第8章 vLLM 環境収集スクリプトを使用したシステム情報の収集
AI Inference Server のデプロイメントのトラブルシューティングに必要なシステム情報を収集するには、Red Hat AI Inference Server コンテナーから実行する vllm collect-env
コマンドを使用します。このスクリプトは、デプロイメントの問題やモデル推論サービングの問題の診断に役立つシステムの詳細、ハードウェア設定、依存関係情報を収集します。
前提条件
- Podman または Docker がインストールされている。
- sudo アクセス権を持つユーザーとしてログインしている。
- データセンターグレードの AI アクセラレーターがインストールされた Linux サーバーにアクセスできる。
- Red Hat AI Inference Server コンテナーをプルして正常にデプロイした。
手順
ターミナルを開き、
registry.redhat.io
にログインします。podman login registry.redhat.io
$ podman login registry.redhat.io
Copy to Clipboard Copied! Toggle word wrap Toggle overflow インストールされている AI アクセラレーター用の特定の Red Hat AI Inference Server コンテナーイメージをプルします。たとえば、Google Cloud TPU 用の Red Hat AI Inference Server コンテナーをプルするには、次のコマンドを実行します。
podman pull registry.redhat.io/rhaiis/vllm-tpu-rhel9:3.2.2
$ podman pull registry.redhat.io/rhaiis/vllm-tpu-rhel9:3.2.2
Copy to Clipboard Copied! Toggle word wrap Toggle overflow コンテナー内で環境収集スクリプトを実行します。
podman run --rm -it \ --name vllm-tpu \ --network=host \ --privileged \ --device=/dev/vfio/vfio \ --device=/dev/vfio/0 \ -e PJRT_DEVICE=TPU \ -e HF_HUB_OFFLINE=0 \ -v ./.cache/rhaiis:/opt/app-root/src/.cache:Z \ --entrypoint vllm collect-env \ registry.redhat.io/rhaiis/vllm-tpu-rhel9:3.2.2
$ podman run --rm -it \ --name vllm-tpu \ --network=host \ --privileged \ --device=/dev/vfio/vfio \ --device=/dev/vfio/0 \ -e PJRT_DEVICE=TPU \ -e HF_HUB_OFFLINE=0 \ -v ./.cache/rhaiis:/opt/app-root/src/.cache:Z \ --entrypoint vllm collect-env \ registry.redhat.io/rhaiis/vllm-tpu-rhel9:3.2.2
Copy to Clipboard Copied! Toggle word wrap Toggle overflow
検証
vllm collect-env
コマンドの出力には、次のような環境情報が詳細に表示されます。
- システムハードウェアの詳細
- オペレーティングシステムの詳細
- Python 環境と依存関係
- GPU/TPU アクセラレーターの情報
出力を確認し、設定の問題を示している可能性のある警告やエラーがないか確認します。Red Hat サポートに問題を報告するときは、システムの collect-env
出力を含めてください。
以下に、Google Cloud TPU レポートの例を示します。
============================== System Info ============================== OS : Red Hat Enterprise Linux 9.6 (Plow) (x86_64) GCC version : (GCC) 11.5.0 20240719 (Red Hat 11.5.0-5) Clang version : Could not collect CMake version : version 4.1.0 Libc version : glibc-2.34 ============================== PyTorch Info ============================== PyTorch version : 2.9.0.dev20250716 Is debug build : False CUDA used to build PyTorch : None ROCM used to build PyTorch : N/A ============================== Python Environment ============================== Python version : 3.12.9 (main, Jun 20 2025, 00:00:00) [GCC 11.5.0 20240719 (Red Hat 11.5.0-5)] (64-bit runtime) Python platform : Linux-6.8.0-1015-gcp-x86_64-with-glibc2.34 ============================== CUDA / GPU Info ============================== Is CUDA available : False CUDA runtime version : No CUDA CUDA_MODULE_LOADING set to : N/A GPU models and configuration : No CUDA Nvidia driver version : No CUDA cuDNN version : No CUDA HIP runtime version : N/A MIOpen runtime version : N/A Is XNNPACK available : True ============================== CPU Info ============================== Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 52 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 44 On-line CPU(s) list: 0-43 Vendor ID: AuthenticAMD Model name: AMD EPYC 9B14 CPU family: 25 Model: 17 Thread(s) per core: 2 Core(s) per socket: 22 Socket(s): 1 Stepping: 1 BogoMIPS: 5200.00 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext ssbd ibrs ibpb stibp vmmcall fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx512_bf16 clzero xsaveerptr wbnoinvd arat avx512vbmi umip avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid fsrm Hypervisor vendor: KVM Virtualization type: full L1d cache: 704 KiB (22 instances) L1i cache: 704 KiB (22 instances) L2 cache: 22 MiB (22 instances) L3 cache: 96 MiB (3 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-43 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Mitigation; Safe RET Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Retpolines; IBPB conditional; IBRS_FW; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected ============================== Versions of relevant libraries ============================== [pip3] numpy==1.26.4 [pip3] pyzmq==27.0.1 [pip3] torch==2.9.0.dev20250716 [pip3] torch-xla==2.9.0.dev20250716 [pip3] torchvision==0.24.0.dev20250716 [pip3] transformers==4.55.2 [pip3] triton==3.3.1 [conda] Could not collect ============================== vLLM Info ============================== ROCM Version : Could not collect Neuron SDK Version : N/A vLLM Version : 0.10.0+rhai1 vLLM Build Flags: CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled GPU Topology: Could not collect ============================== Environment Variables ============================== VLLM_USE_V1=1 VLLM_WORKER_MULTIPROC_METHOD=spawn VLLM_NO_USAGE_STATS=1 NCCL_CUMEM_ENABLE=0 PYTORCH_NVML_BASED_CUDA_CHECK=1 TORCHINDUCTOR_COMPILE_THREADS=1 TORCHINDUCTOR_CACHE_DIR=/tmp/torchinductor_default
==============================
System Info
==============================
OS : Red Hat Enterprise Linux 9.6 (Plow) (x86_64)
GCC version : (GCC) 11.5.0 20240719 (Red Hat 11.5.0-5)
Clang version : Could not collect
CMake version : version 4.1.0
Libc version : glibc-2.34
==============================
PyTorch Info
==============================
PyTorch version : 2.9.0.dev20250716
Is debug build : False
CUDA used to build PyTorch : None
ROCM used to build PyTorch : N/A
==============================
Python Environment
==============================
Python version : 3.12.9 (main, Jun 20 2025, 00:00:00) [GCC 11.5.0 20240719 (Red Hat 11.5.0-5)] (64-bit runtime)
Python platform : Linux-6.8.0-1015-gcp-x86_64-with-glibc2.34
==============================
CUDA / GPU Info
==============================
Is CUDA available : False
CUDA runtime version : No CUDA
CUDA_MODULE_LOADING set to : N/A
GPU models and configuration : No CUDA
Nvidia driver version : No CUDA
cuDNN version : No CUDA
HIP runtime version : N/A
MIOpen runtime version : N/A
Is XNNPACK available : True
==============================
CPU Info
==============================
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 52 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 44
On-line CPU(s) list: 0-43
Vendor ID: AuthenticAMD
Model name: AMD EPYC 9B14
CPU family: 25
Model: 17
Thread(s) per core: 2
Core(s) per socket: 22
Socket(s): 1
Stepping: 1
BogoMIPS: 5200.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext ssbd ibrs ibpb stibp vmmcall fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx512_bf16 clzero xsaveerptr wbnoinvd arat avx512vbmi umip avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid fsrm
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 704 KiB (22 instances)
L1i cache: 704 KiB (22 instances)
L2 cache: 22 MiB (22 instances)
L3 cache: 96 MiB (3 instances)
NUMA node(s): 1
NUMA node0 CPU(s): 0-43
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Mitigation; Safe RET
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines; IBPB conditional; IBRS_FW; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
==============================
Versions of relevant libraries
==============================
[pip3] numpy==1.26.4
[pip3] pyzmq==27.0.1
[pip3] torch==2.9.0.dev20250716
[pip3] torch-xla==2.9.0.dev20250716
[pip3] torchvision==0.24.0.dev20250716
[pip3] transformers==4.55.2
[pip3] triton==3.3.1
[conda] Could not collect
==============================
vLLM Info
==============================
ROCM Version : Could not collect
Neuron SDK Version : N/A
vLLM Version : 0.10.0+rhai1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
Could not collect
==============================
Environment Variables
==============================
VLLM_USE_V1=1
VLLM_WORKER_MULTIPROC_METHOD=spawn
VLLM_NO_USAGE_STATS=1
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
TORCHINDUCTOR_CACHE_DIR=/tmp/torchinductor_default