Ce contenu n'est pas disponible dans la langue sélectionnée.

Chapter 3. Upgrading the Undercloud


This process upgrades the undercloud and its overcloud images to Red Hat OpenStack Platform 14.

3.1. Converting to next generation power management drivers

Red Hat OpenStack Platform now uses next generation drivers, also known as hardware types, that replace older drivers.

The following table shows an analogous comparison between older drivers with their next generation hardware type equivalent:

Expand
Old DriverNew Hardware Type

pxe_ipmitool

ipmi

pxe_drac

idrac

pxe_ilo

ilo

pxe_ucs

cisco-ucs-managed

pxe_irmc

irmc

VBMC (pxe_ipmitool)

ipmi

fake_pxe

fake-hardware

In OpenStack Platform 14, these older drivers have been removed and are no longer accessible. You must change to hardware types before upgrading to OpenStack Platform 14.

Procedure

  1. Check the current list of hardware types enabled:

    $ source ~/stackrc
    $ openstack baremetal driver list --type dynamic
    Copy to Clipboard Toggle word wrap
  2. If you use a hardware type driver that is not enabled, enable the driver using the enabled_hardware_types parameter in the undercloud.conf file:

    enabled_hardware_types = ipmi,redfish,idrac
    Copy to Clipboard Toggle word wrap
  3. Save the file and refresh the undercloud:

    $ openstack undercloud install
    Copy to Clipboard Toggle word wrap
  4. Run the following commands, substituting the OLDDRIVER and NEWDRIVER variables for your power management type:

    $ source ~/stackrc
    $ OLDDRIVER="pxe_ipmitool"
    $ NEWDRIVER="ipmi"
    $ for NODE in $(openstack baremetal node list --driver $OLDDRIVER -c UUID -f value) ; do openstack baremetal node set $NODE --driver $NEWDRIVER; done
    Copy to Clipboard Toggle word wrap

3.2. Upgrading the director packages to OpenStack Platform 14

This procedure upgrades the director toolset and the core Heat template collection to the OpenStack Platform 14 release.

Procedure

  1. Log in to the director as the stack user.
  2. Disable the current OpenStack Platform repository:

    $ sudo subscription-manager repos --disable=rhel-7-server-openstack-13-rpms
    Copy to Clipboard Toggle word wrap
  3. Enable the new OpenStack Platform repository:

    $ sudo subscription-manager repos --enable=rhel-7-server-openstack-14-rpms
    Copy to Clipboard Toggle word wrap
  4. Run yum to upgrade the director’s main packages:

    $ sudo yum update -y python-tripleoclient* openstack-tripleo-common openstack-tripleo-heat-templates
    Copy to Clipboard Toggle word wrap

3.3. Preparing container images

The overcloud configuration requires initial registry configuration to determine where to obtain images and how to store them. Complete the following steps to generate and customize an environment file for preparing your container images.

Procedure

  1. Log in to your undercloud host as the stack user.
  2. Generate the default container image preparation file:

    $ openstack tripleo container image prepare default \
      --local-push-destination \
      --output-env-file containers-prepare-parameter.yaml
    Copy to Clipboard Toggle word wrap

    This command includes the following additional options:

    • --local-push-destination sets the registry on the undercloud as the location for container images. This means the director pulls the necessary images from the Red Hat Container Catalog and pushes them to the registry on the undercloud. The director uses this registry as the container image source. To pull directly from the Red Hat Container Catalog, omit this option.
    • --output-env-file is an environment file name. The contents of this file include the parameters for preparing your container images. In this case, the name of the file is containers-prepare-parameter.yaml.

      Note

      You can also use the same containers-prepare-parameter.yaml file to define a container image source for both the undercloud and the overcloud.

  3. Edit the containers-prepare-parameter.yaml and make the modifications to suit your requirements.

3.4. Container image preparation parameters

The default file for preparing your containers (containers-prepare-parameter.yaml) contains the ContainerImagePrepare Heat parameter. This parameter defines a list of strategies for preparing a set of images:

parameter_defaults:
  ContainerImagePrepare:
  - (strategy one)
  - (strategy two)
  - (strategy three)
  ...
Copy to Clipboard Toggle word wrap

Each strategy accepts a set of sub-parameters that define which images to use and what to do with them. The following table contains information about the sub-parameters you can use with each ContainerImagePrepare strategy:

Expand
ParameterDescription

excludes

List of image name substrings to exclude from a strategy.

includes

List of image name substrings to include in a strategy. At least one image name must match an existing image. All excludes are ignored if includes is specified.

modify_append_tag

String to append to the tag for the destination image. For example, if you pull an image with the tag 14.0-89 and set the modify_append_tag to -hotfix, the director tags the final image as 14.0-89-hotfix.

modify_only_with_labels

A dictionary of image labels that filter the images to modify. If an image matches the labels defined, the director includes the image in the modification process.

modify_role

String of ansible role names to run during upload but before pushing the image to the destination registry.

modify_vars

Dictionary of variables to pass to modify_role.

push_destination

The namespace of the registry to push images during the upload process. When you specify a namespace for this parameter, all image parameters use this namespace too. If set to true, the push_destination is set to the undercloud registry namespace. It is not recommended to set this parameters to false in production environments.

pull_source

The source registry from where to pull the original container images.

set

A dictionary of key: value definitions that define where to obtain the initial images.

tag_from_label

Defines the label pattern to tag the resulting images. Usually sets to {version}-{release}.

The set parameter accepts a set of key: value definitions. The following table contains information about the keys:

Expand
KeyDescription

ceph_image

The name of the Ceph Storage container image.

ceph_namespace

The namespace of the Ceph Storage container image.

ceph_tag

The tag of the Ceph Storage container image.

name_prefix

A prefix for each OpenStack service image.

name_suffix

A suffix for each OpenStack service image.

namespace

The namespace for each OpenStack service image.

neutron_driver

The driver to use to determine which OpenStack Networking (neutron) container to use. Use a null value to set to the standard neutron-server container. Set to ovn to use OVN-based containers. Set to odl to use OpenDaylight-based containers.

tag

The tag that the director uses to identify the images to pull from the source registry. You usually keep this key set to latest.

Note

The set section might contains several parameters that begin with openshift_. These parameters are for various scenarios involving OpenShift-on-OpenStack.

3.5. Checking the director configuration

Check the /usr/share/python-tripleoclient/undercloud.conf.sample for new or deprecated parameters that might be applicable to your environment. Modify these parameters in your current /home/stack/undercloud.conf file. In particular, note the following parameters:

  • container_images_file, which you should set to the absolute location of your containers-prepare-parameter.yaml file.
  • enabled_drivers, which you should remove. The older drivers have now been replaced by hardware_types.
  • generate_service_certificate, which now defaults to true. Switch to false if your undercloud did not originally use SSL and you have no intention to enable SSL . Note that enabling SSL on the undercloud requires providing extra environment files during upgrade to establish trust between the undercloud and overcloud nodes

3.6. Director configuration parameters

The following list contains information about parameters for configuring the undercloud.conf file. Keep all parameters within their relevant sections to avoid errors.

Defaults

The following parameters are defined in the [DEFAULT] section of the undercloud.conf file:

additional_architectures

A list of additional (kernel) architectures that an overcloud supports. Currently the overcloud supports ppc64le architecture.

Note

When enabling support for ppc64le, you must also set ipxe_enabled to False

certificate_generation_ca
The certmonger nickname of the CA that signs the requested certificate. Use this option only if you have set the generate_service_certificate parameter. If you select the local CA, certmonger extracts the local CA certificate to /etc/pki/ca-trust/source/anchors/cm-local-ca.pem and adds the certificate to the trust chain.
clean_nodes
Defines whether to wipe the hard drive between deployments and after introspection.
cleanup
Cleanup temporary files. Set this to False to leave the temporary files used during deployment in place after the command is run. This is useful for debugging the generated files or if errors occur.
container_images_file

Heat environment file with container image information. This can either be:

  • Parameters for all required container images
  • Or the ContainerImagePrepare parameter to drive the required image preparation. Usually the file containing this parameter is named containers-prepare-parameter.yaml.
custom_env_files
Additional environment file to add to the undercloud installation.
deployment_user
The user installing the undercloud. Leave this parameter unset to use the current default user (stack).
discovery_default_driver
Sets the default driver for automatically enrolled nodes. Requires enable_node_discovery enabled and you must include the driver in the enabled_hardware_types list.
docker_insecure_registries
A list of insecure registries for docker to use. Use this parameter if you want to pull images from another source, such as a private container registry. In most cases, docker has the certificates to pull container images from either the Red Hat Container Catalog or from your Satellite server if the undercloud is registered to Satellite.
docker_registry_mirror
An optional registry-mirror configured in /etc/docker/daemon.json
enable_ironic; enable_ironic_inspector; enable_mistral; enable_tempest; enable_validations; enable_zaqar
Defines the core services to enable for director. Leave these parameters set to true.
enable_ui
Defines whether to install the director web UI. Use this parameter to perform overcloud planning and deployments through a graphical web interface. Note that the UI is only available with SSL/TLS enabled using either the undercloud_service_certificate or generate_service_certificate.
enable_node_discovery
Automatically enroll any unknown node that PXE-boots the introspection ramdisk. New nodes use the fake_pxe driver as a default but you can set discovery_default_driver to override. You can also use introspection rules to specify driver information for newly enrolled nodes.
enable_novajoin
Defines whether to install the novajoin metadata service in the Undercloud.
enable_routed_networks
Defines whether to enable support for routed control plane networks.
enable_swift_encryption
Defines whether to enable Swift encryption at-rest.
enable_telemetry
Defines whether to install OpenStack Telemetry services (gnocchi, aodh, panko) in the undercloud. Set enable_telemetry parameter to true if you want to install and configure telemetry services automatically. The default value is false, which disables telemetry on the undercloud. This parameter is required if using other products that consume metrics data, such as Red Hat CloudForms.
enabled_hardware_types
A list of hardware types to enable for the undercloud.
generate_service_certificate
Defines whether to generate an SSL/TLS certificate during the undercloud installation, which is used for the undercloud_service_certificate parameter. The undercloud installation saves the resulting certificate /etc/pki/tls/certs/undercloud-[undercloud_public_vip].pem. The CA defined in the certificate_generation_ca parameter signs this certificate.
heat_container_image
URL for the heat container image to use. Leave unset.
heat_native
Use native heat templates. Leave as true.
hieradata_override
Path to hieradata override file that configures Puppet hieradata on the director, providing custom configuration to services beyond the undercloud.conf parameters. If set, the undercloud installation copies this file to the /etc/puppet/hieradata directory and sets it as the first file in the hierarchy. See Configuring hieradata on the undercloud for details on using this feature.
inspection_extras
Defines whether to enable extra hardware collection during the inspection process. This parameter requires python-hardware or python-hardware-detect package on the introspection image.
inspection_interface
The bridge the director uses for node introspection. This is a custom bridge that the director configuration creates. The LOCAL_INTERFACE attaches to this bridge. Leave this as the default br-ctlplane.
inspection_runbench
Runs a set of benchmarks during node introspection. Set this parameter to true to enable the benchmarks. This option is necessary if you intend to perform benchmark analysis when inspecting the hardware of registered nodes.
ipa_otp
Defines the one time password to register the Undercloud node to an IPA server. This is required when enable_novajoin is enabled.
ipxe_enabled
Defines whether to use iPXE or standard PXE. The default is true, which enables iPXE. Set to false to set to standard PXE.
local_interface

The chosen interface for the director’s Provisioning NIC. This is also the device the director uses for DHCP and PXE boot services. Change this value to your chosen device. To see which device is connected, use the ip addr command. For example, this is the result of an ip addr command:

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000
    link/ether 52:54:00:75:24:09 brd ff:ff:ff:ff:ff:ff
    inet 192.168.122.178/24 brd 192.168.122.255 scope global dynamic eth0
       valid_lft 3462sec preferred_lft 3462sec
    inet6 fe80::5054:ff:fe75:2409/64 scope link
       valid_lft forever preferred_lft forever
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noop state DOWN
    link/ether 42:0b:c2:a5:c1:26 brd ff:ff:ff:ff:ff:ff
Copy to Clipboard Toggle word wrap

In this example, the External NIC uses eth0 and the Provisioning NIC uses eth1, which is currently not configured. In this case, set the local_interface to eth1. The configuration script attaches this interface to a custom bridge defined with the inspection_interface parameter.

local_ip
The IP address defined for the director’s Provisioning NIC. This is also the IP address that the director uses for DHCP and PXE boot services. Leave this value as the default 192.168.24.1/24 unless you use a different subnet for the Provisioning network, for example, if it conflicts with an existing IP address or subnet in your environment.
local_mtu
MTU to use for the local_interface. Do not exceed 1500 for the undercloud.
local_subnet
The local subnet to use for PXE boot and DHCP interfaces. The local_ip address should reside in this subnet. The default is ctlplane-subnet.
net_config_override
Path to network configuration override template. If you set this parameter, the undercloud uses a JSON format template to configure the networking with os-net-config. The undercloud ignores the network parameters set in undercloud.conf. See /usr/share/python-tripleoclient/undercloud.conf.sample for an example.
output_dir
Directory to output state, processed heat templates, and Ansible deployment files.
overcloud_domain_name

The DNS domain name to use when deploying the overcloud.

Note

When configuring the overcloud, the CloudDomain parameter must be set to a matching value. Set this parameter in an environment file when you configure your overcloud.

roles_file
The roles file to override for undercloud installation. It is highly recommended to leave unset so that the director installation uses the default roles file.
scheduler_max_attempts
Maximum number of times the scheduler attempts to deploy an instance. This value must be greater or equal to the number of bare metal nodes that you expect to deploy at once to work around potential race condition when scheduling.
service_principal
The Kerberos principal for the service using the certificate. Use this parameter only if your CA requires a Kerberos principal, such as in FreeIPA.
subnets
List of routed network subnets for provisioning and introspection. See Subnets for more information. The default value includes only the ctlplane-subnet subnet.
templates
Heat templates file to override.
undercloud_admin_host
The IP address defined for the director Admin API when using SSL/TLS. This is an IP address for administration endpoint access over SSL/TLS. The director configuration attaches the director’s IP address to its software bridge as a routed IP address, which uses the /32 netmask.
undercloud_debug
Sets the log level of undercloud services to DEBUG. Set this value to true to enable.
undercloud_enable_selinux
Enable or disable SELinux during the deployment. It is highly recommended to leave this value set to true unless you are debugging an issue.
undercloud_hostname
Defines the fully qualified host name for the undercloud. If set, the undercloud installation configures all system host name settings. If left unset, the undercloud uses the current host name, but the user must configure all system host name settings appropriately.
undercloud_log_file
The path to a log file to store the undercloud install/upgrade logs. By default, the log file is install-undercloud.log within the home directory. For example, /home/stack/install-undercloud.log.
undercloud_nameservers
A list of DNS nameservers to use for the undercloud hostname resolution.
undercloud_ntp_servers
A list of network time protocol servers to help synchronize the undercloud date and time.
undercloud_public_host
The IP address defined for the director Public API when using SSL/TLS. This is an IP address for accessing the director endpoints externally over SSL/TLS. The director configuration attaches this IP address to the director software bridge as a routed IP address, which uses the /32 netmask.
undercloud_service_certificate
The location and filename of the certificate for OpenStack SSL/TLS communication. Ideally, you obtain this certificate from a trusted certificate authority. Otherwise, generate your own self-signed certificate.
undercloud_update_packages
Defines whether to update packages during the undercloud installation.

Subnets

Each provisioning subnet is a named section in the undercloud.conf file. For example, to create a subnet called ctlplane-subnet, use the following sample in your undercloud.conf file:

[ctlplane-subnet]
cidr = 192.168.24.0/24
dhcp_start = 192.168.24.5
dhcp_end = 192.168.24.24
inspection_iprange = 192.168.24.100,192.168.24.120
gateway = 192.168.24.1
masquerade = true
Copy to Clipboard Toggle word wrap

You can specify as many provisioning networks as necessary to suit your environment.

gateway
The gateway for the overcloud instances. This is the undercloud host, which forwards traffic to the External network. Leave this as the default 192.168.24.1 unless you use a different IP address for the director or want to use an external gateway directly.
Note

The director configuration also enables IP forwarding automatically using the relevant sysctl kernel parameter.

cidr
The network that the director uses to manage overcloud instances. This is the Provisioning network, which the undercloud neutron service manages. Leave this as the default 192.168.24.0/24 unless you use a different subnet for the Provisioning network.
masquerade
Defines whether to masquerade the network defined in the cidr for external access. This provides the Provisioning network with a degree of network address translation (NAT) so that the Provisioning network has external access through the director.
dhcp_start; dhcp_end
The start and end of the DHCP allocation range for overcloud nodes. Ensure this range contains enough IP addresses to allocate your nodes.

3.7. Upgrading the director

Complete the following steps to upgrade the director.

Procedure

  1. Run the following command to upgrade the director on the undercloud:

    $ openstack undercloud upgrade
    Copy to Clipboard Toggle word wrap

    This command launches the director configuration script. The director upgrades its packages and configures its services to suit the settings in the undercloud.conf. This script takes several minutes to complete.

    Note

    The director configuration script prompts for confirmation before proceeding. Bypass this confirmation using the -y option:

    $ openstack undercloud upgrade -y
    Copy to Clipboard Toggle word wrap
  2. The script also starts all OpenStack Platform service containers on the undercloud automatically. Check the enabled containers using the following command:

    [stack@director ~]$ sudo docker ps
    Copy to Clipboard Toggle word wrap
  3. The script adds the stack user to the docker group to ensure that the stack user has access to container management commands. Refresh the stack user permissions with the following command:

    [stack@director ~]$ exec su -l stack
    Copy to Clipboard Toggle word wrap

    The command prompts you to log in again. Enter the stack user password.

  4. To initialize the stack user to use the command line tools, run the following command:

    [stack@director ~]$ source ~/stackrc
    Copy to Clipboard Toggle word wrap

    The prompt now indicates OpenStack commands authenticate and execute against the undercloud;

    (undercloud) [stack@director ~]$
    Copy to Clipboard Toggle word wrap

The director upgrade is complete.

3.8. Upgrading the overcloud images

You must replace your current overcloud images with new versions. The new images ensure that the director can introspect and provision your nodes using the latest version of OpenStack Platform software.

Prerequisites

  • You have upgraded the undercloud to the latest version.

Procedure

  1. Remove any existing images from the images directory on the stack user’s home (/home/stack/images):

    $ rm -rf ~/images/*
    Copy to Clipboard Toggle word wrap
  2. Extract the archives:

    $ cd ~/images
    $ for i in /usr/share/rhosp-director-images/overcloud-full-latest-14.0.tar /usr/share/rhosp-director-images/ironic-python-agent-latest-14.0.tar; do tar -xvf $i; done
    $ cd ~
    Copy to Clipboard Toggle word wrap
  3. Import the latest images into the director:

    $ openstack overcloud image upload --update-existing --image-path /home/stack/images/
    Copy to Clipboard Toggle word wrap
  4. Configure your nodes to use the new images:

    $ openstack overcloud node configure $(openstack baremetal node list -c UUID -f value)
    Copy to Clipboard Toggle word wrap
  5. Verify the existence of the new images:

    $ openstack image list
    $ ls -l /var/lib/ironic/httpboot/
    Copy to Clipboard Toggle word wrap
Important

When deploying overcloud nodes, ensure that the Overcloud image version corresponds to the respective Heat template version. For example, use only the OpenStack Platform 14 images with the OpenStack Platform 14 Heat templates.

3.9. Undercloud Post-Upgrade Notes

  • If you use a local set of core templates in your stack user home directory, ensure that you update the templates using the recommended workflow in "Using Customized Core Heat Templates". You must update the local copy before upgrading the overcloud.

3.10. Next Steps

The undercloud upgrade is complete. You can now prepare the overcloud for the upgrade.

Retour au début
Red Hat logoGithubredditYoutubeTwitter

Apprendre

Essayez, achetez et vendez

Communautés

À propos de la documentation Red Hat

Nous aidons les utilisateurs de Red Hat à innover et à atteindre leurs objectifs grâce à nos produits et services avec un contenu auquel ils peuvent faire confiance. Découvrez nos récentes mises à jour.

Rendre l’open source plus inclusif

Red Hat s'engage à remplacer le langage problématique dans notre code, notre documentation et nos propriétés Web. Pour plus de détails, consultez le Blog Red Hat.

À propos de Red Hat

Nous proposons des solutions renforcées qui facilitent le travail des entreprises sur plusieurs plates-formes et environnements, du centre de données central à la périphérie du réseau.

Theme

© 2025 Red Hat