Ce contenu n'est pas disponible dans la langue sélectionnée.

Chapter 9. Validating Red Hat AI Inference Server benefits using key metrics


Use the following metrics to evaluate the performance of the LLM model being served with AI Inference Server:

  • Time to first token (TTFT): The time from when a request is sent to when the first token of the response is received.
  • Time per output token (TPOT): The average time it takes to generate each token after the first one.
  • Latency: The total time required to generate the full response.
  • Throughput: The total number of output tokens the model can produce at the same time across all users and requests.

Complete the procedure below to run a benchmark test that shows how AI Inference Server, and other inference servers, perform according to these metrics.

Prerequisites

  • AI Inference Server container image
  • GitHub account
  • Python 3.9 or higher

Procedure

  1. On your host system, start an AI Inference Server container and serve a model.

    $ podman run --rm -it --device nvidia.com/gpu=all \
    --shm-size=4GB -p 8000:8000 \
    --env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
    --env "HF_HUB_OFFLINE=0" \
    -v ./rhaiis-cache:/opt/app-root/src/.cache \
    --security-opt=label=disable \
    registry.redhat.io/rhaiis/vllm-cuda-rhel9:3.2.5 \
    --model RedHatAI/Llama-3.2-1B-Instruct-FP8
    Copy to Clipboard Toggle word wrap
  2. In a separate terminal tab, install the benchmark tool dependencies.

    $ pip install vllm pandas datasets
    Copy to Clipboard Toggle word wrap
  3. Clone the vLLM Git repository:

    $ git clone https://github.com/vllm-project/vllm.git
    Copy to Clipboard Toggle word wrap
  4. Run the ./vllm/benchmarks/benchmark_serving.py script.

    $ python vllm/benchmarks/benchmark_serving.py --backend vllm --model RedHatAI/Llama-3.2-1B-Instruct-FP8 --num-prompts 100 --dataset-name random  --random-input 1024 --random-output 512 --port 8000
    Copy to Clipboard Toggle word wrap

Verification

The results show how AI Inference Server performs according to key server metrics:

============ Serving Benchmark Result ============
Successful requests:                    100
Benchmark duration (s):                 4.61
Total input tokens:                     102300
Total generated tokens:                 40493
Request throughput (req/s):             21.67
Output token throughput (tok/s):        8775.85
Total Token throughput (tok/s):         30946.83
---------------Time to First Token----------------
Mean TTFT (ms):                         193.61
Median TTFT (ms):                       193.82
P99 TTFT (ms):                          303.90
-----Time per Output Token (excl. 1st token)------
Mean TPOT (ms):                         9.06
Median TPOT (ms):                       8.57
P99 TPOT (ms):                          13.57
---------------Inter-token Latency----------------
Mean ITL (ms):                          8.54
Median ITL (ms):                        8.49
P99 ITL (ms):                           13.14
==================================================
Copy to Clipboard Toggle word wrap

Try changing the parameters of this benchmark and running it again. Notice how vllm as a backend compares to other options. Throughput should be consistently higher, while latency should be lower.

  • Other options for --backend are: tgi, lmdeploy, deepspeed-mii, openai, and openai-chat
  • Other options for --dataset-name are: sharegpt, burstgpt, sonnet, random, hf

Additional resources

Retour au début
Red Hat logoGithubredditYoutubeTwitter

Apprendre

Essayez, achetez et vendez

Communautés

À propos de la documentation Red Hat

Nous aidons les utilisateurs de Red Hat à innover et à atteindre leurs objectifs grâce à nos produits et services avec un contenu auquel ils peuvent faire confiance. Découvrez nos récentes mises à jour.

Rendre l’open source plus inclusif

Red Hat s'engage à remplacer le langage problématique dans notre code, notre documentation et nos propriétés Web. Pour plus de détails, consultez le Blog Red Hat.

À propos de Red Hat

Nous proposons des solutions renforcées qui facilitent le travail des entreprises sur plusieurs plates-formes et environnements, du centre de données central à la périphérie du réseau.

Theme

© 2026 Red Hat