
 annotations:
 operators.openshift.io/infrastructure-features: '["disconnected", "proxy-aware"]'

OpenShift Dedicated 4 Opérateurs

228

Tableau 5.11. Autres annotations facultatives

Annotation Description

exemples d’ALM Fournissez des modèles de définition de ressources
personnalisées (CRD) avec un ensemble minimal de
configuration. Compatible UIs pré-rempli ce modèle
pour les utilisateurs à personnaliser davantage.

operatorframework.io/initialisation-ressource Indiquez une seule ressource personnalisée requise
en ajoutant l’annotation de la ressource
d’initialisation à la version de service cluster (CSV)
pendant l’installation de l’opérateur. L’utilisateur est
alors invité à créer la ressource personnalisée à l’aide
d’un modèle fourni dans le CSV. Doit inclure un
modèle contenant une définition complète de YAML.

operatorframework.io/suggéré-namespace Définissez un espace de noms suggéré où
l’opérateur devrait être déployé.

operatorframework.io/suggéré-namespace-
template

Définissez un manifeste pour un objet Namespace
avec le sélecteur de nœud par défaut pour l’espace
de noms spécifié.

opérateurs.openshift.io/valid-abonnement Le tableau de forme gratuite pour la liste des
abonnements spécifiques qui sont nécessaires pour
utiliser l’opérateur. À titre d’exemple, '["3Scale
Commercial License", "Red Hat Managed
Integration"]

Operator.operatorframework.io/objets
internes

Cache les CRD dans l’interface utilisateur qui ne sont
pas destinés à la manipulation des utilisateurs.

Exemple CSV avec une exigence de licence OpenShift dédiée

Exemple CSV avec une exigence de licence 3scale

Ressources supplémentaires

apiVersion: operators.coreos.com/v1alpha1
kind: ClusterServiceVersion
metadata:
 annotations:
 operators.openshift.io/valid-subscription: '["OpenShift Container Platform"]'

apiVersion: operators.coreos.com/v1alpha1
kind: ClusterServiceVersion
metadata:
 annotations:
 operators.openshift.io/valid-subscription: '["3Scale Commercial License", "Red Hat Managed
Integration"]'

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

229

Les modèles CRD

Initialisation des ressources personnalisées requises

Définition d’un espace de noms suggéré

Définir un espace de noms suggéré avec le sélecteur de nœud par défaut

Cacher des objets internes

5.6.4. Activer votre opérateur pour les environnements réseau restreints

En tant qu’auteur de l’opérateur, votre opérateur doit répondre à des exigences supplémentaires pour
fonctionner correctement dans un environnement restreint ou déconnecté.

Exigences de l’opérateur pour soutenir le mode déconnecté

Le remplacement des références d’images codées en dur par des variables d’environnement.

Dans la version de service cluster (CSV) de votre opérateur:

Énumérez toutes les images connexes, ou d’autres images de conteneurs dont votre
opérateur pourrait avoir besoin pour exécuter leurs fonctions.

Faites référence à toutes les images spécifiées par un digest (SHA) et non par une balise.

Les dépendances de votre opérateur doivent également prendre en charge l’exécution en
mode déconnecté.

L’opérateur ne doit pas avoir besoin de ressources hors groupe.

Conditions préalables

D’un projet d’opérateur avec un CSV. La procédure suivante utilise l’opérateur Memcached
comme exemple pour les projets basés sur Go, Ansible et Helm.

Procédure

1. Définissez une variable d’environnement pour les références d’image supplémentaires utilisées
par l’opérateur dans le fichier config/manager/manager.yaml:

Exemple 5.2. Exemple de fichier config/manager/manager.yaml

...
spec:
 ...
 spec:
 ...
 containers:
 - command:
 - /manager
 ...
 env:
 - name: <related_image_environment_variable> 1
 value: "<related_image_reference_with_tag>" 2

OpenShift Dedicated 4 Opérateurs

230

1

2

1

2

Définissez la variable d’environnement, telle que RELATED_IMAGE_MEMCACHED.

Définissez la référence et la balise d’image associées, telles que
docker.io/memcached:1.4.36-alpine.

2. Le remplacement des références d’image codées en dur par des variables d’environnement
dans le fichier pertinent pour votre type de projet Opérateur:

Dans le cas des projets Go-based Operator, ajoutez la variable d’environnement au fichier
Controllers/memcached_controller.go comme indiqué dans l’exemple suivant:

Exemple 5.3. Exemple de contrôleurs/memcached_controller.go fichier

Effacer la référence et le tag de l’image.

La fonction os.Getenv appelle <related_image_environnement_variable>.

NOTE

La fonction os.Getenv renvoie une chaîne vide si une variable n’est pas
définie. Définissez le <related_image_environnement_variable>
avant de modifier le fichier.

Dans le cas des projets d’opérateur basé sur Ansible, ajoutez la variable d’environnement au
fichier role/memcached/tasks/main.yml comme indiqué dans l’exemple suivant:

Exemple 5.4. Exemple de fichier role/memcached/tasks/main.yml

 // deploymentForMemcached returns a memcached Deployment object

...

 Spec: corev1.PodSpec{
 Containers: []corev1.Container{{
- Image: "memcached:1.4.36-alpine", 1
+ Image: os.Getenv("<related_image_environment_variable>"), 2
 Name: "memcached",
 Command: []string{"memcached", "-m=64", "-o", "modern", "-v"},
 Ports: []corev1.ContainerPort{{

...

spec:
 containers:
 - name: memcached
 command:
 - memcached
 - -m=64
 - -o
 - modern
 - -v
- image: "docker.io/memcached:1.4.36-alpine" 1

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

231

1

2

1

2

Effacer la référence et le tag de l’image.

La fonction de recherche permet d’appeler
<related_image_environnement_variable>.

Dans le cas des projets d’opérateur basé sur Helm, ajoutez le champ OverrideValues au
fichier watch.yaml comme indiqué dans l’exemple suivant:

Exemple 5.5. Exemple watch.yaml fichier

Ajoutez le champ OverrideValues.

Définissez le champ OverrideValues à l’aide du
<related_image_environnement_variable>, tel que
RELATED_IMAGE_MEMCACHED.

a. Ajoutez la valeur du champ OverrideValues au fichier helm-
charts/memchached/values.yaml comme indiqué dans l’exemple suivant:

Exemple de fichier helm-charts/memchached/values.yaml

b. Éditez le modèle de graphique dans le fichier helm-
charts/memcached/templates/deployment.yaml comme indiqué dans l’exemple
suivant:

Exemple 5.6. Exemple de fichier helm-
charts/memcached/templates/deployment.yaml

+ image: "{{ lookup('env', '<related_image_environment_variable>') }}" 2
 ports:
 - containerPort: 11211

...

...
- group: demo.example.com
 version: v1alpha1
 kind: Memcached
 chart: helm-charts/memcached
 overrideValues: 1
 relatedImage: ${<related_image_environment_variable>} 2

...
relatedImage: ""

containers:
 - name: {{ .Chart.Name }}
 securityContext:
 - toYaml {{ .Values.securityContext | nindent 12 }}
 image: "{{ .Values.image.pullPolicy }}

OpenShift Dedicated 4 Opérateurs

232

1

2

3

1

2

Ajoutez le champ env.

Indiquez la variable d’environnement.

Définissez la valeur de la variable d’environnement.

3. Ajoutez la définition de variable BUNDLE_GEN_FLAGS à votre Makefile avec les modifications
suivantes:

Exemple de Makefile

Effacer cette ligne dans le Makefile.

C) Remplacer la ligne ci-dessus par cette ligne.

4. Afin de mettre à jour votre image de l’opérateur pour utiliser un digest (SHA) et non une balise,
exécutez la commande make bundle et définissez USE_IMAGE_DIGESTS sur true:

5. Ajouter l’annotation déconnectée, qui indique que l’opérateur fonctionne dans un
environnement déconnecté:

 env: 1
 - name: related_image 2
 value: "{{ .Values.relatedImage }}" 3

 BUNDLE_GEN_FLAGS ?= -q --overwrite --version $(VERSION)
$(BUNDLE_METADATA_OPTS)

 # USE_IMAGE_DIGESTS defines if images are resolved via tags or digests
 # You can enable this value if you would like to use SHA Based Digests
 # To enable set flag to true
 USE_IMAGE_DIGESTS ?= false
 ifeq ($(USE_IMAGE_DIGESTS), true)
 BUNDLE_GEN_FLAGS += --use-image-digests
 endif

...

- $(KUSTOMIZE) build config/manifests | operator-sdk generate bundle -q --overwrite --
version $(VERSION) $(BUNDLE_METADATA_OPTS) 1
+ $(KUSTOMIZE) build config/manifests | operator-sdk generate bundle
$(BUNDLE_GEN_FLAGS) 2

...

$ make bundle USE_IMAGE_DIGESTS=true

metadata:
 annotations:
 operators.openshift.io/infrastructure-features: '["disconnected"]'

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

233

1

2

Les opérateurs peuvent être filtrés dans OperatorHub par cette fonctionnalité d’infrastructure.

5.6.5. Activer votre opérateur pour plusieurs architectures et systèmes
d’exploitation

Le gestionnaire de cycle de vie de l’opérateur (OLM) suppose que tous les opérateurs s’exécutent sur
des hôtes Linux. Cependant, en tant qu’auteur de l’opérateur, vous pouvez spécifier si votre opérateur
prend en charge la gestion des charges de travail sur d’autres architectures, si les nœuds de travail sont
disponibles dans le cluster dédié OpenShift.

Dans le cas où votre opérateur prend en charge des variantes autres que AMD64 et Linux, vous pouvez
ajouter des étiquettes à la version de service de cluster (CSV) qui fournit à l’opérateur la liste des
variantes prises en charge. Les étiquettes indiquant les architectures et les systèmes d’exploitation pris
en charge sont définies par ce qui suit:

Définissez <arch> sur une chaîne prise en charge.

Définissez <os> sur une chaîne prise en charge.

NOTE

Il n’y a que les étiquettes sur la tête du canal par défaut pour filtrer les manifestes de
paquets par étiquette. Cela signifie, par exemple, qu’il est possible de fournir une
architecture supplémentaire à un opérateur dans le canal non par défaut, mais que cette
architecture n’est pas disponible pour le filtrage dans l’API PackageManifest.

Dans le cas où un CSV n’inclut pas d’étiquette os, il est traité comme s’il avait l’étiquette de support
Linux suivante par défaut:

Lorsqu’un CSV n’inclut pas d’étiquette d’arche, il est traité comme s’il avait l’étiquette de support
AMD64 suivante par défaut:

Lorsqu’un opérateur prend en charge plusieurs architectures de nœuds ou systèmes d’exploitation, vous
pouvez également ajouter plusieurs étiquettes.

Conditions préalables

D’un projet d’opérateur avec un CSV.

Afin de prendre en charge la liste de plusieurs architectures et systèmes d’exploitation, l’image
de votre opérateur référencée dans le CSV doit être une image de liste manifeste.

Afin que l’opérateur fonctionne correctement dans un réseau restreint, ou déconnecté, l’image

labels:
 operatorframework.io/arch.<arch>: supported 1
 operatorframework.io/os.<os>: supported 2

labels:
 operatorframework.io/os.linux: supported

labels:
 operatorframework.io/arch.amd64: supported

OpenShift Dedicated 4 Opérateurs

234

1 2

Afin que l’opérateur fonctionne correctement dans un réseau restreint, ou déconnecté, l’image
référencée doit également être spécifiée à l’aide d’un digeste (SHA) et non par une balise.

Procédure

Ajoutez une étiquette dans les métadonnées.labels de votre CSV pour chaque architecture et
système d’exploitation pris en charge par votre opérateur:

Après avoir ajouté une nouvelle architecture ou un nouveau système d’exploitation, vous
devez maintenant inclure explicitement les variantes os.linux et arch.amd64 par défaut.

Ressources supplémentaires

Consultez la spécification Image Manifest V 2, Schema 2 pour plus d’informations sur les listes
de manifestes.

5.6.5.1. Architecture et support du système d’exploitation pour les opérateurs

Les chaînes suivantes sont prises en charge dans Operator Lifecycle Manager (OLM) sur OpenShift
Dedicated lors de l’étiquetage ou du filtrage des opérateurs qui prennent en charge plusieurs
architectures et systèmes d’exploitation:

Tableau 5.12. Architectures prises en charge sur OpenShift Dedicated

Architecture Chaîne de caractères

AMD64 amd64

ARM64 bras64

IBM Power® à propos de ppc64le

IBM Z® à propos de S390x

Tableau 5.13. Les systèmes d’exploitation pris en charge sur OpenShift Dedicated

Le système d’exploitation Chaîne de caractères

Linux Linux

à propos de Z/OS à propos de ZOS

NOTE

labels:
 operatorframework.io/arch.s390x: supported
 operatorframework.io/os.zos: supported
 operatorframework.io/os.linux: supported 1
 operatorframework.io/arch.amd64: supported 2

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

235

1

NOTE

Différentes versions d’OpenShift Dedicated et d’autres distributions basées sur
Kubernetes peuvent prendre en charge un ensemble différent d’architectures et de
systèmes d’exploitation.

5.6.6. Définition d’un espace de noms suggéré

Certains opérateurs doivent être déployés dans un espace de noms spécifique, ou avec des ressources
accessoires dans des espaces de noms spécifiques, pour fonctionner correctement. En cas de résolution
d’un abonnement, Operator Lifecycle Manager (OLM) par défaut des ressources d’un opérateur par
défaut sur l’espace de noms de son abonnement.

En tant qu’auteur de l’opérateur, vous pouvez plutôt exprimer un espace de noms cible souhaité dans le
cadre de votre version de service de cluster (CSV) afin de maintenir le contrôle sur les espaces de noms
finaux des ressources installées pour leurs opérateurs. Lors de l’ajout de l’opérateur à un cluster en
utilisant OperatorHub, cela permet à la console Web de remplir automatiquement l’espace de noms
suggéré pour l’installateur pendant le processus d’installation.

Procédure

Dans votre CSV, définissez l’annotation operatorframework.io/suggéré-namespace à votre
espace de noms suggéré:

Définissez votre espace de noms suggéré.

5.6.7. Définir un espace de noms suggéré avec le sélecteur de nœud par défaut

Certains opérateurs s’attendent à fonctionner uniquement sur les nœuds de plan de contrôle, ce qui
peut être fait en définissant un nodeSelector dans la spécification Pod par l’opérateur lui-même.

Afin d’éviter d’être dupliqués et potentiellement contradictoires, vous pouvez définir un sélecteur de
nœuds par défaut sur l’espace de noms où l’opérateur s’exécute. Le sélecteur de nœud par défaut aura
préséance sur le cluster par défaut, de sorte que le cluster par défaut ne sera pas appliqué aux pods
dans l’espace de noms des opérateurs.

Lors de l’ajout de l’opérateur à un cluster en utilisant OperatorHub, la console Web peuple
automatiquement l’espace de noms suggéré pour l’installateur pendant le processus d’installation.
L’espace de noms suggéré est créé à l’aide du manifeste de l’espace de noms dans YAML qui est inclus
dans la version de service cluster (CSV).

Procédure

Dans votre CSV, définissez l’opérateurframework.io/suggéré-namespace-template avec un
manifeste pour un objet Namespace. L’échantillon suivant est un manifeste pour un exemple
Namespace avec le sélecteur de nœud par défaut de namespace spécifié:

metadata:
 annotations:
 operatorframework.io/suggested-namespace: <namespace> 1

metadata:
 annotations:
 operatorframework.io/suggested-namespace-template: 1

OpenShift Dedicated 4 Opérateurs

236

1 Définissez votre espace de noms suggéré.

NOTE

Lorsque les annotations suggérées-namespace et suggéré-namespace-template
sont présentes dans le CSV, le modèle suggéré-namespace-template devrait
primer.

5.6.8. Conditions d’activation de l’opérateur

Le gestionnaire de cycle de vie de l’opérateur (OLM) fournit aux opérateurs un canal pour communiquer
des états complexes qui influencent le comportement OLM tout en gérant l’opérateur. Par défaut, OLM
crée une définition de ressource personnalisée OperatorCondition (CRD) lorsqu’elle installe un
opérateur. En fonction des conditions définies dans la ressource personnalisée OperatorCondition (CR),
le comportement de OLM change en conséquence.

Afin de prendre en charge les conditions de l’opérateur, un opérateur doit être en mesure de lire la
version CR de l’opérateur créé par OLM et d’avoir la capacité d’accomplir les tâches suivantes:

Ayez la condition spécifique.

Définissez l’état d’une condition spécifique.

Cela peut être accompli en utilisant la bibliothèque opérateur-lib. L’auteur d’un opérateur peut fournir
un client d’exécution du contrôleur dans son opérateur pour que la bibliothèque puisse accéder à la
version CR de l’opérateur appartenant à l’opérateur dans le cluster.

La bibliothèque fournit une interface Conditions génériques, qui dispose des méthodes suivantes pour
obtenir et définir un type de condition dans la version CR de l’opérateur:

J’obtiens

Afin d’obtenir la condition spécifique, la bibliothèque utilise la fonction client.Get de contrôleur-
runtime, qui nécessite une ObjectKey des types de type.NamespacedName présent dans
conditionAccessor.

Ensemble

Afin de mettre à jour l’état de la condition spécifique, la bibliothèque utilise la fonction client.Update
à partir du contrôleur-runtime. L’erreur se produit si la conditionType n’est pas présente dans le
CRD.

L’opérateur est autorisé à modifier uniquement la sous-ressource d’état du CR. Les opérateurs peuvent
soit supprimer ou mettre à jour le tableau status.conditions pour inclure la condition. Afin de plus amples
détails sur le format et la description des champs présents dans les conditions, voir l’Amont Condition
GoDocs.

 {
 "apiVersion": "v1",
 "kind": "Namespace",
 "metadata": {
 "name": "vertical-pod-autoscaler-suggested-template",
 "annotations": {
 "openshift.io/node-selector": ""
 }
 }
 }

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

237

NOTE

L’opérateur SDK 1.38.0 prend en charge la v0.11.0 de l’opérateur.

Conditions préalables

Le projet d’opérateur généré à l’aide du SDK de l’opérateur.

Procédure

Activer les conditions de l’opérateur dans votre projet Opérateur:

1. Dans le fichier go.mod de votre projet Opérateur, ajoutez l’opérateur-cadre/opérateur-lib
comme bibliothèque requise:

2. Écrivez votre propre constructeur dans votre logique d’opérateur qui se traduira par les
résultats suivants:

Accepte un client d’exécution de contrôleur.

Accepte un type de condition.

Il retourne une interface Condition pour mettre à jour ou ajouter des conditions.

Comme OLM prend actuellement en charge la condition Upgradeable, vous pouvez créer une
interface qui dispose de méthodes pour accéder à la condition Upgradeable. À titre d’exemple:

Dans cet exemple, le constructeur NewUpgradeable est en outre utilisé pour créer un cond
variable de type Condition. La variable cond aurait à son tour des méthodes Get and Set, qui
peuvent être utilisées pour gérer la condition OLM Upgradeable.

Ressources supplémentaires

Conditions de l’opérateur

module github.com/example-inc/memcached-operator

go 1.19

require (
 k8s.io/apimachinery v0.26.0
 k8s.io/client-go v0.26.0
 sigs.k8s.io/controller-runtime v0.14.1
 operator-framework/operator-lib v0.11.0
)

import (
 ...
 apiv1 "github.com/operator-framework/api/pkg/operators/v1"
)

func NewUpgradeable(cl client.Client) (Condition, error) {
 return NewCondition(cl, "apiv1.OperatorUpgradeable")
}

cond, err := NewUpgradeable(cl);

OpenShift Dedicated 4 Opérateurs

238

5.6.9. Définir des webhooks

Les webhooks permettent aux auteurs de l’opérateur d’intercepter, de modifier et d’accepter ou de
rejeter des ressources avant qu’elles ne soient enregistrées dans le magasin d’objets et traitées par le
contrôleur de l’opérateur. Le gestionnaire de cycle de vie de l’opérateur (OLM) peut gérer le cycle de
vie de ces webhooks lorsqu’ils sont expédiés aux côtés de votre opérateur.

La ressource de la version de service de cluster (CSV) d’un opérateur peut inclure une section
Webhookdefinitions pour définir les types suivants de webhooks:

Admission webhooks (validation et mutation)

Conversion webhooks

Procédure

Ajoutez une section Webhookdefinitions à la section Spécifications du CSV de votre opérateur
et incluez toutes les définitions de webhook à l’aide d’un type de ValidatingAdmissionWebhook,
MutatingAdmissionWebhook ou ConversionWebhook. L’exemple suivant contient les trois types
de webhooks:

CSV contenant des webhooks

 apiVersion: operators.coreos.com/v1alpha1
 kind: ClusterServiceVersion
 metadata:
 name: webhook-operator.v0.0.1
 spec:
 customresourcedefinitions:
 owned:
 - kind: WebhookTest
 name: webhooktests.webhook.operators.coreos.io 1
 version: v1
 install:
 spec:
 deployments:
 - name: webhook-operator-webhook
 ...
 ...
 ...
 strategy: deployment
 installModes:
 - supported: false
 type: OwnNamespace
 - supported: false
 type: SingleNamespace
 - supported: false
 type: MultiNamespace
 - supported: true
 type: AllNamespaces
 webhookdefinitions:
 - type: ValidatingAdmissionWebhook 2
 admissionReviewVersions:
 - v1beta1
 - v1
 containerPort: 443

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

239

1

2

Les CRD ciblés par le webhook de conversion doivent exister ici.

C’est un webhook d’admission valide.

 targetPort: 4343
 deploymentName: webhook-operator-webhook
 failurePolicy: Fail
 generateName: vwebhooktest.kb.io
 rules:
 - apiGroups:
 - webhook.operators.coreos.io
 apiVersions:
 - v1
 operations:
 - CREATE
 - UPDATE
 resources:
 - webhooktests
 sideEffects: None
 webhookPath: /validate-webhook-operators-coreos-io-v1-webhooktest
 - type: MutatingAdmissionWebhook 3
 admissionReviewVersions:
 - v1beta1
 - v1
 containerPort: 443
 targetPort: 4343
 deploymentName: webhook-operator-webhook
 failurePolicy: Fail
 generateName: mwebhooktest.kb.io
 rules:
 - apiGroups:
 - webhook.operators.coreos.io
 apiVersions:
 - v1
 operations:
 - CREATE
 - UPDATE
 resources:
 - webhooktests
 sideEffects: None
 webhookPath: /mutate-webhook-operators-coreos-io-v1-webhooktest
 - type: ConversionWebhook 4
 admissionReviewVersions:
 - v1beta1
 - v1
 containerPort: 443
 targetPort: 4343
 deploymentName: webhook-operator-webhook
 generateName: cwebhooktest.kb.io
 sideEffects: None
 webhookPath: /convert
 conversionCRDs:
 - webhooktests.webhook.operators.coreos.io 5
...

OpenShift Dedicated 4 Opérateurs

240

3

4

5

C’est un webhook d’admission mutant.

C’est un webhook de conversion.

La propriété spec.PreserveUnknownFields de chaque CRD doit être définie à faux ou nul.

Ressources supplémentaires

Documentation de Kubernetes:

Validation des webhooks d’admission

La mutation des webhooks d’admission

Conversion webhooks

5.6.9.1. Considérations Webhook pour OLM

Lorsque vous déployez un opérateur avec des webhooks à l’aide du gestionnaire de cycle de vie de
l’opérateur (OLM), vous devez définir ce qui suit:

Le champ type doit être défini sur ValidatingAdmissionWebhook, MutatingAdmissionWebhook
ou ConversionWebhook, ou le CSV sera placé dans une phase défaillante.

Le CSV doit contenir un déploiement dont le nom est équivalent à la valeur fournie dans le
champ deploymentName de la définition webhook.

Lorsque le webhook est créé, OLM s’assure que le webhook agit uniquement sur les espaces de noms
correspondant au groupe d’opérateur dans lequel l’opérateur est déployé.

Contraintes de l’autorité de certification
L’OLM est configurée pour fournir à chaque déploiement une seule autorité de certificat (CA). La
logique qui génère et monte l’AC dans le déploiement a été utilisée à l’origine par la logique du cycle de
vie de l’API. En conséquence:

Le fichier de certificat TLS est monté au déploiement sur
/apiserver.local.config/certificates/apiserver.crt.

Le fichier clé TLS est monté au déploiement sur
/apiserver.local.config/certificates/apiserver.key.

Les règles d’admission sur le webhook
Afin d’empêcher un opérateur de configurer le cluster dans un état non récupérable, OLM place le CSV
dans la phase défaillante si les règles définies dans un webhook d’admission interceptent l’une des
requêtes suivantes:

Demandes qui ciblent tous les groupes

Demande qui cible le groupe operators.coreos.com

Demandes qui ciblent les ressources ValidatingWebhookConfigurations ou
MutatingWebhookConfigurations

Contraintes de conversion webhook
L’OMM place le CSV dans la phase défaillante si une définition de webhook de conversion n’adhère pas
aux contraintes suivantes:

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

241

https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#validatingadmissionwebhook
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#mutatingadmissionwebhook
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definition-versioning/#webhook-conversion

Les CSV dotés d’un webhook de conversion ne peuvent prendre en charge que le mode
d’installation d’AllNamespaces.

Le CRD ciblé par le webhook de conversion doit avoir son champ spec.preserveUnknownFields
mis à faux ou nul.

Le webhook de conversion défini dans le CSV doit cibler un CRD détenu.

Il ne peut y avoir qu’un seul webhook de conversion sur l’ensemble du cluster pour un CRD
donné.

5.6.10. Comprendre vos définitions de ressources personnalisées (CRD)

Il existe deux types de définitions de ressources personnalisées (CRD) que votre opérateur peut utiliser :
celles qui lui appartiennent et celles dont elle dépend, qui sont nécessaires.

5.6.10.1. Les CRD possédés

Les définitions de ressources personnalisées (CRD) détenues par votre opérateur sont la partie la plus
importante de votre CSV. Cela établit le lien entre votre opérateur et les règles RBAC requises, la
gestion des dépendances et d’autres concepts de Kubernetes.

Il est courant pour votre opérateur d’utiliser plusieurs CRD pour relier des concepts, tels que la
configuration de base de données de haut niveau dans un objet et une représentation des ensembles
de répliques dans un autre. Chacun doit être indiqué dans le fichier CSV.

Tableau 5.14. Champs CRD possédés

Le champ Description Requis/facultatif

Le nom Le nom complet de votre CRD. A) requis

La version La version de cette API objet. A) requis

Je suis gentille. Le nom lisible par la machine de votre CRD. A) requis

DisplayName Il s’agit d’une version lisible humaine de votre nom CRD, par
exemple MongoDB Standalone.

A) requis

Description Brève description de la façon dont ce CRD est utilisé par
l’Opérateur ou une description de la fonctionnalité fournie
par le CRD.

A) requis

Groupe de travail Le groupe API auquel appartient ce CRD, par exemple
Database.example.com.

Facultatif

OpenShift Dedicated 4 Opérateurs

242

Ressources Les CRD possèdent un ou plusieurs types d’objets
Kubernetes. Ceux-ci sont listés dans la section ressources
pour informer vos utilisateurs des objets dont ils pourraient
avoir besoin pour résoudre les problèmes ou comment se
connecter à l’application, comme la règle du service ou de
l’entrée qui expose une base de données.

Il est recommandé de ne énumérer que les objets qui sont
importants pour un humain, pas une liste exhaustive de tout
ce que vous orchestrez. À titre d’exemple, ne répertoriez
pas les cartes de configuration qui stockent l’état interne
qui ne sont pas destinés à être modifiés par un utilisateur.

Facultatif

Description des
SpecDescripteurs,
StatutDescripteurs
et
ActionDescripteurs

Ces descripteurs sont un moyen d’indiquer les UI avec
certaines entrées ou sorties de votre opérateur qui sont les
plus importantes pour un utilisateur final. Lorsque votre CRD
contient le nom d’une carte secrète ou de configuration que
l’utilisateur doit fournir, vous pouvez le spécifier ici. Ces
éléments sont liés et mis en évidence dans les UI
compatibles.

Il existe trois types de descripteurs:

Description des Spec: Une référence aux champs
dans le bloc spec d’un objet.

Description du statut: Une référence aux champs
dans le bloc d’état d’un objet.

ActionDescriptors: Une référence aux actions qui
peuvent être effectuées sur un objet.

Les descripteurs acceptent les champs suivants:

DisplayName: Un nom lisible par l’homme pour le
Spec, Status ou Action.

Description : Une courte description de la
Spécification, de l’état ou de l’action et de la façon
dont il est utilisé par l’opérateur.

Chemin : Un chemin délimité par point du champ
sur l’objet décrit par ce descripteur.

Description des x : Utilisé pour déterminer les «
capacités » de ce descripteur et quel composant
d’interface utilisateur utiliser. Consultez le projet
openshift/console pour une liste canonique de
React UI X-Descriptors for OpenShift Dedicated.

Consultez également le projet openshift/console pour plus
d’informations sur Descripteurs en général.

Facultatif

Le champ Description Requis/facultatif

L’exemple suivant représente un CRD autonome MongoDB qui nécessite une entrée de l’utilisateur

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

243

L’exemple suivant représente un CRD autonome MongoDB qui nécessite une entrée de l’utilisateur
sous la forme d’une carte secrète et de configuration, et orchestrate les services, les ensembles d’état,
les pods et les cartes de configuration:

Exemple appartenant à CRD

5.6.10.2. CRD requis

Compter sur d’autres CRD requis est complètement facultatif et n’existe que pour réduire la portée des
opérateurs individuels et fournir un moyen de composer plusieurs opérateurs ensemble pour résoudre
un cas d’utilisation de bout en bout.

 - displayName: MongoDB Standalone
 group: mongodb.com
 kind: MongoDbStandalone
 name: mongodbstandalones.mongodb.com
 resources:
 - kind: Service
 name: ''
 version: v1
 - kind: StatefulSet
 name: ''
 version: v1beta2
 - kind: Pod
 name: ''
 version: v1
 - kind: ConfigMap
 name: ''
 version: v1
 specDescriptors:
 - description: Credentials for Ops Manager or Cloud Manager.
 displayName: Credentials
 path: credentials
 x-descriptors:
 - 'urn:alm:descriptor:com.tectonic.ui:selector:core:v1:Secret'
 - description: Project this deployment belongs to.
 displayName: Project
 path: project
 x-descriptors:
 - 'urn:alm:descriptor:com.tectonic.ui:selector:core:v1:ConfigMap'
 - description: MongoDB version to be installed.
 displayName: Version
 path: version
 x-descriptors:
 - 'urn:alm:descriptor:com.tectonic.ui:label'
 statusDescriptors:
 - description: The status of each of the pods for the MongoDB cluster.
 displayName: Pod Status
 path: pods
 x-descriptors:
 - 'urn:alm:descriptor:com.tectonic.ui:podStatuses'
 version: v1
 description: >-
 MongoDB Deployment consisting of only one host. No replication of
 data.

OpenShift Dedicated 4 Opérateurs

244

C’est un exemple d’opérateur qui pourrait configurer une application et installer un cluster etcd (à partir
d’un opérateur etcd) à utiliser pour le verrouillage distribué et une base de données Postgres (à partir
d’un opérateur Postgres) pour le stockage des données.

Le gestionnaire de cycle de vie de l’opérateur (OLM) vérifie les CRD et les opérateurs disponibles dans
le cluster pour répondre à ces exigences. Lorsque des versions appropriées sont trouvées, les
opérateurs sont lancés dans l’espace de noms souhaité et un compte de service créé pour chaque
opérateur pour créer, surveiller et modifier les ressources Kubernetes requises.

Tableau 5.15. Champs CRD requis

Le champ Description Requis/facultatif

Le nom Le nom complet du CRD dont vous avez besoin. A) requis

La version La version de cette API objet. A) requis

Je suis gentille. Le genre d’objets Kubernetes. A) requis

DisplayName C’est une version lisible par l’homme de la CRD. A) requis

Description Le résumé de la façon dont le composant s’intègre dans
votre architecture plus grande.

A) requis

Exemple requis CRD

5.6.10.3. Les mises à niveau de CRD

L’ODM met immédiatement à niveau une définition de ressource personnalisée (CRD) s’il appartient à
une version de service de cluster singulier (CSV). Lorsqu’un CRD est détenu par plusieurs CSV, le CRD
est mis à niveau lorsqu’il a satisfait à toutes les conditions suivantes:

Dans le nouveau CRD, toutes les versions de service existantes sont présentes dans le nouveau
CRD.

Les instances existantes, ou ressources personnalisées, associées aux versions de service du
CRD sont valides lorsqu’elles sont validées par rapport au schéma de validation du nouveau
CRD.

5.6.10.3.1. Ajout d’une nouvelle version CRD

Procédure

Ajouter une nouvelle version d’un CRD à votre opérateur:

1. Ajoutez une nouvelle entrée dans la ressource CRD dans la section versions de votre CSV.
Ainsi, si le CRD actuel possède une version v1alpha1 et que vous souhaitez ajouter une nouvelle

 required:
 - name: etcdclusters.etcd.database.coreos.com
 version: v1beta2
 kind: EtcdCluster
 displayName: etcd Cluster
 description: Represents a cluster of etcd nodes.

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

245

1

1

1

Ainsi, si le CRD actuel possède une version v1alpha1 et que vous souhaitez ajouter une nouvelle
version v1beta1 et la marquer comme nouvelle version de stockage, ajoutez une nouvelle entrée
pour v1beta1:

C’est une nouvelle entrée.

2. Assurez-vous que la version de référence de la CRD dans la section propre de votre CSV est
mise à jour si le CSV a l’intention d’utiliser la nouvelle version:

Actualisez la version.

3. Appuyez sur le CRD et le CSV mis à jour sur votre paquet.

5.6.10.3.2. Dépréciation ou suppression d’une version CRD

Le gestionnaire de cycle de vie de l’opérateur (OLM) ne permet pas de supprimer immédiatement une
version de service d’une définition de ressource personnalisée (CRD). Au lieu de cela, une version
obsolète du CRD doit d’abord être désactivée en définissant le champ servi dans le CRD à faux. Ensuite,
la version non-servante peut être supprimée sur la mise à niveau CRD ultérieure.

Procédure

Déprécier et supprimer une version spécifique d’un CRD:

1. Marquer la version obsolète comme non-servant pour indiquer que cette version n’est plus
utilisée et peut être supprimée dans une mise à jour ultérieure. À titre d’exemple:

J’ai mis sur false.

2. Basculez la version de stockage en version de service si la version à déprécier est actuellement
la version de stockage. À titre d’exemple:

versions:
 - name: v1alpha1
 served: true
 storage: false
 - name: v1beta1 1
 served: true
 storage: true

customresourcedefinitions:
 owned:
 - name: cluster.example.com
 version: v1beta1 1
 kind: cluster
 displayName: Cluster

versions:
 - name: v1alpha1
 served: false 1
 storage: true

OpenShift Dedicated 4 Opérateurs

246

1 2 Actualisez les champs de stockage en conséquence.

NOTE

Afin de supprimer une version spécifique qui est ou était la version de stockage
d’un CRD, cette version doit être supprimée de la version stockée dans l’état du
CRD. Les OLM tenteront de le faire pour vous s’il détecte qu’une version stockée
n’existe plus dans le nouveau CRD.

3. Améliorez le CRD avec les modifications ci-dessus.

4. Dans les cycles de mise à niveau ultérieurs, la version non-servante peut être complètement
supprimée du CRD. À titre d’exemple:

5. Assurez-vous que la version CRD de référence dans la section détenue de votre CSV est mise à
jour en conséquence si cette version est supprimée du CRD.

5.6.10.4. Les modèles CRD

Les utilisateurs de votre opérateur doivent être informés des options requises par rapport aux options
facultatives. Il est possible de fournir des modèles pour chacune de vos définitions de ressources
personnalisées (CRD) avec un ensemble minimal de configuration sous forme d’annotation nommée
alm-exemples. Compatible UIs pré-remplira ce modèle pour les utilisateurs à personnaliser davantage.

L’annotation se compose d’une liste du type, par exemple, le nom CRD et les métadonnées et
spécifications correspondantes de l’objet Kubernetes.

L’exemple complet suivant fournit des modèles pour EtcdCluster, EtcdBackup et EtcdRestore:

versions:
 - name: v1alpha1
 served: false
 storage: false 1
 - name: v1beta1
 served: true
 storage: true 2

versions:
 - name: v1beta1
 served: true
 storage: true

metadata:
 annotations:
 alm-examples: >-
 [{"apiVersion":"etcd.database.coreos.com/v1beta2","kind":"EtcdCluster","metadata":
{"name":"example","namespace":"<operator_namespace>"},"spec":{"size":3,"version":"3.2.13"}},
{"apiVersion":"etcd.database.coreos.com/v1beta2","kind":"EtcdRestore","metadata":
{"name":"example-etcd-cluster"},"spec":{"etcdCluster":{"name":"example-etcd-
cluster"},"backupStorageType":"S3","s3":{"path":"<full-s3-path>","awsSecret":"<aws-secret>"}}},
{"apiVersion":"etcd.database.coreos.com/v1beta2","kind":"EtcdBackup","metadata":
{"name":"example-etcd-cluster-backup"},"spec":{"etcdEndpoints":["<etcd-cluster-
endpoints>"],"storageType":"S3","s3":{"path":"<full-s3-path>","awsSecret":"<aws-secret>"}}}]

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

247

1

5.6.10.5. Cacher des objets internes

Il est courant pour les opérateurs d’utiliser des définitions de ressources personnalisées (CRD) en interne
pour accomplir une tâche. Ces objets ne sont pas destinés aux utilisateurs à manipuler et peuvent être
source de confusion pour les utilisateurs de l’opérateur. À titre d’exemple, un opérateur de base de
données peut avoir un CRD de réplication qui est créé chaque fois qu’un utilisateur crée un objet de
base de données avec réplication: true.

En tant qu’auteur de l’opérateur, vous pouvez cacher tous les CRD dans l’interface utilisateur qui ne sont
pas destinés à la manipulation de l’utilisateur en ajoutant l’annotation d’objets internes à la version de
service cluster (CSV) de votre opérateur.

Procédure

1. Avant de marquer l’un de vos CRD en interne, assurez-vous que toute information de débogage
ou configuration qui pourrait être nécessaire pour gérer l’application est reflétée sur le statut ou
le bloc de spécifications de votre CR, le cas échéant à votre opérateur.

2. Ajoutez l’annotation d’un objet interne au CSV de votre opérateur pour spécifier les objets
internes à cacher dans l’interface utilisateur:

Annotation interne d’objet

Définissez n’importe quel CRD interne comme un tableau de chaînes.

5.6.10.6. Initialisation des ressources personnalisées requises

L’opérateur peut demander à l’utilisateur d’instancier une ressource personnalisée avant que l’opérateur
puisse être pleinement fonctionnel. Cependant, il peut être difficile pour un utilisateur de déterminer ce
qui est nécessaire ou comment définir la ressource.

En tant que développeur d’opérateur, vous pouvez spécifier une ressource personnalisée unique requise
en ajoutant operatorframework.io/initialisation-ressource à la version de service cluster (CSV) pendant
l’installation de l’opérateur. Il vous est alors demandé de créer la ressource personnalisée à l’aide d’un
modèle fourni dans le CSV. L’annotation doit inclure un modèle qui contient une définition YAML
complète qui est nécessaire pour initialiser la ressource pendant l’installation.

Lorsque cette annotation est définie, après avoir installé l’opérateur à partir de la console Web dédiée
OpenShift, l’utilisateur est invité à créer la ressource à l’aide du modèle fourni dans le CSV.

Procédure

Ajoutez l’annotation operatorframework.io/initialisation-ressource au CSV de votre opérateur
pour spécifier une ressource personnalisée requise. À titre d’exemple, l’annotation suivante
nécessite la création d’une ressource StorageCluster et fournit une définition YAML complète:

Annotation des ressources d’initialisation

apiVersion: operators.coreos.com/v1alpha1
kind: ClusterServiceVersion
metadata:
 name: my-operator-v1.2.3
 annotations:
 operators.operatorframework.io/internal-objects:
'["my.internal.crd1.io","my.internal.crd2.io"]' 1
...

OpenShift Dedicated 4 Opérateurs

248

Annotation des ressources d’initialisation

apiVersion: operators.coreos.com/v1alpha1
kind: ClusterServiceVersion
metadata:
 name: my-operator-v1.2.3
 annotations:
 operatorframework.io/initialization-resource: |-
 {
 "apiVersion": "ocs.openshift.io/v1",
 "kind": "StorageCluster",
 "metadata": {
 "name": "example-storagecluster"
 },
 "spec": {
 "manageNodes": false,
 "monPVCTemplate": {
 "spec": {
 "accessModes": [
 "ReadWriteOnce"
],
 "resources": {
 "requests": {
 "storage": "10Gi"
 }
 },
 "storageClassName": "gp2"
 }
 },
 "storageDeviceSets": [
 {
 "count": 3,
 "dataPVCTemplate": {
 "spec": {
 "accessModes": [
 "ReadWriteOnce"
],
 "resources": {
 "requests": {
 "storage": "1Ti"
 }
 },
 "storageClassName": "gp2",
 "volumeMode": "Block"
 }
 },
 "name": "example-deviceset",
 "placement": {},
 "portable": true,
 "resources": {}
 }
]
 }
 }
...

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

249

5.6.11. Comprendre vos services API

Comme pour les CRD, il existe deux types de services d’API que votre opérateur peut utiliser: possédés
et requis.

5.6.11.1. Les services API possédés

Lorsqu’un CSV possède un service API, il est responsable de décrire le déploiement de l’extension api-
server qui le soutient et du groupe/version/type (GVK) qu’il fournit.

Le service API est identifié de manière unique par le groupe/version qu’il fournit et peut être répertorié
plusieurs fois pour désigner les différents types qu’il est censé fournir.

Tableau 5.16. Champs de service API possédés

Le champ Description Requis/facultatif

Groupe de travail Groupe que le service API fournit, par exemple
Database.example.com.

A) requis

La version La version du service API, par exemple v1alpha1. A) requis

Je suis gentille. C’est une sorte que le service API devrait fournir. A) requis

Le nom Le nom pluriel du service API fourni. A) requis

DéploiementNam
e

Le nom du déploiement défini par votre CSV qui correspond
à votre service API (requis pour les services API possédés).
Au cours de la phase d’attente CSV, l’opérateur OLM
effectue une recherche dans la stratégie d’installation de
votre CSV pour trouver une spécification de déploiement
avec un nom correspondant, et si elle n’est pas trouvée, ne
transitionne pas le CSV vers la phase "Installer Prêt".

A) requis

DisplayName Il s’agit d’une version lisible humaine du nom de votre
service API, par exemple MongoDB Standalone.

A) requis

Description Brève description de la façon dont ce service API est utilisé
par l’opérateur ou une description des fonctionnalités
fournies par le service API.

A) requis

Ressources Les services API possèdent un ou plusieurs types d’objets
Kubernetes. Ceux-ci sont listés dans la section ressources
pour informer vos utilisateurs des objets dont ils pourraient
avoir besoin pour résoudre les problèmes ou comment se
connecter à l’application, comme la règle du service ou de
l’entrée qui expose une base de données.

Il est recommandé de ne énumérer que les objets qui sont
importants pour un humain, pas une liste exhaustive de tout
ce que vous orchestrez. À titre d’exemple, ne répertoriez
pas les cartes de configuration qui stockent l’état interne
qui ne sont pas destinés à être modifiés par un utilisateur.

Facultatif

OpenShift Dedicated 4 Opérateurs

250

Description des
SpecDescripteurs,
StatutDescripteurs
et
ActionDescripteurs

Essentiellement les mêmes que pour les CRD possédés. Facultatif

Le champ Description Requis/facultatif

5.6.11.1.1. Création de ressources de service API

Le gestionnaire de cycle de vie de l’opérateur (OLM) est responsable de la création ou du
remplacement des ressources de service et d’API pour chaque service d’API propriétaire unique:

Les sélecteurs de pod de service sont copiés à partir du déploiement CSV correspondant au
champ DeploymentName de la description du service API.

La nouvelle paire clé/certificat CA est générée pour chaque installation et le paquet CA codé de
base64 est intégré dans la ressource de service API respective.

5.6.11.1.2. Certificats de service API

Chaque fois qu’un service d’API est installé, OLM gère la génération d’une paire de clés/certificats de
service. Le certificat de service a un nom commun (CN) contenant le nom d’hôte de la ressource Service
généré et est signé par la clé privée du paquet CA intégré dans la ressource de service API
correspondante.

Le certificat est stocké sous forme de secret de type kubernetes.io/tls dans l’espace de noms de
déploiement, et un volume nommé apiservice-cert est automatiquement annexé à la section volumes du
déploiement dans le CSV correspondant au champ DeploymentName de la description du service API.

Dans le cas contraire, une monture de volume avec un nom correspondant est également jointe à tous
les conteneurs de ce déploiement. Cela permet aux utilisateurs de définir une monture de volume avec
le nom attendu pour répondre à toutes les exigences de chemin personnalisé. Le chemin du montage de
volume généré par défaut vers /apiserver.local.config/certificates et tous les montages de volume
existants avec le même chemin sont remplacés.

5.6.11.2. Les services d’API requis

L’OLM s’assure que tous les CSV requis disposent d’un service API disponible et que tous les GVK
attendus sont détectables avant de tenter l’installation. Cela permet à un CSV de s’appuyer sur des
types spécifiques fournis par les services API qu’il ne possède pas.

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

251

Tableau 5.17. Champs de service API requis

Le champ Description Requis/facultatif

Groupe de travail Groupe que le service API fournit, par exemple
Database.example.com.

A) requis

La version La version du service API, par exemple v1alpha1. A) requis

Je suis gentille. C’est une sorte que le service API devrait fournir. A) requis

DisplayName Il s’agit d’une version lisible humaine du nom de votre
service API, par exemple MongoDB Standalone.

A) requis

Description Brève description de la façon dont ce service API est utilisé
par l’opérateur ou une description des fonctionnalités
fournies par le service API.

A) requis

5.7. EN TRAVAILLANT AVEC DES IMAGES GROUPÉES

Il est possible d’utiliser le SDK de l’opérateur pour emballer, déployer et mettre à niveau les Opérateurs
dans le format bundle pour les utiliser sur Operator Lifecycle Manager (OLM).

IMPORTANT

La version prise en charge par Red Hat de l’outil Operator SDK CLI, y compris les outils
d’échafaudage et de test connexes pour les projets d’opérateur, est dépréciée et devrait
être supprimée dans une version ultérieure d’OpenShift Dedicated. Le Red Hat fournira
des corrections de bogues et une prise en charge de cette fonctionnalité pendant le
cycle de vie de la version actuelle, mais cette fonctionnalité ne recevra plus
d’améliorations et sera supprimée des futures versions d’OpenShift Dedicated.

La version prise en charge par Red Hat du SDK de l’opérateur n’est pas recommandée
pour la création de nouveaux projets d’opérateur. Les auteurs d’opérateurs avec des
projets d’opérateur existants peuvent utiliser la version de l’outil Operator SDK CLI publié
avec OpenShift Dedicated 4 pour maintenir leurs projets et créer des versions
d’opérateur ciblant des versions plus récentes d’OpenShift Dedicated.

Les images de base suivantes pour les projets d’opérateur ne sont pas dépréciées. Les
fonctionnalités d’exécution et les API de configuration de ces images de base sont
toujours prises en charge pour les corrections de bogues et pour l’adressage des CVE.

L’image de base pour les projets d’opérateurs basés sur Ansible

L’image de base pour les projets d’opérateur basé sur Helm

Afin d’obtenir de l’information sur la version non prise en charge et gérée par la
communauté du SDK de l’opérateur, voir Operator SDK (Operator Framework).

5.7.1. Groupement d’un opérateur

Le format de paquet Opérateur est la méthode d’emballage par défaut pour Operator SDK et Operator

OpenShift Dedicated 4 Opérateurs

252

Le format de paquet Opérateur est la méthode d’emballage par défaut pour Operator SDK et Operator
Lifecycle Manager (OLM). En utilisant le SDK de l’opérateur, vous pouvez préparer votre opérateur à
une utilisation sur OLM pour construire et pousser votre projet Opérateur en tant qu’image groupée.

Conditions préalables

L’opérateur SDK CLI installé sur un poste de travail de développement

Installation d’OpenShift CLI (oc) v4+

Le projet d’opérateur initialisé à l’aide du SDK de l’opérateur

Dans le cas où votre opérateur est Go-based, votre projet doit être mis à jour pour utiliser les
images prises en charge pour s’exécuter sur OpenShift Dedicated

Procédure

1. Exécutez les commandes suivantes dans votre répertoire de projet Opérateur pour construire
et pousser l’image de votre opérateur. Modifiez l’argument IMG dans les étapes suivantes pour
faire référence à un référentiel auquel vous avez accès. Il est possible d’obtenir un compte de
stockage des conteneurs sur des sites de dépôt tels que Quay.io.

a. Construire l’image:

NOTE

Le Dockerfile généré par le SDK pour l’opérateur renvoie explicitement
GOARCH=amd64 pour la construction de go. Cela peut être modifié à
GOARCH=$TARGETARCH pour les architectures non-AMD64. Docker
définira automatiquement la variable d’environnement à la valeur spécifiée
par -platform. Avec Buildah, le -build-arg devra être utilisé à cet effet. En
savoir plus, consultez Multiple Architectures.

b. Appuyez sur l’image vers un référentiel:

2. Créez votre paquet Opérateur manifeste en exécutant la commande make bundle, qui invoque
plusieurs commandes, y compris l’opérateur SDK génère des paquets et des sous-commandes
validant:

Les manifestes de paquets pour un opérateur décrivent comment afficher, créer et gérer une
application. La commande make bundle crée les fichiers et répertoires suivants dans votre
projet Opérateur:

Le bundle manifeste un répertoire nommé bundle/manifests qui contient un objet
ClusterServiceVersion

Annuaire de métadonnées groupé nommé bundle/metadata

L’ensemble des définitions de ressources personnalisées (CRD) dans un répertoire

$ make docker-build IMG=<registry>/<user>/<operator_image_name>:<tag>

$ make docker-push IMG=<registry>/<user>/<operator_image_name>:<tag>

$ make bundle IMG=<registry>/<user>/<operator_image_name>:<tag>

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

253

L’ensemble des définitions de ressources personnalisées (CRD) dans un répertoire
config/crd

Dockerfile bundle.Dockerfile

Ces fichiers sont ensuite automatiquement validés en utilisant le bundle opérateur-sdk valide
pour s’assurer que la représentation des faisceaux sur disque est correcte.

3. Créez et poussez votre image de paquet en exécutant les commandes suivantes. L’OLM
consomme des faisceaux d’opérateurs à l’aide d’une image d’index, qui référence à une ou
plusieurs images groupées.

a. Construisez l’image du bundle. Définissez BUNDLE_IMG avec les détails du registre, de
l’espace de noms d’utilisateur et de la balise d’image où vous avez l’intention de pousser
l’image:

b. Appuyez sur l’image du paquet:

5.7.2. Déploiement d’un opérateur avec le gestionnaire du cycle de vie de
l’opérateur

Le gestionnaire de cycle de vie de l’opérateur (OLM) vous aide à installer, mettre à jour et gérer le cycle
de vie des Opérateurs et de leurs services associés sur un cluster Kubernetes. Le système OLM est
installé par défaut sur OpenShift Dedicated et s’exécute sous forme d’extension Kubernetes afin que
vous puissiez utiliser la console Web et l’OpenShift CLI (oc) pour toutes les fonctions de gestion du
cycle de vie de l’opérateur sans outils supplémentaires.

Le format de paquet opérateur est la méthode d’emballage par défaut pour l’opérateur SDK et OLM. Le
SDK de l’opérateur permet d’exécuter rapidement une image groupée sur OLM afin de s’assurer qu’elle
fonctionne correctement.

Conditions préalables

L’opérateur SDK CLI installé sur un poste de travail de développement

Ensemble d’image de l’opérateur construit et poussé à un registre

Installation OLM sur un cluster basé sur Kubernetes (v1.16.0 ou version ultérieure si vous utilisez
apiextensions.k8s.io/v1 CRD, par exemple OpenShift Dedicated 4)

Connexion au cluster avec oc à l’aide d’un compte avec des autorisations d’administration
dédiées

Dans le cas où votre opérateur est Go-based, votre projet doit être mis à jour pour utiliser les
images prises en charge pour s’exécuter sur OpenShift Dedicated

Procédure

Entrez la commande suivante pour exécuter l’opérateur sur le cluster:

$ make bundle-build BUNDLE_IMG=<registry>/<user>/<bundle_image_name>:<tag>

$ docker push <registry>/<user>/<bundle_image_name>:<tag>

OpenShift Dedicated 4 Opérateurs

254

1

2

3

La commande run bundle crée un catalogue basé sur des fichiers valide et installe le paquet
Opérateur sur votre cluster en utilisant OLM.

Facultatif: Par défaut, la commande installe l’opérateur dans le projet actuellement actif
dans votre fichier ~/.kube/config. Il est possible d’ajouter le drapeau -n pour définir un
espace de noms différent pour l’installation.

Dans le cas où vous ne spécifiez pas une image, la commande utilise quay.io/operator-
framework/opm:latest comme image d’index par défaut. Lorsque vous spécifiez une
image, la commande utilise l’image du faisceau lui-même comme image d’index.

IMPORTANT

À partir d’OpenShift Dedicated 4.11, la commande run bundle prend en charge le
format de catalogue basé sur des fichiers pour les catalogues Opérateur par
défaut. Le format de base de données SQLite obsolète pour les catalogues
d’opérateurs continue d’être pris en charge; cependant, il sera supprimé dans une
version ultérieure. Il est recommandé aux auteurs de l’opérateur de migrer leurs
flux de travail vers le format de catalogue basé sur les fichiers.

Cette commande effectue les actions suivantes:

Créez une image d’index faisant référence à votre image de paquet. L’image de l’index est
opaque et éphémère, mais reflète avec précision comment un paquet serait ajouté à un
catalogue en production.

Créez une source de catalogue qui pointe vers votre nouvelle image d’index, ce qui permet
à OperatorHub de découvrir votre opérateur.

Déployez votre opérateur dans votre cluster en créant un groupe d’opérateurs, un
abonnement, un plan d’installation et toutes les autres ressources requises, y compris
RBAC.

Ressources supplémentaires

Catalogues basés sur des fichiers au format d’emballage du cadre opérateur

Catalogues basés sur des fichiers dans Gérer des catalogues personnalisés

Format de paquet

5.7.3. La publication d’un catalogue contenant un opérateur groupé

Afin d’installer et de gérer les opérateurs, le gestionnaire de cycle de vie de l’opérateur (OLM) exige que
les paquets d’opérateurs soient listés dans une image d’index, qui est référencée par un catalogue sur le
cluster. En tant qu’auteur de l’opérateur, vous pouvez utiliser le SDK de l’opérateur pour créer un index
contenant le paquet pour votre opérateur et toutes ses dépendances. Ceci est utile pour tester les
clusters distants et publier dans des registres de conteneurs.

NOTE

$ operator-sdk run bundle \ 1
 -n <namespace> \ 2
 <registry>/<user>/<bundle_image_name>:<tag> 3

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

255

NOTE

Le SDK d’opérateur utilise l’opm CLI pour faciliter la création d’images d’index.
L’expérience avec la commande opm n’est pas requise. Dans les cas avancés d’utilisation,
la commande opm peut être utilisée directement au lieu du SDK de l’opérateur.

Conditions préalables

L’opérateur SDK CLI installé sur un poste de travail de développement

Ensemble d’image de l’opérateur construit et poussé à un registre

Installation OLM sur un cluster basé sur Kubernetes (v1.16.0 ou version ultérieure si vous utilisez
apiextensions.k8s.io/v1 CRD, par exemple OpenShift Dedicated 4)

Connexion au cluster avec oc à l’aide d’un compte avec des autorisations d’administration
dédiées

Procédure

1. Exécutez la commande make suivante dans votre répertoire de projet Opérateur pour créer une
image d’index contenant votre paquet Opérateur:

lorsque l’argument CATALOG_IMG fait référence à un référentiel auquel vous avez accès. Il est
possible d’obtenir un compte de stockage des conteneurs sur des sites de dépôt tels que
Quay.io.

2. Appuyez sur l’image d’index construite vers un référentiel:

ASTUCE

Il est possible d’utiliser les commandes de l’opérateur SDK si vous préférez effectuer plusieurs
actions en séquence à la fois. Ainsi, si vous n’avez pas encore construit une image groupée pour
votre projet Opérateur, vous pouvez construire et pousser à la fois une image de paquet et une
image d’index avec la syntaxe suivante:

Alternativement, vous pouvez définir le champ IMAGE_TAG_BASE dans votre Makefile sur un
référentiel existant:

Ensuite, vous pouvez utiliser la syntaxe suivante pour créer et pousser des images avec des
noms générés automatiquement, tels que quay.io/example/my-operator-bundle:v0.0.1 pour
l’image de paquet et quay.io/example/my-operator-catalog:v0.0.1 pour l’image d’index:

$ make catalog-build CATALOG_IMG=<registry>/<user>/<index_image_name>:<tag>

$ make catalog-push CATALOG_IMG=<registry>/<user>/<index_image_name>:<tag>

$ make bundle-build bundle-push catalog-build catalog-push \
 BUNDLE_IMG=<bundle_image_pull_spec> \
 CATALOG_IMG=<index_image_pull_spec>

IMAGE_TAG_BASE=quay.io/example/my-operator

$ make bundle-build bundle-push catalog-build catalog-push

OpenShift Dedicated 4 Opérateurs

256

1

2

3. Définissez un objet CatalogSource qui fait référence à l’image d’index que vous venez de
générer, puis créez l’objet en utilisant la commande oc Apply ou la console web:

Exemple CatalogSource YAML

Indiquez la valeur de l’héritage ou de la restriction. Lorsque le champ n’est pas défini, la
valeur par défaut est héritée. Dans une version ultérieure d’OpenShift Dedicated, il est
prévu que la valeur par défaut soit limitée. Dans le cas où votre catalogue ne peut pas
fonctionner avec des autorisations restreintes, il est recommandé de définir manuellement
ce champ sur l’héritage.

Définissez l’image sur la spécification d’extraction de l’image que vous avez utilisée
précédemment avec l’argument CATALOG_IMG.

4. Consultez la source du catalogue:

Exemple de sortie

La vérification

1. Installez l’opérateur à l’aide de votre catalogue:

a. Définissez un objet OperatorGroup et créez-le en utilisant la commande oc Apply ou la
console web:

Exemple d’opérateur Groupe YAML

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
 name: cs-memcached
 namespace: <operator_namespace>
spec:
 displayName: My Test
 publisher: Company
 sourceType: grpc
 grpcPodConfig:
 securityContextConfig: <security_mode> 1
 image: quay.io/example/memcached-catalog:v0.0.1 2
 updateStrategy:
 registryPoll:
 interval: 10m

$ oc get catalogsource

NAME DISPLAY TYPE PUBLISHER AGE
cs-memcached My Test grpc Company 4h31m

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: my-test
 namespace: <operator_namespace>

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

257

b. Définissez un objet d’abonnement et créez-le en utilisant la commande oc Apply ou la
console web:

Exemple d’abonnement YAML

2. L’opérateur installé est en cours d’exécution:

a. Consultez le groupe d’opérateurs:

Exemple de sortie

b. Consultez la version du service cluster (CSV):

Exemple de sortie

c. Consultez les pods pour l’opérateur:

Exemple de sortie

spec:
 targetNamespaces:
 - <operator_namespace>

​apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: catalogtest
 namespace: <catalog_namespace>
spec:
 channel: "alpha"
 installPlanApproval: Manual
 name: catalog
 source: cs-memcached
 sourceNamespace: <operator_namespace>
 startingCSV: memcached-operator.v0.0.1

$ oc get og

NAME AGE
my-test 4h40m

$ oc get csv

NAME DISPLAY VERSION REPLACES PHASE
memcached-operator.v0.0.1 Test 0.0.1 Succeeded

$ oc get pods

NAME READY STATUS RESTARTS AGE
9098d908802769fbde8bd45255e69710a9f8420a8f3d814abe88b68f8ervdj6 0/1
Completed 0 4h33m

OpenShift Dedicated 4 Opérateurs

258

Ressources supplémentaires

Consultez Gérer les catalogues personnalisés pour plus de détails sur l’utilisation directe de
l’opm CLI pour les cas d’utilisation plus avancés.

5.7.4. Tester une mise à niveau de l’opérateur sur le gestionnaire de cycle de vie de
l’opérateur

Il est possible de tester rapidement la mise à niveau de votre opérateur en utilisant l’intégration du
gestionnaire de cycle de vie de l’opérateur (OLM) dans le SDK de l’opérateur, sans avoir à gérer
manuellement les images d’index et les sources de catalogue.

La sous-commande run bundle-upgrade automatise le déclenchement d’un opérateur installé pour
passer à une version ultérieure en spécifiant une image de paquet pour la version ultérieure.

Conditions préalables

L’opérateur installé avec OLM soit à l’aide de la sous-commande run bundle ou avec
l’installation OLM traditionnelle

Image groupée qui représente une version ultérieure de l’opérateur installé

Procédure

1. Dans le cas où votre opérateur n’a pas déjà été installé avec OLM, installez la version
précédente soit en utilisant la sous-commande run bundle ou avec l’installation OLM
traditionnelle.

NOTE

Lorsque la version antérieure du paquet a été installée traditionnellement à l’aide
d’ODM, le nouveau paquet que vous avez l’intention de mettre à niveau ne doit
pas exister dans l’image d’index référencée par la source du catalogue. Dans le
cas contraire, l’exécution de la sous-commande de mise à niveau de paquets
d’exécution entraînera l’échec de la pod de registre parce que le nouveau paquet
est déjà référencé par l’index qui fournit la version de service de paquet et de
cluster (CSV).

À titre d’exemple, vous pouvez utiliser la sous-commande de paquets d’exécution suivante pour
un opérateur Memcached en spécifiant l’image du paquet précédent:

Exemple de sortie

catalog-controller-manager-7fd5b7b987-69s4n 2/2 Running 0
4h32m
cs-memcached-7622r 1/1 Running 0 4h33m

$ operator-sdk run bundle <registry>/<user>/memcached-operator:v0.0.1

INFO[0006] Creating a File-Based Catalog of the bundle "quay.io/demo/memcached-
operator:v0.0.1"
INFO[0008] Generated a valid File-Based Catalog
INFO[0012] Created registry pod: quay-io-demo-memcached-operator-v1-0-1

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

259

2. Améliorez l’opérateur installé en spécifiant l’image du paquet pour la version ultérieure de
l’opérateur:

Exemple de sortie

3. Nettoyer les opérateurs installés:

Ressources supplémentaires

INFO[0012] Created CatalogSource: memcached-operator-catalog
INFO[0012] OperatorGroup "operator-sdk-og" created
INFO[0012] Created Subscription: memcached-operator-v0-0-1-sub
INFO[0015] Approved InstallPlan install-h9666 for the Subscription: memcached-operator-
v0-0-1-sub
INFO[0015] Waiting for ClusterServiceVersion "my-project/memcached-operator.v0.0.1" to
reach 'Succeeded' phase
INFO[0015] Waiting for ClusterServiceVersion ""my-project/memcached-operator.v0.0.1" to
appear
INFO[0026] Found ClusterServiceVersion "my-project/memcached-operator.v0.0.1" phase:
Pending
INFO[0028] Found ClusterServiceVersion "my-project/memcached-operator.v0.0.1" phase:
Installing
INFO[0059] Found ClusterServiceVersion "my-project/memcached-operator.v0.0.1" phase:
Succeeded
INFO[0059] OLM has successfully installed "memcached-operator.v0.0.1"

$ operator-sdk run bundle-upgrade <registry>/<user>/memcached-operator:v0.0.2

INFO[0002] Found existing subscription with name memcached-operator-v0-0-1-sub and
namespace my-project
INFO[0002] Found existing catalog source with name memcached-operator-catalog and
namespace my-project
INFO[0008] Generated a valid Upgraded File-Based Catalog
INFO[0009] Created registry pod: quay-io-demo-memcached-operator-v0-0-2
INFO[0009] Updated catalog source memcached-operator-catalog with address and
annotations
INFO[0010] Deleted previous registry pod with name "quay-io-demo-memcached-operator-
v0-0-1"
INFO[0041] Approved InstallPlan install-gvcjh for the Subscription: memcached-operator-v0-
0-1-sub
INFO[0042] Waiting for ClusterServiceVersion "my-project/memcached-operator.v0.0.2" to
reach 'Succeeded' phase
INFO[0019] Found ClusterServiceVersion "my-project/memcached-operator.v0.0.2" phase:
Pending
INFO[0042] Found ClusterServiceVersion "my-project/memcached-operator.v0.0.2" phase:
InstallReady
INFO[0043] Found ClusterServiceVersion "my-project/memcached-operator.v0.0.2" phase:
Installing
INFO[0044] Found ClusterServiceVersion "my-project/memcached-operator.v0.0.2" phase:
Succeeded
INFO[0044] Successfully upgraded to "memcached-operator.v0.0.2"

$ operator-sdk cleanup memcached-operator

OpenShift Dedicated 4 Opérateurs

260

Installation traditionnelle d’opérateur avec OLM

5.7.5. Contrôle de la compatibilité de l’opérateur avec les versions dédiées
d’OpenShift

IMPORTANT

Kubernetes déprécie périodiquement certaines API qui sont supprimées dans les versions
ultérieures. Lorsque votre opérateur utilise une API obsolète, il se peut qu’elle ne
fonctionne plus après que le cluster OpenShift Dedicated ait été mis à niveau vers la
version Kubernetes où l’API a été supprimée.

En tant qu’auteur de l’opérateur, il est fortement recommandé de consulter le Guide de
migration de l’API obsolète dans la documentation Kubernetes et de garder vos projets
d’opérateur à jour afin d’éviter d’utiliser des API dépréciées et supprimées. Idéalement,
vous devriez mettre à jour votre opérateur avant la sortie d’une future version
d’OpenShift Dedicated qui rendrait l’opérateur incompatible.

Lorsqu’une API est supprimée d’une version dédiée à OpenShift, les opérateurs s’exécutant sur cette
version de cluster qui utilisent toujours des API supprimées ne fonctionneront plus correctement. En tant
qu’auteur de l’opérateur, vous devez prévoir de mettre à jour vos projets d’opérateur afin de tenir
compte de la déprécation et de la suppression de l’API afin d’éviter les interruptions pour les utilisateurs
de votre opérateur.

ASTUCE

Consultez les alertes d’événements de vos opérateurs pour savoir s’il y a des avertissements sur les API
actuellement utilisées. Les alertes suivantes s’allument lorsqu’elles détectent une API utilisée qui sera
supprimée dans la prochaine version:

APIRemovedInNextReleaseInUse

API qui seront supprimées dans la prochaine version OpenShift Dedicated.

APIRemovedInNextEUSReleaseInUse

API qui seront supprimées dans la prochaine version OpenShift Dedicated Extended Update Support
(EUS).

Lorsqu’un administrateur de cluster a installé votre opérateur, avant de passer à la prochaine version
d’OpenShift Dedicated, il doit s’assurer qu’une version de votre opérateur est installée et compatible
avec la prochaine version du cluster. Bien qu’il soit recommandé de mettre à jour vos projets Opérateur
pour ne plus utiliser d’API dépréciée ou supprimée, si vous avez encore besoin de publier vos paquets
Opérateur avec des API supprimées pour une utilisation continue sur les versions antérieures
d’OpenShift Dedicated, assurez-vous que le paquet est configuré en conséquence.

La procédure suivante empêche les administrateurs d’installer des versions de votre opérateur sur une
version incompatible d’OpenShift Dedicated. Ces étapes empêchent également les administrateurs de
passer à une nouvelle version d’OpenShift Dedicated incompatible avec la version de votre opérateur
qui est actuellement installée sur leur cluster.

Cette procédure est également utile lorsque vous savez que la version actuelle de votre opérateur ne
fonctionnera pas bien, pour quelque raison que ce soit, sur une version spécifique d’OpenShift
Dedicated. En définissant les versions de cluster où l’opérateur doit être distribué, vous vous assurez que
l’opérateur n’apparaît pas dans un catalogue d’une version de cluster qui est en dehors de la plage
autorisée.

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

261

1

IMPORTANT

Les opérateurs qui utilisent des API obsolètes peuvent avoir un impact négatif sur les
charges de travail critiques lorsque les administrateurs de cluster passent à une future
version d’OpenShift Dedicated où l’API n’est plus prise en charge. Lorsque votre
opérateur utilise des API obsolètes, vous devez configurer les paramètres suivants dans
votre projet Opérateur dès que possible.

Conditions préalables

D’un projet opérateur existant

Procédure

1. Lorsque vous savez qu’un paquet spécifique de votre opérateur n’est pas pris en charge et ne
fonctionne pas correctement sur OpenShift Dedicated plus tard qu’une certaine version de
cluster, configurez la version maximale d’OpenShift Dedicated avec laquelle votre opérateur est
compatible. Dans la version de service cluster de votre projet Opérateur (CSV), définissez
l’annotation olm.maxOpenShiftVersion pour empêcher les administrateurs de mettre à niveau
leur cluster avant de mettre à niveau l’opérateur installé vers une version compatible:

IMPORTANT

Il faut utiliser l’annotation olm.maxOpenShiftVersion uniquement si la version de
votre bundle Opérateur ne peut pas fonctionner dans les versions ultérieures.
Gardez à l’esprit que les administrateurs de clusters ne peuvent pas mettre à jour
leurs clusters avec votre solution installée. Dans le cas où vous ne fournissez pas
une version ultérieure et un chemin de mise à niveau valide, les administrateurs
peuvent désinstaller votre opérateur et mettre à niveau la version du cluster.

Exemple CSV avec olm.maxOpenShiftVersion annotation

Indiquez la version de cluster maximale d’OpenShift dédiée à laquelle votre opérateur est
compatible. À titre d’exemple, le réglage de la valeur à 4.9 empêche les mises à niveau de
cluster vers les versions OpenShift Dédicated plus tard que 4.9 lorsque ce paquet est
installé sur un cluster.

2. Dans le cas où votre paquet est destiné à être distribué dans un catalogue d’opérateurs Red
Hat, configurez les versions compatibles d’OpenShift Dedicated pour votre opérateur en
définissant les propriétés suivantes. Cette configuration garantit que votre opérateur n’est
inclus que dans les catalogues qui ciblent les versions compatibles d’OpenShift Dedicated:

NOTE

apiVersion: operators.coreos.com/v1alpha1
kind: ClusterServiceVersion
metadata:
 annotations:
 "olm.properties": '[{"type": "olm.maxOpenShiftVersion", "value": "<cluster_version>"}]' 1

OpenShift Dedicated 4 Opérateurs

262

1

1

NOTE

Cette étape n’est valable que lorsque vous publiez des opérateurs dans des
catalogues fournis par Red Hat. Dans le cas où votre paquet n’est destiné qu’à la
distribution dans un catalogue personnalisé, vous pouvez sauter cette étape. En
savoir plus, voir "Catalogues de l’opérateur fourni par le chapeau rouge".

a. Définissez l’annotation com.redhat.openshift.versions dans le fichier
bundle/metadata/annotations.yaml de votre projet:

Exemple de fichier bundle/metadata/annotations.yaml avec des versions
compatibles

Défini sur une gamme ou une seule version.

b. Afin d’éviter que votre paquet ne soit transmis à une version incompatible d’OpenShift
Dedicated, assurez-vous que l’image de l’index est générée avec l’étiquette
com.redhat.openshift.versions appropriée dans l’image du paquet de votre opérateur. À
titre d’exemple, si votre projet a été généré à l’aide du SDK de l’opérateur, mettez à jour le
fichier bundle.Dockerfile:

Exemple bundle.Dockerfile avec des versions compatibles

Défini sur une plage ou une seule version, par exemple v4.7-v4.9. Ce paramètre définit
les versions de cluster où l’opérateur doit être distribué, et l’opérateur n’apparaît pas
dans un catalogue d’une version de cluster qui est en dehors de la plage.

Désormais, vous pouvez regrouper une nouvelle version de votre opérateur et publier la version mise à
jour dans un catalogue pour distribution.

Ressources supplémentaires

Gestion des versions OpenShift dans le guide de construction de l’opérateur certifié

La mise à jour des opérateurs installés

Catalogues d’opérateurs Red Hat

5.7.6. Ressources supplémentaires

Consultez le format d’emballage du cadre opérateur pour plus de détails sur le format du
paquet.

Consultez Gérer les catalogues personnalisés pour plus de détails sur l’ajout d’images groupées
à l’indexation des images à l’aide de la commande opm.

Consultez le flux de travail du gestionnaire de cycle de vie de l’opérateur pour plus de détails sur
le fonctionnement des mises à niveau pour les opérateurs installés.

com.redhat.openshift.versions: "v4.7-v4.9" 1

LABEL com.redhat.openshift.versions="<versions>" 1

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

263

5.8. CONFORMITÉ À L’ADMISSION DE SÉCURITÉ DE POD

L’admission à la sécurité de Pod est une mise en œuvre des normes de sécurité des pod Kubernetes.
L’admission à la sécurité de Pod limite le comportement des pods. Les pods qui ne sont pas conformes à
l’admission de sécurité pod définie globalement ou au niveau de l’espace de noms ne sont pas admis au
cluster et ne peuvent pas s’exécuter.

Dans le cas où votre projet Opérateur ne nécessite pas d’autorisations supplémentaires pour s’exécuter,
vous pouvez vous assurer que vos charges de travail s’exécutent dans des espaces de noms définis au
niveau de sécurité des pod restreint. Dans le cas où votre projet Opérateur nécessite des autorisations
accrues pour s’exécuter, vous devez définir les configurations de contexte de sécurité suivantes:

Le niveau d’admission de sécurité de la pod autorisée pour l’espace de noms de l’opérateur

Les contraintes de contexte de sécurité autorisées (SCC) pour le compte de service de la
charge de travail Pour plus d’informations, voir Comprendre et gérer l’admission à la sécurité
des pod.

IMPORTANT

La version prise en charge par Red Hat de l’outil Operator SDK CLI, y compris les outils
d’échafaudage et de test connexes pour les projets d’opérateur, est dépréciée et devrait
être supprimée dans une version ultérieure d’OpenShift Dedicated. Le Red Hat fournira
des corrections de bogues et une prise en charge de cette fonctionnalité pendant le
cycle de vie de la version actuelle, mais cette fonctionnalité ne recevra plus
d’améliorations et sera supprimée des futures versions d’OpenShift Dedicated.

La version prise en charge par Red Hat du SDK de l’opérateur n’est pas recommandée
pour la création de nouveaux projets d’opérateur. Les auteurs d’opérateurs avec des
projets d’opérateur existants peuvent utiliser la version de l’outil Operator SDK CLI publié
avec OpenShift Dedicated 4 pour maintenir leurs projets et créer des versions
d’opérateur ciblant des versions plus récentes d’OpenShift Dedicated.

Les images de base suivantes pour les projets d’opérateur ne sont pas dépréciées. Les
fonctionnalités d’exécution et les API de configuration de ces images de base sont
toujours prises en charge pour les corrections de bogues et pour l’adressage des CVE.

L’image de base pour les projets d’opérateurs basés sur Ansible

L’image de base pour les projets d’opérateur basé sur Helm

Afin d’obtenir de l’information sur la version non prise en charge et gérée par la
communauté du SDK de l’opérateur, voir Operator SDK (Operator Framework).

5.8.1. À propos de l’admission à la sécurité de pod

Le programme OpenShift Dedicated inclut l’admission à la sécurité des pod Kubernetes. Les pods qui
ne sont pas conformes à l’admission de sécurité pod définie globalement ou au niveau de l’espace de
noms ne sont pas admis au cluster et ne peuvent pas s’exécuter.

À l’échelle mondiale, le profil privilégié est appliqué et le profil restreint est utilisé pour les
avertissements et les audits.

Il est également possible de configurer les paramètres d’entrée de sécurité pod au niveau de l’espace de
noms.

IMPORTANT

OpenShift Dedicated 4 Opérateurs

264

IMPORTANT

Évitez d’exécuter des charges de travail ou de partager l’accès aux projets par défaut.
Les projets par défaut sont réservés à l’exécution de composants de cluster de base.

Les projets par défaut suivants sont considérés comme hautement privilégiés: par défaut,
kube-public, kube-system, openshift, openshift-infra, openshift-node, et d’autres projets
créés par système qui ont l’étiquette openshift.io / run-level définie à 0 ou 1. La
fonctionnalité qui repose sur des plugins d’admission, tels que l’admission de sécurité pod,
les contraintes de contexte de sécurité, les quotas de ressources de cluster et la
résolution de référence d’image, ne fonctionne pas dans des projets hautement
privilégiés.

5.8.1.1. Les modes d’admission à la sécurité de Pod

Les modes d’admission de sécurité pod suivants peuvent être configurés pour un espace de noms:

Tableau 5.18. Les modes d’admission à la sécurité de Pod

Le mode Étiquette Description

faire
respecter

accueil > Pod-
security.kubernetes.io/enfor
ce

Il rejette un pod d’admission s’il ne se conforme pas
au profil défini

audit accueil > Pod-
security.kubernetes.io/audit

Enregistre les événements d’audit si un pod ne se
conforme pas au profil défini

avertissez accueil > Pod-
security.kubernetes.io/warn

Affiche les avertissements si un pod ne se conforme
pas au profil défini

5.8.1.2. Les profils d’admission à la sécurité de Pod

Chacun des modes d’admission à la sécurité de pod peut être défini sur l’un des profils suivants:

Tableau 5.19. Les profils d’admission à la sécurité de Pod

Le profil Description

les privilégiés La politique la moins restrictive; permet une escalade connue des privilèges

base de données La politique minimalement restrictive; empêche les escalades de privilèges
connues

limité La politique la plus restrictive; suit les meilleures pratiques actuelles de
durcissement de la pod

5.8.1.3. Espaces de noms privilégiés

Les espaces de noms système suivants sont toujours définis sur le profil d’admission de sécurité de pod
privilégié:

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

265

défaut par défaut

Kube-public

Kube-système

Il est impossible de modifier le profil de sécurité des pod pour ces espaces de noms privilégiés.

5.8.2. À propos de la synchronisation de l’admission de sécurité de pod

En plus de la configuration globale de contrôle d’admission de sécurité de pod, un contrôleur applique
les étiquettes de contrôle d’admission de sécurité pod aux espaces de noms selon les autorisations SCC
des comptes de service qui se trouvent dans un espace de noms donné.

Le contrôleur examine les autorisations d’objet ServiceAccount pour utiliser les contraintes de contexte
de sécurité dans chaque espace de noms. Les contraintes de contexte de sécurité (SCC) sont
cartographiées pour pod des profils de sécurité en fonction de leurs valeurs de champ; le contrôleur
utilise ces profils traduits. Les étiquettes d’admission de sécurité Pod et les étiquettes d’audit sont
définies sur le profil de sécurité de pod le plus privilégié dans l’espace de noms pour empêcher
l’affichage des avertissements et les événements d’audit de journalisation lorsque des pods sont créés.

L’étiquetage de l’espace de noms est basé sur la prise en compte des privilèges de compte de service
local-nomspace.

Appliquer des pods directement pourrait utiliser les privilèges SCC de l’utilisateur qui exécute le pod.
Cependant, les privilèges de l’utilisateur ne sont pas pris en compte lors de l’étiquetage automatique.

5.8.2.1. Exclusions de l’espace de noms de synchronisation de l’entrée de Pod en matière de
sécurité

La synchronisation de l’entrée de sécurité Pod est désactivée de façon permanente sur les espaces de
noms créés par le système et les espaces de noms préfixés openshift-*.

Les espaces de noms qui sont définis comme faisant partie de la charge utile du cluster ont mis en place
une synchronisation d’admission de sécurité désactivée de façon permanente. Les espaces de noms
suivants sont désactivés de façon permanente:

défaut par défaut

location de Kube-node

Kube-système

Kube-public

à propos de OpenShift

L’ensemble des espaces de noms créés par le système qui sont préfixés avec openshift-

5.8.3. Assurer que les charges de travail de l’opérateur s’exécutent dans des
espaces de noms définis au niveau de sécurité des pod restreints

Afin de s’assurer que votre projet Opérateur peut s’exécuter sur une grande variété de déploiements et
d’environnements, configurez les charges de travail de l’opérateur pour s’exécuter dans des espaces de
noms définis au niveau de sécurité des pod restreint.

OpenShift Dedicated 4 Opérateurs

266

1

AVERTISSEMENT

Il faut laisser le champ runAsUser vide. Lorsque votre image nécessite un utilisateur
spécifique, elle ne peut pas être exécutée sous des contraintes de contexte de
sécurité restreintes (SCC) et l’application de la sécurité des pod restreints.

Procédure

Afin de configurer les charges de travail de l’opérateur pour s’exécuter dans des espaces de
noms définis au niveau de sécurité des pod restreints, modifiez la définition de l’espace de noms
de votre opérateur similaire aux exemples suivants:

IMPORTANT

Il est recommandé de définir le profil seccomp dans la définition de l’espace de
noms de votre opérateur. Cependant, la configuration du profil seccomp n’est
pas prise en charge dans OpenShift Dedicated 4.10.

Dans le cas des projets d’opérateur qui ne doivent être exécutés que dans OpenShift
Dedicated 4.11 et plus tard, modifiez la définition de l’espace de noms de votre opérateur
semblable à l’exemple suivant:

Exemple de fichier config/manager/manager.yaml

En définissant le type de profil seccomp sur RuntimeDefault, le SCC par défaut sur le
profil de sécurité pod de l’espace de noms.

Dans le cas des projets d’opérateur qui doivent également être exécutés dans OpenShift
Dedicated 4.10, modifiez la définition de l’espace de noms de votre opérateur semblable à
l’exemple suivant:

Exemple de fichier config/manager/manager.yaml



...
spec:
 securityContext:
 seccompProfile:
 type: RuntimeDefault 1
 runAsNonRoot: true
 containers:
 - name: <operator_workload_container>
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop:
 - ALL
...

...

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

267

1 En laissant le type de profil seccomp unset, votre projet Opérateur peut s’exécuter
dans OpenShift Dedicated 4.10.

Ressources supplémentaires

Gestion des contraintes de contexte de sécurité

5.8.4. Gestion de l’admission de sécurité des pod pour les charges de travail de
l’opérateur qui nécessitent des autorisations accrues

Dans le cas où votre projet Opérateur nécessite des autorisations accrues pour s’exécuter, vous devez
modifier la version du service cluster (CSV) de votre opérateur.

Procédure

1. Définissez la configuration du contexte de sécurité au niveau d’autorisation requis dans le CSV
de votre opérateur, semblable à l’exemple suivant:

Exemple <operator_name>.clusterserviceversion.yaml fichier avec les
privilèges d’administrateur réseau

2. Définissez les privilèges de compte de service qui permettent aux charges de travail de votre
opérateur d’utiliser les contraintes de contexte de sécurité (SCC) requises, comme l’exemple
suivant:

Exemple <operator_name>.clusterserviceversion.yaml fichier

spec:
 securityContext: 1
 runAsNonRoot: true
 containers:
 - name: <operator_workload_container>
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 drop:
 - ALL
...

...
containers:
 - name: my-container
 securityContext:
 allowPrivilegeEscalation: false
 capabilities:
 add:
 - "NET_ADMIN"
...

...
 install:
 spec:
 clusterPermissions:

OpenShift Dedicated 4 Opérateurs

268

https://docs.redhat.com/en/documentation/openshift_dedicated/4/html-single/authentication_and_authorization/#managing-security-context-constraints

3. Éditez la description CSV de votre opérateur pour expliquer pourquoi votre projet Opérateur
nécessite des autorisations accrues similaires à l’exemple suivant:

Exemple <operator_name>.clusterserviceversion.yaml fichier

5.8.5. Ressources supplémentaires

Comprendre et gérer l’admission à la sécurité des pod

5.9. LA VALIDATION DES OPÉRATEURS À L’AIDE DE L’OUTIL DE
CARTE DE POINTAGE

En tant qu’auteur de l’opérateur, vous pouvez utiliser l’outil de carte de pointage dans le SDK de
l’opérateur pour effectuer les tâches suivantes:

Validez que votre projet Opérateur est exempt d’erreurs de syntaxe et emballé correctement

Évaluez les suggestions sur les façons d’améliorer votre opérateur

IMPORTANT

 - rules:
 - apiGroups:
 - security.openshift.io
 resourceNames:
 - privileged
 resources:
 - securitycontextconstraints
 verbs:
 - use
 serviceAccountName: default
...

...
spec:
 apiservicedefinitions:{}
 ...
description: The <operator_name> requires a privileged pod security admission label set on
the Operator's namespace. The Operator's agents require escalated permissions to restart
the node if the node needs remediation.

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

269

https://docs.redhat.com/en/documentation/openshift_dedicated/4/html-single/authentication_and_authorization/#understanding-and-managing-pod-security-admission

IMPORTANT

La version prise en charge par Red Hat de l’outil Operator SDK CLI, y compris les outils
d’échafaudage et de test connexes pour les projets d’opérateur, est dépréciée et devrait
être supprimée dans une version ultérieure d’OpenShift Dedicated. Le Red Hat fournira
des corrections de bogues et une prise en charge de cette fonctionnalité pendant le
cycle de vie de la version actuelle, mais cette fonctionnalité ne recevra plus
d’améliorations et sera supprimée des futures versions d’OpenShift Dedicated.

La version prise en charge par Red Hat du SDK de l’opérateur n’est pas recommandée
pour la création de nouveaux projets d’opérateur. Les auteurs d’opérateurs avec des
projets d’opérateur existants peuvent utiliser la version de l’outil Operator SDK CLI publié
avec OpenShift Dedicated 4 pour maintenir leurs projets et créer des versions
d’opérateur ciblant des versions plus récentes d’OpenShift Dedicated.

Les images de base suivantes pour les projets d’opérateur ne sont pas dépréciées. Les
fonctionnalités d’exécution et les API de configuration de ces images de base sont
toujours prises en charge pour les corrections de bogues et pour l’adressage des CVE.

L’image de base pour les projets d’opérateurs basés sur Ansible

L’image de base pour les projets d’opérateur basé sur Helm

Afin d’obtenir de l’information sur la version non prise en charge et gérée par la
communauté du SDK de l’opérateur, voir Operator SDK (Operator Framework).

5.9.1. À propos de l’outil de tableau de bord

Alors que la sous-commande de validation du paquet SDK de l’opérateur peut valider des répertoires de
faisceaux locaux et des images de faisceau à distance pour le contenu et la structure, vous pouvez
utiliser la commande de carte de pointage pour exécuter des tests sur votre opérateur en fonction d’un
fichier de configuration et d’images de test. Ces tests sont implémentés dans des images de test qui
sont configurées et construites pour être exécutées par le tableau de bord.

Le tableau de bord suppose qu’il est exécuté avec l’accès à un cluster Kubernetes configuré, tel
qu’OpenShift Dedicated. Le tableau de bord exécute chaque test dans un pod, à partir duquel les logs
de pod sont agrégés et les résultats des tests sont envoyés à la console. Le tableau de bord a intégré les
tests de base et de gestion du cycle de vie de l’opérateur (OLM) et fournit également un moyen
d’exécuter des définitions de test personnalisées.

Flux de travail de carte de pointage

1. Créer toutes les ressources requises par toutes les ressources personnalisées (CR) et
l’opérateur connexes

2. Créer un conteneur proxy dans le déploiement de l’opérateur pour enregistrer les appels au
serveur API et exécuter des tests

3. Examiner les paramètres dans les CR

Les tests de tableau de bord ne font pas d’hypothèses quant à l’état de l’opérateur testé. La création
d’opérateurs et de CR pour un opérateur dépasse la portée du tableau de bord lui-même. Les tests de
tableau de bord peuvent cependant créer les ressources dont ils ont besoin si les tests sont conçus pour
la création de ressources.

la syntaxe de commande de carte de pointage

OpenShift Dedicated 4 Opérateurs

270

La carte de pointage nécessite un argument positionnel pour le chemin d’accès sur le disque vers votre
paquet Opérateur ou le nom d’une image de paquet.

Afin d’obtenir de plus amples informations sur les drapeaux, courez:

5.9.2. Configuration de la carte de pointage

L’outil de carte de pointage utilise une configuration qui vous permet de configurer des plugins internes,
ainsi que plusieurs options de configuration globales. Les tests sont pilotés par un fichier de
configuration nommé config.yaml, qui est généré par la commande make bundle, situé dans votre
bundle/annuaire:

Exemple de fichier de configuration de carte de pointage

Le fichier de configuration définit chaque test que la carte de pointage peut exécuter. Les champs
suivants du fichier de configuration de la carte de pointage définissent le test comme suit:

Champ de configuration Description

image Le nom de l’image du conteneur de test qui implémente un test

$ operator-sdk scorecard <bundle_dir_or_image> [flags]

$ operator-sdk scorecard -h

./bundle

...
└── tests
 └── scorecard
 └── config.yaml

kind: Configuration
apiversion: scorecard.operatorframework.io/v1alpha3
metadata:
 name: config
stages:
- parallel: true
 tests:
 - image: quay.io/operator-framework/scorecard-test:v1.38.0
 entrypoint:
 - scorecard-test
 - basic-check-spec
 labels:
 suite: basic
 test: basic-check-spec-test
 - image: quay.io/operator-framework/scorecard-test:v1.38.0
 entrypoint:
 - scorecard-test
 - olm-bundle-validation
 labels:
 suite: olm
 test: olm-bundle-validation-test

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

271

le point d’entrée Commande et arguments invoqués dans l’image de test pour exécuter un
test

étiquettes Étiquettes définies par la carte de bord ou personnalisées qui sélectionnent
les tests à exécuter

Champ de configuration Description

5.9.3. Des tests de carte de pointage intégrés

Le tableau de bord est livré avec des tests prédéfinis qui sont disposés en suites: la suite de test de base
et la suite Operator Lifecycle Manager (OLM).

Tableau 5.20. La suite de test de base

Essai Description Court nom

Le bloc spec existe Ce test vérifie la ressource personnalisée (CR) créée dans
le cluster pour s’assurer que tous les CR ont un bloc spec.

Basic-check-spec-
test

Tableau 5.21. La suite de test OLM

Essai Description Court nom

La validation des
paquets

Ce test valide les manifestes de paquets trouvés dans le
paquet qui est transmis dans la carte de pointage.
Lorsque le contenu du paquet contient des erreurs, le
résultat du test inclut le journal du validateur ainsi que les
messages d’erreur de la bibliothèque de validation.

essai OLM-bundle-
validation-test

Les API fournies ont
une validation

Ce test vérifie que les définitions de ressources
personnalisées (CRD) pour les CR fournis contiennent
une section de validation et qu’il y a validation pour
chaque champ de spécification et d’état détecté dans le
CR.

les OLM-crds-ont-
validation-test

Les CRD possédés ont
des ressources
répertoriées

Ce test permet de s’assurer que les CRD pour chaque CR
fournis par l’option du manifeste cr disposent d’une sous-
section des ressources de la section CRD de la
ClusterServiceVersion (CSV). Lorsque le test détecte les
ressources utilisées qui ne sont pas listées dans la section
Ressources, il les énumère dans les suggestions à la fin du
test. Les utilisateurs sont tenus de remplir la section
ressources après la génération de code initiale pour que
ce test passe.

les OLM-crds-ont-
ressources-test

Champs spec avec
descripteurs

Ce test vérifie que chaque champ dans les sections spec
CRs a un descripteur correspondant listé dans le CSV.

le test OLM-spec-
descriptors-test

OpenShift Dedicated 4 Opérateurs

272

Champs d’état avec
descripteurs

Ce test vérifie que chaque champ dans les sections de
statut CRs a un descripteur correspondant listé dans le
CSV.

le test OLM-status-
descriptors-test

Essai Description Court nom

5.9.4. Exécution de l’outil de tableau de bord

Après l’exécution de la commande init, un ensemble par défaut de fichiers Kustomize est généré par le
SDK de l’opérateur. Le fichier bundle/tests/scorecard/config.yaml par défaut qui est généré peut être
immédiatement utilisé pour exécuter l’outil de carte de pointage contre votre opérateur, ou vous pouvez
modifier ce fichier à vos spécifications de test.

Conditions préalables

Le projet d’opérateur généré à l’aide du SDK de l’opérateur

Procédure

1. Générer ou régénérer vos manifestes et métadonnées de paquets pour votre opérateur:

Cette commande ajoute automatiquement des annotations de carte de pointage à vos
métadonnées de paquet, qui est utilisée par la commande de carte de pointage pour exécuter
des tests.

2. Exécutez la carte de pointage par rapport au chemin d’accès sur le disque vers votre paquet
Opérateur ou le nom d’une image de paquet:

5.9.5. Sortie du tableau de bord

L’indicateur --output pour la commande de la carte de pointage spécifie le format de sortie des
résultats du tableau de bord: texte ou json.

Exemple 5.7. Exemple d’extrait de sortie JSON

$ make bundle

$ operator-sdk scorecard <bundle_dir_or_image>

{
 "apiVersion": "scorecard.operatorframework.io/v1alpha3",
 "kind": "TestList",
 "items": [
 {
 "kind": "Test",
 "apiVersion": "scorecard.operatorframework.io/v1alpha3",
 "spec": {
 "image": "quay.io/operator-framework/scorecard-test:v1.38.0",
 "entrypoint": [
 "scorecard-test",

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

273

Exemple 5.8. Exemple de sortie de texte

NOTE

La spécification du format de sortie correspond à la disposition du type de test.

5.9.6. La sélection des tests

Les tests de tableau de bord sont sélectionnés en définissant le drapeau CLI --selector sur un ensemble

 "olm-bundle-validation"
],
 "labels": {
 "suite": "olm",
 "test": "olm-bundle-validation-test"
 }
 },
 "status": {
 "results": [
 {
 "name": "olm-bundle-validation",
 "log": "time=\"2020-06-10T19:02:49Z\" level=debug msg=\"Found manifests directory\"
name=bundle-test\ntime=\"2020-06-10T19:02:49Z\" level=debug msg=\"Found metadata
directory\" name=bundle-test\ntime=\"2020-06-10T19:02:49Z\" level=debug msg=\"Getting
mediaType info from manifests directory\" name=bundle-test\ntime=\"2020-06-10T19:02:49Z\"
level=info msg=\"Found annotations file\" name=bundle-test\ntime=\"2020-06-10T19:02:49Z\"
level=info msg=\"Could not find optional dependencies file\" name=bundle-test\n",
 "state": "pass"
 }
]
 }
 }
]
}

--
Image: quay.io/operator-framework/scorecard-test:v1.38.0
Entrypoint: [scorecard-test olm-bundle-validation]
Labels:
 "suite":"olm"
 "test":"olm-bundle-validation-test"
Results:
 Name: olm-bundle-validation
 State: pass
 Log:
 time="2020-07-15T03:19:02Z" level=debug msg="Found manifests directory" name=bundle-test
 time="2020-07-15T03:19:02Z" level=debug msg="Found metadata directory" name=bundle-test
 time="2020-07-15T03:19:02Z" level=debug msg="Getting mediaType info from manifests
directory" name=bundle-test
 time="2020-07-15T03:19:02Z" level=info msg="Found annotations file" name=bundle-test
 time="2020-07-15T03:19:02Z" level=info msg="Could not find optional dependencies file"
name=bundle-test

OpenShift Dedicated 4 Opérateurs

274

Les tests de tableau de bord sont sélectionnés en définissant le drapeau CLI --selector sur un ensemble
de chaînes d’étiquettes. En l’absence d’un drapeau sélecteur, tous les tests dans le fichier de
configuration de la carte de pointage sont exécutés.

Les tests sont exécutés en série, les résultats des tests étant agrégés par la carte de pointage et écrits
en sortie standard, ou stdout.

Procédure

1. Afin de sélectionner un seul test, par exemple Basic-check-spec-test, spécifiez le test en
utilisant le drapeau --selector:

2. Afin de sélectionner une série de tests, par exemple olm, spécifiez une étiquette utilisée par
tous les tests OLM:

3. Afin de sélectionner plusieurs tests, spécifiez les noms de test en utilisant l’indicateur sélecteur
en utilisant la syntaxe suivante:

5.9.7. Activer les tests parallèles

En tant qu’auteur de l’opérateur, vous pouvez définir des étapes distinctes pour vos tests à l’aide du
fichier de configuration de la carte de pointage. Les étapes s’exécutent de manière séquentielle dans
l’ordre où elles sont définies dans le fichier de configuration. L’étape contient une liste de tests et un
réglage parallèle configurable.

Par défaut, ou lorsqu’une étape se définit explicitement en parallèle à false, les tests d’une étape sont
exécutés de manière séquentielle dans l’ordre où ils sont définis dans le fichier de configuration.
L’exécution de tests un à la fois est utile pour garantir qu’aucun test n’interagisse et n’entre en conflit
l’un avec l’autre.

Cependant, si les tests sont conçus pour être complètement isolés, ils peuvent être parallélisés.

Procédure

Exécuter un ensemble de tests isolés en parallèle, les inclure dans la même étape et définir
parallèlement à true:

$ operator-sdk scorecard <bundle_dir_or_image> \
 -o text \
 --selector=test=basic-check-spec-test

$ operator-sdk scorecard <bundle_dir_or_image> \
 -o text \
 --selector=suite=olm

$ operator-sdk scorecard <bundle_dir_or_image> \
 -o text \
 --selector='test in (basic-check-spec-test,olm-bundle-validation-test)'

apiVersion: scorecard.operatorframework.io/v1alpha3
kind: Configuration
metadata:
 name: config
stages:

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

275

1 Active les tests parallèles

L’ensemble des tests dans une phase parallèle sont exécutés simultanément, et le tableau de
bord attend que tous les tests soient terminés avant de passer à l’étape suivante. Cela peut
rendre vos tests plus rapides.

5.9.8. Des tests personnalisés de carte de pointage

L’outil de tableau de bord peut exécuter des tests personnalisés qui suivent ces conventions prescrites:

Les tests sont mis en œuvre dans une image de conteneur

Les tests acceptent un point d’entrée qui inclut une commande et des arguments

Les tests produisent une sortie de carte de pointage v1alpha3 au format JSON sans
enregistrement externe dans la sortie d’essai

Les tests peuvent obtenir le contenu du paquet à un point de montage partagé de /bundle

Les tests peuvent accéder à l’API Kubernetes à l’aide d’une connexion client intégrée

L’écriture de tests personnalisés dans d’autres langages de programmation est possible si l’image de
test suit les directives ci-dessus.

L’exemple suivant montre une image de test personnalisée écrite dans Go:

Exemple 5.9. Exemple de test de carte de pointage personnalisé

- parallel: true 1
 tests:
 - entrypoint:
 - scorecard-test
 - basic-check-spec
 image: quay.io/operator-framework/scorecard-test:v1.38.0
 labels:
 suite: basic
 test: basic-check-spec-test
 - entrypoint:
 - scorecard-test
 - olm-bundle-validation
 image: quay.io/operator-framework/scorecard-test:v1.38.0
 labels:
 suite: olm
 test: olm-bundle-validation-test

// Copyright 2020 The Operator-SDK Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,

OpenShift Dedicated 4 Opérateurs

276

// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package main

import (
 "encoding/json"
 "fmt"
 "log"
 "os"

 scapiv1alpha3 "github.com/operator-framework/api/pkg/apis/scorecard/v1alpha3"
 apimanifests "github.com/operator-framework/api/pkg/manifests"
)

// This is the custom scorecard test example binary
// As with the Redhat scorecard test image, the bundle that is under
// test is expected to be mounted so that tests can inspect the
// bundle contents as part of their test implementations.
// The actual test is to be run is named and that name is passed
// as an argument to this binary. This argument mechanism allows
// this binary to run various tests all from within a single
// test image.

const PodBundleRoot = "/bundle"

func main() {
 entrypoint := os.Args[1:]
 if len(entrypoint) == 0 {
 log.Fatal("Test name argument is required")
 }

 // Read the pod's untar'd bundle from a well-known path.
 cfg, err := apimanifests.GetBundleFromDir(PodBundleRoot)
 if err != nil {
 log.Fatal(err.Error())
 }

 var result scapiv1alpha3.TestStatus

 // Names of the custom tests which would be passed in the
 // `operator-sdk` command.
 switch entrypoint[0] {
 case CustomTest1Name:
 result = CustomTest1(cfg)
 case CustomTest2Name:
 result = CustomTest2(cfg)
 default:
 result = printValidTests()
 }

 // Convert scapiv1alpha3.TestResult to json.
 prettyJSON, err := json.MarshalIndent(result, "", " ")
 if err != nil {
 log.Fatal("Failed to generate json", err)

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

277

 }
 fmt.Printf("%s\n", string(prettyJSON))

}

// printValidTests will print out full list of test names to give a hint to the end user on what the valid
tests are.
func printValidTests() scapiv1alpha3.TestStatus {
 result := scapiv1alpha3.TestResult{}
 result.State = scapiv1alpha3.FailState
 result.Errors = make([]string, 0)
 result.Suggestions = make([]string, 0)

 str := fmt.Sprintf("Valid tests for this image include: %s %s",
 CustomTest1Name,
 CustomTest2Name)
 result.Errors = append(result.Errors, str)
 return scapiv1alpha3.TestStatus{
 Results: []scapiv1alpha3.TestResult{result},
 }
}

const (
 CustomTest1Name = "customtest1"
 CustomTest2Name = "customtest2"
)

// Define any operator specific custom tests here.
// CustomTest1 and CustomTest2 are example test functions. Relevant operator specific
// test logic is to be implemented in similarly.

func CustomTest1(bundle *apimanifests.Bundle) scapiv1alpha3.TestStatus {
 r := scapiv1alpha3.TestResult{}
 r.Name = CustomTest1Name
 r.State = scapiv1alpha3.PassState
 r.Errors = make([]string, 0)
 r.Suggestions = make([]string, 0)
 almExamples := bundle.CSV.GetAnnotations()["alm-examples"]
 if almExamples == "" {
 fmt.Println("no alm-examples in the bundle CSV")
 }

 return wrapResult(r)
}

func CustomTest2(bundle *apimanifests.Bundle) scapiv1alpha3.TestStatus {
 r := scapiv1alpha3.TestResult{}
 r.Name = CustomTest2Name
 r.State = scapiv1alpha3.PassState
 r.Errors = make([]string, 0)
 r.Suggestions = make([]string, 0)
 almExamples := bundle.CSV.GetAnnotations()["alm-examples"]
 if almExamples == "" {
 fmt.Println("no alm-examples in the bundle CSV")
 }
 return wrapResult(r)

OpenShift Dedicated 4 Opérateurs

278

5.10. LA VALIDATION DES PAQUETS D’OPÉRATEURS

En tant qu’auteur de l’opérateur, vous pouvez exécuter la commande de validation du paquet dans le
SDK de l’opérateur pour valider le contenu et le format d’un paquet Opérateur. Il est possible d’exécuter
la commande sur une image de faisceau d’opérateur distant ou un répertoire de paquets Opérateur
local.

IMPORTANT

La version prise en charge par Red Hat de l’outil Operator SDK CLI, y compris les outils
d’échafaudage et de test connexes pour les projets d’opérateur, est dépréciée et devrait
être supprimée dans une version ultérieure d’OpenShift Dedicated. Le Red Hat fournira
des corrections de bogues et une prise en charge de cette fonctionnalité pendant le
cycle de vie de la version actuelle, mais cette fonctionnalité ne recevra plus
d’améliorations et sera supprimée des futures versions d’OpenShift Dedicated.

La version prise en charge par Red Hat du SDK de l’opérateur n’est pas recommandée
pour la création de nouveaux projets d’opérateur. Les auteurs d’opérateurs avec des
projets d’opérateur existants peuvent utiliser la version de l’outil Operator SDK CLI publié
avec OpenShift Dedicated 4 pour maintenir leurs projets et créer des versions
d’opérateur ciblant des versions plus récentes d’OpenShift Dedicated.

Les images de base suivantes pour les projets d’opérateur ne sont pas dépréciées. Les
fonctionnalités d’exécution et les API de configuration de ces images de base sont
toujours prises en charge pour les corrections de bogues et pour l’adressage des CVE.

L’image de base pour les projets d’opérateurs basés sur Ansible

L’image de base pour les projets d’opérateur basé sur Helm

Afin d’obtenir de l’information sur la version non prise en charge et gérée par la
communauté du SDK de l’opérateur, voir Operator SDK (Operator Framework).

5.10.1. À propos de la commande de validation du paquet

Alors que la commande Operator SDK scorecard peut exécuter des tests sur votre opérateur en
fonction d’un fichier de configuration et d’images de test, la sous-commande valide par paquet peut
valider les répertoires de paquets locaux et les images de faisceau à distance pour le contenu et la
structure.

bundle valider la syntaxe de commande

NOTE

}

func wrapResult(r scapiv1alpha3.TestResult) scapiv1alpha3.TestStatus {
 return scapiv1alpha3.TestStatus{
 Results: []scapiv1alpha3.TestResult{r},
 }
}

$ operator-sdk bundle validate <bundle_dir_or_image> <flags>

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

279

NOTE

La commande de validation du paquet s’exécute automatiquement lorsque vous
construisez votre paquet à l’aide de la commande make bundle.

Les images groupées sont tirées d’un registre distant et construites localement avant qu’elles ne soient
validées. Les répertoires de paquets locaux doivent contenir des métadonnées et des manifestes de
l’opérateur. Les métadonnées et les manifestes du bundle doivent avoir une structure similaire à la
disposition de paquet suivante:

Exemple de mise en page de paquets

Les tests groupés passent la validation et se terminent par un code de sortie de 0 si aucune erreur n’est
détectée.

Exemple de sortie

Les tests échouent à la validation et se terminent par un code de sortie de 1 si des erreurs sont
détectées.

Exemple de sortie

Les tests groupés qui entraînent des avertissements peuvent encore passer la validation avec un code
de sortie de 0 tant qu’aucune erreur n’est détectée. Les tests échouent uniquement sur les erreurs.

Exemple de sortie

Afin d’obtenir de plus amples informations sur la sous-commande valider le paquet, exécutez:

5.10.2. Ensemble intégré valider les tests

Le SDK de l’opérateur est livré avec des validateurs prédéfinis disposés en suites. Lorsque vous
exécutez la commande de validation du paquet sans spécifier un validateur, le test par défaut s’exécute.
Le test par défaut vérifie qu’un paquet respecte les spécifications définies par la communauté Operator
Framework. En savoir plus, voir "Bundle Format".

./bundle
 ├── manifests
 │ ├── cache.my.domain_memcacheds.yaml
 │ └── memcached-operator.clusterserviceversion.yaml
 └── metadata
 └── annotations.yaml

INFO[0000] All validation tests have completed successfully

ERRO[0000] Error: Value cache.example.com/v1alpha1, Kind=Memcached: CRD
"cache.example.com/v1alpha1, Kind=Memcached" is present in bundle "" but not defined in CSV

WARN[0000] Warning: Value : (memcached-operator.v0.0.1) annotations not found
INFO[0000] All validation tests have completed successfully

$ operator-sdk bundle validate -h

OpenShift Dedicated 4 Opérateurs

280

Il est possible d’exécuter des validateurs optionnels pour tester des problèmes tels que la compatibilité
OperatorHub ou les API Kubernetes dépréciées. Les validateurs optionnels s’exécutent toujours en plus
du test par défaut.

ensemble valider la syntaxe de commande pour les suites de test optionnelles

Tableau 5.22. Validateurs de validateurs de paquets addtionnels

Le nom Description Étiquette

Cadre de l’opérateur Ce validateur teste un ensemble d’opérateurs par rapport
à l’ensemble des validateurs fournis par le Cadre
d’opérateur.

la
suite=operatorfra
mework

L’opérateurHub Ce validateur teste un ensemble d’opérateurs pour la
compatibilité avec OperatorHub.

le
nom=operatorhub

Bonnes pratiques Ce validateur vérifie si un groupe d’opérateurs est
conforme aux bonnes pratiques définies par le Cadre de
l’opérateur. Il vérifie les problèmes, tels qu’une description
CRD vide ou des ressources non prises en charge par le
gestionnaire de cycle de vie de l’opérateur (OLM).

le nom = bonnes
pratiques

Ressources supplémentaires

Format de paquet

5.10.3. Exécution de la commande de validation du paquet

Le validateur par défaut exécute un test chaque fois que vous entrez la commande de validation du
paquet. Les validateurs optionnels peuvent être exécutés à l’aide du drapeau --select-optional. Les
validateurs optionnels exécutent des tests en plus du test par défaut.

Conditions préalables

Le projet d’opérateur généré à l’aide du SDK de l’opérateur

Procédure

1. Dans le cas où vous souhaitez exécuter le validateur par défaut par rapport à un répertoire de
paquets locaux, entrez la commande suivante depuis votre répertoire de projet Opérateur:

2. Lorsque vous souhaitez exécuter le validateur par défaut contre une image de faisceau
d’opérateur distant, entrez la commande suivante:

$ operator-sdk bundle validate <bundle_dir_or_image>
 --select-optional <test_label>

$ operator-sdk bundle validate ./bundle

$ operator-sdk bundle validate \
 <bundle_registry>/<bundle_image_name>:<tag>

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

281

là où:

<bundle_registry>

Indique le registre où le paquet est hébergé, tel que quay.io/exemple.

<bundle_image_name>

Indique le nom de l’image du paquet, tel que l’opérateur memcached.

<tag>

Indique la balise de l’image de paquet, telle que v1.38.0.

NOTE

Lorsque vous souhaitez valider une image de groupe Opérateur, vous devez
héberger votre image dans un registre à distance. Le SDK de l’opérateur tire
l’image et la construit localement avant d’exécuter des tests. La commande
de validation du paquet ne prend pas en charge le test d’images de paquets
locaux.

3. Lorsque vous souhaitez exécuter un validateur supplémentaire contre un paquet Opérateur,
entrez la commande suivante:

là où:

<bundle_dir_or_image>

Indique le répertoire local de paquets ou l’image de paquet distant, tels que
~/projects/memcached ou quay.io/example/memcached-operator:v1.38.0.

<test_label>

Indique le nom du validateur que vous souhaitez exécuter, tel que name=good-pratiques.

Exemple de sortie

5.11. DÉTECTION ET SUPPORT DE CLUSTERS À HAUTE DISPONIBILITÉ
OU À UN SEUL NŒUD

Afin de s’assurer que votre opérateur fonctionne bien sur les modes haute disponibilité (HA) et non-HA
dans les clusters OpenShift Container Platform, vous pouvez utiliser le SDK de l’opérateur pour détecter
la topologie de l’infrastructure du cluster et définir les besoins en ressources pour s’adapter à la
topologie du cluster.

Le cluster OpenShift Container Platform peut être configuré en mode haute disponibilité (HA), qui
utilise plusieurs nœuds, ou en mode non-HA, qui utilise un seul nœud. Il est probable qu’un cluster à un

$ operator-sdk bundle validate \
 <bundle_dir_or_image> \
 --select-optional <test_label>

ERRO[0000] Error: Value apiextensions.k8s.io/v1, Kind=CustomResource: unsupported
media type registry+v1 for bundle object
WARN[0000] Warning: Value k8sevent.v0.0.1: owned CRD
"k8sevents.k8s.k8sevent.com" has an empty description

OpenShift Dedicated 4 Opérateurs

282

seul nœud, également connu sous le nom d’OpenShift à un seul nœud, aura des contraintes de
ressources plus conservatrices. Il est donc important que les opérateurs installés sur un cluster à nœud
unique puissent s’ajuster en conséquence et fonctionner bien.

En accédant à l’API de mode haute disponibilité de cluster fournie dans OpenShift Dedicated, les
auteurs de l’opérateur peuvent utiliser le SDK de l’opérateur pour permettre à leur opérateur de
détecter la topologie de l’infrastructure d’un cluster, que ce soit en mode HA ou non-HA. La logique de
l’opérateur personnalisé peut être développée qui utilise la topologie de cluster détectée pour changer
automatiquement les besoins en ressources, à la fois pour l’opérateur et pour tous les Operands ou
charges de travail qu’il gère, à un profil qui correspond le mieux à la topologie.

IMPORTANT

La version prise en charge par Red Hat de l’outil Operator SDK CLI, y compris les outils
d’échafaudage et de test connexes pour les projets d’opérateur, est dépréciée et devrait
être supprimée dans une version ultérieure d’OpenShift Dedicated. Le Red Hat fournira
des corrections de bogues et une prise en charge de cette fonctionnalité pendant le
cycle de vie de la version actuelle, mais cette fonctionnalité ne recevra plus
d’améliorations et sera supprimée des futures versions d’OpenShift Dedicated.

La version prise en charge par Red Hat du SDK de l’opérateur n’est pas recommandée
pour la création de nouveaux projets d’opérateur. Les auteurs d’opérateurs avec des
projets d’opérateur existants peuvent utiliser la version de l’outil Operator SDK CLI publié
avec OpenShift Dedicated 4 pour maintenir leurs projets et créer des versions
d’opérateur ciblant des versions plus récentes d’OpenShift Dedicated.

Les images de base suivantes pour les projets d’opérateur ne sont pas dépréciées. Les
fonctionnalités d’exécution et les API de configuration de ces images de base sont
toujours prises en charge pour les corrections de bogues et pour l’adressage des CVE.

L’image de base pour les projets d’opérateurs basés sur Ansible

L’image de base pour les projets d’opérateur basé sur Helm

Afin d’obtenir de l’information sur la version non prise en charge et gérée par la
communauté du SDK de l’opérateur, voir Operator SDK (Operator Framework).

5.11.1. À propos de l’API de mode haute disponibilité du cluster

L’OpenShift Dedicated fournit une API de mode à haute disponibilité en cluster qui peut être utilisée
par les opérateurs pour aider à détecter la topologie de l’infrastructure. L’API Infrastructure détient des
informations à l’échelle du cluster concernant l’infrastructure. Les opérateurs gérés par Operator
Lifecycle Manager (OLM) peuvent utiliser l’API Infrastructure s’ils ont besoin de configurer une charge
de travail Operand ou gérée différemment en fonction du mode haute disponibilité.

Dans l’API Infrastructure, l’état de l’infrastructureTopology exprime les attentes pour les services
d’infrastructure qui ne fonctionnent pas sur les nœuds de plan de contrôle, généralement indiqués par
un sélecteur de nœud pour une valeur de rôle autre que master. Le statut controlPlaneTopology
exprime les attentes pour les Operands qui fonctionnent normalement sur les nœuds de plan de
contrôle.

Le paramètre par défaut pour l’un ou l’autre état est HighlyAvailable, ce qui représente le comportement
des opérateurs dans plusieurs clusters de nœuds. Le paramètre SingleReplica est utilisé dans les
clusters à nœud unique, également connu sous le nom d’OpenShift à nœud unique, et indique que les
opérateurs ne doivent pas configurer leurs opérandes pour une opération à haute disponibilité.

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

283

L’installateur dédié OpenShift définit les champs d’état controlPlaneTopology et infrastructure en
fonction du nombre de répliques pour le cluster lorsqu’il est créé, selon les règles suivantes:

Lorsque le nombre de répliques du plan de contrôle est inférieur à 3, le statut
controlPlaneTopology est défini sur SingleReplica. Dans le cas contraire, il est réglé sur
HighlyDisponible.

Lorsque le nombre de répliques du travailleur est 0, les nœuds de plan de contrôle sont
également configurés en tant que travailleurs. Ainsi, le statut d’infrastructureTopology sera le
même que le statut controlPlaneTopology.

Lorsque le nombre de répliques du travailleur est 1, l’infrastructureTopology est définie sur
SingleReplica. Dans le cas contraire, il est réglé sur HighlyDisponible.

5.11.2. Exemple d’utilisation de l’API dans les projets d’opérateur

En tant qu’auteur de l’opérateur, vous pouvez mettre à jour votre projet Opérateur pour accéder à l’API
Infrastructure en utilisant les constructions normales de Kubernetes et la bibliothèque contrôleur-
exécution, comme indiqué dans les exemples suivants:

exemple de bibliothèque Controller-runtime

Kubernetes construit l’exemple

5.12. CONFIGURATION DE LA SURVEILLANCE INTÉGRÉE AVEC
PROMETHEUS

Le SDK de l’opérateur fournit un support de surveillance intégré à l’aide de l’opérateur Prometheus, que
vous pouvez utiliser pour exposer des mesures personnalisées pour votre opérateur.

IMPORTANT

// Simple query
 nn := types.NamespacedName{
 Name: "cluster",
 }
 infraConfig := &configv1.Infrastructure{}
 err = crClient.Get(context.Background(), nn, infraConfig)
 if err != nil {
 return err
 }
 fmt.Printf("using crclient: %v\n", infraConfig.Status.ControlPlaneTopology)
 fmt.Printf("using crclient: %v\n", infraConfig.Status.InfrastructureTopology)

operatorConfigInformer := configinformer.NewSharedInformerFactoryWithOptions(configClient,
2*time.Second)
 infrastructureLister = operatorConfigInformer.Config().V1().Infrastructures().Lister()
 infraConfig, err := configClient.ConfigV1().Infrastructures().Get(context.Background(), "cluster",
metav1.GetOptions{})
 if err != nil {
 return err
 }
// fmt.Printf("%v\n", infraConfig)
 fmt.Printf("%v\n", infraConfig.Status.ControlPlaneTopology)
 fmt.Printf("%v\n", infraConfig.Status.InfrastructureTopology)

OpenShift Dedicated 4 Opérateurs

284

IMPORTANT

La version prise en charge par Red Hat de l’outil Operator SDK CLI, y compris les outils
d’échafaudage et de test connexes pour les projets d’opérateur, est dépréciée et devrait
être supprimée dans une version ultérieure d’OpenShift Dedicated. Le Red Hat fournira
des corrections de bogues et une prise en charge de cette fonctionnalité pendant le
cycle de vie de la version actuelle, mais cette fonctionnalité ne recevra plus
d’améliorations et sera supprimée des futures versions d’OpenShift Dedicated.

La version prise en charge par Red Hat du SDK de l’opérateur n’est pas recommandée
pour la création de nouveaux projets d’opérateur. Les auteurs d’opérateurs avec des
projets d’opérateur existants peuvent utiliser la version de l’outil Operator SDK CLI publié
avec OpenShift Dedicated 4 pour maintenir leurs projets et créer des versions
d’opérateur ciblant des versions plus récentes d’OpenShift Dedicated.

Les images de base suivantes pour les projets d’opérateur ne sont pas dépréciées. Les
fonctionnalités d’exécution et les API de configuration de ces images de base sont
toujours prises en charge pour les corrections de bogues et pour l’adressage des CVE.

L’image de base pour les projets d’opérateurs basés sur Ansible

L’image de base pour les projets d’opérateur basé sur Helm

Afin d’obtenir de l’information sur la version non prise en charge et gérée par la
communauté du SDK de l’opérateur, voir Operator SDK (Operator Framework).

AVERTISSEMENT

Par défaut, OpenShift Dedicated fournit un opérateur Prometheus dans le projet
openshift-user-workload-monitoring. Cette instance Prometheus doit être utilisée
pour surveiller les charges de travail des utilisateurs dans OpenShift Dedicated.

Il ne faut pas utiliser l’opérateur Prometheus dans le projet de surveillance ouverte.
Les ingénieurs de fiabilité du site Red Hat (SRE) utilisent cette instance
Prometheus pour surveiller les composants du cluster de base.

Ressources supplémentaires

Exposer des mesures personnalisées pour les opérateurs Go-based (documentation OpenShift
Container Platform)

Exposer des métriques personnalisées pour les opérateurs basés sur Ansible (documentation
OpenShift Container Platform)

Comprendre la pile de surveillance dans OpenShift Dedicated

5.13. CONFIGURATION DE L’ÉLECTION DES DIRIGEANTS

Au cours du cycle de vie d’un opérateur, il est possible qu’il puisse y avoir plus d’une instance en cours
d’exécution à un moment donné, par exemple lors du déploiement d’une mise à niveau pour l’opérateur.
Dans un tel scénario, il est nécessaire d’éviter toute dispute entre plusieurs instances de l’opérateur



CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

285

utilisant l’élection de leader. Cela garantit qu’une seule instance leader gère la réconciliation tandis que
les autres instances sont inactives mais prêtes à prendre le relais lorsque le leader démissionne.

Il y a deux implémentations électorales différentes à choisir, chacune avec son propre compromis:

Leader pour la vie

La gousse de leader n’abandonne le leadership, en utilisant la collecte des ordures, lorsqu’elle est
supprimée. Cette mise en œuvre exclut la possibilité que deux instances courent par erreur en tant
que leaders, un état également connu sous le nom de cerveau divisé. Cependant, cette méthode
peut être sujette à un retard dans l’élection d’un nouveau leader. Ainsi, lorsque la gousse de leader
est sur un nœud sans réponse ou partitionné, vous pouvez spécifier node.kubernetes.io/unreachable
et node.kubernetes.io/non-prêt tolérance sur la gousse de leader et utiliser la valeur de
toléranceSeconds pour dicter combien de temps il faut pour que la gousse de leader soit supprimée
du nœud et démissionne. Ces tolérances sont ajoutées à la pod par défaut lors de l’admission avec
une tolérance de 5 minutes. Consultez la documentation Leader-for-life Go pour en savoir plus.

Leader avec location

Le groupe dirigeant renouvelle périodiquement le bail de leader et renonce au leadership lorsqu’il ne
peut pas renouveler le bail. Cette implémentation permet une transition plus rapide vers un nouveau
leader lorsque le leader existant est isolé, mais il y a une possibilité de diviser le cerveau dans
certaines situations. Consultez la documentation Leader-with-lease Go pour plus d’informations.

Le SDK d’opérateur permet par défaut l’implémentation Leader-for-life. Consultez la documentation
connexe Go pour les deux approches afin de tenir compte des compromis qui ont du sens pour votre cas
d’utilisation.

IMPORTANT

La version prise en charge par Red Hat de l’outil Operator SDK CLI, y compris les outils
d’échafaudage et de test connexes pour les projets d’opérateur, est dépréciée et devrait
être supprimée dans une version ultérieure d’OpenShift Dedicated. Le Red Hat fournira
des corrections de bogues et une prise en charge de cette fonctionnalité pendant le
cycle de vie de la version actuelle, mais cette fonctionnalité ne recevra plus
d’améliorations et sera supprimée des futures versions d’OpenShift Dedicated.

La version prise en charge par Red Hat du SDK de l’opérateur n’est pas recommandée
pour la création de nouveaux projets d’opérateur. Les auteurs d’opérateurs avec des
projets d’opérateur existants peuvent utiliser la version de l’outil Operator SDK CLI publié
avec OpenShift Dedicated 4 pour maintenir leurs projets et créer des versions
d’opérateur ciblant des versions plus récentes d’OpenShift Dedicated.

Les images de base suivantes pour les projets d’opérateur ne sont pas dépréciées. Les
fonctionnalités d’exécution et les API de configuration de ces images de base sont
toujours prises en charge pour les corrections de bogues et pour l’adressage des CVE.

L’image de base pour les projets d’opérateurs basés sur Ansible

L’image de base pour les projets d’opérateur basé sur Helm

Afin d’obtenir de l’information sur la version non prise en charge et gérée par la
communauté du SDK de l’opérateur, voir Operator SDK (Operator Framework).

5.13.1. Exemples d’élection du chef d’opérateur

Les exemples suivants illustrent comment utiliser les deux options électorales de leader pour un
opérateur, un leader à vie et un leader avec bail.

OpenShift Dedicated 4 Opérateurs

286

5.13.1.1. Élection de chef à vie

Avec la mise en œuvre des élections Leader-for-life, un appel à Leader.Become() bloque l’opérateur
comme il se retries jusqu’à ce qu’il puisse devenir le leader en créant la carte de configuration nommée
memcached-operator-lock:

Lorsque l’opérateur n’est pas en cours d’exécution à l’intérieur d’un cluster, Leader.Become() retourne
simplement sans erreur pour sauter l’élection de leader car il ne peut pas détecter le nom de l’opérateur.

5.13.1.2. Élection du chef avec bail

La mise en œuvre de Leader-with-location peut être activée à l’aide des options de gestionnaire pour
l’élection des leaders:

Lorsque l’opérateur n’est pas en cours d’exécution dans un cluster, le gestionnaire retourne une erreur
au démarrage car il ne peut pas détecter l’espace de noms de l’opérateur pour créer la carte de
configuration pour l’élection de leader. L’option LeaderElectionNamespace vous permet de remplacer
cet espace de noms en définissant l’option LeaderElectionNamespace pour le gestionnaire.

5.14. UTILITAIRE D’ÉLAGAGE D’OBJETS POUR LES OPÉRATEURS GO-
BASED

L’utilitaire d’élagage opérateur-lib permet aux opérateurs Go-based de nettoyer ou tailler les objets

import (
 ...
 "github.com/operator-framework/operator-sdk/pkg/leader"
)

func main() {
 ...
 err = leader.Become(context.TODO(), "memcached-operator-lock")
 if err != nil {
 log.Error(err, "Failed to retry for leader lock")
 os.Exit(1)
 }
 ...
}

import (
 ...
 "sigs.k8s.io/controller-runtime/pkg/manager"
)

func main() {
 ...
 opts := manager.Options{
 ...
 LeaderElection: true,
 LeaderElectionID: "memcached-operator-lock"
 }
 mgr, err := manager.New(cfg, opts)
 ...
}

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

287

L’utilitaire d’élagage opérateur-lib permet aux opérateurs Go-based de nettoyer ou tailler les objets
lorsqu’ils ne sont plus nécessaires. Les auteurs d’opérateurs peuvent également utiliser l’utilitaire pour
créer des crochets et des stratégies personnalisés.

IMPORTANT

La version prise en charge par Red Hat de l’outil Operator SDK CLI, y compris les outils
d’échafaudage et de test connexes pour les projets d’opérateur, est dépréciée et devrait
être supprimée dans une version ultérieure d’OpenShift Dedicated. Le Red Hat fournira
des corrections de bogues et une prise en charge de cette fonctionnalité pendant le
cycle de vie de la version actuelle, mais cette fonctionnalité ne recevra plus
d’améliorations et sera supprimée des futures versions d’OpenShift Dedicated.

La version prise en charge par Red Hat du SDK de l’opérateur n’est pas recommandée
pour la création de nouveaux projets d’opérateur. Les auteurs d’opérateurs avec des
projets d’opérateur existants peuvent utiliser la version de l’outil Operator SDK CLI publié
avec OpenShift Dedicated 4 pour maintenir leurs projets et créer des versions
d’opérateur ciblant des versions plus récentes d’OpenShift Dedicated.

Les images de base suivantes pour les projets d’opérateur ne sont pas dépréciées. Les
fonctionnalités d’exécution et les API de configuration de ces images de base sont
toujours prises en charge pour les corrections de bogues et pour l’adressage des CVE.

L’image de base pour les projets d’opérateurs basés sur Ansible

L’image de base pour les projets d’opérateur basé sur Helm

Afin d’obtenir de l’information sur la version non prise en charge et gérée par la
communauté du SDK de l’opérateur, voir Operator SDK (Operator Framework).

5.14.1. À propos de l’utilitaire d’élagage de l’opérateur-lib

Les objets, tels que les emplois ou les pods, sont créés en tant que partie normale du cycle de vie de
l’opérateur. Lorsqu’un administrateur ayant le rôle d’administrateur dédié ou l’opérateur ne supprime
pas cet objet, il peut rester dans le cluster et consommer des ressources.

Auparavant, les options suivantes étaient disponibles pour l’élagage d’objets inutiles:

Les auteurs d’opérateurs ont dû créer une solution d’élagage unique pour leurs opérateurs.

Les administrateurs de clusters devaient nettoyer eux-mêmes les objets.

L’utilitaire d’élagage de l’opérateur-lib supprime les objets d’un cluster Kubernetes pour un espace de
noms donné. La bibliothèque a été ajoutée dans la version 0.9.0 de la bibliothèque opérateur-lib dans le
cadre de l’opérateur.

5.14.2. Configuration de l’utilitaire d’élagage

L’utilitaire d’élagage opérateur-lib est écrit dans Go et comprend des stratégies d’élagage communes
pour les opérateurs basés sur Go.

Configuration d’exemple

cfg = Config{
 log: logf.Log.WithName("prune"),
 DryRun: false,

OpenShift Dedicated 4 Opérateurs

288

Le fichier de configuration de l’utilitaire d’élagage définit les actions d’élagage en utilisant les champs
suivants:

Champ de configuration Description

journal de bord Enregistreur utilisé pour gérer les messages de journal de la bibliothèque.

Dryrun Booléen qui détermine si les ressources doivent être supprimées. Lorsqu’il
est défini à true, l’utilitaire s’exécute mais ne supprime pas les ressources.

Ensemble de clients Kubernetes ClientSet utilisé pour les appels d’API Kubernetes.

LabelSelector Expression de sélecteur d’étiquettes Kubernetes utilisée pour trouver des
ressources à tailler.

Ressources Les types de ressources Kubernetes. Actuellement, PodKind et JobKind
sont pris en charge.

Espaces de noms Liste des espaces de noms Kubernetes pour rechercher des ressources.

La stratégie La stratégie d’élagage à exécuter.

La stratégie.Mode Actuellement, MaxCountStrategy, MaxAgeStrategy ou CustomStrategy
sont pris en charge.

La
stratégie.MaxCountSettin
g

La valeur entière de MaxCountStrategy spécifie combien de ressources
devraient rester après l’exécution de l’utilitaire de taille.

La
stratégie.MaxAgeSetting

Go time.Duration string valeur, telle que 48h, qui spécifie l’âge des
ressources à tailler.

Jeu
Stratégie.CustomSettings

Go carte des valeurs qui peuvent être transmises dans une fonction de
stratégie personnalisée.

Ajouter au panier
PreDeleteHook

Facultatif: Go fonction à appeler avant de tailler une ressource.

 Clientset: client,
 LabelSelector: "app=<operator_name>",
 Resources: []schema.GroupVersionKind{
 {Group: "", Version: "", Kind: PodKind},
 },
 Namespaces: []string{"<operator_namespace>"},
 Strategy: StrategyConfig{
 Mode: MaxCountStrategy,
 MaxCountSetting: 1,
 },
 PreDeleteHook: myhook,
}

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

289

CustomStrategy Facultatif: Go fonction qui implémente une stratégie d’élagage
personnalisée.

Champ de configuration Description

Exécution de l’élagage

Il est possible d’appeler l’action d’élagage en exécutant la fonction d’exécution sur la configuration de
l’élagage.

Il est également possible d’appeler une action d’élagage en utilisant un paquet cron ou en appelant
l’utilitaire d’élagage avec un événement déclencheur.

5.15. LES PROJETS DE MANIFESTATION DE PAQUETS MIGRATOIRES
AU FORMAT DE PAQUETAGE

La prise en charge du format de manifeste du paquet hérité pour les opérateurs est supprimée dans
OpenShift Dedicated 4.8 et ultérieure. Lorsque vous avez un projet Opérateur qui a été initialement
créé à l’aide du format manifeste du paquet, vous pouvez utiliser le SDK de l’opérateur pour migrer le
projet vers le format de paquet. Le format de paquet est le format d’emballage préféré pour Operator
Lifecycle Manager (OLM) à partir de OpenShift Dedicated 4.6.

IMPORTANT

La version prise en charge par Red Hat de l’outil Operator SDK CLI, y compris les outils
d’échafaudage et de test connexes pour les projets d’opérateur, est dépréciée et devrait
être supprimée dans une version ultérieure d’OpenShift Dedicated. Le Red Hat fournira
des corrections de bogues et une prise en charge de cette fonctionnalité pendant le
cycle de vie de la version actuelle, mais cette fonctionnalité ne recevra plus
d’améliorations et sera supprimée des futures versions d’OpenShift Dedicated.

La version prise en charge par Red Hat du SDK de l’opérateur n’est pas recommandée
pour la création de nouveaux projets d’opérateur. Les auteurs d’opérateurs avec des
projets d’opérateur existants peuvent utiliser la version de l’outil Operator SDK CLI publié
avec OpenShift Dedicated 4 pour maintenir leurs projets et créer des versions
d’opérateur ciblant des versions plus récentes d’OpenShift Dedicated.

Les images de base suivantes pour les projets d’opérateur ne sont pas dépréciées. Les
fonctionnalités d’exécution et les API de configuration de ces images de base sont
toujours prises en charge pour les corrections de bogues et pour l’adressage des CVE.

L’image de base pour les projets d’opérateurs basés sur Ansible

L’image de base pour les projets d’opérateur basé sur Helm

Afin d’obtenir de l’information sur la version non prise en charge et gérée par la
communauté du SDK de l’opérateur, voir Operator SDK (Operator Framework).

5.15.1. À propos de la migration du format d’emballage

La commande Operator SDK pkgman-to-bundle aide à migrer le paquet Operator Lifecycle Manager

err := cfg.Execute(ctx)

OpenShift Dedicated 4 Opérateurs

290

(OLM) en paquets. La commande prend un répertoire de manifestes de paquets d’entrée et génère des
paquets pour chacune des versions des manifestes présentes dans le répertoire d’entrée. Ensuite, vous
pouvez construire des images groupées pour chacun des paquets générés.

À titre d’exemple, considérez les Manifestes de paquets/annuaires suivants pour un projet dans le
format manifeste du paquet:

Exemple de mise en page de format de paquet

Après l’exécution de la migration, les paquets suivants sont générés dans le répertoire bundle /:

Exemple de mise en page de format de paquet

Basé sur cette mise en page générée, les images groupées pour les deux paquets sont également
construites avec les noms suivants:

description Quay.io/exemple/etcd:0.0.1

ajouter au panier Quay.io/exemple/etcd:0.0.2

packagemanifests/
└── etcd
 ├── 0.0.1
 │ ├── etcdcluster.crd.yaml
 │ └── etcdoperator.clusterserviceversion.yaml
 ├── 0.0.2
 │ ├── etcdbackup.crd.yaml
 │ ├── etcdcluster.crd.yaml
 │ ├── etcdoperator.v0.0.2.clusterserviceversion.yaml
 │ └── etcdrestore.crd.yaml
 └── etcd.package.yaml

bundle/
├── bundle-0.0.1
│ ├── bundle.Dockerfile
│ ├── manifests
│ │ ├── etcdcluster.crd.yaml
│ │ ├── etcdoperator.clusterserviceversion.yaml
│ ├── metadata
│ │ └── annotations.yaml
│ └── tests
│ └── scorecard
│ └── config.yaml
└── bundle-0.0.2
 ├── bundle.Dockerfile
 ├── manifests
 │ ├── etcdbackup.crd.yaml
 │ ├── etcdcluster.crd.yaml
 │ ├── etcdoperator.v0.0.2.clusterserviceversion.yaml
 │ ├── etcdrestore.crd.yaml
 ├── metadata
 │ └── annotations.yaml
 └── tests
 └── scorecard
 └── config.yaml

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

291

1

2

3

Ressources supplémentaires

Format d’emballage du cadre opérateur

5.15.2. La migration d’un projet manifeste de paquet pour regrouper le format

Les auteurs d’opérateurs peuvent utiliser le SDK de l’opérateur pour migrer un projet de format
manifeste de paquet vers un projet de format groupé.

Conditions préalables

L’opérateur SDK CLI installé

Le projet opérateur initialement généré à l’aide du SDK de l’opérateur au format manifeste du
paquet

Procédure

Employez le SDK de l’opérateur pour migrer votre projet de manifeste de paquets vers le format
de paquet et générer des images groupées:

Indiquez l’emplacement du répertoire des manifestes de paquets pour le projet, tels que les
Manifestes de paquets/ ou les manifestes/.

Facultatif: Par défaut, les paquets générés sont écrits localement sur le disque dans le
répertoire bundle/. Il est possible d’utiliser le drapeau --output-dir pour spécifier un
emplacement alternatif.

Définissez le drapeau --image-tag-base pour fournir la base du nom de l’image, tel que
quay.io/example/etcd, qui sera utilisé pour les paquets. Fournissez le nom sans balise, car la
balise pour les images sera définie en fonction de la version du paquet. À titre d’exemple,
les noms complets d’image sont générés dans le format
<image_name_base>:<bundle_version>.

La vérification

Assurez-vous que l’image de paquet générée fonctionne avec succès:

Exemple de sortie

$ operator-sdk pkgman-to-bundle <package_manifests_dir> \ 1
 [--output-dir <directory>] \ 2
 --image-tag-base <image_name_base> 3

$ operator-sdk run bundle <bundle_image_name>:<tag>

INFO[0025] Successfully created registry pod: quay-io-my-etcd-0-9-4
INFO[0025] Created CatalogSource: etcd-catalog
INFO[0026] OperatorGroup "operator-sdk-og" created
INFO[0026] Created Subscription: etcdoperator-v0-9-4-sub
INFO[0031] Approved InstallPlan install-5t58z for the Subscription: etcdoperator-v0-9-4-sub
INFO[0031] Waiting for ClusterServiceVersion "default/etcdoperator.v0.9.4" to reach
'Succeeded' phase

OpenShift Dedicated 4 Opérateurs

292

5.16. OPÉRATEUR SDK CLI RÉFÉRENCE

L’interface de ligne de commande de l’opérateur SDK (CLI) est un kit de développement conçu pour
faciliter l’écriture des opérateurs.

IMPORTANT

La version prise en charge par Red Hat de l’outil Operator SDK CLI, y compris les outils
d’échafaudage et de test connexes pour les projets d’opérateur, est dépréciée et devrait
être supprimée dans une version ultérieure d’OpenShift Dedicated. Le Red Hat fournira
des corrections de bogues et une prise en charge de cette fonctionnalité pendant le
cycle de vie de la version actuelle, mais cette fonctionnalité ne recevra plus
d’améliorations et sera supprimée des futures versions d’OpenShift Dedicated.

La version prise en charge par Red Hat du SDK de l’opérateur n’est pas recommandée
pour la création de nouveaux projets d’opérateur. Les auteurs d’opérateurs avec des
projets d’opérateur existants peuvent utiliser la version de l’outil Operator SDK CLI publié
avec OpenShift Dedicated 4 pour maintenir leurs projets et créer des versions
d’opérateur ciblant des versions plus récentes d’OpenShift Dedicated.

Les images de base suivantes pour les projets d’opérateur ne sont pas dépréciées. Les
fonctionnalités d’exécution et les API de configuration de ces images de base sont
toujours prises en charge pour les corrections de bogues et pour l’adressage des CVE.

L’image de base pour les projets d’opérateurs basés sur Ansible

L’image de base pour les projets d’opérateur basé sur Helm

Afin d’obtenir de l’information sur la version non prise en charge et gérée par la
communauté du SDK de l’opérateur, voir Operator SDK (Operator Framework).

L’opérateur SDK CLI syntaxe

Les auteurs d’opérateurs disposant d’un accès administrateur de cluster à un cluster basé sur
Kubernetes (comme OpenShift Dedicated) peuvent utiliser l’opérateur SDK CLI pour développer leurs
propres opérateurs basés sur Go, Ansible ou Helm. Kubebuilder est intégré dans le SDK de l’opérateur
en tant que solution d’échafaudage pour les opérateurs Go, ce qui signifie que les projets Kubebuilder
existants peuvent être utilisés comme avec le SDK de l’opérateur et continuer à fonctionner.

5.16.1. le paquet

La commande Operator-sdk bundle gère les métadonnées du bundle Operator.

5.16.1.1. de valider

Le bundle valide la sous-commande valide un bundle d’opérateur.

INFO[0032] Waiting for ClusterServiceVersion "default/etcdoperator.v0.9.4" to appear
INFO[0048] Found ClusterServiceVersion "default/etcdoperator.v0.9.4" phase: Pending
INFO[0049] Found ClusterServiceVersion "default/etcdoperator.v0.9.4" phase: Installing
INFO[0064] Found ClusterServiceVersion "default/etcdoperator.v0.9.4" phase: Succeeded
INFO[0065] OLM has successfully installed "etcdoperator.v0.9.4"

$ operator-sdk <command> [<subcommand>] [<argument>] [<flags>]

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

293

Tableau 5.23. faisceau valider les drapeaux

Drapeau Description

-h, --aide La sortie d’aide pour le paquet valider la sous-commande.

--index-builder (chaîne) Outil pour tirer et déballer des images groupées. Il n’est utilisé que lors de la
validation d’une image de paquet. Les options disponibles sont docker, qui est par
défaut, podman, ou aucune.

--liste optionnelle Liste de tous les validateurs optionnels disponibles. Lorsqu’il est défini, aucun
validateur n’est exécuté.

--sélectionner-
optionnel (chaîne)

Le sélecteur d’étiquette pour sélectionner les validateurs optionnels à exécuter.
Lorsque vous exécutez avec le drapeau --list-optional, liste les validateurs
optionnels disponibles.

5.16.2. le nettoyage

La commande de nettoyage de l’opérateur-sdk détruit et supprime les ressources qui ont été créées
pour un opérateur qui a été déployé avec la commande run.

Tableau 5.24. drapeaux de nettoyage

Drapeau Description

-h, --aide Aide à la sortie pour la sous-commande du paquet d’exécution.

--kubeconfig (chaîne) Chemin vers le fichier kubeconfig à utiliser pour les requêtes CLI.

-n, --namespace
(chaîne)

Le cas échéant, l’espace de noms dans lequel exécuter la demande CLI.

--timeout
<duration>

Il est temps d’attendre que la commande soit terminée avant d’échouer. La valeur
par défaut est 2m0s.

5.16.3. achèvement des travaux

La commande d’achèvement de l’opérateur-sdk génère des achèvements de shell pour rendre les
commandes CLI émettrices plus rapides et plus faciles.

Tableau 5.25. achèvement des sous-commandes

Le sous-commande Description

bash Générez des finitions bash.

à propos de Zsh Générez des finitions zsh.

OpenShift Dedicated 4 Opérateurs

294

Tableau 5.26. drapeaux d’achèvement

Drapeau Description

-h, --aide Aide à l’utilisation de sortie.

À titre d’exemple:

Exemple de sortie

5.16.4. créer

La commande operator-sdk create est utilisée pour créer, ou échafauder, une API Kubernetes.

5.16.4.1. API

La création de sous-commandes api échafaude une API Kubernetes. La sous-commande doit être
exécutée dans un projet initialisé avec la commande init.

Tableau 5.27. créer des drapeaux api

Drapeau Description

-h, --aide Aide à la sortie pour la sous-commande du paquet d’exécution.

5.16.5. générer

La commande operator-sdk génère un générateur spécifique pour générer du code ou des manifestes.

5.16.5.1. le paquet

La sous-commande de groupe génératrice génère un ensemble de manifestes de paquets, de
métadonnées et d’un fichier bundle.Dockerfile pour votre projet Opérateur.

NOTE

En règle générale, vous exécutez la commande génératrice kustomize manifeste d’abord
la sous-commande pour générer les bases Kustomize d’entrée qui sont utilisées par la
sous-commande de paquets génératrices. Cependant, vous pouvez utiliser la commande
make bundle dans un projet initialisé pour automatiser l’exécution de ces commandes en
séquence.

Tableau 5.28. générer des drapeaux de paquets

$ operator-sdk completion bash

bash completion for operator-sdk -*- shell-script -*-
...
ex: ts=4 sw=4 et filetype=sh

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

295

Drapeau Description

--canaux (chaîne) Liste séparée par virgule des canaux auxquels appartient le paquet. La valeur par
défaut est alpha.

--CRDS-dir (chaîne) Le répertoire root pour CustomResoureDefinition se manifeste.

--par défaut-canal
(chaîne)

Le canal par défaut pour le paquet.

--déploiement-dir
(string)

Le répertoire racine pour les manifestes de l’opérateur, tels que les déploiements
et RBAC. Ce répertoire est différent du répertoire passé au drapeau --input-dir.

-h, --aide Aide pour générer des paquets

--input-dir (chaîne) Annuaire à partir duquel lire un paquet existant. Ce répertoire est le parent de
votre répertoire de manifestes de paquets et est différent du répertoire --
deploy-dir.

--kustomize-dir (string) Répertoire contenant des bases Kustomize et un fichier kustomization.yaml pour
les manifestes de paquets. Le chemin par défaut est config/manifestes.

--manifestes Générez des manifestes de paquets.

--métadonnées Générez des métadonnées groupées et Dockerfile.

--sortie-dir (chaîne) Annuaire pour écrire le paquet vers.

--écraser Écrasez les métadonnées du bundle et Dockerfile s’ils existent. La valeur par
défaut est true.

--emballage (chaîne) Le nom du paquet pour le paquet.

-Q, --quiet Exécutez en mode silencieux.

---------------- Ecrire le paquet manifeste pour standardiser.

--version (chaîne) La version sémantique de l’opérateur dans le paquet généré. Défini uniquement
lors de la création d’un nouveau paquet ou de la mise à niveau de l’opérateur.

Ressources supplémentaires

Consultez Bundling un opérateur pour une procédure complète qui inclut l’utilisation de la
commande make bundle pour appeler la sous-commande du paquet génératrice.

5.16.5.2. kustomize

La sous-commande génératrice kustomize contient des sous-commandes qui génèrent des données
Kustomize pour l’opérateur.

OpenShift Dedicated 4 Opérateurs

296

5.16.5.2.1. les manifestes

La sous-commande génératrice kustomize manifeste génère ou régénère les bases Kustomize et un
fichier kustomization.yaml dans le répertoire config/manifests, qui sont utilisés pour construire des
manifestes de paquets par d’autres commandes SDK de l’opérateur. Cette commande demande
interactivement des métadonnées UI, un composant important des bases manifestes, par défaut, sauf si
une base existe déjà ou si vous définissez l’indicateur --interactive=false.

Tableau 5.29. générer kustomize manifeste des drapeaux

Drapeau Description

--APIs-dir (chaîne) Répertoire racine pour les définitions de type API.

-h, --aide Aide pour générer des manifestes de kustomize.

--input-dir (chaîne) Répertoire contenant les fichiers Kustomize existants.

--interactif Lorsqu’il est défini sur false, si aucune base Kustomize n’existe, une invite de
commande interactive est présentée pour accepter les métadonnées
personnalisées.

--sortie-dir (chaîne) Annuaire où écrire des fichiers Kustomize.

--emballage (chaîne) Le nom du paquet.

-Q, --quiet Exécutez en mode silencieux.

5.16.6. init

La commande operator-sdk init initialise un projet Opérateur et génère, ou des échafaudages, une mise
en page de répertoire de projet par défaut pour le plugin donné.

Cette commande écrit les fichiers suivants:

Fichier de licence de hotplate

Fichier PROJET avec le domaine et le référentiel

Makefile pour construire le projet

fichier Go.mod avec dépendances de projet

fichier kustomization.yaml pour la personnalisation des manifestes

Fichier correcteur pour personnaliser les images pour les manifestes du gestionnaire

Fichier de correction pour activer les métriques Prometheus

fichier Main.go à exécuter

Tableau 5.30. drapeaux init

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

297

Drapeau Description

--aide, -h Aide à la sortie pour la commande init.

--plugins (chaîne) Le nom et la version optionnelle du plugin pour initialiser le projet avec. Les
plugins disponibles sont ansible.sdk.operatorframework.io/v1,
go.kubebuilder.io/v2, go.kubebuilder.io/v3, et helm.sdk.operatorframework.io/v1.

--version de projet La version du projet. Les valeurs disponibles sont 2 et 3-alpha, qui est la valeur par
défaut.

5.16.7. courir

La commande operator-sdk run fournit des options qui peuvent lancer l’opérateur dans divers
environnements.

5.16.7.1. le paquet

La sous-commande de paquet d’exécution déploie un opérateur dans le format de paquet avec
Operator Lifecycle Manager (OLM).

Tableau 5.31. lancer des drapeaux de paquets

Drapeau Description

--index-image (chaîne) Indexer l’image dans laquelle injecter un paquet. L’image par défaut est
quay.io/operator-framework/upstream-opm-builder:latest.

--install-mode
<install_mode_val
ue>

Installez le mode supporté par la version de service cluster (CSV) de l’opérateur,
par exemple AllNamespaces ou SingleNamespace.

--timeout
<duration>

Installez le délai d’attente. La valeur par défaut est 2m0s.

--kubeconfig (chaîne) Chemin vers le fichier kubeconfig à utiliser pour les requêtes CLI.

-n, --namespace
(chaîne)

Le cas échéant, l’espace de noms dans lequel exécuter la demande CLI.

--security-context-
config
<security_context
>

Indique le contexte de sécurité à utiliser pour le pod de catalogue. Les valeurs
autorisées incluent des restrictions et des héritages. La valeur par défaut est

l’héritage. [1]

-h, --aide Aide à la sortie pour la sous-commande du paquet d’exécution.

1. Le contexte de sécurité restreint n’est pas compatible avec l’espace de noms par défaut. Afin
de configurer l’admission de sécurité de pod de votre opérateur dans votre environnement de

OpenShift Dedicated 4 Opérateurs

298

production, voir "Complying with Pod security admission". En savoir plus sur l’admission à la
sécurité des pods, voir « Comprendre et gérer l’admission à la sécurité des pod ».

Ressources supplémentaires

Consultez l’adhésion au groupe Opérateur pour plus de détails sur les modes d’installation
possibles.

Conformité à l’admission de sécurité de pod

Comprendre et gérer l’admission à la sécurité des pod

5.16.7.2. la mise à niveau de paquet

La sous-commande de mise à niveau de paquets d’exécution met à niveau un opérateur qui a déjà été
installé dans le format de paquet avec Operator Lifecycle Manager (OLM).

Tableau 5.32. exécuter des drapeaux de mise à niveau de paquets

Drapeau Description

--timeout
<duration>

Délai de mise à niveau. La valeur par défaut est 2m0s.

--kubeconfig (chaîne) Chemin vers le fichier kubeconfig à utiliser pour les requêtes CLI.

-n, --namespace
(chaîne)

Le cas échéant, l’espace de noms dans lequel exécuter la demande CLI.

--security-context-
config
<security_context
>

Indique le contexte de sécurité à utiliser pour le pod de catalogue. Les valeurs
autorisées incluent des restrictions et des héritages. La valeur par défaut est

l’héritage. [1]

-h, --aide Aide à la sortie pour la sous-commande du paquet d’exécution.

1. Le contexte de sécurité restreint n’est pas compatible avec l’espace de noms par défaut. Afin
de configurer l’admission de sécurité de pod de votre opérateur dans votre environnement de
production, voir "Complying with Pod security admission". En savoir plus sur l’admission à la
sécurité des pods, voir « Comprendre et gérer l’admission à la sécurité des pod ».

Ressources supplémentaires

Conformité à l’admission de sécurité de pod

Comprendre et gérer l’admission à la sécurité des pod

5.16.8. carte de pointage

La commande operator-sdk scorecard exécute l’outil de carte de pointage pour valider un ensemble
d’opérateurs et fournir des suggestions d’améliorations. La commande prend un argument, qu’il s’agisse
d’une image groupée ou d’un répertoire contenant des manifestes et des métadonnées. Lorsque

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

299

https://docs.redhat.com/en/documentation/openshift_dedicated/4/html-single/authentication_and_authorization/#understanding-and-managing-pod-security-admission
https://docs.redhat.com/en/documentation/openshift_dedicated/4/html-single/authentication_and_authorization/#understanding-and-managing-pod-security-admission

l’argument contient une balise d’image, l’image doit être présente à distance.

Tableau 5.33. drapeaux de carte de pointage

Drapeau Description

-C, --config (chaîne) Chemin d’accès au fichier de configuration de la carte de pointage. Le chemin par
défaut est bundle/tests/scorecard/config.yaml.

-h, --aide Aide à la sortie pour la commande de la carte de pointage.

--kubeconfig (chaîne) Chemin d’accès au fichier kubeconfig.

-L, --liste Liste des tests disponibles pour exécuter.

-n, --namespace
(chaîne)

Espace de noms dans lequel exécuter les images de test.

-O, --sortie (chaîne) Format de sortie pour les résultats. Les valeurs disponibles sont du texte, qui est
la valeur par défaut, et json.

--pod-sécurité
<security_context
>

L’option d’exécuter une carte de score avec le contexte de sécurité spécifié. Les
valeurs autorisées incluent des restrictions et des héritages. La valeur par défaut

est l’héritage. [1]

-l, --séléctor (chaîne) Le sélecteur d’étiquette pour déterminer quels tests sont exécutés.

-s, --service-compte
(string)

Compte de service à utiliser pour les tests. La valeur par défaut est par défaut.

-x, --skip-nettoyage Désactiver le nettoyage des ressources après l’exécution des tests.

-W, --temps d’attente
<durée>

Des secondes pour attendre que les tests soient terminés, par exemple 35s. La
valeur par défaut est 30s.

1. Le contexte de sécurité restreint n’est pas compatible avec l’espace de noms par défaut. Afin
de configurer l’admission de sécurité de pod de votre opérateur dans votre environnement de
production, voir "Complying with Pod security admission". En savoir plus sur l’admission à la
sécurité des pods, voir « Comprendre et gérer l’admission à la sécurité des pod ».

Ressources supplémentaires

Consultez les opérateurs de validation à l’aide de l’outil de carte de pointage pour plus de détails
sur l’exécution de l’outil de carte de pointage.

Conformité à l’admission de sécurité de pod

Comprendre et gérer l’admission à la sécurité des pod

5.17. LA MIGRATION VERS L’OPÉRATEUR SDK V0.1.0

OpenShift Dedicated 4 Opérateurs

300

https://docs.redhat.com/en/documentation/openshift_dedicated/4/html-single/authentication_and_authorization/#understanding-and-managing-pod-security-admission

Ce guide décrit comment migrer un projet d’opérateur construit à l’aide de l’opérateur SDK v0.0.x vers
la structure du projet requise par l’opérateur SDK v0.1.0.

IMPORTANT

La version prise en charge par Red Hat de l’outil Operator SDK CLI, y compris les outils
d’échafaudage et de test connexes pour les projets d’opérateur, est dépréciée et devrait
être supprimée dans une version ultérieure d’OpenShift Dedicated. Le Red Hat fournira
des corrections de bogues et une prise en charge de cette fonctionnalité pendant le
cycle de vie de la version actuelle, mais cette fonctionnalité ne recevra plus
d’améliorations et sera supprimée des futures versions d’OpenShift Dedicated.

La version prise en charge par Red Hat du SDK de l’opérateur n’est pas recommandée
pour la création de nouveaux projets d’opérateur. Les auteurs d’opérateurs avec des
projets d’opérateur existants peuvent utiliser la version de l’outil Operator SDK CLI publié
avec OpenShift Dedicated 4 pour maintenir leurs projets et créer des versions
d’opérateur ciblant des versions plus récentes d’OpenShift Dedicated.

Les images de base suivantes pour les projets d’opérateur ne sont pas dépréciées. Les
fonctionnalités d’exécution et les API de configuration de ces images de base sont
toujours prises en charge pour les corrections de bogues et pour l’adressage des CVE.

L’image de base pour les projets d’opérateurs basés sur Ansible

L’image de base pour les projets d’opérateur basé sur Helm

Afin d’obtenir de l’information sur la version non prise en charge et gérée par la
communauté du SDK de l’opérateur, voir Operator SDK (Operator Framework).

La méthode recommandée pour migrer votre projet est de:

1. Initialisez un nouveau projet v0.1.0.

2. Copiez votre code dans le nouveau projet.

3. Changer le nouveau projet comme décrit pour v0.1.0.

Ce guide utilise l’opérateur memcached, le projet exemple du SDK de l’opérateur, pour illustrer les
étapes de migration. Consultez les structures de projet memcached-operator v0.0.7 et v0.1.0
memcached-operator pour les exemples de pré- et post-migration, respectivement.

5.17.1. Création d’un nouveau projet Operator SDK v0.1.0

Donnez un nouveau nom à votre projet Operator SDK v0.0.x et créez un nouveau projet v0.1.0 à sa
place.

Conditions préalables

L’opérateur SDK v0.1.0 CLI installé sur le poste de travail de développement

le projet Memcached-operator précédemment déployé à l’aide d’une version antérieure de
l’opérateur SDK

Procédure

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

301

1. Assurez-vous que la version SDK est v0.1.0:

2. Créer un nouveau projet:

3. Copier .git de l’ancien projet:

5.17.2. La migration de types personnalisés à partir de pkg/apis

Faites migrer les types personnalisés de votre projet vers l’utilisation mise à jour du SDK de l’opérateur
v0.1.0.

Conditions préalables

L’opérateur SDK v0.1.0 CLI installé sur le poste de travail de développement

le projet Memcached-operator précédemment déployé à l’aide d’une version antérieure de
l’opérateur SDK

Création d’un nouveau projet à l’aide de l’opérateur SDK v0.1.0

Procédure

1. Créez l’API d’échafaudage pour les types personnalisés.

a. Créez l’API pour votre ressource personnalisée (CR) dans le nouveau projet avec operator-
sdk ajouter api --api-version=<apiversion> --kind=<kind>:

b. Répétez la commande précédente pour autant de types personnalisés que vous l’avez défini

$ operator-sdk --version
operator-sdk version 0.1.0

$ mkdir -p $GOPATH/src/github.com/example-inc/
$ cd $GOPATH/src/github.com/example-inc/
$ mv memcached-operator old-memcached-operator
$ operator-sdk new memcached-operator --skip-git-init
$ ls
memcached-operator old-memcached-operator

$ cp -rf old-memcached-operator/.git memcached-operator/.git

$ cd memcached-operator
$ operator-sdk add api --api-version=cache.example.com/v1alpha1 --kind=Memcached

$ tree pkg/apis
pkg/apis/
├── addtoscheme_cache_v1alpha1.go
├── apis.go
└── cache
 └── v1alpha1
 ├── doc.go
 ├── memcached_types.go
 ├── register.go
 └── zz_generated.deepcopy.go

OpenShift Dedicated 4 Opérateurs

302

b. Répétez la commande précédente pour autant de types personnalisés que vous l’avez défini
dans votre ancien projet. Chaque type sera défini dans le fichier
pkg/apis/<group>/<version>/<kind>_types.go.

2. Copiez le contenu du type.

a. Copiez le contenu Spec and Status du fichier pkg/apis/<group>/<version>/types.go
de l’ancien projet vers le fichier<group>pkg/apis/ /<version>/<kind>_types.go du
nouveau projet.

b. Chaque fichier <kind>_types.go a une fonction init(). Assurez-vous de ne pas
supprimer cela puisque cela enregistre le type avec le schéma du gestionnaire:

5.17.3. Code de conciliation migratoire

Faites migrer le code de rapprochement de votre projet vers l’utilisation de l’opérateur SDK v0.1.0 de
mise à jour.

Conditions préalables

L’opérateur SDK v0.1.0 CLI installé sur le poste de travail de développement

le projet Memcached-operator précédemment déployé à l’aide d’une version antérieure de
l’opérateur SDK

Les types personnalisés ont migré à partir de pkg/apis/

Procédure

1. Ajoutez un contrôleur pour regarder votre CR.
Dans les projets v0.0.x, les ressources à regarder étaient précédemment définies dans
cmd/<operator-name>/main.go:

Dans le cas des projets v0.1.0, vous devez définir un contrôleur pour surveiller les ressources:

a. Ajoutez un contrôleur pour regarder votre type CR avec le contrôleur --api-
version=<apiversion> --kind=<kind>.

b. Inspectez la fonction add() dans votre fichier

func init() {
 SchemeBuilder.Register(&Memcached{}, &MemcachedList{})

sdk.Watch("cache.example.com/v1alpha1", "Memcached", "default",
time.Duration(5)*time.Second)

$ operator-sdk add controller --api-version=cache.example.com/v1alpha1 --
kind=Memcached

$ tree pkg/controller
pkg/controller/
├── add_memcached.go
├── controller.go
└── memcached
 └── memcached_controller.go

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

303

b. Inspectez la fonction add() dans votre fichier
pkg/controller/<kind>/<kind>_controller.go:

Enlevez la deuxième Watch() ou modifiez-la pour regarder un type de ressource secondaire
qui appartient à votre CR.

La visualisation de plusieurs ressources vous permet de déclencher la boucle de
réconciliation pour plusieurs ressources pertinentes à votre application. Consultez la
documentation de surveillance et de traitement des événements et la documentation des
conventions du contrôleur Kubernetes pour plus de détails.

Lorsque votre opérateur regarde plus d’un type CR, vous pouvez faire l’un des éléments
suivants en fonction de votre demande:

Lorsque le CR appartient à votre CR primaire, regardez-la comme ressource secondaire
dans le même contrôleur pour déclencher la boucle de réconciliation pour la ressource
primaire.

Ajoutez un nouveau contrôleur pour regarder et réconcilier le CR indépendamment de
l’autre CR.

import (
 cachev1alpha1 "github.com/example-inc/memcached-
operator/pkg/apis/cache/v1alpha1"
 ...
)

func add(mgr manager.Manager, r reconcile.Reconciler) error {
 c, err := controller.New("memcached-controller", mgr, controller.Options{Reconciler: r})

 // Watch for changes to the primary resource Memcached
 err = c.Watch(&source.Kind{Type: &cachev1alpha1.Memcached{}},
&handler.EnqueueRequestForObject{})

 // Watch for changes to the secondary resource pods and enqueue reconcile requests
for the owner Memcached
 err = c.Watch(&source.Kind{Type: &corev1.Pod{}},
&handler.EnqueueRequestForOwner{
 IsController: true,
 OwnerType: &cachev1alpha1.Memcached{},
 })
}

// Watch for changes to the primary resource Memcached
 err = c.Watch(&source.Kind{Type: &cachev1alpha1.Memcached{}},
&handler.EnqueueRequestForObject{})

 // Watch for changes to the secondary resource AppService and enqueue
reconcile requests for the owner Memcached
 err = c.Watch(&source.Kind{Type: &appv1alpha1.AppService{}},
&handler.EnqueueRequestForOwner{
 IsController: true,
 OwnerType: &cachev1alpha1.Memcached{},
 })

OpenShift Dedicated 4 Opérateurs

304

2. Copiez et modifiez le code de réconciliation de pkg/stub/handler.go.
Dans un projet v0.1.0, le code de conciliation est défini dans la méthode Reconcile() du
Reconciler d’un contrôleur. Ceci est similaire à la fonction Handle() dans l’ancien projet. À noter
la différence dans les arguments et les valeurs de retour:

Concilier:

La poignée:

Au lieu de recevoir un événement sdk.Event (avec l’objet), la fonction Reconcile() reçoit une
requête (clé Nom/Namespace) pour rechercher l’objet.

Lorsque la fonction Reconcile() renvoie une erreur, le contrôleur requeue et réessaye la
Demande. Dans le cas où aucune erreur n’est retournée, en fonction du résultat, le responsable
du traitement ne réessayera pas la demande, ne sera pas immédiatement réessayer, ou
réessayera après une durée spécifiée.

a. Copiez le code de la fonction Handle() de l’ancien projet vers le code existant dans la
fonction Reconcile() de votre contrôleur. Assurez-vous de conserver la section initiale dans
le code Reconcile() qui recherche l’objet de la demande et vérifie si elle est supprimée.

$ operator-sdk add controller --api-version=app.example.com/v1alpha1 --
kind=AppService

 // Watch for changes to the primary resource AppService
 err = c.Watch(&source.Kind{Type: &appv1alpha1.AppService{}},
&handler.EnqueueRequestForObject{})

 func (r *ReconcileMemcached) Reconcile(request reconcile.Request)
(reconcile.Result, error)

 func (h *Handler) Handle(ctx context.Context, event sdk.Event) error

import (
 apierrors "k8s.io/apimachinery/pkg/api/errors"
 cachev1alpha1 "github.com/example-inc/memcached-
operator/pkg/apis/cache/v1alpha1"
 ...
)
func (r *ReconcileMemcached) Reconcile(request reconcile.Request) (reconcile.Result,
error) {
 // Fetch the Memcached instance
 instance := &cachev1alpha1.Memcached{}
 err := r.client.Get(context.TODO()
 request.NamespacedName, instance)
 if err != nil {
 if apierrors.IsNotFound(err) {
 // Request object not found, could have been deleted after reconcile request.
 // Owned objects are automatically garbage collected.
 // Return and don't requeue
 return reconcile.Result{}, nil
 }
 // Error reading the object - requeue the request.
 return reconcile.Result{}, err

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

305

b. Changez les valeurs de retour dans votre code de rapprochement:

i. Il faut remplacer l’erreur de retour par le retour réconcilié.Result{}, erreur.

ii. Il faut remplacer le retour zéro par le retour réconcilié.Result{}, nil.

c. Afin de réconcilier périodiquement un CR dans votre contrôleur, vous pouvez définir le
champ Requeue After pour réconcilier.Result. Cela fera que le contrôleur requeue la
demande et déclenchera le rapprochement après la durée souhaitée. A noter que la valeur
par défaut de 0 signifie aucune requeue.

d. En remplacement des appels au client SDK (Créer, mettre à jour, Supprimer, obtenir, liste)
par le client du conciliateur.
Consultez les exemples ci-dessous et la documentation API du contrôleur-runtimeclient
dans le projet opérateur-sdk pour plus de détails:

 }

 // Rest of your reconcile code goes here.
 ...
}

reconcilePeriod := 30 * time.Second
reconcileResult := reconcile.Result{RequeueAfter: reconcilePeriod}
...

// Update the status
err := r.client.Update(context.TODO(), memcached)
if err != nil {
 log.Printf("failed to update memcached status: %v", err)
 return reconcileResult, err
}
return reconcileResult, nil

// Create
dep := &appsv1.Deployment{...}
err := sdk.Create(dep)
// v0.0.1
err := r.client.Create(context.TODO(), dep)

// Update
err := sdk.Update(dep)
// v0.0.1
err := r.client.Update(context.TODO(), dep)

// Delete
err := sdk.Delete(dep)
// v0.0.1
err := r.client.Delete(context.TODO(), dep)

// List
podList := &corev1.PodList{}
labelSelector := labels.SelectorFromSet(labelsForMemcached(memcached.Name))
listOps := &metav1.ListOptions{LabelSelector: labelSelector}
err := sdk.List(memcached.Namespace, podList, sdk.WithListOptions(listOps))

OpenShift Dedicated 4 Opérateurs

306

e. Copiez et initialisez tous les autres champs de votre structure Handler dans la structure
Reconcile<Kind>:

3. Copiez les modifications de main.go.
La fonction principale d’un opérateur v0.1.0 dans cmd/manager/main.go configure le
gestionnaire, qui enregistre les ressources personnalisées et démarre tous les contrôleurs.

Il n’y a pas besoin de migrer les fonctions SDK sdk.Watch(), sdk.Handle(), et sdk.Run() à partir
de l’ancien main.go puisque cette logique est maintenant définie dans un contrôleur.

Cependant, s’il existe des drapeaux ou paramètres spécifiques à l’opérateur définis dans l’ancien
fichier main.go, copiez-les.

Lorsque vous avez des types de ressources tiers enregistrés avec le système SDK, consultez les
sujets avancés dans le projet opérateur-sdk pour savoir comment les enregistrer avec le schéma
du gestionnaire dans le nouveau projet.

4. Copiez des fichiers définis par l’utilisateur.
En cas de pkg, de scripts ou de documentation défini par l’utilisateur dans l’ancien projet, copiez
ces fichiers dans le nouveau projet.

5. Copiez les modifications apportées aux manifestes de déploiement.
Dans le cas des mises à jour apportées aux manifestes suivants dans l’ancien projet, copiez les
modifications apportées à leurs fichiers correspondants dans le nouveau projet. Faites attention
à ne pas écraser directement les fichiers, mais inspectez et apportez les modifications
nécessaires:

fichier Tmp/Build/Dockerfile à construire/Dockerfile

// v0.1.0
listOps := &client.ListOptions{Namespace: memcached.Namespace, LabelSelector:
labelSelector}
err := r.client.List(context.TODO(), listOps, podList)

// Get
dep := &appsv1.Deployment{APIVersion: "apps/v1", Kind: "Deployment", Name: name,
Namespace: namespace}
err := sdk.Get(dep)
// v0.1.0
dep := &appsv1.Deployment{}
err = r.client.Get(context.TODO(), types.NamespacedName{Name: name, Namespace:
namespace}, dep)

// newReconciler returns a new reconcile.Reconciler
func newReconciler(mgr manager.Manager) reconcile.Reconciler {
 return &ReconcileMemcached{client: mgr.GetClient(), scheme: mgr.GetScheme(), foo:
"bar"}
}

// ReconcileMemcached reconciles a Memcached object
type ReconcileMemcached struct {
 client client.Client
 scheme *runtime.Scheme
 // Other fields
 foo string
}

CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS

307

Il n’y a pas de répertoire tmp dans la nouvelle disposition du projet

Les règles RBAC sont mises à jour depuis le déploiement/rbac.yaml pour déployer/role.yaml
et déployer/role_binding.yaml

déployez/cr.yaml pour déployer/crds/<group>_<version>_<kind>_cr.yaml

déployez/crd.yaml pour déployer/crds/<group>_<version>_<kind>_crd.yaml

6. Copiez les dépendances définies par l’utilisateur.
Dans le cas des dépendances définies par l’utilisateur ajoutées au Gopkg.toml de l’ancien projet,
copiez-les et ajoutez-les au Gopkg.toml du nouveau projet. Exécutez dep assurez-vous de
mettre à jour le fournisseur dans le nouveau projet.

7. Confirmez vos changements.
Créez et exécutez votre opérateur pour vérifier qu’il fonctionne.

OpenShift Dedicated 4 Opérateurs

308

	Table des matières
	CHAPITRE 1. APERÇU DES OPÉRATEURS
	1.1. DESTINÉ AUX DÉVELOPPEURS
	1.2. ADMINISTRATEURS POUR LES ADMINISTRATEURS
	1.3. LES PROCHAINES ÉTAPES

	CHAPITRE 2. COMPRENDRE LES OPÉRATEURS
	2.1. EN QUOI CONSISTENT LES OPÉRATEURS?
	2.1.1. Comment utiliser les opérateurs?
	2.1.2. Cadre de l’opérateur
	2.1.3. Le modèle de maturité de l’opérateur

	2.2. FORMAT D’EMBALLAGE DU CADRE OPÉRATEUR
	2.2.1. Format de paquet
	2.2.1.1. Les manifestes
	2.2.1.2. Annotations
	2.2.1.3. Dépendances
	2.2.1.4. À propos de l’opm CLI

	2.2.2. Faits saillants
	2.2.2.1. La structure des répertoires
	2.2.2.2. Les schémas
	2.2.2.3. Les propriétés
	2.2.2.4. Exemple de catalogue
	2.2.2.5. Lignes directrices
	2.2.2.6. L’utilisation de CLI
	2.2.2.7. Automatisation

	2.3. GLOSSAIRE DU CADRE OPÉRATEUR DES TERMES COMMUNS
	2.3.1. Le paquet
	2.3.2. Image de paquet
	2.3.3. Catalogue source
	2.3.4. Canal
	2.3.5. Tête de canal
	2.3.6. Cluster de service version
	2.3.7. Dépendance
	2.3.8. Extension
	2.3.9. Image de l’index
	2.3.10. Installer le plan
	2.3.11. La multitenance
	2.3.12. Exploitant
	2.3.13. Groupe d’opérateurs
	2.3.14. Forfait
	2.3.15. Registry
	2.3.16. Abonnement
	2.3.17. Graphique de mise à jour

	2.4. GESTIONNAIRE DU CYCLE DE VIE DE L’OPÉRATEUR (OLM)
	2.4.1. Concepts et ressources du gestionnaire du cycle de vie de l’opérateur
	2.4.1.1. En quoi consiste le gestionnaire de cycle de vie de l’opérateur (OLM) Classic?
	2.4.1.2. Les ressources OLM

	2.4.2. Architecture du gestionnaire de cycle de vie de l’opérateur
	2.4.2.1. Les responsabilités des composantes
	2.4.2.2. Opérateur OLM
	2.4.2.3. Opérateur de catalogue
	2.4.2.4. Registre du catalogue

	2.4.3. Flux de travail du gestionnaire de cycle de vie de l’opérateur
	2.4.3.1. Installation de l’opérateur et mise à niveau du flux de travail dans OLM

	2.4.4. La résolution de dépendance du gestionnaire de cycle de vie de l’opérateur
	2.4.4.1. À propos de la résolution de dépendance
	2.4.4.2. Les propriétés de l’opérateur
	2.4.4.3. Dépendances des opérateurs
	2.4.4.4. Contraintes génériques
	2.4.4.5. Les préférences de dépendance
	2.4.4.6. Les mises à niveau de CRD
	2.4.4.7. Les meilleures pratiques en matière de dépendance
	2.4.4.8. Avertissements de dépendance
	2.4.4.9. Exemples de scénarios de résolution de dépendance

	2.4.5. Groupes d’opérateurs
	2.4.5.1. À propos des groupes d’opérateurs
	2.4.5.2. Adhésion au groupe d’opérateurs
	2.4.5.3. Choix de l’espace de noms cible
	2.4.5.4. Annotations du groupe d’opérateurs CSV
	2.4.5.5. Annotation d’API fournie
	2.4.5.6. Contrôle d’accès basé sur le rôle
	2.4.5.7. CSV copiés
	2.4.5.8. Groupes d’opérateurs statiques
	2.4.5.9. Intersection du groupe d’opérateurs
	2.4.5.10. Limites pour la gestion des opérateurs multilocataires
	2.4.5.11. Dépannage Groupes d’opérateurs

	2.4.6. Colocation multitenance et opérateur
	2.4.6.1. Colocation d’opérateurs dans un espace de noms

	2.4.7. Conditions de l’opérateur
	2.4.7.1. À propos des conditions de l’opérateur
	2.4.7.2. Conditions prises en charge
	2.4.7.3. Ressources supplémentaires

	2.4.8. Gestion du cycle de vie de l’opérateur
	2.4.8.1. Les métriques exposées

	2.4.9. Gestion Webhook dans Operator Lifecycle Manager
	2.4.9.1. Ressources supplémentaires

	2.5. COMPRENDRE L’OPÉRATEURHUB
	2.5.1. À propos de OperatorHub
	2.5.2. Architecture OperatorHub
	2.5.2.1. OperatorHub ressource personnalisée

	2.5.3. Ressources supplémentaires

	2.6. CATALOGUES D’OPÉRATEURS RED HAT
	2.6.1. À propos des catalogues d’opérateurs
	2.6.2. À propos des catalogues d’opérateurs Red Hat

	2.7. OPÉRATEURS EN CLUSTERS MULTILOCATAIRES
	2.7.1. L’opérateur par défaut installe les modes et le comportement
	2.7.2. La solution recommandée pour les clusters multilocataires
	2.7.3. Colocation d’opérateurs et groupes d’opérateurs

	2.8. CRDS
	2.8.1. Gestion des ressources à partir de définitions de ressources personnalisées
	2.8.1.1. Définitions de ressources personnalisées
	2.8.1.2. Créer des ressources personnalisées à partir d’un fichier
	2.8.1.3. Inspecter les ressources personnalisées

	CHAPITRE 3. LES TÂCHES DE L’UTILISATEUR
	3.1. CRÉATION D’APPLICATIONS À PARTIR D’OPÉRATEURS INSTALLÉS
	3.1.1. Création d’un cluster etcd à l’aide d’un opérateur

	CHAPITRE 4. LES TÂCHES D’ADMINISTRATEUR
	4.1. AJOUT D’OPÉRATEURS À UN CLUSTER
	4.1.1. Installation de l’opérateur avec OperatorHub
	4.1.2. Installation depuis OperatorHub à l’aide de la console Web
	4.1.3. Installation depuis OperatorHub en utilisant le CLI
	4.1.4. La préparation de plusieurs instances d’un opérateur pour les clusters multilocataires
	4.1.5. Installation d’opérateurs globaux dans des espaces de noms personnalisés
	4.1.6. Emplacement de la pod des charges de travail de l’opérateur
	4.1.7. Contrôler l’endroit où un opérateur est installé

	4.2. LA MISE À JOUR DES OPÉRATEURS INSTALLÉS
	4.2.1. La préparation d’une mise à jour de l’opérateur
	4.2.2. Changer le canal de mise à jour pour un opérateur
	4.2.3. Approbation manuelle d’une mise à jour de l’opérateur en attente

	4.3. LA SUPPRESSION DES OPÉRATEURS D’UN CLUSTER
	4.3.1. Suppression des opérateurs d’un cluster à l’aide de la console Web
	4.3.2. La suppression des opérateurs d’un cluster à l’aide du CLI
	4.3.3. Abonnements défaillants rafraîchissants

	4.4. CONFIGURATION DU SUPPORT PROXY DANS OPERATOR LIFECYCLE MANAGER
	4.4.1. Dépassement des paramètres proxy d’un opérateur
	4.4.2. Injection d’un certificat CA personnalisé

	4.5. STATUT DE L’OPÉRATEUR
	4.5.1. Conditions d’abonnement à l’opérateur
	4.5.2. Affichage du statut d’abonnement de l’opérateur en utilisant le CLI
	4.5.3. Affichage de l’état de la source du catalogue de l’opérateur en utilisant le CLI

	4.6. GESTION DES CONDITIONS DE L’OPÉRATEUR
	4.6.1. Conditions primordiales de l’opérateur
	4.6.2. La mise à jour de votre opérateur pour utiliser les conditions de l’opérateur
	4.6.2.1. Définir les valeurs par défaut

	4.6.3. Ressources supplémentaires

	4.7. GESTION DES CATALOGUES PERSONNALISÉS
	4.7.1. Conditions préalables
	4.7.2. Catalogues basés sur des fichiers
	4.7.2.1. Création d’une image de catalogue basée sur des fichiers
	4.7.2.2. La mise à jour ou le filtrage d’une image de catalogue basée sur des fichiers

	4.7.3. Catalogues SQLite
	4.7.3.1. Création d’une image d’index SQLite
	4.7.3.2. La mise à jour d’une image d’index SQLite
	4.7.3.3. Filtrage d’une image d’index SQLite

	4.7.4. Catalogue sources et admission de sécurité de pod
	4.7.4.1. La migration des catalogues de base de données SQLite vers le format de catalogue basé sur des fichiers
	4.7.4.2. La reconstruction des images du catalogue SQLite
	4.7.4.3. Configuration des catalogues à exécuter avec des autorisations élevées

	4.7.5. Ajout d’une source de catalogue à un cluster
	4.7.6. La suppression des catalogues personnalisés

	4.8. CATALOGUE SOURCE DE CALENDRIER DES POD
	4.8.1. Désactivation des objets CatalogSource par défaut au niveau local
	4.8.2. Écraser le sélecteur de nœud pour les pods sources de catalogue
	4.8.3. Dépassement du nom de classe prioritaire pour les pods sources de catalogue
	4.8.4. Les tolérances primordiales pour les pods sources de catalogue

	4.9. DÉPANNAGE DES PROBLÈMES DE L’OPÉRATEUR
	4.9.1. Conditions d’abonnement à l’opérateur
	4.9.2. Affichage du statut d’abonnement de l’opérateur en utilisant le CLI
	4.9.3. Affichage de l’état de la source du catalogue de l’opérateur en utilisant le CLI
	4.9.4. État de la pod de l’opérateur d’interrogation
	4.9.5. Collecte des journaux de l’opérateur

	CHAPITRE 5. DÉVELOPPER DES OPÉRATEURS
	5.1. À PROPOS DE L’OPÉRATEUR SDK
	5.1.1. En quoi consistent les opérateurs?
	5.1.2. Flux de travail de développement
	5.1.3. Ressources supplémentaires

	5.2. INSTALLATION DE L’OPÉRATEUR SDK CLI
	5.2.1. Installation de l’opérateur SDK CLI sur Linux
	5.2.2. Installation de l’opérateur SDK CLI sur macOS

	5.3. OPÉRATEURS BASÉS SUR GO
	5.3.1. Didacticiel d’opérateur SDK pour les opérateurs Go-based
	5.3.1.1. Conditions préalables
	5.3.1.2. Créer un projet
	5.3.1.3. Création d’une API et d’un contrôleur
	5.3.1.4. Implémentation du contrôleur
	5.3.1.5. Activer le support proxy
	5.3.1.6. Exécution de l’opérateur
	5.3.1.7. Créer une ressource personnalisée
	5.3.1.8. Ressources supplémentaires

	5.3.2. Aménagement du projet pour les opérateurs Go-based
	5.3.2.1. Configuration du projet Go-based

	5.3.3. La mise à jour des projets d’opérateur Go-based pour les versions SDK plus récentes de l’opérateur
	5.3.3.1. La mise à jour des projets d’opérateurs Go-based pour l’opérateur SDK 1.38.0
	5.3.3.2. Ressources supplémentaires

	5.4. OPÉRATEURS BASÉS SUR ANSIBLE
	5.4.1. Didacticiel d’opérateur SDK pour les opérateurs basés sur Ansible
	5.4.1.1. Conditions préalables
	5.4.1.2. Créer un projet
	5.4.1.3. Création d’une API
	5.4.1.4. La modification du gestionnaire
	5.4.1.5. Activer le support proxy
	5.4.1.6. Exécution de l’opérateur
	5.4.1.7. Créer une ressource personnalisée
	5.4.1.8. Ressources supplémentaires

	5.4.2. Aménagement du projet pour les opérateurs basés sur Ansible
	5.4.2.1. Disposition de projet basée sur Ansible

	5.4.3. La mise à jour des projets pour les versions SDK plus récentes de l’opérateur
	5.4.3.1. La mise à jour des projets d’opérateurs accessibles pour l’opérateur SDK 1.38.0
	5.4.3.2. Ressources supplémentaires

	5.4.4. Assistance Ansible dans le SDK de l’opérateur
	5.4.4.1. Fichiers de ressources personnalisés
	5.4.4.2. fichier Watch.yaml
	5.4.4.3. Des variables supplémentaires envoyées à Ansible
	5.4.4.4. Ansible Runner Ansible Ansible

	5.4.5. Collection Kubernetes pour Ansible
	5.4.5.1. Installation de la collection Kubernetes pour Ansible
	5.4.5.2. Tester la collection Kubernetes localement
	5.4.5.3. Les prochaines étapes

	5.4.6. En utilisant Ansible à l’intérieur d’un opérateur
	5.4.6.1. Fichiers de ressources personnalisés
	5.4.6.2. Tester un opérateur basé sur Ansible localement
	5.4.6.3. Essai d’un opérateur Ansible sur le cluster
	5.4.6.4. Journaux Ansibles

	5.4.7. Gestion de l’état des ressources personnalisées
	5.4.7.1. À propos de l’état des ressources personnalisées dans Ansible-based Operators
	5.4.7.2. Le suivi manuel de l’état des ressources personnalisées

	5.5. OPÉRATEURS BASÉS SUR LE BARREAU
	5.5.1. Didacticiel SDK opérateur pour les opérateurs basés sur Helm
	5.5.1.1. Conditions préalables
	5.5.1.2. Créer un projet
	5.5.1.3. Comprendre la logique de l’opérateur
	5.5.1.4. Activer le support proxy
	5.5.1.5. Exécution de l’opérateur
	5.5.1.6. Créer une ressource personnalisée
	5.5.1.7. Ressources supplémentaires

	5.5.2. Aménagement du projet pour les opérateurs basés sur Helm
	5.5.2.1. Disposition de projet basée sur le helm

	5.5.3. La mise à jour des projets basés sur Helm pour les versions SDK plus récentes de l’opérateur
	5.5.3.1. La mise à jour des projets d’opérateur basé sur Helm pour l’opérateur SDK 1.38.0
	5.5.3.2. Ressources supplémentaires

	5.5.4. Appui à la barre dans le SDK de l’opérateur
	5.5.4.1. Cartes de barre

	5.6. DÉFINITION DES VERSIONS DE SERVICE CLUSTER (CSV)
	5.6.1. Comment fonctionne la génération de CSV
	5.6.1.1. Fichiers et ressources générés
	5.6.1.2. Gestion des versions

	5.6.2. Champs CSV définis manuellement
	5.6.3. Annotations de métadonnées de l’opérateur
	5.6.3.1. L’infrastructure comporte des annotations
	5.6.3.2. L’infrastructure dépréciée comporte des annotations
	5.6.3.3. Autres annotations facultatives

	5.6.4. Activer votre opérateur pour les environnements réseau restreints
	5.6.5. Activer votre opérateur pour plusieurs architectures et systèmes d’exploitation
	5.6.5.1. Architecture et support du système d’exploitation pour les opérateurs

	5.6.6. Définition d’un espace de noms suggéré
	5.6.7. Définir un espace de noms suggéré avec le sélecteur de nœud par défaut
	5.6.8. Conditions d’activation de l’opérateur
	5.6.9. Définir des webhooks
	5.6.9.1. Considérations Webhook pour OLM

	5.6.10. Comprendre vos définitions de ressources personnalisées (CRD)
	5.6.10.1. Les CRD possédés
	5.6.10.2. CRD requis
	5.6.10.3. Les mises à niveau de CRD
	5.6.10.4. Les modèles CRD
	5.6.10.5. Cacher des objets internes
	5.6.10.6. Initialisation des ressources personnalisées requises

	5.6.11. Comprendre vos services API
	5.6.11.1. Les services API possédés
	5.6.11.2. Les services d’API requis

	5.7. EN TRAVAILLANT AVEC DES IMAGES GROUPÉES
	5.7.1. Groupement d’un opérateur
	5.7.2. Déploiement d’un opérateur avec le gestionnaire du cycle de vie de l’opérateur
	5.7.3. La publication d’un catalogue contenant un opérateur groupé
	5.7.4. Tester une mise à niveau de l’opérateur sur le gestionnaire de cycle de vie de l’opérateur
	5.7.5. Contrôle de la compatibilité de l’opérateur avec les versions dédiées d’OpenShift
	5.7.6. Ressources supplémentaires

	5.8. CONFORMITÉ À L’ADMISSION DE SÉCURITÉ DE POD
	5.8.1. À propos de l’admission à la sécurité de pod
	5.8.1.1. Les modes d’admission à la sécurité de Pod
	5.8.1.2. Les profils d’admission à la sécurité de Pod
	5.8.1.3. Espaces de noms privilégiés

	5.8.2. À propos de la synchronisation de l’admission de sécurité de pod
	5.8.2.1. Exclusions de l’espace de noms de synchronisation de l’entrée de Pod en matière de sécurité

	5.8.3. Assurer que les charges de travail de l’opérateur s’exécutent dans des espaces de noms définis au niveau de sécurité des pod restreints
	5.8.4. Gestion de l’admission de sécurité des pod pour les charges de travail de l’opérateur qui nécessitent des autorisations accrues
	5.8.5. Ressources supplémentaires

	5.9. LA VALIDATION DES OPÉRATEURS À L’AIDE DE L’OUTIL DE CARTE DE POINTAGE
	5.9.1. À propos de l’outil de tableau de bord
	5.9.2. Configuration de la carte de pointage
	5.9.3. Des tests de carte de pointage intégrés
	5.9.4. Exécution de l’outil de tableau de bord
	5.9.5. Sortie du tableau de bord
	5.9.6. La sélection des tests
	5.9.7. Activer les tests parallèles
	5.9.8. Des tests personnalisés de carte de pointage

	5.10. LA VALIDATION DES PAQUETS D’OPÉRATEURS
	5.10.1. À propos de la commande de validation du paquet
	5.10.2. Ensemble intégré valider les tests
	5.10.3. Exécution de la commande de validation du paquet

	5.11. DÉTECTION ET SUPPORT DE CLUSTERS À HAUTE DISPONIBILITÉ OU À UN SEUL NŒUD
	5.11.1. À propos de l’API de mode haute disponibilité du cluster
	5.11.2. Exemple d’utilisation de l’API dans les projets d’opérateur

	5.12. CONFIGURATION DE LA SURVEILLANCE INTÉGRÉE AVEC PROMETHEUS
	5.13. CONFIGURATION DE L’ÉLECTION DES DIRIGEANTS
	5.13.1. Exemples d’élection du chef d’opérateur
	5.13.1.1. Élection de chef à vie
	5.13.1.2. Élection du chef avec bail

	5.14. UTILITAIRE D’ÉLAGAGE D’OBJETS POUR LES OPÉRATEURS GO-BASED
	5.14.1. À propos de l’utilitaire d’élagage de l’opérateur-lib
	5.14.2. Configuration de l’utilitaire d’élagage

	5.15. LES PROJETS DE MANIFESTATION DE PAQUETS MIGRATOIRES AU FORMAT DE PAQUETAGE
	5.15.1. À propos de la migration du format d’emballage
	5.15.2. La migration d’un projet manifeste de paquet pour regrouper le format

	5.16. OPÉRATEUR SDK CLI RÉFÉRENCE
	5.16.1. le paquet
	5.16.1.1. de valider

	5.16.2. le nettoyage
	5.16.3. achèvement des travaux
	5.16.4. créer
	5.16.4.1. API

	5.16.5. générer
	5.16.5.1. le paquet
	5.16.5.2. kustomize

	5.16.6. init
	5.16.7. courir
	5.16.7.1. le paquet
	5.16.7.2. la mise à niveau de paquet

	5.16.8. carte de pointage

	5.17. LA MIGRATION VERS L’OPÉRATEUR SDK V0.1.0
	5.17.1. Création d’un nouveau projet Operator SDK v0.1.0
	5.17.2. La migration de types personnalisés à partir de pkg/apis
	5.17.3. Code de conciliation migratoire

