Questo contenuto non è disponibile nella lingua selezionata.

Chapter 117. Google BigQuery Component


Available as of Camel version 2.20

117.1. Component Description

The Google Bigquery component provides access to Cloud BigQuery Infrastructure via the Google Client Services API.

The current implementation does not use gRPC.

The current implementation does not support querying BigQuery i.e. is a producer only.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
    <groupId>org.apache.camel</groupId>
    <artifactId>camel-google-bigquery</artifactId>
    <version>x.x.x</version>
    <!-- use the same version as your Camel core version -->
</dependency>

117.2. Authentication Configuration

Google BigQuery component authentication is targeted for use with the GCP Service Accounts. For more information please refer to Google Cloud Platform Auth Guide

Google security credentials can be set explicitly via one of the two options:

  • Service Account Email and Service Account Key (PEM format)
  • GCP credentials file location

If both are set, the Service Account Email/Key will take precedence.

Or implicitly, where the connection factory falls back on Application Default Credentials.

OBS! The location of the default credentials file is configurable - via GOOGLE_APPLICATION_CREDENTIALS environment variable.

Service Account Email and Service Account Key can be found in the GCP JSON credentials file as client_email and private_key respectively.

117.3. URI Format

        google-bigquery://project-id:datasetId[:tableId]?[options]

117.4. Options

The Google BigQuery component supports 4 options which are listed below.

NameDescriptionDefaultType

projectId (producer)

Google Cloud Project Id

 

String

datasetId (producer)

BigQuery Dataset Id

 

String

connectionFactory (producer)

ConnectionFactory to obtain connection to Bigquery Service. If non provided the default one will be used

 

GoogleBigQuery ConnectionFactory

resolveProperty Placeholders (advanced)

Whether the component should resolve property placeholders on itself when starting. Only properties which are of String type can use property placeholders.

true

boolean

The Google BigQuery endpoint is configured using URI syntax:

google-bigquery:projectId:datasetId:tableName

with the following path and query parameters:

117.4.1. Path Parameters (3 parameters):

NameDescriptionDefaultType

projectId

Required Google Cloud Project Id

 

String

datasetId

Required BigQuery Dataset Id

 

String

tableId

BigQuery table id

 

String

117.4.2. Query Parameters (3 parameters):

NameDescriptionDefaultType

connectionFactory (producer)

ConnectionFactory to obtain connection to Bigquery Service. If non provided the default will be used.

 

GoogleBigQuery ConnectionFactory

useAsInsertId (producer)

Field name to use as insert id

 

String

synchronous (advanced)

Sets whether synchronous processing should be strictly used, or Camel is allowed to use asynchronous processing (if supported).

false

boolean

117.5. Message Headers

NameTypeDescription

CamelGoogleBigQuery.TableSuffix

String

Table suffix to use when inserting data

CamelGoogleBigQuery.InsertId

String

InsertId to use when inserting data

CamelGoogleBigQuery.PartitionDecorator

String

Partition decorator to indicate partition to use when inserting data

CamelGoogleBigQuery.TableId

String

Table id where data will be submitted. If specified will override endpoint configuration

117.6. Producer Endpoints

Producer endpoints can accept and deliver to BigQuery individual and grouped exchanges alike. Grouped exchanges have Exchange.GROUPED_EXCHANGE property set.

Goole BigQuery producer will send a grouped exchange in a single api call unless different table suffix or partition decorators are specified in which case it will break it down to ensure data is written with the correct suffix or partition decorator.

Google BigQuery endpoint expects the payload to be either a map or list of maps. A payload containing a map will insert a single row and a payload containing a list of map’s will insert a row for each entry in the list.

117.7. Template tables

Reference: https://cloud.google.com/bigquery/streaming-data-into-bigquery#template-tables

Templated tables can be specified using the GoogleBigQueryConstants.TABLE_SUFFIX header.

I.e. the following route will create tables and insert records sharded on a per day basis:

from("direct:start")
.header(GoogleBigQueryConstants.TABLE_SUFFIX, "_${date:now:yyyyMMdd}")
.to("google-bigquery:sampleDataset:sampleTable")

Note it is recommended to use partitioning for this use case.

117.8. Partitioning

Reference: https://cloud.google.com/bigquery/docs/creating-partitioned-tables

Partitioning is specified when creating a table and if set data will be automatically partitioned into separate tables. When inserting data a specific partition can be specified by setting the GoogleBigQueryConstants.PARTITION_DECORATOR header on the exchange.

117.9. Ensuring data consistency

Reference: https://cloud.google.com/bigquery/streaming-data-into-bigquery#dataconsistency

A insert id can be set on the exchange with the header GoogleBigQueryConstants.INSERT_ID or by specifying query parameter useAsInsertId. As an insert id need to be specified per row inserted the exchange header can’t be used when the payload is a list - if the payload is a list the GoogleBigQueryConstants.INSERT_ID will be ignored. In that case use the query parameter useAsInsertId.

Red Hat logoGithubRedditYoutubeTwitter

Formazione

Prova, acquista e vendi

Community

Informazioni sulla documentazione di Red Hat

Aiutiamo gli utenti Red Hat a innovarsi e raggiungere i propri obiettivi con i nostri prodotti e servizi grazie a contenuti di cui possono fidarsi.

Rendiamo l’open source più inclusivo

Red Hat si impegna a sostituire il linguaggio problematico nel codice, nella documentazione e nelle proprietà web. Per maggiori dettagli, visita ilBlog di Red Hat.

Informazioni su Red Hat

Forniamo soluzioni consolidate che rendono più semplice per le aziende lavorare su piattaforme e ambienti diversi, dal datacenter centrale all'edge della rete.

© 2024 Red Hat, Inc.