このコンテンツは選択した言語では利用できません。

Chapter 1. Overview of evaluating AI systems


Evaluate your AI systems to generate an analysis of your model’s ability by using the following TrustyAI tools:

  • LM-Eval: You can use TrustyAI to monitor your LLM against a range of different evaluation tasks and to ensure the accuracy and quality of its output. Features such as summarization, language toxicity, and question-answering accuracy are assessed to inform and improve your model parameters.
  • RAGAS: Use Retrieval-Augmented Generation Assessment (RAGAS) with TrustyAI to measure and improve the quality of your RAG systems in OpenShift AI. RAGAS provides objective metrics that assess retrieval quality, answer relevance, and factual consistency.
  • Llama Stack: Use Llama Stack components and providers with TrustyAI to evaluate and work with LLMs.
トップに戻る
Red Hat logoGithubredditYoutubeTwitter

詳細情報

試用、購入および販売

コミュニティー

Red Hat ドキュメントについて

Red Hat をお使いのお客様が、信頼できるコンテンツが含まれている製品やサービスを活用することで、イノベーションを行い、目標を達成できるようにします。 最新の更新を見る.

多様性を受け入れるオープンソースの強化

Red Hat では、コード、ドキュメント、Web プロパティーにおける配慮に欠ける用語の置き換えに取り組んでいます。このような変更は、段階的に実施される予定です。詳細情報: Red Hat ブログ.

会社概要

Red Hat は、企業がコアとなるデータセンターからネットワークエッジに至るまで、各種プラットフォームや環境全体で作業を簡素化できるように、強化されたソリューションを提供しています。

Theme

© 2025 Red Hat