이 콘텐츠는 선택한 언어로 제공되지 않습니다.
Chapter 1. Working with pods
1.1. Using pods
A pod is one or more containers deployed together on one host, and the smallest compute unit that can be defined, deployed, and managed.
1.1.1. Understanding pods
Pods are the rough equivalent of a machine instance (physical or virtual) to a Container. Each pod is allocated its own internal IP address, therefore owning its entire port space, and Containers within pods can share their local storage and networking.
Pods have a lifecycle; they are defined, then they are assigned to run on a node, then they run until their Container(s) exit or they are removed for some other reason. Pods, depending on policy and exit code, might be removed after exiting, or can be retained in order to enable access to the logs of their Containers.
OpenShift Container Platform treats pods as largely immutable; changes cannot be made to a pod definition while it is running. OpenShift Container Platform implements changes by terminating an existing pod and recreating it with modified configuration, base image(s), or both. Pods are also treated as expendable, and do not maintain state when recreated. Therefore pods should usually be managed by higher-level controllers, rather than directly by users.
For the maximum number of pods per OpenShift Container Platform node host, see the Cluster Limits.
Bare pods that are not managed by a replication controller will be not rescheduled upon node disruption.
1.1.2. Example pod configurations
OpenShift Container Platform leverages the Kubernetes concept of a pod, which is one or more containers deployed together on one host, and the smallest compute unit that can be defined, deployed, and managed.
The following is an example definition of a pod that provides a long-running service, which is actually a part of the OpenShift Container Platform infrastructure: the integrated container image registry. It demonstrates many features of pods, most of which are discussed in other topics and thus only briefly mentioned here:
Pod object definition (YAML)
kind: Pod apiVersion: v1 metadata: name: example namespace: default selfLink: /api/v1/namespaces/default/pods/example uid: 5cc30063-0265780783bc resourceVersion: '165032' creationTimestamp: '2019-02-13T20:31:37Z' labels: 1 app: hello-openshift annotations: openshift.io/scc: anyuid spec: restartPolicy: Always 2 serviceAccountName: default imagePullSecrets: - name: default-dockercfg-5zrhb priority: 0 schedulerName: default-scheduler terminationGracePeriodSeconds: 30 nodeName: ip-10-0-140-16.us-east-2.compute.internal securityContext: 3 seLinuxOptions: level: 's0:c11,c10' containers: 4 - resources: {} terminationMessagePath: /dev/termination-log name: hello-openshift securityContext: capabilities: drop: - MKNOD procMount: Default ports: - containerPort: 8080 protocol: TCP imagePullPolicy: Always volumeMounts: 5 - name: default-token-wbqsl readOnly: true mountPath: /var/run/secrets/kubernetes.io/serviceaccount terminationMessagePolicy: File image: registry.redhat.io/openshift4/ose-ogging-eventrouter:v4.3 6 serviceAccount: default 7 volumes: 8 - name: default-token-wbqsl secret: secretName: default-token-wbqsl defaultMode: 420 dnsPolicy: ClusterFirst status: phase: Pending conditions: - type: Initialized status: 'True' lastProbeTime: null lastTransitionTime: '2019-02-13T20:31:37Z' - type: Ready status: 'False' lastProbeTime: null lastTransitionTime: '2019-02-13T20:31:37Z' reason: ContainersNotReady message: 'containers with unready status: [hello-openshift]' - type: ContainersReady status: 'False' lastProbeTime: null lastTransitionTime: '2019-02-13T20:31:37Z' reason: ContainersNotReady message: 'containers with unready status: [hello-openshift]' - type: PodScheduled status: 'True' lastProbeTime: null lastTransitionTime: '2019-02-13T20:31:37Z' hostIP: 10.0.140.16 startTime: '2019-02-13T20:31:37Z' containerStatuses: - name: hello-openshift state: waiting: reason: ContainerCreating lastState: {} ready: false restartCount: 0 image: openshift/hello-openshift imageID: '' qosClass: BestEffort
- 1
- Pods can be "tagged" with one or more labels, which can then be used to select and manage groups of pods in a single operation. The labels are stored in key/value format in the
metadata
hash. One label in this example isregistry=default
. - 2
- The pod restart policy with possible values
Always
,OnFailure
, andNever
. The default value isAlways
. - 3
- OpenShift Container Platform defines a security context for containers which specifies whether they are allowed to run as privileged containers, run as a user of their choice, and more. The default context is very restrictive but administrators can modify this as needed.
- 4
containers
specifies an array of one or more container definitions.- 5
- The container specifies where external storage volumes are mounted within the container. In this case, there is a volume for storing access to credentials the registry needs for making requests against the OpenShift Container Platform API.
- 6
- Each container in the pod is instantiated from its own container image.
- 7
- Pods making requests against the OpenShift Container Platform API is a common enough pattern that there is a
serviceAccount
field for specifying which service account user the pod should authenticate as when making the requests. This enables fine-grained access control for custom infrastructure components. - 8
- The pod defines storage volumes that are available to its container(s) to use. In this case, it provides an ephemeral volume for the registry storage and a
secret
volume containing the service account credentials.
This pod definition does not include attributes that are filled by OpenShift Container Platform automatically after the pod is created and its lifecycle begins. The Kubernetes pod documentation has details about the functionality and purpose of pods.
1.2. Viewing pods
As an administrator, you can view the pods in your cluster and to determine the health of those pods and the cluster as a whole.
1.2.1. About pods
OpenShift Container Platform leverages the Kubernetes concept of a pod, which is one or more containers deployed together on one host, and the smallest compute unit that can be defined, deployed, and managed. Pods are the rough equivalent of a machine instance (physical or virtual) to a container.
You can view a list of pods associated with a specific project or view usage statistics about pods.
1.2.2. Viewing pods in a project
You can view a list of pods associated with the current project, including the number of replica, the current status, number or restarts and the age of the pod.
Procedure
To view the pods in a project:
Change to the project:
$ oc project <project-name>
Run the following command:
$ oc get pods
For example:
$ oc get pods -n openshift-console NAME READY STATUS RESTARTS AGE console-698d866b78-bnshf 1/1 Running 2 165m console-698d866b78-m87pm 1/1 Running 2 165m
Add the
-o wide
flags to view the pod IP address and the node where the pod is located.$ oc get pods -o wide NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE console-698d866b78-bnshf 1/1 Running 2 166m 10.128.0.24 ip-10-0-152-71.ec2.internal <none> console-698d866b78-m87pm 1/1 Running 2 166m 10.129.0.23 ip-10-0-173-237.ec2.internal <none>
1.2.3. Viewing pod usage statistics
You can display usage statistics about pods, which provide the runtime environments for Containers. These usage statistics include CPU, memory, and storage consumption.
Prerequisites
-
You must have
cluster-reader
permission to view the usage statistics. - Metrics must be installed to view the usage statistics.
Procedure
To view the usage statistics:
Run the following command:
$ oc adm top pods
For example:
$ oc adm top pods -n openshift-console NAME CPU(cores) MEMORY(bytes) console-7f58c69899-q8c8k 0m 22Mi console-7f58c69899-xhbgg 0m 25Mi downloads-594fcccf94-bcxk8 3m 18Mi downloads-594fcccf94-kv4p6 2m 15Mi
Run the following command to view the usage statistics for pods with labels:
$ oc adm top pod --selector=''
You must choose the selector (label query) to filter on. Supports
=
,==
, and!=
.
1.3. Configuring an OpenShift Container Platform cluster for pods
As an administrator, you can create and maintain an efficient cluster for pods.
By keeping your cluster efficient, you can provide a better environment for your developers using such tools as what a pod does when it exits, ensuring that the required number of pods is always running, when to restart pods designed to run only once, limit the bandwidth available to pods, and how to keep pods running during disruptions.
1.3.1. Configuring how pods behave after restart
A pod restart policy determines how OpenShift Container Platform responds when Containers in that pod exit. The policy applies to all Containers in that pod.
The possible values are:
-
Always
- Tries restarting a successfully exited Container on the pod continuously, with an exponential back-off delay (10s, 20s, 40s) until the pod is restarted. The default isAlways
. -
OnFailure
- Tries restarting a failed Container on the pod with an exponential back-off delay (10s, 20s, 40s) capped at 5 minutes. -
Never
- Does not try to restart exited or failed Containers on the pod. Pods immediately fail and exit.
After the pod is bound to a node, the pod will never be bound to another node. This means that a controller is necessary in order for a pod to survive node failure:
Condition | Controller Type | Restart Policy |
---|---|---|
Pods that are expected to terminate (such as batch computations) | Job |
|
Pods that are expected to not terminate (such as web servers) | Replication Controller |
|
Pods that must run one-per-machine | Daemonset | Any |
If a Container on a pod fails and the restart policy is set to OnFailure
, the pod stays on the node and the Container is restarted. If you do not want the Container to restart, use a restart policy of Never
.
If an entire pod fails, OpenShift Container Platform starts a new pod. Developers must address the possibility that applications might be restarted in a new pod. In particular, applications must handle temporary files, locks, incomplete output, and so forth caused by previous runs.
Kubernetes architecture expects reliable endpoints from cloud providers. When a cloud provider is down, the kubelet prevents OpenShift Container Platform from restarting.
If the underlying cloud provider endpoints are not reliable, do not install a cluster using cloud provider integration. Install the cluster as if it was in a no-cloud environment. It is not recommended to toggle cloud provider integration on or off in an installed cluster.
For details on how OpenShift Container Platform uses restart policy with failed Containers, see the Example States in the Kubernetes documentation.
1.3.2. Limiting the bandwidth available to pods
You can apply quality-of-service traffic shaping to a pod and effectively limit its available bandwidth. Egress traffic (from the pod) is handled by policing, which simply drops packets in excess of the configured rate. Ingress traffic (to the pod) is handled by shaping queued packets to effectively handle data. The limits you place on a pod do not affect the bandwidth of other pods.
Procedure
To limit the bandwidth on a pod:
Write an object definition JSON file, and specify the data traffic speed using
kubernetes.io/ingress-bandwidth
andkubernetes.io/egress-bandwidth
annotations. For example, to limit both pod egress and ingress bandwidth to 10M/s:Limited Pod Object Definition
{ "kind": "Pod", "spec": { "containers": [ { "image": "openshift/hello-openshift", "name": "hello-openshift" } ] }, "apiVersion": "v1", "metadata": { "name": "iperf-slow", "annotations": { "kubernetes.io/ingress-bandwidth": "10M", "kubernetes.io/egress-bandwidth": "10M" } } }
Create the pod using the object definition:
$ oc create -f <file_or_dir_path>
1.3.3. Understanding how to use pod disruption budgets to specify the number of pods that must be up
A pod disruption budget is part of the Kubernetes API, which can be managed with oc
commands like other object types. They allow the specification of safety constraints on pods during operations, such as draining a node for maintenance.
PodDisruptionBudget
is an API object that specifies the minimum number or percentage of replicas that must be up at a time. Setting these in projects can be helpful during node maintenance (such as scaling a cluster down or a cluster upgrade) and is only honored on voluntary evictions (not on node failures).
A PodDisruptionBudget
object’s configuration consists of the following key parts:
- A label selector, which is a label query over a set of pods.
An availability level, which specifies the minimum number of pods that must be available simultaneously, either:
-
minAvailable
is the number of pods must always be available, even during a disruption. -
maxUnavailable
is the number of Pods can be unavailable during a disruption.
-
A maxUnavailable
of 0%
or 0
or a minAvailable
of 100%
or equal to the number of replicas, is permitted, but can block nodes from being drained.
You can check for pod disruption budgets across all projects with the following:
$ oc get poddisruptionbudget --all-namespaces NAMESPACE NAME MIN-AVAILABLE SELECTOR another-project another-pdb 4 bar=foo test-project my-pdb 2 foo=bar
The PodDisruptionBudget
is considered healthy when there are at least minAvailable
pods running in the system. Every pod above that limit can be evicted.
Depending on your pod priority and preemption settings, lower-priority pods might be removed despite their pod disruption budget requirements.
1.3.3.1. Specifying the number of pods that must be up with pod disruption budgets
You can use a PodDisruptionBudget
object to specify the minimum number or percentage of replicas that must be up at a time.
Procedure
To configure a pod disruption budget:
Create a YAML file with the an object definition similar to the following:
apiVersion: policy/v1beta1 1 kind: PodDisruptionBudget metadata: name: my-pdb spec: minAvailable: 2 2 selector: 3 matchLabels: foo: bar
- 1
PodDisruptionBudget
is part of thepolicy/v1beta1
API group.- 2
- The minimum number of pods that must be available simultaneously. This can be either an integer or a string specifying a percentage, for example,
20%
. - 3
- A label query over a set of resources. The result of
matchLabels
andmatchExpressions
are logically conjoined.
Or:
apiVersion: policy/v1beta1 1 kind: PodDisruptionBudget metadata: name: my-pdb spec: maxUnavailable: 25% 2 selector: 3 matchLabels: foo: bar
- 1
PodDisruptionBudget
is part of thepolicy/v1beta1
API group.- 2
- The maximum number of pods that can be unavailable simultaneously. This can be either an integer or a string specifying a percentage, for example,
20%
. - 3
- A label query over a set of resources. The result of
matchLabels
andmatchExpressions
are logically conjoined.
Run the following command to add the object to project:
$ oc create -f </path/to/file> -n <project_name>
1.3.4. Preventing pod removal using critical pods
There are a number of core components that are critical to a fully functional cluster, but, run on a regular cluster node rather than the master. A cluster might stop working properly if a critical add-on is evicted.
Pods marked as critical are not allowed to be evicted.
Procedure
To make a pod critical:
Create a pod specification or edit existing pods to include the
system-cluster-critical
priority class:spec: template: metadata: name: critical-pod priorityClassName: system-cluster-critical 1
- 1
- Default priority class for pods that should never be evicted from a node.
Alternatively, you can specify system-node-critical
for pods that are important to the cluster but can be removed if necessary.
Create the pod:
$ oc create -f <file-name>.yaml
1.4. Automatically scaling pods
As a developer, you can use a horizontal pod autoscaler (HPA) to specify how OpenShift Container Platform should automatically increase or decrease the scale of a replication controller or deployment configuration, based on metrics collected from the pods that belong to that replication controller or deployment configuration.
1.4.1. Understanding horizontal pod autoscalers
You can create a horizontal pod autoscaler to specify the minimum and maximum number of pods you want to run, as well as the CPU utilization or memory utilization your pods should target.
Autoscaling for Memory Utilization is a Technology Preview feature only.
After you create a horizontal pod autoscaler, OpenShift Container Platform begins to query the CPU and/or memory resource metrics on the pods. When these metrics are available, the horizontal pod autoscaler computes the ratio of the current metric utilization with the desired metric utilization, and scales up or down accordingly. The query and scaling occurs at a regular interval, but can take one to two minutes before metrics become available.
For replication controllers, this scaling corresponds directly to the replicas of the replication controller. For deployment configurations, scaling corresponds directly to the replica count of the deployment configuration. Note that autoscaling applies only to the latest deployment in the Complete
phase.
OpenShift Container Platform automatically accounts for resources and prevents unnecessary autoscaling during resource spikes, such as during start up. Pods in the unready
state have 0 CPU
usage when scaling up and the autoscaler ignores the pods when scaling down. Pods without known metrics have 0% CPU
usage when scaling up and 100% CPU
when scaling down. This allows for more stability during the HPA decision. To use this feature, you must configure readiness checks to determine if a new pod is ready for use.
In order to use horizontal pod autoscalers, your cluster administrator must have properly configured cluster metrics.
1.4.1.1. Supported metrics
The following metrics are supported by horizontal pod autoscalers:
Metric | Description | API version |
---|---|---|
CPU utilization | Number of CPU cores used. Can be used to calculate a percentage of the pod’s requested CPU. |
|
Memory utilization | Amount of memory used. Can be used to calculate a percentage of the pod’s requested memory. |
|
For memory-based autoscaling, memory usage must increase and decrease proportionally to the replica count. On average:
- An increase in replica count must lead to an overall decrease in memory (working set) usage per-pod.
- A decrease in replica count must lead to an overall increase in per-pod memory usage.
Use the OpenShift Container Platform web console to check the memory behavior of your application and ensure that your application meets these requirements before using memory-based autoscaling.
1.4.2. Creating a horizontal pod autoscaler for CPU utilization
You can create a horizontal pod autoscaler (HPA) for an existing DeploymentConfig or ReplicationController object that automatically scales the Pods associated with that object in order to maintain the CPU usage you specify.
The HPA increases and decreases the number of replicas between the minimum and maximum numbers to maintain the specified CPU utilization across all Pods.
When autoscaling for CPU utilization, you can use the oc autoscale
command and specify the minimum and maximum number of Pods you want to run at any given time and the average CPU utilization your Pods should target. If you do not specify a minimum, the Pods are given default values from the OpenShift Container Platform server. To autoscale for a specific CPU value, create a HorizontalPodAutoscaler
object with the target CPU and Pod limits.
Prerequisites
In order to use horizontal pod autoscalers, your cluster administrator must have properly configured cluster metrics. You can use the oc describe PodMetrics <pod-name>
command to determine if metrics are configured. If metrics are configured, the output appears similar to the following, with Cpu
and Memory
displayed under Usage
.
$ oc describe PodMetrics openshift-kube-scheduler-ip-10-0-135-131.ec2.internal
Name: openshift-kube-scheduler-ip-10-0-135-131.ec2.internal Namespace: openshift-kube-scheduler Labels: <none> Annotations: <none> API Version: metrics.k8s.io/v1beta1 Containers: Name: wait-for-host-port Usage: Memory: 0 Name: scheduler Usage: Cpu: 8m Memory: 45440Ki Kind: PodMetrics Metadata: Creation Timestamp: 2019-05-23T18:47:56Z Self Link: /apis/metrics.k8s.io/v1beta1/namespaces/openshift-kube-scheduler/pods/openshift-kube-scheduler-ip-10-0-135-131.ec2.internal Timestamp: 2019-05-23T18:47:56Z Window: 1m0s Events: <none>
Procedure
To create a horizontal pod autoscaler for CPU utilization:
Perform one of the following one of the following:
To scale based on the percent of CPU utilization, create a
HorizontalPodAutoscaler
object for an existing DeploymentConfig:$ oc autoscale dc/<dc-name> \1 --min <number> \2 --max <number> \3 --cpu-percent=<percent> 4
- 1
- Specify the name of the DeploymentConfig. The object must exist.
- 2
- Optionally, specify the minimum number of replicas when scaling down.
- 3
- Specify the maximum number of replicas when scaling up.
- 4
- Specify the target average CPU utilization over all the Pods, represented as a percent of requested CPU. If not specified or negative, a default autoscaling policy is used.
To scale based on the percent of CPU utilization, create a
HorizontalPodAutoscaler
object for an existing ReplicationController:$ oc autoscale rc/<rc-name> 1 --min <number> \2 --max <number> \3 --cpu-percent=<percent> 4
- 1
- Specify the name of the ReplicationController. The object must exist.
- 2
- Specify the minimum number of replicas when scaling down.
- 3
- Specify the maximum number of replicas when scaling up.
- 4
- Specify the target average CPU utilization over all the Pods, represented as a percent of requested CPU. If not specified or negative, a default autoscaling policy is used.
To scale for a specific CPU value, create a YAML file similar to the following for an existing DeploymentConfig or ReplicationController:
Create a YAML file similar to the following:
apiVersion: autoscaling/v2beta2 1 kind: HorizontalPodAutoscaler metadata: name: cpu-autoscale 2 namespace: default spec: scaleTargetRef: apiVersion: v1 3 kind: ReplicationController 4 name: example 5 minReplicas: 1 6 maxReplicas: 10 7 metrics: 8 - type: Resource resource: name: cpu 9 target: type: Utilization 10 averageValue: 500m 11
- 1
- Use the
autoscaling/v2beta2
API. - 2
- Specify a name for this horizontal pod autoscaler object.
- 3
- Specify the API version of the object to scale:
-
For a ReplicationController, use
v1
, -
For a DeploymentConfig, use
apps.openshift.io/v1
.
-
For a ReplicationController, use
- 4
- Specify the kind of object to scale, either
ReplicationController
orDeploymentConfig
. - 5
- Specify the name of the object to scale. The object must exist.
- 6
- Specify the minimum number of replicas when scaling down.
- 7
- Specify the maximum number of replicas when scaling up.
- 8
- Use the
metrics
parameter for memory utilization. - 9
- Specify
cpu
for CPU utilization. - 10
- Set to
Utilization
. - 11
- Set the type to
averageValue
.
Create the horizontal pod autoscaler:
$ oc create -f <file-name>.yaml
Verify that the horizontal pod autoscaler was created:
$ oc get hpa cpu-autoscale NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE cpu-autoscale ReplicationController/example 173m/500m 1 10 1 20m
For example, the following command creates a horizontal pod autoscaler that maintains between 3 and 7 replicas of the Pods that are controlled by the image-registry
DeploymentConfig in order to maintain an average CPU utilization of 75% across all Pods.
$ oc autoscale dc/image-registry --min 3 --max 7 --cpu-percent=75 deploymentconfig "image-registry" autoscaled
The command creates a horizontal pod autoscaler with the following definition:
$ oc edit hpa frontend -n openshift-image-registry
apiVersion: autoscaling/v1 kind: HorizontalPodAutoscaler metadata: creationTimestamp: "2020-02-21T20:19:28Z" name: image-registry namespace: default resourceVersion: "32452" selfLink: /apis/autoscaling/v1/namespaces/default/horizontalpodautoscalers/frontend uid: 1a934a22-925d-431e-813a-d00461ad7521 spec: maxReplicas: 7 minReplicas: 3 scaleTargetRef: apiVersion: apps.openshift.io/v1 kind: DeploymentConfig name: image-registry targetCPUUtilizationPercentage: 75 status: currentReplicas: 5 desiredReplicas: 0
The following example shows autoscaling for the image-registry
DeploymentConfig. The initial deployment requires 3 Pods. The HPA object increased that minimum to 5 and will increase the Pods up to 7 if CPU usage on the Pods reaches 75%:
$ oc get dc image-registry NAME REVISION DESIRED CURRENT TRIGGERED BY image-registry 1 3 3 config $ oc autoscale dc/image-registry --min=5 --max=7 --cpu-percent=75 horizontalpodautoscaler.autoscaling/image-registry autoscaled $ oc get dc image-registry NAME REVISION DESIRED CURRENT TRIGGERED BY image-registry 1 5 5 config
1.4.3. Creating a horizontal pod autoscaler object for memory utilization
You can create a horizontal pod autoscaler (HPA) for an existing DeploymentConfig or ReplicationController object that automatically scales the Pods associated with that object in order to maintain the average memory utilization you specify, either a direct value or a percentage of requested memory.
The HPA increases and decreases the number of replicas between the minimum and maximum numbers to maintain the specified memory utilization across all Pods.
For memory utilization, you can specify the minimum and maximum number of Pods and the average memory utilization your Pods should target. If you do not specify a minimum, the Pods are given default values from the OpenShift Container Platform server.
Autoscaling for memory utilization is a Technology Preview feature only. Technology Preview features are not supported with Red Hat production service level agreements (SLAs), might not be functionally complete, and Red Hat does not recommend to use them for production. These features provide early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.
For more information on Red Hat Technology Preview features support scope, see https://access.redhat.com/support/offerings/techpreview/.
Prerequisites
In order to use horizontal pod autoscalers, your cluster administrator must have properly configured cluster metrics. You can use the oc describe PodMetrics <pod-name>
command to determine if metrics are configured. If metrics are configured, the output appears similar to the following, with Cpu
and Memory
displayed under Usage
.
$ oc describe PodMetrics openshift-kube-scheduler-ip-10-0-129-223.compute.internal -n openshift-kube-scheduler
Name: openshift-kube-scheduler-ip-10-0-129-223.compute.internal Namespace: openshift-kube-scheduler Labels: <none> Annotations: <none> API Version: metrics.k8s.io/v1beta1 Containers: Name: scheduler Usage: Cpu: 2m Memory: 41056Ki Name: wait-for-host-port Usage: Memory: 0 Kind: PodMetrics Metadata: Creation Timestamp: 2020-02-14T22:21:14Z Self Link: /apis/metrics.k8s.io/v1beta1/namespaces/openshift-kube-scheduler/pods/openshift-kube-scheduler-ip-10-0-129-223.compute.internal Timestamp: 2020-02-14T22:21:14Z Window: 5m0s Events: <none>
Procedure
To create a horizontal pod autoscaler for memory utilization:
Create a YAML file for one of the following:
To scale for a specific memory value, create a
HorizontalPodAutoscaler
object similar to the following for an existing DeploymentConfig or ReplicationController:apiVersion: autoscaling/v2beta2 1 kind: HorizontalPodAutoscaler metadata: name: hpa-resource-metrics-memory 2 namespace: default spec: scaleTargetRef: apiVersion: v1 3 kind: ReplicationController 4 name: example 5 minReplicas: 1 6 maxReplicas: 10 7 metrics: 8 - type: Resource resource: name: memory 9 target: type: AverageValue 10 averageValue: 500Mi 11
- 1
- Use the
autoscaling/v2beta2
API. - 2
- Specify a name for this horizontal pod autoscaler object.
- 3
- Specify the API version of the object to scale:
-
For a ReplicationController, use
v1
, -
For a DeploymentConfig, use
apps.openshift.io/v1
.
-
For a ReplicationController, use
- 4
- Specify the kind of object to scale, either
ReplicationController
orDeploymentConfig
. - 5
- Specify the name of the object to scale. The object must exist.
- 6
- Specify the minimum number of replicas when scaling down.
- 7
- Specify the maximum number of replicas when scaling up.
- 8
- Use the
metrics
parameter for memory utilization. - 9
- Specify
memory
for memory utilization. - 10
- Set the type to
AverageValue
. - 11
- Specify
averageValue
and a specific memory value.
To scale for a percentage, create a
HorizontalPodAutoscaler
object similar to the following:apiVersion: autoscaling/v2beta2 1 kind: HorizontalPodAutoscaler metadata: name: memory-autoscale 2 namespace: default spec: scaleTargetRef: apiVersion: apps.openshift.io/v1 3 kind: DeploymentConfig 4 name: example 5 minReplicas: 1 6 maxReplicas: 10 7 metrics: 8 - type: Resource resource: name: memory 9 target: type: Utilization 10 averageUtilization: 50 11
- 1
- Use the
autoscaling/v2beta2
API. - 2
- Specify a name for this horizontal pod autoscaler object.
- 3
- Specify the API version of the object to scale:
-
For a ReplicationController, use
v1
, -
For a DeploymentConfig, use
apps.openshift.io/v1
.
-
For a ReplicationController, use
- 4
- Specify the kind of object to scale, either
ReplicationController
orDeploymentConfig
. - 5
- Specify the name of the object to scale. The object must exist.
- 6
- Specify the minimum number of replicas when scaling down.
- 7
- Specify the maximum number of replicas when scaling up.
- 8
- Use the
metrics
parameter for memory utilization. - 9
- Specify
memory
for memory utilization. - 10
- Set to
Utilization
. - 11
- Specify
averageUtilization
and a target average memory utilization over all the Pods, represented as a percent of requested memory. The target pods must have memory requests configured.
Create the horizontal pod autoscaler:
$ oc create -f <file-name>.yaml
For example:
$ oc create -f hpa.yaml horizontalpodautoscaler.autoscaling/hpa-resource-metrics-memory created
Verify that the horizontal pod autoscaler was created:
$ oc get hpa hpa-resource-metrics-memory NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE hpa-resource-metrics-memory ReplicationController/example 2441216/500Mi 1 10 1 20m
$ oc describe hpa hpa-resource-metrics-memory Name: hpa-resource-metrics-memory Namespace: default Labels: <none> Annotations: <none> CreationTimestamp: Wed, 04 Mar 2020 16:31:37 +0530 Reference: ReplicationController/example Metrics: ( current / target ) resource memory on pods: 2441216 / 500Mi Min replicas: 1 Max replicas: 10 ReplicationController pods: 1 current / 1 desired Conditions: Type Status Reason Message ---- ------ ------ ------- AbleToScale True ReadyForNewScale recommended size matches current size ScalingActive True ValidMetricFound the HPA was able to successfully calculate a replica count from memory resource ScalingLimited False DesiredWithinRange the desired count is within the acceptable range Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal SuccessfulRescale 6m34s horizontal-pod-autoscaler New size: 1; reason: All metrics below target
1.4.4. Understanding horizontal pod autoscaler status conditions
You can use the status conditions set to determine whether or not the horizontal pod autoscaler (HPA) is able to scale and whether or not it is currently restricted in any way.
The HPA status conditions are available with the v2beta1
version of the autoscaling API.
The HPA responds with the following status conditions:
The
AbleToScale
condition indicates whether HPA is able to fetch and update metrics, as well as whether any backoff-related conditions could prevent scaling.-
A
True
condition indicates scaling is allowed. -
A
False
condition indicates scaling is not allowed for the reason specified.
-
A
The
ScalingActive
condition indicates whether the HPA is enabled (for example, the replica count of the target is not zero) and is able to calculate desired metrics.-
A
True
condition indicates metrics is working properly. -
A
False
condition generally indicates a problem with fetching metrics.
-
A
The
ScalingLimited
condition indicates that the desired scale was capped by the maximum or minimum of the horizontal pod autoscaler.-
A
True
condition indicates that you need to raise or lower the minimum or maximum replica count in order to scale. A
False
condition indicates that the requested scaling is allowed.$ oc describe hpa cm-test Name: cm-test Namespace: prom Labels: <none> Annotations: <none> CreationTimestamp: Fri, 16 Jun 2017 18:09:22 +0000 Reference: ReplicationController/cm-test Metrics: ( current / target ) "http_requests" on pods: 66m / 500m Min replicas: 1 Max replicas: 4 ReplicationController pods: 1 current / 1 desired Conditions: 1 Type Status Reason Message ---- ------ ------ ------- AbleToScale True ReadyForNewScale the last scale time was sufficiently old as to warrant a new scale ScalingActive True ValidMetricFound the HPA was able to successfully calculate a replica count from pods metric http_request ScalingLimited False DesiredWithinRange the desired replica count is within the acceptable range Events:
- 1
- The horizontal pod autoscaler status messages.
-
A
The following is an example of a pod that is unable to scale:
Conditions: Type Status Reason Message ---- ------ ------ ------- AbleToScale False FailedGetScale the HPA controller was unable to get the target's current scale: no matches for kind "ReplicationController" in group "apps" Events: Type Reason Age From Message ---- ------ ---- ---- ------- Warning FailedGetScale 6s (x3 over 36s) horizontal-pod-autoscaler no matches for kind "ReplicationController" in group "apps"
The following is an example of a pod that could not obtain the needed metrics for scaling:
Conditions: Type Status Reason Message ---- ------ ------ ------- AbleToScale True SucceededGetScale the HPA controller was able to get the target's current scale ScalingActive False FailedGetResourceMetric the HPA was unable to compute the replica count: unable to get metrics for resource cpu: no metrics returned from heapster
The following is an example of a pod where the requested autoscaling was less than the required minimums:
Conditions: Type Status Reason Message ---- ------ ------ ------- AbleToScale True ReadyForNewScale the last scale time was sufficiently old as to warrant a new scale ScalingActive True ValidMetricFound the HPA was able to successfully calculate a replica count from pods metric http_request ScalingLimited False DesiredWithinRange the desired replica count is within the acceptable range
1.4.4.1. Viewing horizontal pod autoscaler status conditions
You can view the status conditions set on a pod by the horizontal pod autoscaler (HPA).
The horizontal pod autoscaler status conditions are available with the v2beta1
version of the autoscaling API.
Prerequisites
In order to use horizontal pod autoscalers, your cluster administrator must have properly configured cluster metrics. You can use the oc describe PodMetrics <pod-name>
command to determine if metrics are configured. If metrics are configured, the output appears similar to the following, with Cpu
and Memory
displayed under Usage
.
$ oc describe PodMetrics openshift-kube-scheduler-ip-10-0-135-131.ec2.internal Name: openshift-kube-scheduler-ip-10-0-135-131.ec2.internal Namespace: openshift-kube-scheduler Labels: <none> Annotations: <none> API Version: metrics.k8s.io/v1beta1 Containers: Name: wait-for-host-port Usage: Memory: 0 Name: scheduler Usage: Cpu: 8m Memory: 45440Ki Kind: PodMetrics Metadata: Creation Timestamp: 2019-05-23T18:47:56Z Self Link: /apis/metrics.k8s.io/v1beta1/namespaces/openshift-kube-scheduler/pods/openshift-kube-scheduler-ip-10-0-135-131.ec2.internal Timestamp: 2019-05-23T18:47:56Z Window: 1m0s Events: <none>
Procedure
To view the status conditions on a pod, use the following command with the name of the pod:
$ oc describe hpa <pod-name>
For example:
$ oc describe hpa cm-test
The conditions appear in the Conditions
field in the output.
Name: cm-test
Namespace: prom
Labels: <none>
Annotations: <none>
CreationTimestamp: Fri, 16 Jun 2017 18:09:22 +0000
Reference: ReplicationController/cm-test
Metrics: ( current / target )
"http_requests" on pods: 66m / 500m
Min replicas: 1
Max replicas: 4
ReplicationController pods: 1 current / 1 desired
Conditions: 1
Type Status Reason Message
---- ------ ------ -------
AbleToScale True ReadyForNewScale the last scale time was sufficiently old as to warrant a new scale
ScalingActive True ValidMetricFound the HPA was able to successfully calculate a replica count from pods metric http_request
ScalingLimited False DesiredWithinRange the desired replica count is within the acceptable range
1.4.5. Additional resources
For more information on replication controllers and deployment controllers, see Understanding Deployments and DeploymentConfigs.
1.5. Providing sensitive data to pods
Some applications need sensitive information, such as passwords and user names, that you do not want developers to have.
As an administrator, you can use Secret objects to provide this information without exposing that information in clear text.
1.5.1. Understanding secrets
The Secret
object type provides a mechanism to hold sensitive information such as passwords, OpenShift Container Platform client configuration files, private source repository credentials, and so on. Secrets decouple sensitive content from the pods. You can mount secrets into Containers using a volume plug-in or the system can use secrets to perform actions on behalf of a pod.
Key properties include:
- Secret data can be referenced independently from its definition.
- Secret data volumes are backed by temporary file-storage facilities (tmpfs) and never come to rest on a node.
- Secret data can be shared within a namespace.
YAML Secret Object Definition
apiVersion: v1 kind: Secret metadata: name: test-secret namespace: my-namespace type: Opaque 1 data: 2 username: dmFsdWUtMQ0K 3 password: dmFsdWUtMg0KDQo= stringData: 4 hostname: myapp.mydomain.com 5
- 1 1
- Indicates the structure of the secret’s key names and values.
- 2
- The allowable format for the keys in the
data
field must meet the guidelines in the DNS_SUBDOMAIN value in the Kubernetes identifiers glossary. - 3
- The value associated with keys in the
data
map must be base64 encoded. - 4
- Entries in the
stringData
map are converted to base64 and the entry will then be moved to thedata
map automatically. This field is write-only; the value will only be returned via thedata
field. - 5
- The value associated with keys in the
stringData
map is made up of plain text strings.
You must create a secret before creating the pods that depend on that secret.
When creating secrets:
- Create a secret object with secret data.
- Update the pod’s service account to allow the reference to the secret.
-
Create a pod, which consumes the secret as an environment variable or as a file (using a
secret
volume).
1.5.1.1. Types of secrets
The value in the type
field indicates the structure of the secret’s key names and values. The type can be used to enforce the presence of user names and keys in the secret object. If you do not want validation, use the opaque type, which is the default.
Specify one of the following types to trigger minimal server-side validation to ensure the presence of specific key names in the secret data:
-
kubernetes.io/service-account-token
. Uses a service account token. -
kubernetes.io/basic-auth
. Use with Basic Authentication. -
kubernetes.io/ssh-auth
. Use with SSH Key Authentication. -
kubernetes.io/tls
. Use with TLS certificate authorities.
Specify type: Opaque
if you do not want validation, which means the secret does not claim to conform to any convention for key names or values. An opaque secret, allows for unstructured key:value
pairs that can contain arbitrary values.
You can specify other arbitrary types, such as example.com/my-secret-type
. These types are not enforced server-side, but indicate that the creator of the secret intended to conform to the key/value requirements of that type.
For examples of different secret types, see the code samples in Using Secrets.
1.5.1.2. Example secret configurations
The following are sample secret configuration files.
YAML Secret That Will Create Four Files
apiVersion: v1 kind: Secret metadata: name: test-secret data: username: dmFsdWUtMQ0K 1 password: dmFsdWUtMQ0KDQo= 2 stringData: hostname: myapp.mydomain.com 3 secret.properties: |- 4 property1=valueA property2=valueB
YAML of a Pod Populating Files in a Volume with Secret Data
apiVersion: v1 kind: Pod metadata: name: secret-example-pod spec: containers: - name: secret-test-container image: busybox command: [ "/bin/sh", "-c", "cat /etc/secret-volume/*" ] volumeMounts: # name must match the volume name below - name: secret-volume mountPath: /etc/secret-volume readOnly: true volumes: - name: secret-volume secret: secretName: test-secret restartPolicy: Never
YAML of a Pod Populating Environment Variables with Secret Data
apiVersion: v1 kind: Pod metadata: name: secret-example-pod spec: containers: - name: secret-test-container image: busybox command: [ "/bin/sh", "-c", "export" ] env: - name: TEST_SECRET_USERNAME_ENV_VAR valueFrom: secretKeyRef: name: test-secret key: username restartPolicy: Never
YAML of a Build Config Populating Environment Variables with Secret Data
apiVersion: v1 kind: BuildConfig metadata: name: secret-example-bc spec: strategy: sourceStrategy: env: - name: TEST_SECRET_USERNAME_ENV_VAR valueFrom: secretKeyRef: name: test-secret key: username
1.5.1.3. Secret data keys
Secret keys must be in a DNS subdomain.
1.5.2. Understanding how to create secrets
As an administrator you must create a secret before developers can create the pods that depend on that secret.
When creating secrets:
- Create a secret object with secret data.
- Update the pod’s service account to allow the reference to the secret.
-
Create a pod, which consumes the secret as an environment variable or as a file (using a
secret
volume).
1.5.2.1. Secret creation restrictions
To use a secret, a pod needs to reference the secret. A secret can be used with a pod in three ways:
- To populate environment variables for Containers.
- As files in a volume mounted on one or more of its Containers.
- By kubelet when pulling images for the pod.
Volume type secrets write data into the Container as a file using the volume mechanism. Image pull secrets use service accounts for the automatic injection of the secret into all pods in a namespaces.
When a template contains a secret definition, the only way for the template to use the provided secret is to ensure that the secret volume sources are validated and that the specified object reference actually points to an object of type Secret
. Therefore, a secret needs to be created before any pods that depend on it. The most effective way to ensure this is to have it get injected automatically through the use of a service account.
Secret API objects reside in a namespace. They can only be referenced by pods in that same namespace.
Individual secrets are limited to 1MB in size. This is to discourage the creation of large secrets that could exhaust apiserver and kubelet memory. However, creation of a number of smaller secrets could also exhaust memory.
1.5.2.2. Creating an opaque secret
As an administrator, you can create a opaque secret, which allows for unstructured key:value
pairs that can contain arbitrary values.
Procedure
Create a secret object in a YAML file on master.
For example:
apiVersion: v1 kind: Secret metadata: name: mysecret type: Opaque 1 data: username: dXNlci1uYW1l password: cGFzc3dvcmQ=
- 1
- Specifies an opaque secret.
Use the following command to create a secret object:
$ oc create -f <filename>
Then:
- Update the service account for the pod where you want to use the secret to allow the reference to the secret.
-
Create the pod, which consumes the secret as an environment variable or as a file (using a
secret
volume).
1.5.3. Understanding how to update secrets
When you modify the value of a secret, the value (used by an already running pod) will not dynamically change. To change a secret, you must delete the original pod and create a new pod (perhaps with an identical PodSpec).
Updating a secret follows the same workflow as deploying a new Container image. You can use the kubectl rolling-update
command.
The resourceVersion
value in a secret is not specified when it is referenced. Therefore, if a secret is updated at the same time as pods are starting, then the version of the secret will be used for the pod will not be defined.
Currently, it is not possible to check the resource version of a secret object that was used when a pod was created. It is planned that pods will report this information, so that a controller could restart ones using a old resourceVersion
. In the interim, do not update the data of existing secrets, but create new ones with distinct names.
1.5.4. About using signed certificates with secrets
To secure communication to your service, you can configure OpenShift Container Platform to generate a signed serving certificate/key pair that you can add into a secret in a project.
A service serving certificate secret is intended to support complex middleware applications that need out-of-the-box certificates. It has the same settings as the server certificates generated by the administrator tooling for nodes and masters.
Service pod specification configured for a service serving certificates secret.
apiVersion: v1
kind: Service
metadata:
name: registry
annotations:
service.alpha.openshift.io/serving-cert-secret-name: registry-cert1
....
- 1
- Specify the name for the certificate
Other pods can trust cluster-created certificates (which are only signed for internal DNS names), by using the CA bundle in the /var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt file that is automatically mounted in their pod.
The signature algorithm for this feature is x509.SHA256WithRSA
. To manually rotate, delete the generated secret. A new certificate is created.
1.5.4.1. Generating signed certificates for use with secrets
To use a signed serving certificate/key pair with a pod, create or edit the service to add the service.alpha.openshift.io/serving-cert-secret-name
annotation, then add the secret to the pod.
Procedure
To create a service serving certificate secret:
- Edit the pod specification for your service.
Add the
service.alpha.openshift.io/serving-cert-secret-name
annotation with the name you want to use for your secret.kind: Service apiVersion: v1 metadata: name: my-service annotations: service.alpha.openshift.io/serving-cert-secret-name: my-cert 1 spec: selector: app: MyApp ports: - protocol: TCP port: 80 targetPort: 9376
The certificate and key are in PEM format, stored in
tls.crt
andtls.key
respectively.Create the service:
$ oc create -f <file-name>.yaml
View the secret to make sure it was created:
$ oc get secrets NAME TYPE DATA AGE my-cert kubernetes.io/tls 2 9m $ oc describe secret my-service-pod Name: my-service-pod Namespace: openshift-console Labels: <none> Annotations: kubernetes.io/service-account.name: builder kubernetes.io/service-account.uid: ab-11e9-988a-0eb4e1b4a396 Type: kubernetes.io/service-account-token Data ca.crt: 5802 bytes namespace: 17 bytes token: eyJhbGciOiJSUzI1NiIsImtpZCI6IiJ9.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Ii wia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJvcGVuc2hpZnQtY29uc29sZSIsImt1YmVyb cnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC51aWQiOiJhYmE4Y2UyZC00MzVlLTExZTktOTg4YS0wZWI0ZTFiNGEz OTYiLCJzdWIiOiJzeXN0ZW06c2VydmljZWFjY291bnQ6b3BlbnNoaWZ
Edit your pod specification with that secret.
apiVersion: v1 kind: Pod metadata: name: my-service-pod spec: containers: - name: mypod image: redis volumeMounts: - name: foo mountPath: "/etc/foo" volumes: - name: foo secret: secretName: my-cert items: - key: username path: my-group/my-username mode: 511
When it is available, your pod will run. The certificate will be good for the internal service DNS name,
<service.name>.<service.namespace>.svc
.The certificate/key pair is automatically replaced when it gets close to expiration. View the expiration date in the
service.alpha.openshift.io/expiry
annotation on the secret, which is in RFC3339 format.NoteIn most cases, the service DNS name
<service.name>.<service.namespace>.svc
is not externally routable. The primary use of<service.name>.<service.namespace>.svc
is for intracluster or intraservice communication, and with re-encrypt routes.
1.5.5. Troubleshooting secrets
If a service certificate generation fails with (service’s service.alpha.openshift.io/serving-cert-generation-error
annotation contains):
secret/ssl-key references serviceUID 62ad25ca-d703-11e6-9d6f-0e9c0057b608, which does not match 77b6dd80-d716-11e6-9d6f-0e9c0057b60
The service that generated the certificate no longer exists, or has a different serviceUID
. You must force certificates regeneration by removing the old secret, and clearing the following annotations on the service service.alpha.openshift.io/serving-cert-generation-error
, service.alpha.openshift.io/serving-cert-generation-error-num
:
$ oc delete secret <secret_name> $ oc annotate service <service_name> service.alpha.openshift.io/serving-cert-generation-error- $ oc annotate service <service_name> service.alpha.openshift.io/serving-cert-generation-error-num-
The command removing annotation has a -
after the annotation name to be removed.
1.6. Using device plug-ins to access external resources with pods
Device plug-ins allow you to use a particular device type (GPU, InfiniBand, or other similar computing resources that require vendor-specific initialization and setup) in your OpenShift Container Platform pod without needing to write custom code.
1.6.1. Understanding device plug-ins
The device plug-in provides a consistent and portable solution to consume hardware devices across clusters. The device plug-in provides support for these devices through an extension mechanism, which makes these devices available to Containers, provides health checks of these devices, and securely shares them.
OpenShift Container Platform supports the device plug-in API, but the device plug-in Containers are supported by individual vendors.
A device plug-in is a gRPC service running on the nodes (external to the kubelet
) that is responsible for managing specific hardware resources. Any device plug-in must support following remote procedure calls (RPCs):
service DevicePlugin { // GetDevicePluginOptions returns options to be communicated with Device // Manager rpc GetDevicePluginOptions(Empty) returns (DevicePluginOptions) {} // ListAndWatch returns a stream of List of Devices // Whenever a Device state change or a Device disappears, ListAndWatch // returns the new list rpc ListAndWatch(Empty) returns (stream ListAndWatchResponse) {} // Allocate is called during container creation so that the Device // Plug-in can run device specific operations and instruct Kubelet // of the steps to make the Device available in the container rpc Allocate(AllocateRequest) returns (AllocateResponse) {} // PreStartcontainer is called, if indicated by Device Plug-in during // registration phase, before each container start. Device plug-in // can run device specific operations such as reseting the device // before making devices available to the container rpc PreStartcontainer(PreStartcontainerRequest) returns (PreStartcontainerResponse) {} }
Example device plug-ins
For easy device plug-in reference implementation, there is a stub device plug-in in the Device Manager code: vendor/k8s.io/kubernetes/pkg/kubelet/cm/deviceplugin/device_plugin_stub.go.
1.6.1.1. Methods for deploying a device plug-in
- Daemonsets are the recommended approach for device plug-in deployments.
- Upon start, the device plug-in will try to create a UNIX domain socket at /var/lib/kubelet/device-plugin/ on the node to serve RPCs from Device Manager.
- Since device plug-ins must manage hardware resources, access to the host file system, as well as socket creation, they must be run in a privileged security context.
- More specific details regarding deployment steps can be found with each device plug-in implementation.
1.6.2. Understanding the Device Manager
Device Manager provides a mechanism for advertising specialized node hardware resources with the help of plug-ins known as device plug-ins.
You can advertise specialized hardware without requiring any upstream code changes.
OpenShift Container Platform supports the device plug-in API, but the device plug-in Containers are supported by individual vendors.
Device Manager advertises devices as Extended Resources. User pods can consume devices, advertised by Device Manager, using the same Limit/Request mechanism, which is used for requesting any other Extended Resource.
Upon start, the device plug-in registers itself with Device Manager invoking Register
on the /var/lib/kubelet/device-plugins/kubelet.sock and starts a gRPC service at /var/lib/kubelet/device-plugins/<plugin>.sock for serving Device Manager requests.
Device Manager, while processing a new registration request, invokes ListAndWatch
remote procedure call (RPC) at the device plug-in service. In response, Device Manager gets a list of Device objects from the plug-in over a gRPC stream. Device Manager will keep watching on the stream for new updates from the plug-in. On the plug-in side, the plug-in will also keep the stream open and whenever there is a change in the state of any of the devices, a new device list is sent to the Device Manager over the same streaming connection.
While handling a new pod admission request, Kubelet passes requested Extended Resources
to the Device Manager for device allocation. Device Manager checks in its database to verify if a corresponding plug-in exists or not. If the plug-in exists and there are free allocatable devices as well as per local cache, Allocate
RPC is invoked at that particular device plug-in.
Additionally, device plug-ins can also perform several other device-specific operations, such as driver installation, device initialization, and device resets. These functionalities vary from implementation to implementation.
1.6.3. Enabling Device Manager
Enable Device Manager to implement a device plug-in to advertise specialized hardware without any upstream code changes.
Device Manager provides a mechanism for advertising specialized node hardware resources with the help of plug-ins known as device plug-ins.
Obtain the label associated with the static Machine Config Pool CRD for the type of node you want to configure. Perform one of the following steps:
Procedure
Create a Custom Resource (CR) for your configuration change.
Sample configuration for a Device Manager CR
apiVersion: machineconfiguration.openshift.io/v1 kind: KubeletConfig metadata: name: devicemgr 1 spec: machineConfigPoolSelector: matchLabels: machineconfiguration.openshift.io: devicemgr 2 kubeletConfig: feature-gates: - DevicePlugins=true 3
Create the device manager:
$ oc create -f devicemgr.yaml kube letconfig.machineconfiguration.openshift.io/devicemgr created
- Ensure that Device Manager was actually enabled by confirming that /var/lib/kubelet/device-plugins/kubelet.sock is created on the node. This is the UNIX domain socket on which the Device Manager gRPC server listens for new plug-in registrations. This sock file is created when the Kubelet is started only if Device Manager is enabled.
1.7. Including pod priority in pod scheduling decisions
You can enable pod priority and preemption in your cluster. Pod priority indicates the importance of a pod relative to other pods and queues the pods based on that priority. Pod preemption allows the cluster to evict, or preempt, lower-priority pods so that higher-priority pods can be scheduled if there is no available space on a suitable node Pod priority also affects the scheduling order of pods and out-of-resource eviction ordering on the node.
To use priority and preemption, you create priority classes that define the relative weight of your pods. Then, reference a priority class in the pod specification to apply that weight for scheduling.
Preemption is controlled by the disablePreemption
parameter in the scheduler configuration file, which is set to false
by default.
1.7.1. Understanding pod priority
When you use the Pod Priority and Preemption feature, the scheduler orders pending pods by their priority, and a pending pod is placed ahead of other pending pods with lower priority in the scheduling queue. As a result, the higher priority pod might be scheduled sooner than pods with lower priority if its scheduling requirements are met. If a pod cannot be scheduled, scheduler continues to schedule other lower priority pods.
1.7.1.1. Pod priority classes
You can assign pods a priority class, which is a non-namespaced object that defines a mapping from a name to the integer value of the priority. The higher the value, the higher the priority.
A priority class object can take any 32-bit integer value smaller than or equal to 1000000000 (one billion). Reserve numbers larger than one billion for critical pods that should not be preempted or evicted. By default, OpenShift Container Platform has two reserved priority classes for critical system pods to have guaranteed scheduling.
$ oc get priorityclasses NAME CREATED AT cluster-logging 2019-03-13T14:45:12Z system-cluster-critical 2019-03-13T14:01:10Z system-node-critical 2019-03-13T14:01:10Z
system-node-critical - This priority class has a value of 2000001000 and is used for all pods that should never be evicted from a node. Examples of pods that have this priority class are
sdn-ovs
,sdn
, and so forth. A number of critical components include thesystem-node-critical
priority class by default, for example:- master-api
- master-controller
- master-etcd
- sdn
- sdn-ovs
- sync
system-cluster-critical - This priority class has a value of 2000000000 (two billion) and is used with pods that are important for the cluster. Pods with this priority class can be evicted from a node in certain circumstances. For example, pods configured with the
system-node-critical
priority class can take priority. However, this priority class does ensure guaranteed scheduling. Examples of pods that can have this priority class are fluentd, add-on components like descheduler, and so forth. A number of critical components include thesystem-cluster-critical
priority class by default, for example:- fluentd
- metrics-server
- descheduler
- cluster-logging - This priority is used by Fluentd to make sure Fluentd pods are scheduled to nodes over other apps.
If you upgrade your existing cluster, the priority of your existing pods is effectively zero. However, existing pods with the scheduler.alpha.kubernetes.io/critical-pod
annotation are automatically converted to system-cluster-critical
class. Fluentd cluster logging pods with the annotation are converted to the cluster-logging
priority class.
1.7.1.2. Pod priority names
After you have one or more priority classes, you can create pods that specify a priority class name in a pod specification. The priority admission controller uses the priority class name field to populate the integer value of the priority. If the named priority class is not found, the pod is rejected.
1.7.2. Understanding pod preemption
When a developer creates a pod, the pod goes into a queue. If the developer configured the pod for pod priority or preemption, the scheduler picks a pod from the queue and tries to schedule the pod on a node. If the scheduler cannot find space on an appropriate node that satisfies all the specified requirements of the pod, preemption logic is triggered for the pending pod.
When the scheduler preempts one or more pods on a node, the nominatedNodeName
field of higher-priority pod specification is set to the name of the node, along with the nodename
field. The scheduler uses the nominatedNodeName
field to keep track of the resources reserved for pods and also provides information to the user about preemptions in the clusters.
After the scheduler preempts a lower-priority pod, the scheduler honors the graceful termination period of the pod. If another node becomes available while scheduler is waiting for the lower-priority pod to terminate, the scheduler can schedule the higher-priority pod on that node. As a result, the nominatedNodeName
field and nodeName
field of the pod specification might be different.
Also, if the scheduler preempts pods on a node and is waiting for termination, and a pod with a higher-priority pod than the pending pod needs to be scheduled, the scheduler can schedule the higher-priority pod instead. In such a case, the scheduler clears the nominatedNodeName
of the pending pod, making the pod eligible for another node.
Preemption does not necessarily remove all lower-priority pods from a node. The scheduler can schedule a pending pod by removing a portion of the lower-priority pods.
The scheduler considers a node for pod preemption only if the pending pod can be scheduled on the node.
1.7.2.1. Pod preemption and other scheduler settings
If you enable pod priority and preemption, consider your other scheduler settings:
- Pod priority and pod disruption budget
- A pod disruption budget specifies the minimum number or percentage of replicas that must be up at a time. If you specify pod disruption budgets, OpenShift Container Platform respects them when preempting pods at a best effort level. The scheduler attempts to preempt pods without violating the pod disruption budget. If no such pods are found, lower-priority pods might be preempted despite their pod disruption budget requirements.
- Pod priority and pod affinity
- Pod affinity requires a new pod to be scheduled on the same node as other pods with the same label.
If a pending pod has inter-pod affinity with one or more of the lower-priority pods on a node, the scheduler cannot preempt the lower-priority pods without violating the affinity requirements. In this case, the scheduler looks for another node to schedule the pending pod. However, there is no guarantee that the scheduler can find an appropriate node and pending pod might not be scheduled.
To prevent this situation, carefully configure pod affinity with equal-priority pods.
1.7.2.2. Graceful termination of preempted pods
When preempting a pod, the scheduler waits for the pod graceful termination period to expire, allowing the pod to finish working and exit. If the pod does not exit after the period, the scheduler kills the pod. This graceful termination period creates a time gap between the point that the scheduler preempts the pod and the time when the pending pod can be scheduled on the node.
To minimize this gap, configure a small graceful termination period for lower-priority pods.
1.7.3. Configuring priority and preemption
You apply pod priority and preemption by creating a priority class object and associating pods to the priority using the priorityClassName
in your pod specifications.
Sample priority class object
apiVersion: scheduling.k8s.io/v1beta1 kind: PriorityClass metadata: name: high-priority 1 value: 1000000 2 globalDefault: false 3 description: "This priority class should be used for XYZ service pods only." 4
- 1
- The name of the priority class object.
- 2
- The priority value of the object.
- 3
- Optional field that indicates whether this priority class should be used for pods without a priority class name specified. This field is
false
by default. Only one priority class withglobalDefault
set totrue
can exist in the cluster. If there is no priority class withglobalDefault:true
, the priority of pods with no priority class name is zero. Adding a priority class withglobalDefault:true
affects only pods created after the priority class is added and does not change the priorities of existing pods. - 4
- Optional arbitrary text string that describes which pods developers should use with this priority class.
Procedure
To configure your cluster to use priority and preemption:
Create one or more priority classes:
- Specify a name and value for the priority.
-
Optionally specify the
globalDefault
field in the priority class and a description.
Create a pod specification or edit existing pods to include the name of a priority class, similar to the following:
Sample pod specification with priority class name
apiVersion: v1 kind: Pod metadata: name: nginx labels: env: test spec: containers: - name: nginx image: nginx imagePullPolicy: IfNotPresent priorityClassName: high-priority 1
- 1
- Specify the priority class to use with this pod.
Create the pod:
$ oc create -f <file-name>.yaml
You can add the priority name directly to the pod configuration or to a pod template.
1.7.4. Disabling priority and preemption
You can disable the pod priority and preemption feature.
After the feature is disabled, the existing pods keep their priority fields, but preemption is disabled, and priority fields are ignored. If the feature is disabled, you cannot set a priority class name in new pods.
Critical pods rely on scheduler preemption to be scheduled when a cluster is under resource pressure. For this reason, Red Hat recommends not disabling preemption. DaemonSet pods are scheduled by the DaemonSet controller and not affected by disabling preemption.
Procedure
To disable the preemption for the cluster:
Edit the Scheduler Operator Custom Resource to add the
disablePreemption: true
parameter:oc edit scheduler cluster
apiVersion: config.openshift.io/v1 kind: Scheduler metadata: creationTimestamp: '2019-03-12T01:45:02Z' generation: 1 name: example resourceVersion: '1882034' selfLink: /apis/config.openshift.io/v1/schedulers/example uid: 743701e9-4468-11e9-bd34-02a7fe1bf828 spec: disablePreemption: true
1.8. Placing pods on specific nodes using node selectors
A node selector specifies a map of key-value pairs. The rules are defined using custom labels on nodes and selectors specified in pods.
For the pod to be eligible to run on a node, the pod must have the indicated key-value pairs as the label on the node.
If you are using node affinity and node selectors in the same pod configuration, see the important considerations below.
1.8.1. Using node selectors to control pod placement
You can use node selector labels on pods to control where the pod is scheduled.
With node selectors, OpenShift Container Platform schedules the pods on nodes that contain matching labels.
To add node selectors to an existing pod, add a node selector to the controlling object for that node, such as a ReplicaSet, Daemonset, or StatefulSet. Any existing pods under that controlling object are recreated on a node with a matching label. If you are creating a new pod, you can add the node selector directly to the pod spec.
You can add labels to a node or MachineConfig, but the labels will not persist if the node or machine goes down. Adding the label to the MachineSet ensures that new nodes or machines will have the label.
You cannot add a node selector directly to an existing scheduled pod.
Prerequisite
To add a node selector to existing pods, determine the controlling object for that pod. For example, the router-default-66d5cf9464-m2g75
pod is controlled by the router-default-66d5cf9464
ReplicaSet:
$ oc describe pod router-default-66d5cf9464-7pwkc Name: router-default-66d5cf9464-7pwkc Namespace: openshift-ingress .... Controlled By: ReplicaSet/router-default-66d5cf9464
The web console lists the controlling object under ownerReferences
in the pod YAML:
ownerReferences: - apiVersion: apps/v1 kind: ReplicaSet name: router-default-66d5cf9464 uid: d81dd094-da26-11e9-a48a-128e7edf0312 controller: true blockOwnerDeletion: true
Procedure
Add labels to a node by using a MachineSet or editing the node directly:
Use a MachineSet to add labels to nodes managed by the MachineSet when a node is created:
Run the following command to add a node selector to a MachineSet:
$ oc patch MachineSet <name> --type='json' -p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"<key>"="<value>","<key>"="<value>"}}]' -n openshift-machine-api
For example:
$ oc patch MachineSet abc612-msrtw-worker-us-east-1c --type='json' -p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"type":"user-node","region":"east"}}]' -n openshift-machine-api
Verify that the label is added to the MachineSet by using the
oc edit
command:For example:
$ oc edit MachineSet abc612-msrtw-worker-us-east-1c -n openshift-machine-api
Example MachineSet object
apiVersion: machine.openshift.io/v1beta1 kind: MachineSet .... spec: ... template: metadata: ... spec: metadata: labels: region: east type: user-node ....
Add labels directly to a node:
Edit the
Node
object for the node:$ oc label nodes <name> <key>=<value>
For example, to label a node:
$ oc label nodes ip-10-0-142-25.ec2.internal type=user-node region=east
Verify that the label is added to the node:
$ oc get nodes -l type=user-node,region=east
Example output
NAME STATUS ROLES AGE VERSION ip-10-0-142-25.ec2.internal Ready worker 17m v1.18.3+002a51f
Add the matching node selector a pod:
To add a node selector to existing and future pods, add a node selector to the controlling object for the pods:
Example ReplicaSet object
kind: ReplicaSet .... spec: .... template: metadata: creationTimestamp: null labels: ingresscontroller.operator.openshift.io/deployment-ingresscontroller: default pod-template-hash: 66d5cf9464 spec: nodeSelector: beta.kubernetes.io/os: linux node-role.kubernetes.io/worker: '' type: user-node 1
- 1
- Add the node selector.
To add a node selector to a specific pod, add the selector to the
Pod
object directly:Example Pod object
apiVersion: v1 kind: Pod ... spec: nodeSelector: <key>: <value> ...
For example:
Example Pod object with a node selector
apiVersion: v1 kind: Pod .... spec: nodeSelector: region: east type: user-node