Ce contenu n'est pas disponible dans la langue sélectionnée.
Chapter 3. Install the Client-Side Tools
Before you deploy the overcloud, you need to determine the configuration settings to apply to each client. Copy the example environment files from the director’s Heat template collection and modify them to suit your environment.
If your deployment uses containerized services, the environment files are available at /usr/share/openstack-tripleo-heat-templates/docker/services/*.
3.1. Set Centralized Logging Client Parameters Copier lienLien copié sur presse-papiers!
For Fluentd configuration settings, copy /usr/share/openstack-tripleo-heat-templates/environments/logging-environment.yaml and modify the file to suit your environment. For example:
Simple configuration
Example SSL configuration
-
LoggingServers- The destination system that will receive Fluentd log messages. -
LoggingUsesSSL- Setting that determines whethersecure_forwardis used when forwarding log messages. -
LoggingSharedKey- The shared secret used bysecure_forward. -
LoggingSSLCertificate- The PEM-encoded contents of the SSL CA certificate.
3.2. Set Availability Monitoring Client Parameters Copier lienLien copié sur presse-papiers!
For the Sensu client configuration settings, copy /usr/share/openstack-tripleo-heat-templates/environments/monitoring-environment.yaml and modify the file to suit your environment. For example:
-
MonitoringRabbit- These parameters connect the Sensu client services to the RabbitMQ instance that runs on the monitoring server. -
MonitoringRabbitUseSSL- Enables SSL for the RabbitMQ client. Uses SSL transport if the private key or certificate chain are not specified, as below. -
MonitoringRabbitSSLPrivateKey- Defines the path to the private key file, or can contain the contents of that file. -
MonitoringRabbitSSLCertChain- Defines the private SSL certificate chain to use. -
SensuClientCustomConfig- Specify additional Sensu client configuration. Defines the OpenStack credentials to be used, including username/password,auth_url, tenant, and region.
3.3. Set Performance Monitoring Client Parameters Copier lienLien copié sur presse-papiers!
Performance monitoring collects system information periodically and provides the mechanism to store and monitor the values in a variety of ways using the collectd daemon. The collectd daemon stores the data it collects, like operating system and log files, or makes it available over the network. You can use these statistics to monitor systems, find performance bottlenecks, and predict future system load.
Red Hat OpenStack Platform supports performance monitoring (collectd) only on the client side (the overcloud nodes).
Make a copy of
/usr/share/openstack-tripleo-heat-templates/environments/collectd-environment.yamlfile for the monitoring server and modify it to include the parameters defaults as follows:Copy to Clipboard Copied! Toggle word wrap Toggle overflow -
CollectdServer- Address of remote collectd server where the metrics are sent. -
CollectdServerPort- Port for collectd server. CollectdSecurityLevel- Security level setting for remote collectd connection. By default, the security level isNone.If the
CollectdSecurityLevelparameter is set toEncryptorSign, you need to set theCollectdUsername: userandCollectdPassword: passwordparameters for authentication.-
CollectdDefaultPlugins- By default, collectd comes with thedisk,interface,load,memory,processes, andtcpconnsplugins. You can add extra plugins using theCollectdExtraPluginsparameter.
-
3.4. Install Operational Tools on Overcloud Nodes Copier lienLien copié sur presse-papiers!
Include the modified YAML files with your openstack overcloud deploy command to install the Sensu client, Fluentd tools, and collectd daemon on all overcloud nodes. For example:
3.5. Filter and Tranform Logging Data Copier lienLien copié sur presse-papiers!
You can filter and transform events sent to Fluentd by setting the LoggingDefaultFilters parameter in your environment file. For example, the record_transformer type can modify incoming events:
As a result, the data received by Kibana has been transformed accordingly: