Ce contenu n'est pas disponible dans la langue sélectionnée.

Preface


As a data scientist, you can organize your data science work into a single project. A project in OpenShift AI can consist of the following components:

Workbenches
Creating a workbench allows you to work with models in your preferred IDE, such as JupyterLab.
Cluster storage
For projects that require data retention, you can add cluster storage to the project.
Connections
Adding a connection to your project allows you to connect data inputs to your workbenches.
Pipelines
Standardize and automate machine learning workflows to enable you to further enhance and deploy your data science models.
Models and model servers
Deploy a trained data science model to serve intelligent applications. Your model is deployed with an endpoint that allows applications to send requests to the model.
Retour au début
Red Hat logoGithubredditYoutubeTwitter

Apprendre

Essayez, achetez et vendez

Communautés

À propos de la documentation Red Hat

Nous aidons les utilisateurs de Red Hat à innover et à atteindre leurs objectifs grâce à nos produits et services avec un contenu auquel ils peuvent faire confiance. Découvrez nos récentes mises à jour.

Rendre l’open source plus inclusif

Red Hat s'engage à remplacer le langage problématique dans notre code, notre documentation et nos propriétés Web. Pour plus de détails, consultez le Blog Red Hat.

À propos de Red Hat

Nous proposons des solutions renforcées qui facilitent le travail des entreprises sur plusieurs plates-formes et environnements, du centre de données central à la périphérie du réseau.

Theme

© 2025 Red Hat