Questo contenuto non è disponibile nella lingua selezionata.

Chapter 2. Deploy OpenShift Data Foundation using local storage devices


Use this section to deploy OpenShift Data Foundation on IBM Power infrastructure where OpenShift Container Platform is already installed.

Also, it is possible to deploy only the Multicloud Object Gateway (MCG) component with OpenShift Data Foundation. For more information, see Deploy standalone Multicloud Object Gateway.

Perform the following steps to deploy OpenShift Data Foundation:

2.1. Installing Local Storage Operator

Use this procedure to install the Local Storage Operator from the Operator Hub before creating OpenShift Data Foundation clusters on local storage devices.

Procedure

  1. Log in to the OpenShift Web Console.
  2. Click Operators OperatorHub.
  3. Type local storage in the Filter by keyword…​ box to find the Local Storage Operator from the list of operators and click on it.
  4. Set the following options on the Install Operator page:

    1. Update channel as stable.
    2. Installation Mode as A specific namespace on the cluster.
    3. Installed Namespace as Operator recommended namespace openshift-local-storage.
    4. Approval Strategy as Automatic.
  5. Click Install.

Verification steps

  • Verify that the Local Storage Operator shows a green tick indicating successful installation.

2.2. Installing Red Hat OpenShift Data Foundation Operator

You can install Red Hat OpenShift Data Foundation Operator using the Red Hat OpenShift Container Platform Operator Hub.

For information about the hardware and software requirements, see Planning your deployment.

Prerequisites

  • Access to an OpenShift Container Platform cluster using an account with cluster-admin and Operator installation permissions.
  • You must have at least three worker nodes in the Red Hat OpenShift Container Platform cluster.
Important
  • When you need to override the cluster-wide default node selector for OpenShift Data Foundation, you can use the following command in the command line interface to specify a blank node selector for the openshift-storage namespace (create openshift-storage namespace in this case):
$ oc annotate namespace openshift-storage openshift.io/node-selector=
Copy to Clipboard Toggle word wrap

Procedure

  1. Log in to the OpenShift Web Console.
  2. Click Operators OperatorHub.
  3. Scroll or type OpenShift Data Foundation into the Filter by keyword box to find the OpenShift Data Foundation Operator.
  4. Click Install.
  5. Set the following options on the Install Operator page:

    1. Update Channel as stable-4.14.
    2. Installation Mode as A specific namespace on the cluster.
    3. Installed Namespace as Operator recommended namespace openshift-storage. If Namespace openshift-storage does not exist, it is created during the operator installation.
  6. Select Approval Strategy as Automatic or Manual.

    If you select Automatic updates, then the Operator Lifecycle Manager (OLM) automatically upgrades the running instance of your Operator without any intervention.

    If you select Manual updates, then the OLM creates an update request. As a cluster administrator, you must then manually approve that update request to update the Operator to a newer version.

  7. Ensure that the Enable option is selected for the Console plugin.
  8. Click Install.

Verification steps

  • Verify that the OpenShift Data Foundation Operator shows a green tick indicating successful installation.
  • After the operator is successfully installed, a pop-up with a message, Web console update is available appears on the user interface. Click Refresh web console from this pop-up for the console changes to reflect.

    • In the Web Console, navigate to Storage and verify if Data Foundation is available.

You can enable the key value backend path and policy in the vault for token authentication.

Prerequisites

  • Administrator access to the vault.
  • A valid Red Hat OpenShift Data Foundation Advanced subscription. For more information, see the knowledgebase article on OpenShift Data Foundation subscriptions.
  • Carefully, select a unique path name as the backend path that follows the naming convention since you cannot change it later.

Procedure

  1. Enable the Key/Value (KV) backend path in the vault.

    For vault KV secret engine API, version 1:

    $ vault secrets enable -path=odf kv
    Copy to Clipboard Toggle word wrap

    For vault KV secret engine API, version 2:

    $ vault secrets enable -path=odf kv-v2
    Copy to Clipboard Toggle word wrap
  2. Create a policy to restrict the users to perform a write or delete operation on the secret:

    echo '
    path "odf/*" {
      capabilities = ["create", "read", "update", "delete", "list"]
    }
    path "sys/mounts" {
    capabilities = ["read"]
    }'| vault policy write odf -
    Copy to Clipboard Toggle word wrap
  3. Create a token that matches the above policy:

    $ vault token create -policy=odf -format json
    Copy to Clipboard Toggle word wrap

You can enable the Kubernetes authentication method for cluster-wide encryption using the Key Management System (KMS).

Prerequisites

  • Administrator access to Vault.
  • A valid Red Hat OpenShift Data Foundation Advanced subscription. For more information, see the knowledgebase article on OpenShift Data Foundation subscriptions.
  • The OpenShift Data Foundation operator must be installed from the Operator Hub.
  • Select a unique path name as the backend path that follows the naming convention carefully. You cannot change this path name later.

Procedure

  1. Create a service account:

    $ oc -n openshift-storage create serviceaccount <serviceaccount_name>
    Copy to Clipboard Toggle word wrap

    where, <serviceaccount_name> specifies the name of the service account.

    For example:

    $ oc -n openshift-storage create serviceaccount odf-vault-auth
    Copy to Clipboard Toggle word wrap
  2. Create clusterrolebindings and clusterroles:

    $ oc -n openshift-storage create clusterrolebinding vault-tokenreview-binding --clusterrole=system:auth-delegator --serviceaccount=openshift-storage:_<serviceaccount_name>_
    Copy to Clipboard Toggle word wrap

    For example:

    $ oc -n openshift-storage create clusterrolebinding vault-tokenreview-binding --clusterrole=system:auth-delegator --serviceaccount=openshift-storage:odf-vault-auth
    Copy to Clipboard Toggle word wrap
  3. Create a secret for the serviceaccount token and CA certificate.

    $ cat <<EOF | oc create -f -
    apiVersion: v1
    kind: Secret
    metadata:
      name: odf-vault-auth-token
      namespace: openshift-storage
      annotations:
        kubernetes.io/service-account.name: <serviceaccount_name>
    type: kubernetes.io/service-account-token
    data: {}
    EOF
    Copy to Clipboard Toggle word wrap

    where, <serviceaccount_name> is the service account created in the earlier step.

  4. Get the token and the CA certificate from the secret.

    $ SA_JWT_TOKEN=$(oc -n openshift-storage get secret odf-vault-auth-token -o jsonpath="{.data['token']}" | base64 --decode; echo)
    $ SA_CA_CRT=$(oc -n openshift-storage get secret odf-vault-auth-token -o jsonpath="{.data['ca\.crt']}" | base64 --decode; echo)
    Copy to Clipboard Toggle word wrap
  5. Retrieve the OCP cluster endpoint.

    $ OCP_HOST=$(oc config view --minify --flatten -o jsonpath="{.clusters[0].cluster.server}")
    Copy to Clipboard Toggle word wrap
  6. Fetch the service account issuer:

    $ oc proxy &
    $ proxy_pid=$!
    $ issuer="$( curl --silent http://127.0.0.1:8001/.well-known/openid-configuration | jq -r .issuer)"
    $ kill $proxy_pid
    Copy to Clipboard Toggle word wrap
  7. Use the information collected in the previous step to setup the Kubernetes authentication method in Vault:

    $ vault auth enable kubernetes
    Copy to Clipboard Toggle word wrap
    $ vault write auth/kubernetes/config \
              token_reviewer_jwt="$SA_JWT_TOKEN" \
              kubernetes_host="$OCP_HOST" \
              kubernetes_ca_cert="$SA_CA_CRT" \
              issuer="$issuer"
    Copy to Clipboard Toggle word wrap
    Important

    To configure the Kubernetes authentication method in Vault when the issuer is empty:

    $ vault write auth/kubernetes/config \
              token_reviewer_jwt="$SA_JWT_TOKEN" \
              kubernetes_host="$OCP_HOST" \
              kubernetes_ca_cert="$SA_CA_CRT"
    Copy to Clipboard Toggle word wrap
  8. Enable the Key/Value (KV) backend path in Vault.

    For Vault KV secret engine API, version 1:

    $ vault secrets enable -path=odf kv
    Copy to Clipboard Toggle word wrap

    For Vault KV secret engine API, version 2:

    $ vault secrets enable -path=odf kv-v2
    Copy to Clipboard Toggle word wrap
  9. Create a policy to restrict the users to perform a write or delete operation on the secret:

    echo '
    path "odf/*" {
      capabilities = ["create", "read", "update", "delete", "list"]
    }
    path "sys/mounts" {
    capabilities = ["read"]
    }'| vault policy write odf -
    Copy to Clipboard Toggle word wrap
  10. Generate the roles:

    $ vault write auth/kubernetes/role/odf-rook-ceph-op \
            bound_service_account_names=rook-ceph-system,rook-ceph-osd,noobaa \
            bound_service_account_namespaces=openshift-storage \
            policies=odf \
            ttl=1440h
    Copy to Clipboard Toggle word wrap

    The role odf-rook-ceph-op is later used while you configure the KMS connection details during the creation of the storage system.

    $ vault write auth/kubernetes/role/odf-rook-ceph-osd \
            bound_service_account_names=rook-ceph-osd \
            bound_service_account_namespaces=openshift-storage \
            policies=odf \
            ttl=1440h
    Copy to Clipboard Toggle word wrap

2.5. Finding available storage devices

Use this procedure to identify the device names for each of the three or more worker nodes that you have labeled with the OpenShift Data Foundation label cluster.ocs.openshift.io/openshift-storage='' before creating PVs for IBM Power.

Procedure

  1. List and verify the name of the worker nodes with the OpenShift Data Foundation label.

    $ oc get nodes -l cluster.ocs.openshift.io/openshift-storage=
    Copy to Clipboard Toggle word wrap

    Example output:

    NAME       STATUS   ROLES    AGE     VERSION
    worker-0   Ready    worker   2d11h   v1.23.3+e419edf
    worker-1   Ready    worker   2d11h   v1.23.3+e419edf
    worker-2   Ready    worker   2d11h   v1.23.3+e419edf
    Copy to Clipboard Toggle word wrap
  2. Log in to each worker node that is used for OpenShift Data Foundation resources and find the name of the additional disk that you have attached while deploying Openshift Container Platform.

    $ oc debug node/<node name>
    Copy to Clipboard Toggle word wrap

    Example output:

    $ oc debug node/worker-0
    Starting pod/worker-0-debug ...
    To use host binaries, run `chroot /host`
    Pod IP: 192.168.0.63
    If you don't see a command prompt, try pressing enter.
    sh-4.4#
    sh-4.4# chroot /host
    sh-4.4# lsblk
    NAME   MAJ:MIN RM   SIZE RO TYPE MOUNTPOINT
    loop1    7:1    0   500G  0 loop
    sda      8:0    0   500G  0 disk
    sdb      8:16   0   120G  0 disk
    |-sdb1   8:17   0     4M  0 part
    |-sdb3   8:19   0   384M  0 part
    `-sdb4   8:20   0 119.6G  0 part
    sdc      8:32   0   500G  0 disk
    sdd      8:48   0   120G  0 disk
    |-sdd1   8:49   0     4M  0 part
    |-sdd3   8:51   0   384M  0 part
    `-sdd4   8:52   0 119.6G  0 part
    sde      8:64   0   500G  0 disk
    sdf      8:80   0   120G  0 disk
    |-sdf1   8:81   0     4M  0 part
    |-sdf3   8:83   0   384M  0 part
    `-sdf4   8:84   0 119.6G  0 part
    sdg      8:96   0   500G  0 disk
    sdh      8:112  0   120G  0 disk
    |-sdh1   8:113  0     4M  0 part
    |-sdh3   8:115  0   384M  0 part
    `-sdh4   8:116  0 119.6G  0 part
    sdi      8:128  0   500G  0 disk
    sdj      8:144  0   120G  0 disk
    |-sdj1   8:145  0     4M  0 part
    |-sdj3   8:147  0   384M  0 part
    `-sdj4   8:148  0 119.6G  0 part
    sdk      8:160  0   500G  0 disk
    sdl      8:176  0   120G  0 disk
    |-sdl1   8:177  0     4M  0 part
    |-sdl3   8:179  0   384M  0 part
    `-sdl4   8:180  0 119.6G  0 part /sysroot
    sdm      8:192  0   500G  0 disk
    sdn      8:208  0   120G  0 disk
    |-sdn1   8:209  0     4M  0 part
    |-sdn3   8:211  0   384M  0 part /boot
    `-sdn4   8:212  0 119.6G  0 part
    sdo      8:224  0   500G  0 disk
    sdp      8:240  0   120G  0 disk
    |-sdp1   8:241  0     4M  0 part
    |-sdp3   8:243  0   384M  0 part
    `-sdp4   8:244  0 119.6G  0 part
    Copy to Clipboard Toggle word wrap

    In this example, for worker-0, the available local devices of 500G are sda, sdc, sde,sdg, sdi, sdk, sdm,sdo.

  3. Repeat the above step for all the other worker nodes that have the storage devices to be used by OpenShift Data Foundation. See this Knowledge Base article for more details.

2.6. Creating OpenShift Data Foundation cluster on IBM Power

Use this procedure to create an OpenShift Data Foundation cluster after you install the OpenShift Data Foundation operator.

Prerequisites

  • Ensure that all the requirements in the Requirements for installing OpenShift Data Foundation using local storage devices section are met.
  • You must have a minimum of three worker nodes with the same storage type and size attached to each node (for example, 200 GB SSD) to use local storage devices on IBM Power.
  • Verify your OpenShift Container Platform worker nodes are labeled for OpenShift Data Foundation:

    oc get nodes -l cluster.ocs.openshift.io/openshift-storage -o jsonpath='{range .items[*]}{.metadata.name}{"\n"}'
    Copy to Clipboard Toggle word wrap

To identify storage devices on each node, refer to Finding available storage devices.

Procedure

  1. Log into the OpenShift Web Console.
  2. In openshift-local-storage namespace Click Operators Installed Operators to view the installed operators.
  3. Click the Local Storage installed operator.
  4. On the Operator Details page, click the Local Volume link.
  5. Click Create Local Volume.
  6. Click on YAML view for configuring Local Volume.
  7. Define a LocalVolume custom resource for block PVs using the following YAML.

    apiVersion: local.storage.openshift.io/v1
    kind: LocalVolume
    metadata:
      name: localblock
      namespace: openshift-local-storage
    spec:
      logLevel: Normal
      managementState: Managed
      nodeSelector:
        nodeSelectorTerms:
          - matchExpressions:
              - key: kubernetes.io/hostname
                operator: In
                values:
                  - worker-0
                  - worker-1
                  - worker-2
      storageClassDevices:
        - devicePaths:
            - /dev/sda
          storageClassName: localblock
          volumeMode: Block
    Copy to Clipboard Toggle word wrap

    The above definition selects sda local device from the worker-0, worker-1 and worker-2 nodes. The localblock storage class is created and persistent volumes are provisioned from sda.

    Important

    Specify appropriate values of nodeSelector as per your environment. The device name should be same on all the worker nodes. You can also specify more than one devicePaths.

  8. Click Create.
  9. Confirm whether diskmaker-manager pods and Persistent Volumes are created.

    1. For Pods

      1. Click Workloads Pods from the left pane of the OpenShift Web Console.
      2. Select openshift-local-storage from the Project drop-down list.
      3. Check if there are diskmaker-manager pods for each of the worker node that you used while creating LocalVolume CR.
    2. For Persistent Volumes

      1. Click Storage PersistentVolumes from the left pane of the OpenShift Web Console.
      2. Check the Persistent Volumes with the name local-pv-*. Number of Persistent Volumes will be equivalent to the product of number of worker nodes and number of storage devices provisioned while creating localVolume CR.

        Important
        • The flexible scaling feature is enabled only when the storage cluster that you created with three or more nodes are spread across fewer than the minimum requirement of three availability zones.

          For information about flexible scaling, see knowledgebase article on Scaling OpenShift Data Foundation cluster using YAML when flexible scaling is enabled.

        • Flexible scaling features get enabled at the time of deployment and can not be enabled or disabled later on.
  10. In the OpenShift Web Console, click Operators Installed Operators to view all the installed operators.

    Ensure that the Project selected is openshift-storage.

  11. Click on the OpenShift Data Foundation operator and then click Create StorageSystem.
  12. In the Backing storage page, perform the following:

    1. Select Full Deployment for the Deployment type option.
    2. Select the Use an existing StorageClass option.
    3. Select the required Storage Class that you used while installing LocalVolume.

      By default, it is set to none.

    4. Click Next.
  13. In the Capacity and nodes page, configure the following:

    1. Available raw capacity is populated with the capacity value based on all the attached disks associated with the storage class. This takes some time to show up.

      Note

      Once you select the initial storage capacity, cluster expansion is performed only using the selected usable capacity (three times of raw storage).

    2. The Selected nodes list shows the nodes based on the storage class.
    3. Optional: Select the Taint nodes checkbox to dedicate the selected nodes for OpenShift Data Foundation.
    4. Optional [Technology preview]: Select the Add replica-1 pool checkbox to deploy OpenShift Data Foundation with a single replica. This avoids redundant data copies and allows resiliency management on the application level. In order to enable replica-1 pool, atleast 2 storage disks should be attached to each of the storage nodes.

      Warning

      Enabling this feature creates a single replica pool without data replication, increasing the risk of data loss, data corruption, and potential system instability if your application does not have its own replication.

      Important

      Single replica deployment is a Technology Preview feature. Technology Preview features are not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using them in production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.

      For more information, see Technology Preview Features Support Scope.

    5. Click Next.
  14. Optional: In the Security and network page, configure the following based on your requirements:

    1. To enable encryption, select Enable data encryption for block and file storage.

      1. Select either one or both the encryption levels:

        • Cluster-wide encryption

          Encrypts the entire cluster (block and file).

        • StorageClass encryption

          Creates encrypted persistent volume (block only) using encryption enabled storage class.

      2. Optional: Select the Connect to an external key management service checkbox. This is optional for cluster-wide encryption.

        1. From the Key Management Service Provider drop-down list, either select Vault or Thales CipherTrust Manager (using KMIP). If you selected Vault, go to the next step. If you selected Thales CipherTrust Manager (using KMIP), go to step iii.
        2. Select an Authentication Method.

          Using Token authentication method
          • Enter a unique Connection Name, host Address of the Vault server ('https://<hostname or ip>'), Port number and Token.
          • Expand Advanced Settings to enter additional settings and certificate details based on your Vault configuration:

            • Enter the Key Value secret path in Backend Path that is dedicated and unique to OpenShift Data Foundation.
            • Optional: Enter TLS Server Name and Vault Enterprise Namespace.
            • Upload the respective PEM encoded certificate file to provide the CA Certificate, Client Certificate and Client Private Key .
            • Click Save and skip to step iv.
          Using Kubernetes authentication method
          • Enter a unique Vault Connection Name, host Address of the Vault server ('https://<hostname or ip>'), Port number and Role name.
          • Expand Advanced Settings to enter additional settings and certificate details based on your Vault configuration:

            • Enter the Key Value secret path in Backend Path that is dedicated and unique to OpenShift Data Foundation.
            • Optional: Enter TLS Server Name and Authentication Path if applicable.
            • Upload the respective PEM encoded certificate file to provide the CA Certificate, Client Certificate and Client Private Key .
            • Click Save and skip to step iv.
        3. To use Thales CipherTrust Manager (using KMIP) as the KMS provider, follow the steps below:

          1. Enter a unique Connection Name for the Key Management service within the project.
          2. In the Address and Port sections, enter the IP of Thales CipherTrust Manager and the port where the KMIP interface is enabled. For example:

            • Address: 123.34.3.2
            • Port: 5696
          3. Upload the Client Certificate, CA certificate, and Client Private Key.
          4. If StorageClass encryption is enabled, enter the Unique Identifier to be used for encryption and decryption generated above.
          5. The TLS Server field is optional and used when there is no DNS entry for the KMIP endpoint. For example, kmip_all_<port>.ciphertrustmanager.local.
        4. Select a Network.

          1. Select Default (OVN) network as Multus is not yet supported on OpenShift Data Foundation on IBM Power.
        5. Click Next.
    2. To enable in-transit encryption, select In-transit encryption.

      1. Select a Network.
      2. Click Next.
  15. In the Data Protection page, if you are configuring Regional-DR solution for Openshift Data Foundation then select the Prepare cluster for disaster recovery(Regional-DR only) checkbox, else click Next.
  16. In the Review and create page::

    1. Review the configurations details. To modify any configuration settings, click Back to go back to the previous configuration page.
    2. Click Create StorageSystem.

Verification steps

  • To verify the final Status of the installed storage cluster:

    1. In the OpenShift Web Console, navigate to Installed Operators OpenShift Data Foundation Storage System ocs-storagecluster-storagesystem Resources.
    2. Verify that Status of StorageCluster is Ready and has a green tick mark next to it.
  • To verify if flexible scaling is enabled on your storage cluster, perform the following steps:

    1. In the OpenShift Web Console, navigate to Installed Operators OpenShift Data Foundation Storage System ocs-storagecluster-storagesystem Resources ocs-storagecluster.
    2. In the YAML tab, search for the keys flexibleScaling in spec section and failureDomain in status section. If flexible scaling is true and failureDomain is set to host, flexible scaling feature is enabled.

      spec:
      flexibleScaling: true
      […]
      status:
      failureDomain: host
      Copy to Clipboard Toggle word wrap
  • To verify that all the components for OpenShift Data Foundation are successfully installed, see Verifying your OpenShift Data Foundation deployment.

Additional resources

  • To expand the capacity of the initial cluster, see the Scaling Storage guide.
Torna in cima
Red Hat logoGithubredditYoutubeTwitter

Formazione

Prova, acquista e vendi

Community

Informazioni sulla documentazione di Red Hat

Aiutiamo gli utenti Red Hat a innovarsi e raggiungere i propri obiettivi con i nostri prodotti e servizi grazie a contenuti di cui possono fidarsi. Esplora i nostri ultimi aggiornamenti.

Rendiamo l’open source più inclusivo

Red Hat si impegna a sostituire il linguaggio problematico nel codice, nella documentazione e nelle proprietà web. Per maggiori dettagli, visita il Blog di Red Hat.

Informazioni su Red Hat

Forniamo soluzioni consolidate che rendono più semplice per le aziende lavorare su piattaforme e ambienti diversi, dal datacenter centrale all'edge della rete.

Theme

© 2025 Red Hat