Questo contenuto non è disponibile nella lingua selezionata.
Chapter 2. vLLM server usage
vllm [-h] [-v] {chat,complete,serve,bench,collect-env,run-batch}
$ vllm [-h] [-v] {chat,complete,serve,bench,collect-env,run-batch}
- chat
- Generate chat completions via the running API server.
- complete
- Generate text completions based on the given prompt via the running API server.
- serve
- Start the vLLM OpenAI Compatible API server.
- bench
- vLLM bench subcommand.
- collect-env
- Start collecting environment information.
- run-batch
- Run batch prompts and write results to file.
2.1. vllm serve arguments Copia collegamentoCollegamento copiato negli appunti!
vllm serve
launches a local server that loads and serves the language model.
2.1.1. JSON CLI arguments Copia collegamentoCollegamento copiato negli appunti!
-
--json-arg '{"key1": "value1", "key2": {"key3": "value2"}}'
-
--json-arg.key1 value1 --json-arg.key2.key3 value2
Additionally, list elements can be passed individually using +
:
-
--json-arg '{"key4": ["value3", "value4", "value5"]}'
-
--json-arg.key4+ value3 --json-arg.key4+='value4,value5'
2.1.2. Options Copia collegamentoCollegamento copiato negli appunti!
2.1.2.1. --headless Copia collegamentoCollegamento copiato negli appunti!
Run in headless mode. See multi-node data parallel documentation for more details.
Default: False
2.1.2.2. --api-server-count, -asc Copia collegamentoCollegamento copiato negli appunti!
How many API server processes to run.
Default: 1
2.1.2.3. --config Copia collegamentoCollegamento copiato negli appunti!
Read CLI options from a config file. Must be a YAML with the following options: https://docs.vllm.ai/en/latest/configuration/serve_args.html
Default: None
2.1.2.4. --disable-log-stats Copia collegamentoCollegamento copiato negli appunti!
Disable logging statistics.
Default: False
2.1.2.5. --enable-prompt-adapter Copia collegamentoCollegamento copiato negli appunti!
This argument is deprecated.
Prompt adapter has been removed. Setting this flag to True or False has no effect on vLLM behavior.
Default: False
2.1.2.6. --enable-log-requests, --no-enable-log-requests Copia collegamentoCollegamento copiato negli appunti!
Enable logging requests.
Default: False
2.1.2.7. --disable-log-requests, --no-disable-log-requests Copia collegamentoCollegamento copiato negli appunti!
This argument is deprecated.
Disable logging requests.
Default: True
2.1.3. Frontend Copia collegamentoCollegamento copiato negli appunti!
Arguments for the OpenAI-compatible frontend server.
2.1.3.1. --host Copia collegamentoCollegamento copiato negli appunti!
Host name.
Default: None
2.1.3.2. --port Copia collegamentoCollegamento copiato negli appunti!
Port number.
Default: 8000
2.1.3.3. --uds Copia collegamentoCollegamento copiato negli appunti!
Unix domain socket path. If set, host and port arguments are ignored.
Default: None
2.1.3.4. --uvicorn-log-level Copia collegamentoCollegamento copiato negli appunti!
Possible choices: critical
, debug
, error
, info
, trace
, warning
Log level for uvicorn.
Default: info
2.1.3.5. --disable-uvicorn-access-log, --no-disable-uvicorn-access-log Copia collegamentoCollegamento copiato negli appunti!
Disable uvicorn access log.
Default: False
2.1.3.6. --allow-credentials, --no-allow-credentials Copia collegamentoCollegamento copiato negli appunti!
Allow credentials.
Default: False
2.1.3.7. --allowed-origins Copia collegamentoCollegamento copiato negli appunti!
Allowed origins.
Default: ['*']
2.1.3.8. --allowed-methods Copia collegamentoCollegamento copiato negli appunti!
Allowed methods.
Default: ['*']
2.1.3.9. --allowed-headers Copia collegamentoCollegamento copiato negli appunti!
Allowed headers.
Default: ['*']
2.1.3.10. --api-key Copia collegamentoCollegamento copiato negli appunti!
If provided, the server will require one of these keys to be presented in the header.
Default: None
2.1.3.11. --lora-modules Copia collegamentoCollegamento copiato negli appunti!
LoRA modules configurations in either 'name=path' format or JSON format or JSON list format. Example (old format): 'name=path'
Example (new format): {"name": "name", "path": "lora_path", "base_model_name": "id"}
Default: None
2.1.3.12. --chat-template Copia collegamentoCollegamento copiato negli appunti!
The file path to the chat template, or the template in single-line form for the specified model.
Default: None
2.1.3.13. --chat-template-content-format Copia collegamentoCollegamento copiato negli appunti!
Possible choices: auto
, openai
, string
The format to render message content within a chat template.
-
"string" will render the content as a string. Example:
"Hello World"
-
"openai" will render the content as a list of dictionaries, similar to OpenAI schema. Example:
[{"type": "text", "text": "Hello world!"}]
Default: auto
2.1.3.14. --response-role Copia collegamentoCollegamento copiato negli appunti!
The role name to return if request.add_generation_prompt=true
.
Default: assistant
2.1.3.15. --ssl-keyfile Copia collegamentoCollegamento copiato negli appunti!
The file path to the SSL key file.
Default: None
2.1.3.16. --ssl-certfile Copia collegamentoCollegamento copiato negli appunti!
The file path to the SSL cert file.
Default: None
2.1.3.17. --ssl-ca-certs Copia collegamentoCollegamento copiato negli appunti!
The CA certificates file.
Default: None
2.1.3.18. --enable-ssl-refresh, --no-enable-ssl-refresh Copia collegamentoCollegamento copiato negli appunti!
Refresh SSL Context when SSL certificate files change
Default: False
2.1.3.19. --ssl-cert-reqs Copia collegamentoCollegamento copiato negli appunti!
Whether client certificate is required (see stdlib ssl module’s).
Default: 0
2.1.3.20. --root-path Copia collegamentoCollegamento copiato negli appunti!
FastAPI root_path when app is behind a path based routing proxy.
Default: None
2.1.3.21. --middleware Copia collegamentoCollegamento copiato negli appunti!
Additional ASGI middleware to apply to the app. We accept multiple --middleware arguments. The value should be an import path. If a function is provided, vLLM will add it to the server using @app.middleware('http')
. If a class is provided, vLLM will add it to the server using app.add_middleware()
.
Default: []
2.1.3.22. --return-tokens-as-token-ids, --no-return-tokens-as-token-ids Copia collegamentoCollegamento copiato negli appunti!
When --max-logprobs
is specified, represents single tokens as strings of the form 'token_id:{token_id}' so that tokens that are not JSON-encodable can be identified.
Default: False
2.1.3.23. --disable-frontend-multiprocessing, --no-disable-frontend-multiprocessing Copia collegamentoCollegamento copiato negli appunti!
If specified, will run the OpenAI frontend server in the same process as the model serving engine.
Default: False
2.1.3.24. --enable-request-id-headers, --no-enable-request-id-headers Copia collegamentoCollegamento copiato negli appunti!
If specified, API server will add X-Request-Id header to responses. Caution: this hurts performance at high QPS.
Default: False
2.1.3.25. --enable-auto-tool-choice, --no-enable-auto-tool-choice Copia collegamentoCollegamento copiato negli appunti!
If specified, exclude tool definitions in prompts when tool_choice='none'.
Default: False
2.1.3.26. --exclude-tools-when-tool-choice-none, --no-exclude-tools-when-tool-choice-none Copia collegamentoCollegamento copiato negli appunti!
Enable auto tool choice for supported models. Use --tool-call-parser
to specify which parser to use.
Default: False
2.1.3.27. --tool-call-parser Copia collegamentoCollegamento copiato negli appunti!
Select the tool call parser depending on the model that you’re using. This is used to parse the model-generated tool call into OpenAI API format. Required for --enable-auto-tool-choice
. You can choose any option from the built-in parsers or register a plugin via --tool-parser-plugin
.
Default: None
2.1.3.28. --tool-parser-plugin Copia collegamentoCollegamento copiato negli appunti!
Special the tool parser plugin write to parse the model-generated tool into OpenAI API format, the name register in this plugin can be used in --tool-call-parser
.
Default: ``
2.1.3.29. --tool-server Copia collegamentoCollegamento copiato negli appunti!
Comma-separated list of host:port pairs (IPv4, IPv6, or hostname). Examples: 127.0.0.1:8000, [::1]:8000, localhost:1234. Or demo
for demo purpose.
Default: None
2.1.3.30. --log-config-file Copia collegamentoCollegamento copiato negli appunti!
Path to logging config JSON file for both vllm and uvicorn
Default: None
2.1.3.31. --max-log-len Copia collegamentoCollegamento copiato negli appunti!
Max number of prompt characters or prompt ID numbers being printed in log. The default of None means unlimited.
Default: None
2.1.3.32. --disable-fastapi-docs, --no-disable-fastapi-docs Copia collegamentoCollegamento copiato negli appunti!
Disable FastAPI’s OpenAPI schema, Swagger UI, and ReDoc endpoint.
Default: False
2.1.3.33. --enable-prompt-tokens-details, --no-enable-prompt-tokens-details Copia collegamentoCollegamento copiato negli appunti!
If set to True, enable prompt_tokens_details in usage.
Default: False
2.1.3.34. --enable-server-load-tracking, --no-enable-server-load-tracking Copia collegamentoCollegamento copiato negli appunti!
If set to True, enable tracking server_load_metrics in the app state.
Default: False
2.1.3.35. --enable-force-include-usage, --no-enable-force-include-usage Copia collegamentoCollegamento copiato negli appunti!
If set to True, including usage on every request.
Default: False
2.1.3.36. --enable-tokenizer-info-endpoint, --no-enable-tokenizer-info-endpoint Copia collegamentoCollegamento copiato negli appunti!
Enable the /get_tokenizer_info endpoint. May expose chat templates and other tokenizer configuration.
Default: False
2.1.3.37. --enable-log-outputs, --no-enable-log-outputs Copia collegamentoCollegamento copiato negli appunti!
If set to True, enable logging of model outputs (generations) in addition to the input logging that is enabled by default.
Default: False
2.1.3.38. --h11-max-incomplete-event-size Copia collegamentoCollegamento copiato negli appunti!
Maximum size (bytes) of an incomplete HTTP event (header or body) for h11 parser. Helps mitigate header abuse. Default: 4194304 (4 MB).
Default: 4194304
2.1.3.39. --h11-max-header-count Copia collegamentoCollegamento copiato negli appunti!
Maximum number of HTTP headers allowed in a request for h11 parser. Helps mitigate header abuse. Default: 256.
Default: 256
2.1.4. ModelConfig Copia collegamentoCollegamento copiato negli appunti!
Configuration for the model.
2.1.4.1. --model Copia collegamentoCollegamento copiato negli appunti!
Name or path of the Hugging Face model to use. It is also used as the content for model_name
tag in metrics output when served_model_name
is not specified.
Default: Qwen/Qwen3-0.6B
2.1.4.2. --runner Copia collegamentoCollegamento copiato negli appunti!
Possible choices: auto
, draft
, generate
, pooling
The type of model runner to use. Each vLLM instance only supports one model runner, even if the same model can be used for multiple types.
Default: auto
2.1.4.3. --convert Copia collegamentoCollegamento copiato negli appunti!
Possible choices: auto
, classify
, embed
, none
, reward
Convert the model using adapters defined in [vllm.model_executor.models.adapters][]. The most common use case is to adapt a text generation model to be used for pooling tasks.
Default: auto
2.1.4.4. --task Copia collegamentoCollegamento copiato negli appunti!
Possible choices: auto
, classify
, draft
, embed
, embedding
, generate
, reward
, score
, transcription
, None
This argument is deprecated.
The task to use the model for. If the model supports more than one model runner, this is used to select which model runner to run.
Note that the model may support other tasks using the same model runner.
Default: None
2.1.4.5. --tokenizer Copia collegamentoCollegamento copiato negli appunti!
Name or path of the Hugging Face tokenizer to use. If unspecified, model name or path will be used.
Default: None
2.1.4.6. --tokenizer-mode Copia collegamentoCollegamento copiato negli appunti!
Possible choices: auto
, custom
, mistral
, slow
Tokenizer mode:
- "auto" will use the fast tokenizer if available.
- "slow" will always use the slow tokenizer.
-
"mistral" will always use the tokenizer from
mistral_common
. - "custom" will use --tokenizer to select the preregistered tokenizer.
Default: auto
2.1.4.7. --trust-remote-code, --no-trust-remote-code Copia collegamentoCollegamento copiato negli appunti!
Trust remote code (e.g., from HuggingFace) when downloading the model and tokenizer.
Default: False
2.1.4.8. --dtype Copia collegamentoCollegamento copiato negli appunti!
Possible choices: auto
, bfloat16
, float
, float16
, float32
, half
Data type for model weights and activations:
- "auto" will use FP16 precision for FP32 and FP16 models, and BF16 precision for BF16 models.
- "half" for FP16. Recommended for AWQ quantization.
- "float16" is the same as "half".
- "bfloat16" for a balance between precision and range.
- "float" is shorthand for FP32 precision.
- "float32" for FP32 precision.
Default: auto
2.1.4.9. --seed Copia collegamentoCollegamento copiato negli appunti!
Random seed for reproducibility. Initialized to None in V0, but initialized to 0 in V1.
Default: None
2.1.4.10. --hf-config-path Copia collegamentoCollegamento copiato negli appunti!
Name or path of the Hugging Face config to use. If unspecified, model name or path will be used.
Default: None
2.1.4.11. --allowed-local-media-path Copia collegamentoCollegamento copiato negli appunti!
Allowing API requests to read local images or videos from directories specified by the server file system. This is a security risk. Should only be enabled in trusted environments.
Default: ``
2.1.4.12. --revision Copia collegamentoCollegamento copiato negli appunti!
The specific model version to use. It can be a branch name, a tag name, or a commit id. If unspecified, will use the default version.
Default: None
2.1.4.13. --code-revision Copia collegamentoCollegamento copiato negli appunti!
The specific revision to use for the model code on the Hugging Face Hub. It can be a branch name, a tag name, or a commit id. If unspecified, will use the default version.
Default: None
2.1.4.14. --rope-scaling Copia collegamentoCollegamento copiato negli appunti!
RoPE scaling configuration. For example, {"rope_type":"dynamic","factor":2.0}
.
Should either be a valid JSON string or JSON keys passed individually.
Default: {}
2.1.4.15. --rope-theta Copia collegamentoCollegamento copiato negli appunti!
RoPE theta. Use with rope_scaling
. In some cases, changing the RoPE theta improves the performance of the scaled model.
Default: None
2.1.4.16. --tokenizer-revision Copia collegamentoCollegamento copiato negli appunti!
The specific revision to use for the tokenizer on the Hugging Face Hub. It can be a branch name, a tag name, or a commit id. If unspecified, will use the default version.
Default: None
2.1.4.17. --max-model-len Copia collegamentoCollegamento copiato negli appunti!
Model context length (prompt and output). If unspecified, will be automatically derived from the model config.
When passing via --max-model-len
, supports k/m/g/K/M/G in human-readable format. Examples:
- 1k -> 1000
- 1K -> 1024
- 25.6k -> 25,600
Default: None
2.1.4.18. --quantization, -q Copia collegamentoCollegamento copiato negli appunti!
Method used to quantize the weights. If None
, we first check the quantization_config
attribute in the model config file. If that is None
, we assume the model weights are not quantized and use dtype
to determine the data type of the weights.
Default: None
2.1.4.19. --enforce-eager, --no-enforce-eager Copia collegamentoCollegamento copiato negli appunti!
Whether to always use eager-mode PyTorch. If True, we will disable CUDA graph and always execute the model in eager mode. If False, we will use CUDA graph and eager execution in hybrid for maximal performance and flexibility.
Default: False
2.1.4.20. --max-seq-len-to-capture Copia collegamentoCollegamento copiato negli appunti!
Maximum sequence len covered by CUDA graphs. When a sequence has context length larger than this, we fall back to eager mode. Additionally for encoder-decoder models, if the sequence length of the encoder input is larger than this, we fall back to the eager mode.
Default: 8192
2.1.4.21. --max-logprobs Copia collegamentoCollegamento copiato negli appunti!
Maximum number of log probabilities to return when logprobs
is specified in SamplingParams
. The default value comes the default for the OpenAI Chat Completions API. -1 means no cap, i.e. all (output_length * vocab_size) logprobs are allowed to be returned and it may cause OOM.
Default: 20
2.1.4.22. --logprobs-mode Copia collegamentoCollegamento copiato negli appunti!
Possible choices: processed_logits
, processed_logprobs
, raw_logits
, raw_logprobs
Indicates the content returned in the logprobs and prompt_logprobs. Supported mode: 1) raw_logprobs, 2) processed_logprobs, 3) raw_logits, 4) processed_logits. Raw means the values before applying logit processors, like bad words. Processed means the values after applying such processors.
Default: raw_logprobs
2.1.4.23. --disable-sliding-window, --no-disable-sliding-window Copia collegamentoCollegamento copiato negli appunti!
Whether to disable sliding window. If True, we will disable the sliding window functionality of the model, capping to sliding window size. If the model does not support sliding window, this argument is ignored.
Default: False
2.1.4.24. --disable-cascade-attn, --no-disable-cascade-attn Copia collegamentoCollegamento copiato negli appunti!
Disable cascade attention for V1. While cascade attention does not change the mathematical correctness, disabling it could be useful for preventing potential numerical issues. Note that even if this is set to False, cascade attention will be only used when the heuristic tells that it’s beneficial.
Default: False
2.1.4.25. --skip-tokenizer-init, --no-skip-tokenizer-init Copia collegamentoCollegamento copiato negli appunti!
Skip initialization of tokenizer and detokenizer. Expects valid prompt_token_ids
and None
for prompt from the input. The generated output will contain token ids.
Default: False
2.1.4.26. --enable-prompt-embeds, --no-enable-prompt-embeds Copia collegamentoCollegamento copiato negli appunti!
If True
, enables passing text embeddings as inputs via the prompt_embeds
key. Note that enabling this will double the time required for graph compilation.
Default: False
2.1.4.27. --served-model-name Copia collegamentoCollegamento copiato negli appunti!
The model name(s) used in the API. If multiple names are provided, the server will respond to any of the provided names. The model name in the model field of a response will be the first name in this list. If not specified, the model name will be the same as the --model
argument. Noted that this name(s) will also be used in model_name
tag content of prometheus metrics, if multiple names provided, metrics tag will take the first one.
Default: None
2.1.4.28. --disable-async-output-proc Copia collegamentoCollegamento copiato negli appunti!
Disable async output processing. This may result in lower performance.
Default: False
2.1.4.29. --config-format Copia collegamentoCollegamento copiato negli appunti!
Possible choices: auto
, hf
, mistral
The format of the model config to load:
- "auto" will try to load the config in hf format if available else it will try to load in mistral format.
- "hf" will load the config in hf format.
- "mistral" will load the config in mistral format.
Default: auto
2.1.4.30. --hf-token Copia collegamentoCollegamento copiato negli appunti!
The token to use as HTTP bearer authorization for remote files . If True
, will use the token generated when running huggingface-cli login
(stored in ~/.huggingface
).
Default: None
2.1.4.31. --hf-overrides Copia collegamentoCollegamento copiato negli appunti!
If a dictionary, contains arguments to be forwarded to the Hugging Face config. If a callable, it is called to update the HuggingFace config.
Default: {}
2.1.4.32. --override-neuron-config Copia collegamentoCollegamento copiato negli appunti!
Initialize non-default neuron config or override default neuron config that are specific to Neuron devices, this argument will be used to configure the neuron config that can not be gathered from the vllm arguments. e.g. {"cast_logits_dtype": "bfloat16"}
.
Should either be a valid JSON string or JSON keys passed individually.
Default: {}
2.1.4.33. --override-pooler-config Copia collegamentoCollegamento copiato negli appunti!
Initialize non-default pooling config or override default pooling config for the pooling model. e.g. {"pooling_type": "mean", "normalize": false}
.
Default: None
2.1.4.34. --logits-processor-pattern Copia collegamentoCollegamento copiato negli appunti!
Optional regex pattern specifying valid logits processor qualified names that can be passed with the logits_processors
extra completion argument. Defaults to None
, which allows no processors.
Default: None
2.1.4.35. --generation-config Copia collegamentoCollegamento copiato negli appunti!
The folder path to the generation config. Defaults to "auto"
, the generation config will be loaded from model path. If set to "vllm"
, no generation config is loaded, vLLM defaults will be used. If set to a folder path, the generation config will be loaded from the specified folder path. If max_new_tokens
is specified in generation config, then it sets a server-wide limit on the number of output tokens for all requests.
Default: auto
2.1.4.36. --override-generation-config Copia collegamentoCollegamento copiato negli appunti!
Overrides or sets generation config. e.g. {"temperature": 0.5}
. If used with --generation-config auto
, the override parameters will be merged with the default config from the model. If used with --generation-config vllm
, only the override parameters are used.
Should either be a valid JSON string or JSON keys passed individually.
Default: {}
2.1.4.37. --enable-sleep-mode, --no-enable-sleep-mode Copia collegamentoCollegamento copiato negli appunti!
Enable sleep mode for the engine (only cuda platform is supported).
Default: False
2.1.4.38. --model-impl Copia collegamentoCollegamento copiato negli appunti!
Possible choices: auto
, vllm
, transformers
Which implementation of the model to use:
- "auto" will try to use the vLLM implementation, if it exists, and fall back to the Transformers implementation if no vLLM implementation is available.
- "vllm" will use the vLLM model implementation.
- "transformers" will use the Transformers model implementation.
Default: auto
2.1.4.39. --override-attention-dtype Copia collegamentoCollegamento copiato negli appunti!
Override dtype for attention
Default: None
2.1.4.40. --logits-processors Copia collegamentoCollegamento copiato negli appunti!
One or more logits processors' fully-qualified class names or class definitions
Default: None
2.1.5. LoadConfig Copia collegamentoCollegamento copiato negli appunti!
Configuration for loading the model weights.
2.1.5.1. --load-format Copia collegamentoCollegamento copiato negli appunti!
The format of the model weights to load:
- "auto" will try to load the weights in the safetensors format and fall back to the pytorch bin format if safetensors format is not available.
- "pt" will load the weights in the pytorch bin format.
- "safetensors" will load the weights in the safetensors format.
- "npcache" will load the weights in pytorch format and store a numpy cache to speed up the loading.
- "dummy" will initialize the weights with random values, which is mainly for profiling.
- "tensorizer" will use CoreWeave’s tensorizer library for fast weight loading. See the Tensorize vLLM Model script in the Examples section for more information.
- "runai_streamer" will load the Safetensors weights using Run:ai Model Streamer.
- "bitsandbytes" will load the weights using bitsandbytes quantization.
- "sharded_state" will load weights from pre-sharded checkpoint files, supporting efficient loading of tensor-parallel models.
- "gguf" will load weights from GGUF format files (details specified in https://github.com/ggml-org/ggml/blob/master/docs/gguf.md).
- "mistral" will load weights from consolidated safetensors files used by Mistral models.
- Other custom values can be supported via plugins.
Default: auto
2.1.5.2. --download-dir Copia collegamentoCollegamento copiato negli appunti!
Directory to download and load the weights, default to the default cache directory of Hugging Face.
Default: None
2.1.5.3. --model-loader-extra-config Copia collegamentoCollegamento copiato negli appunti!
Extra config for model loader. This will be passed to the model loader corresponding to the chosen load_format.
Default: {}
2.1.5.4. --ignore-patterns Copia collegamentoCollegamento copiato negli appunti!
The list of patterns to ignore when loading the model. Default to "original/*/" to avoid repeated loading of llama’s checkpoints.
Default: None
2.1.5.5. --use-tqdm-on-load, --no-use-tqdm-on-load Copia collegamentoCollegamento copiato negli appunti!
Whether to enable tqdm for showing progress bar when loading model weights.
Default: True
2.1.5.6. --pt-load-map-location Copia collegamentoCollegamento copiato negli appunti!
pt_load_map_location: the map location for loading pytorch checkpoint, to support loading checkpoints can only be loaded on certain devices like "cuda", this is equivalent to {"": "cuda"}. Another supported format is mapping from different devices like from GPU 1 to GPU 0: {"cuda:1": "cuda:0"}. Note that when passed from command line, the strings in dictionary needs to be double quoted for json parsing. For more details, see original doc for map_location
in https://pytorch.org/docs/stable/generated/torch.load.html
Default: cpu
2.1.6. DecodingConfig Copia collegamentoCollegamento copiato negli appunti!
Dataclass which contains the decoding strategy of the engine.
2.1.6.1. --guided-decoding-backend Copia collegamentoCollegamento copiato negli appunti!
Possible choices: auto
, guidance
, outlines
, xgrammar
Which engine will be used for guided decoding (JSON schema / regex etc) by default. With "auto", we will make opinionated choices based on request contents and what the backend libraries currently support, so the behavior is subject to change in each release.
Default: auto
2.1.6.2. --guided-decoding-disable-fallback, --no-guided-decoding-disable-fallback Copia collegamentoCollegamento copiato negli appunti!
If True
, vLLM will not fallback to a different backend on error.
Default: False
2.1.6.3. --guided-decoding-disable-any-whitespace, --no-guided-decoding-disable-any-whitespace Copia collegamentoCollegamento copiato negli appunti!
If True
, the model will not generate any whitespace during guided decoding. This is only supported for xgrammar and guidance backends.
Default: False
2.1.6.4. --guided-decoding-disable-additional-properties, --no-guided-decoding-disable-additional-properties Copia collegamentoCollegamento copiato negli appunti!
If True
, the guidance
backend will not use additionalProperties
in the JSON schema. This is only supported for the guidance
backend and is used to better align its behaviour with outlines
and xgrammar
.
Default: False
2.1.6.5. --reasoning-parser Copia collegamentoCollegamento copiato negli appunti!
Possible choices: deepseek_r1
, glm45
, GptOss
, granite
, hunyuan_a13b
, mistral
, qwen3
, step3
Select the reasoning parser depending on the model that you’re using. This is used to parse the reasoning content into OpenAI API format.
Default: ``
2.1.7. ParallelConfig Copia collegamentoCollegamento copiato negli appunti!
Configuration for the distributed execution.
2.1.7.1. --distributed-executor-backend Copia collegamentoCollegamento copiato negli appunti!
Possible choices: external_launcher
, mp
, ray
, uni
, None
Backend to use for distributed model workers, either "ray" or "mp" (multiprocessing). If the product of pipeline_parallel_size and tensor_parallel_size is less than or equal to the number of GPUs available, "mp" will be used to keep processing on a single host. Otherwise, this will default to "ray" if Ray is installed and fail otherwise. Note that tpu only support Ray for distributed inference.
Default: None
2.1.7.2. --pipeline-parallel-size, -pp Copia collegamentoCollegamento copiato negli appunti!
Number of pipeline parallel groups.
Default: 1
2.1.7.3. --tensor-parallel-size, -tp Copia collegamentoCollegamento copiato negli appunti!
Number of tensor parallel groups.
Default: 1
2.1.7.4. --data-parallel-size, -dp Copia collegamentoCollegamento copiato negli appunti!
Number of data parallel groups. MoE layers will be sharded according to the product of the tensor parallel size and data parallel size.
Default: 1
2.1.7.5. --data-parallel-rank, -dpn Copia collegamentoCollegamento copiato negli appunti!
Data parallel rank of this instance. When set, enables external load balancer mode.
Default: None
2.1.7.6. --data-parallel-start-rank, -dpr Copia collegamentoCollegamento copiato negli appunti!
Starting data parallel rank for secondary nodes.
Default: None
2.1.7.7. --data-parallel-size-local, -dpl Copia collegamentoCollegamento copiato negli appunti!
Number of data parallel replicas to run on this node.
Default: None
2.1.7.8. --data-parallel-address, -dpa Copia collegamentoCollegamento copiato negli appunti!
Address of data parallel cluster head-node.
Default: None
2.1.7.9. --data-parallel-rpc-port, -dpp Copia collegamentoCollegamento copiato negli appunti!
Port for data parallel RPC communication.
Default: None
2.1.7.10. --data-parallel-backend, -dpb Copia collegamentoCollegamento copiato negli appunti!
Backend for data parallel, either "mp" or "ray".
Default: mp
2.1.7.11. --data-parallel-hybrid-lb, --no-data-parallel-hybrid-lb Copia collegamentoCollegamento copiato negli appunti!
Whether to use "hybrid" DP LB mode. Applies only to online serving and when data_parallel_size > 0. Enables running an AsyncLLM and API server on a "per-node" basis where vLLM load balances between local data parallel ranks, but an external LB balances between vLLM nodes/replicas. Set explicitly in conjunction with --data-parallel-start-rank.
Default: False
2.1.7.12. --enable-expert-parallel, --no-enable-expert-parallel Copia collegamentoCollegamento copiato negli appunti!
Use expert parallelism instead of tensor parallelism for MoE layers.
Default: False
2.1.7.13. --enable-eplb, --no-enable-eplb Copia collegamentoCollegamento copiato negli appunti!
Enable expert parallelism load balancing for MoE layers.
Default: False
2.1.7.14. --num-redundant-experts Copia collegamentoCollegamento copiato negli appunti!
Number of redundant experts to use for expert parallelism.
Default: 0
2.1.7.15. --eplb-window-size Copia collegamentoCollegamento copiato negli appunti!
Window size for expert load recording.
Default: 1000
2.1.7.16. --eplb-step-interval Copia collegamentoCollegamento copiato negli appunti!
Interval for rearranging experts in expert parallelism.
Note that if this is greater than the EPLB window size, only the metrics of the last eplb_window_size
steps will be used for rearranging experts.
Default: 3000
2.1.7.17. --eplb-log-balancedness, --no-eplb-log-balancedness Copia collegamentoCollegamento copiato negli appunti!
Log the balancedness each step of expert parallelism. This is turned off by default since it will cause communication overhead.
Default: False
2.1.7.18. --max-parallel-loading-workers Copia collegamentoCollegamento copiato negli appunti!
Maximum number of parallel loading workers when loading model sequentially in multiple batches. To avoid RAM OOM when using tensor parallel and large models.
Default: None
2.1.7.19. --ray-workers-use-nsight, --no-ray-workers-use-nsight Copia collegamentoCollegamento copiato negli appunti!
Whether to profile Ray workers with nsight, see https://docs.ray.io/en/latest/ray-observability/user-guides/profiling.html#profiling-nsight-profiler.
Default: False
2.1.7.20. --disable-custom-all-reduce, --no-disable-custom-all-reduce Copia collegamentoCollegamento copiato negli appunti!
Disable the custom all-reduce kernel and fall back to NCCL.
Default: False
2.1.7.21. --worker-cls Copia collegamentoCollegamento copiato negli appunti!
The full name of the worker class to use. If "auto", the worker class will be determined based on the platform.
Default: auto
2.1.7.22. --worker-extension-cls Copia collegamentoCollegamento copiato negli appunti!
The full name of the worker extension class to use. The worker extension class is dynamically inherited by the worker class. This is used to inject new attributes and methods to the worker class for use in collective_rpc calls.
Default: ``
2.1.7.23. --enable-multimodal-encoder-data-parallel, --no-enable-multimodal-encoder-data-parallel Copia collegamentoCollegamento copiato negli appunti!
Use data parallelism instead of tensor parallelism for vision encoder. Only support LLama4 for now
Default: False
2.1.8. CacheConfig Copia collegamentoCollegamento copiato negli appunti!
Configuration for the KV cache.
2.1.8.1. --block-size Copia collegamentoCollegamento copiato negli appunti!
Possible choices: 1
, 8
, 16
, 32
, 64
, 128
Size of a contiguous cache block in number of tokens. This is ignored on neuron devices and set to --max-model-len
. On CUDA devices, only block sizes up to 32 are supported. On HPU devices, block size defaults to 128.
This config has no static default. If left unspecified by the user, it will be set in Platform.check_and_update_config()
based on the current platform.
Default: None
2.1.8.2. --gpu-memory-utilization Copia collegamentoCollegamento copiato negli appunti!
The fraction of GPU memory to be used for the model executor, which can range from 0 to 1. For example, a value of 0.5 would imply 50%% GPU memory utilization. If unspecified, will use the default value of 0.9. This is a per-instance limit, and only applies to the current vLLM instance. It does not matter if you have another vLLM instance running on the same GPU. For example, if you have two vLLM instances running on the same GPU, you can set the GPU memory utilization to 0.5 for each instance.
Default: 0.9
2.1.8.3. --swap-space Copia collegamentoCollegamento copiato negli appunti!
Size of the CPU swap space per GPU (in GiB).
Default: 4
2.1.8.4. --kv-cache-dtype Copia collegamentoCollegamento copiato negli appunti!
Possible choices: auto
, fp8
, fp8_e4m3
, fp8_e5m2
, fp8_inc
Data type for kv cache storage. If "auto", will use model data type. CUDA 11.8+ supports fp8 (=fp8_e4m3) and fp8_e5m2. ROCm (AMD GPU) supports fp8 (=fp8_e4m3). Intel Gaudi (HPU) supports fp8 (using fp8_inc).
Default: auto
2.1.8.5. --num-gpu-blocks-override Copia collegamentoCollegamento copiato negli appunti!
Number of GPU blocks to use. This overrides the profiled num_gpu_blocks
if specified. Does nothing if None
. Used for testing preemption.
Default: None
2.1.8.6. --enable-prefix-caching, --no-enable-prefix-caching Copia collegamentoCollegamento copiato negli appunti!
Whether to enable prefix caching. Disabled by default for V0. Enabled by default for V1.
Default: None
2.1.8.7. --prefix-caching-hash-algo Copia collegamentoCollegamento copiato negli appunti!
Possible choices: builtin
, sha256
, sha256_cbor_64bit
Set the hash algorithm for prefix caching:
- "builtin" is Python’s built-in hash.
- "sha256" is collision resistant but with certain overheads. This option uses Pickle for object serialization before hashing.
- "sha256_cbor_64bit" provides a reproducible, cross-language compatible hash. It serializes objects using canonical CBOR and hashes them with SHA-256. The resulting hash consists of the lower 64 bits of the SHA-256 digest.
Default: builtin
2.1.8.8. --cpu-offload-gb Copia collegamentoCollegamento copiato negli appunti!
The space in GiB to offload to CPU, per GPU. Default is 0, which means no offloading. Intuitively, this argument can be seen as a virtual way to increase the GPU memory size. For example, if you have one 24 GB GPU and set this to 10, virtually you can think of it as a 34 GB GPU. Then you can load a 13B model with BF16 weight, which requires at least 26GB GPU memory. Note that this requires fast CPU-GPU interconnect, as part of the model is loaded from CPU memory to GPU memory on the fly in each model forward pass.
Default: 0
2.1.8.9. --calculate-kv-scales, --no-calculate-kv-scales Copia collegamentoCollegamento copiato negli appunti!
This enables dynamic calculation of k_scale
and v_scale
when kv_cache_dtype is fp8. If False
, the scales will be loaded from the model checkpoint if available. Otherwise, the scales will default to 1.0.
Default: False
2.1.8.10. --kv-sharing-fast-prefill, --no-kv-sharing-fast-prefill Copia collegamentoCollegamento copiato negli appunti!
This feature is work in progress and no prefill optimization takes place with this flag enabled currently.
In some KV sharing setups, e.g. YOCO (https://arxiv.org/abs/2405.05254), some layers can skip tokens corresponding to prefill. This flag enables attention metadata for eligible layers to be overriden with metadata necessary for implementating this optimization in some models (e.g. Gemma3n)
Default: False
2.1.8.11. --mamba-cache-dtype Copia collegamentoCollegamento copiato negli appunti!
Possible choices: auto
, float32
The data type to use for the Mamba cache (both the conv as well as the ssm state). If set to 'auto', the data type will be inferred from the model config.
Default: auto
2.1.8.12. --mamba-ssm-cache-dtype Copia collegamentoCollegamento copiato negli appunti!
Possible choices: auto
, float32
The data type to use for the Mamba cache (ssm state only, conv state will still be controlled by mamba_cache_dtype). If set to 'auto', the data type for the ssm state will be determined by mamba_cache_dtype.
Default: auto
2.1.9. MultiModalConfig Copia collegamentoCollegamento copiato negli appunti!
Controls the behavior of multimodal models.
2.1.9.1. --limit-mm-per-prompt Copia collegamentoCollegamento copiato negli appunti!
The maximum number of input items allowed per prompt for each modality. Defaults to 1 (V0) or 999 (V1) for each modality.
For example, to allow up to 16 images and 2 videos per prompt: {"image": 16, "video": 2}
Should either be a valid JSON string or JSON keys passed individually.
Default: {}
2.1.9.2. --media-io-kwargs Copia collegamentoCollegamento copiato negli appunti!
Additional args passed to process media inputs, keyed by modalities. For example, to set num_frames for video, set --media-io-kwargs '{"video": {"num_frames": 40} }'
Should either be a valid JSON string or JSON keys passed individually.
Default: {}
2.1.9.3. --mm-processor-kwargs Copia collegamentoCollegamento copiato negli appunti!
Overrides for the multi-modal processor obtained from transformers.AutoProcessor.from_pretrained
.
The available overrides depend on the model that is being run.
For example, for Phi-3-Vision: {"num_crops": 4}
.
Should either be a valid JSON string or JSON keys passed individually.
Default: None
2.1.9.4. --mm-processor-cache-gb Copia collegamentoCollegamento copiato negli appunti!
The size (in GiB) of the multi-modal processor cache, which is used to
This cache is duplicated for each API process and engine core process, resulting in a total memory usage of mm_processor_cache_gb * (api_server_count + data_parallel_size)
.
Set to 0
to disable this cache completely (not recommended).
Default: 4
2.1.9.5. --disable-mm-preprocessor-cache Copia collegamentoCollegamento copiato negli appunti!
Default: False
2.1.9.6. --interleave-mm-strings, --no-interleave-mm-strings Copia collegamentoCollegamento copiato negli appunti!
Enable fully interleaved support for multimodal prompts.
Default: False
2.1.9.7. --skip-mm-profiling, --no-skip-mm-profiling Copia collegamentoCollegamento copiato negli appunti!
When enabled, skips multimodal memory profiling and only profiles with language backbone model during engine initialization.
This reduces engine startup time but shifts the responsibility to users for estimating the peak memory usage of the activation of multimodal encoder and embedding cache.
Default: False
2.1.10. LoRAConfig Copia collegamentoCollegamento copiato negli appunti!
Configuration for LoRA.
2.1.10.1. --enable-lora, --no-enable-lora Copia collegamentoCollegamento copiato negli appunti!
If True, enable handling of LoRA adapters.
Default: None
2.1.10.2. --enable-lora-bias, --no-enable-lora-bias Copia collegamentoCollegamento copiato negli appunti!
Enable bias for LoRA adapters.
Default: False
2.1.10.3. --max-loras Copia collegamentoCollegamento copiato negli appunti!
Max number of LoRAs in a single batch.
Default: 1
2.1.10.4. --max-lora-rank Copia collegamentoCollegamento copiato negli appunti!
Max LoRA rank.
Default: 16
2.1.10.5. --lora-extra-vocab-size Copia collegamentoCollegamento copiato negli appunti!
Maximum size of extra vocabulary that can be present in a LoRA adapter (added to the base model vocabulary).
Default: 256
2.1.10.6. --lora-dtype Copia collegamentoCollegamento copiato negli appunti!
Possible choices: auto
, bfloat16
, float16
Data type for LoRA. If auto, will default to base model dtype.
Default: auto
2.1.10.7. --max-cpu-loras Copia collegamentoCollegamento copiato negli appunti!
Maximum number of LoRAs to store in CPU memory. Must be >= than max_loras
.
Default: None
2.1.10.8. --fully-sharded-loras, --no-fully-sharded-loras Copia collegamentoCollegamento copiato negli appunti!
By default, only half of the LoRA computation is sharded with tensor parallelism. Enabling this will use the fully sharded layers. At high sequence length, max rank or tensor parallel size, this is likely faster.
Default: False
2.1.10.9. --default-mm-loras Copia collegamentoCollegamento copiato negli appunti!
Dictionary mapping specific modalities to LoRA model paths; this field is only applicable to multimodal models and should be leveraged when a model always expects a LoRA to be active when a given modality is present. Note that currently, if a request provides multiple additional modalities, each of which have their own LoRA, we do NOT apply default_mm_loras because we currently only support one lora adapter per prompt. When run in offline mode, the lora IDs for n modalities will be automatically assigned to 1-n with the names of the modalities in alphabetic order.
Should either be a valid JSON string or JSON keys passed individually.
Default: None
2.1.11. ObservabilityConfig Copia collegamentoCollegamento copiato negli appunti!
Configuration for observability - metrics and tracing.
2.1.11.2. --otlp-traces-endpoint Copia collegamentoCollegamento copiato negli appunti!
Target URL to which OpenTelemetry traces will be sent.
Default: None
2.1.11.3. --collect-detailed-traces Copia collegamentoCollegamento copiato negli appunti!
Possible choices: all
, model
, worker
, None
, model,worker
, model,all
, worker,model
, worker,all
, all,model
, all,worker
It makes sense to set this only if --otlp-traces-endpoint
is set. If set, it will collect detailed traces for the specified modules. This involves use of possibly costly and or blocking operations and hence might have a performance impact.
Note that collecting detailed timing information for each request can be expensive.
Default: None
2.1.12. SchedulerConfig Copia collegamentoCollegamento copiato negli appunti!
Scheduler configuration.
2.1.12.1. --max-num-batched-tokens Copia collegamentoCollegamento copiato negli appunti!
Maximum number of tokens to be processed in a single iteration.
This config has no static default. If left unspecified by the user, it will be set in EngineArgs.create_engine_config
based on the usage context.
Default: None
2.1.12.2. --max-num-seqs Copia collegamentoCollegamento copiato negli appunti!
Maximum number of sequences to be processed in a single iteration.
This config has no static default. If left unspecified by the user, it will be set in EngineArgs.create_engine_config
based on the usage context.
Default: None
2.1.12.3. --max-num-partial-prefills Copia collegamentoCollegamento copiato negli appunti!
For chunked prefill, the maximum number of sequences that can be partially prefilled concurrently.
Default: 1
2.1.12.4. --max-long-partial-prefills Copia collegamentoCollegamento copiato negli appunti!
For chunked prefill, the maximum number of prompts longer than long_prefill_token_threshold that will be prefilled concurrently. Setting this less than max_num_partial_prefills will allow shorter prompts to jump the queue in front of longer prompts in some cases, improving latency.
Default: 1
2.1.12.5. --cuda-graph-sizes Copia collegamentoCollegamento copiato negli appunti!
Cuda graph capture sizes
- if none provided, then default set to [min(max_num_seqs * 2, 512)]
- if one value is provided, then the capture list would follow the pattern: [1, 2, 4] + [i for i in range(8, cuda_graph_sizes + 1, 8)]
- more than one value (e.g. 1 2 128) is provided, then the capture list will follow the provided list.
Default: []
2.1.12.6. --long-prefill-token-threshold Copia collegamentoCollegamento copiato negli appunti!
For chunked prefill, a request is considered long if the prompt is longer than this number of tokens.
Default: 0
2.1.12.7. --num-lookahead-slots Copia collegamentoCollegamento copiato negli appunti!
The number of slots to allocate per sequence per step, beyond the known token ids. This is used in speculative decoding to store KV activations of tokens which may or may not be accepted.
This will be replaced by speculative config in the future; it is present to enable correctness tests until then.
Default: 0
2.1.12.8. --scheduler-delay-factor Copia collegamentoCollegamento copiato negli appunti!
Apply a delay (of delay factor multiplied by previous prompt latency) before scheduling next prompt.
Default: 0.0
2.1.12.9. --preemption-mode Copia collegamentoCollegamento copiato negli appunti!
Possible choices: recompute
, swap
, None
Whether to perform preemption by swapping or recomputation. If not specified, we determine the mode as follows: We use recomputation by default since it incurs lower overhead than swapping. However, when the sequence group has multiple sequences (e.g., beam search), recomputation is not currently supported. In such a case, we use swapping instead.
Default: None
2.1.12.10. --scheduling-policy Copia collegamentoCollegamento copiato negli appunti!
Possible choices: fcfs
, priority
The scheduling policy to use:
- "fcfs" means first come first served, i.e. requests are handled in order of arrival.
- "priority" means requests are handled based on given priority (lower value means earlier handling) and time of arrival deciding any ties).
Default: fcfs
2.1.12.11. --enable-chunked-prefill, --no-enable-chunked-prefill Copia collegamentoCollegamento copiato negli appunti!
If True, prefill requests can be chunked based on the remaining max_num_batched_tokens.
Default: None
2.1.12.12. --disable-chunked-mm-input, --no-disable-chunked-mm-input Copia collegamentoCollegamento copiato negli appunti!
If set to true and chunked prefill is enabled, we do not want to partially schedule a multimodal item. Only used in V1 This ensures that if a request has a mixed prompt (like text tokens TTTT followed by image tokens IIIIIIIIII) where only some image tokens can be scheduled (like TTTTIIIII, leaving IIIII), it will be scheduled as TTTT in one step and IIIIIIIIII in the next.
Default: False
2.1.12.13. --scheduler-cls Copia collegamentoCollegamento copiato negli appunti!
The scheduler class to use. "vllm.core.scheduler.Scheduler" is the default scheduler. Can be a class directly or the path to a class of form "mod.custom_class".
Default: vllm.core.scheduler.Scheduler
2.1.12.14. --disable-hybrid-kv-cache-manager, --no-disable-hybrid-kv-cache-manager Copia collegamentoCollegamento copiato negli appunti!
If set to True, KV cache manager will allocate the same size of KV cache for all attention layers even if there are multiple type of attention layers like full attention and sliding window attention.
Default: False
2.1.12.15. --async-scheduling, --no-async-scheduling Copia collegamentoCollegamento copiato negli appunti!
This is an experimental feature.
If set to True, perform async scheduling. This may help reduce the CPU overheads, leading to better latency and throughput. However, async scheduling is currently not supported with some features such as structured outputs, speculative decoding, and pipeline parallelism.
Default: False
2.1.13. VllmConfig Copia collegamentoCollegamento copiato negli appunti!
Dataclass which contains all vllm-related configuration. This simplifies passing around the distinct configurations in the codebase.
2.1.13.1. --speculative-config Copia collegamentoCollegamento copiato negli appunti!
Speculative decoding configuration.
Should either be a valid JSON string or JSON keys passed individually.
Default: None
2.1.13.2. --kv-transfer-config Copia collegamentoCollegamento copiato negli appunti!
The configurations for distributed KV cache transfer.
Should either be a valid JSON string or JSON keys passed individually.
Default: None
2.1.13.3. --kv-events-config Copia collegamentoCollegamento copiato negli appunti!
The configurations for event publishing.
Should either be a valid JSON string or JSON keys passed individually.
Default: None
2.1.13.4. --compilation-config, -O Copia collegamentoCollegamento copiato negli appunti!
torch.compile
and cudagraph capture configuration for the model.
As a shorthand, -O<n>
can be used to directly specify the compilation level n
: -O3
is equivalent to -O.level=3
(same as -O='{"level":3}'
). Currently, -O <n>and -O=<n> are supported as well but this will likely be removed in favor of clearer -O<n>syntax in the future.</n></n></n>
level 0 is the default level without any optimization. level 1 and 2 are for internal testing only. level 3 is the recommended level for production, also default in V1.
You can specify the full compilation config like so: {"level": 3, "cudagraph_capture_sizes": [1, 2, 4, 8]}
Should either be a valid JSON string or JSON keys passed individually.
Default:
2.1.13.5. --additional-config Copia collegamentoCollegamento copiato negli appunti!
Additional config for specified platform. Different platforms may support different configs. Make sure the configs are valid for the platform you are using. Contents must be hashable.
Default: {}
2.2. vllm chat arguments Copia collegamentoCollegamento copiato negli appunti!
Generate chat completions with the running API server.
vllm chat [options]
$ vllm chat [options]
- --api-key API_KEY
OpenAI API key. If provided, this API key overrides the API key set in the environment variables.
Default: None
- --model-name MODEL_NAME
The model name used in prompt completion, defaults to the first model in list models API call.
Default: None
- --system-prompt SYSTEM_PROMPT
The system prompt to be added to the chat template, used for models that support system prompts.
Default: None
- --url URL
URL of the running OpenAI-compatible RESTful API server
Default:
http://localhost:8000/v1
- -q MESSAGE, --quick MESSAGE
Send a single prompt as
MESSAGE
and print the response, then exit.Default: None
2.3. vllm complete arguments Copia collegamentoCollegamento copiato negli appunti!
Generate text completions based on the given prompt with the running API server.
vllm complete [options]
$ vllm complete [options]
- --api-key API_KEY
API key for OpenAI services. If provided, this API key overrides the API key set in the environment variables.
Default: None
- --model-name MODEL_NAME
The model name used in prompt completion, defaults to the first model in list models API call.
Default: None
- --url URL
URL of the running OpenAI-compatible RESTful API server
Default:
http://localhost:8000/v1
- -q PROMPT, --quick PROMPT
Send a single prompt and print the completion output, then exit.
Default: None
2.4. vllm bench arguments Copia collegamentoCollegamento copiato negli appunti!
Benchmark online serving throughput.
vllm bench [options]
$ vllm bench [options]
- bench
Positional arguments:
-
latency
- Benchmarks the latency of a single batch of requests. -
serve
- Benchmarks the online serving throughput. -
throughput
- Benchmarks offline inference throughput.
-
2.5. vllm collect-env arguments Copia collegamentoCollegamento copiato negli appunti!
Collect environment information.
vllm collect-env
$ vllm collect-env
2.6. vllm run-batch arguments Copia collegamentoCollegamento copiato negli appunti!
Run batch inference jobs for the specified model.
vllm run-batch
$ vllm run-batch
- --disable-log-requests
Disable logging requests.
Default: False
- --disable-log-stats
Disable logging statistics.
Default: False
- --enable-metrics
Enables Prometheus metrics.
Default: False
- --enable-prompt-tokens-details
Enables
prompt_tokens_details
in usage when set to True.Default: False
- --max-log-len MAX_LOG_LEN
Maximum number of prompt characters or prompt ID numbers printed in the log.
Default: Unlimited
- --output-tmp-dir OUTPUT_TMP_DIR
The directory to store the output file before uploading it to the output URL.
Default: None
- --port PORT
Port number for the Prometheus metrics server. Only needed if
enable-metrics
is set.Default: 8000
- --response-role RESPONSE_ROLE
The role name to return if
request.add_generation_prompt=True
.Default: assistant
- --url URL
Prometheus metrics server URL. Only required if
enable-metrics
is set).Default: 0.0.0.0
- --use-v2-block-manager
DEPRECATED. Block manager v1 has been removed.
SelfAttnBlockSpaceManager
(block manager v2) is now the default. Setting--use-v2-block-manager
flag to True or False has no effect on vLLM behavior.Default: True
- -i INPUT_FILE, --input-file INPUT_FILE
The path or URL to a single input file. Supports local file paths and HTTP or HTTPS. If a URL is specified, the file should be available using HTTP GET.
Default: None
- -o OUTPUT_FILE, --output-file OUTPUT_FILE
The path or URL to a single output file. Supports local file paths and HTTP or HTTPS. If a URL is specified, the file should be available using HTTP PUT.
Default: None