이 콘텐츠는 선택한 언어로 제공되지 않습니다.
Chapter 2. Embedding MicroShift in a RHEL for Edge image
You can embed MicroShift into a Red Hat Enterprise Linux (RHEL) for Edge 9.2 image. Use this guide to build a RHEL image containing MicroShift.
MicroShift is Technology Preview only. This Technology Preview software is not supported with Red Hat production service level agreements (SLAs) and might not be functionally complete. Red Hat does not recommend using MicroShift in production. Technology Preview provides early access to upcoming product features, enabling customers to test functionality and provide feedback during the development process.
Red Hat does not support an update path from the Technology Preview version to later versions of MicroShift. A new installation is necessary.
For more information about the support scope of Red Hat Technology Preview features, read Technology Preview Features Support Scope.
2.1. Preparing for image building
Read Composing, installing, and managing RHEL for Edge images.
MicroShift 4.13 deployments have only been tested with Red Hat Enterprise Linux (RHEL) for Edge 9.2. Other versions of RHEL are not supported.
To build an Red Hat Enterprise Linux (RHEL) for Edge 9.2 image for a given CPU architecture, you need a RHEL 9.2 build host of the same CPU architecture that meets the Image Builder system requirements.
Follow the instructions in Installing Image Builder to install Image Builder and the composer-cli
tool.
2.2. Adding MicroShift repositories to Image Builder
Use the following procedure to add the MicroShift repositories to Image Builder on your build host.
Prerequisites
- Your build host meets the Image Builder system requirements.
-
You have installed and set up Image Builder and the
composer-cli
tool. - You have root-user access to your build host.
Procedure
Create an Image Builder configuration file for adding the
rhocp-4.13
RPM repository source required to pull MicroShift RPMs by running the following command:$ cat > rhocp-4.13.toml <<EOF id = "rhocp-4.13" name = "Red Hat OpenShift Container Platform 4.13 for RHEL 9" type = "yum-baseurl" url = "https://cdn.redhat.com/content/dist/layered/rhel9/$(uname -m)/rhocp/4.13/os" check_gpg = true check_ssl = true system = false rhsm = true EOF
Create an Image Builder configuration file for adding the
fast-datapath
RPM repository by running the following command:$ cat > fast-datapath.toml <<EOF id = "fast-datapath" name = "Fast Datapath for RHEL 9" type = "yum-baseurl" url = "https://cdn.redhat.com/content/dist/layered/rhel9/$(uname -m)/fast-datapath/os" check_gpg = true check_ssl = true system = false rhsm = true EOF
Add the sources to the Image Builder by running the following commands:
$ sudo composer-cli sources add rhocp-4.13.toml
$ sudo composer-cli sources add fast-datapath.toml
Verification
Confirm that the sources were added properly by running the following command:
$ sudo composer-cli sources list
Example output
appstream baseos fast-datapath rhocp-4.13
Additional resources
2.3. Adding the MicroShift service to a blueprint
Adding the MicroShift RPM package to an Image Builder blueprint enables the build of a RHEL for Edge image with MicroShift embedded.
Procedure
Use the following example to create your blueprint:
Image Builder blueprint example
$ cat > minimal-microshift.toml <<EOF name = "minimal-microshift" description = "" version = "0.0.1" modules = [] groups = [] [[packages]] name = "microshift" version = "*" [[packages]] name = "microshift-greenboot" 1 version = "*" [customizations.services] enabled = ["microshift"] EOF
- 1
- Optional
microshift-greenboot
RPM. For more information, read the "Greenboot health check" guide in the "Running Applications" section.
NoteThe wildcard
*
in the commands uses the latest MicroShift RPMs. If you need a specific version, substitute the wildcard for the version you want. For example, insert4.13.1
to download the MicroShift 4.13.1 RPMs.Add the blueprint to the Image Builder by running the following command:
$ sudo composer-cli blueprints push minimal-microshift.toml
Verification
Verify the Image Builder configuration listing only MicroShift packages by running the following command:
$ sudo composer-cli blueprints depsolve minimal-microshift | grep microshift
Example output
blueprint: minimal-microshift v0.0.1 microshift-greenboot-4.13.1-202305250827.p0.g4105d3b.assembly.4.13.1.el9.noarch microshift-networking-4.13.1-202305250827.p0.g4105d3b.assembly.4.13.1.el9.x86_64 microshift-release-info-4.13.1-202305250827.p0.g4105d3b.assembly.4.13.1.el9.noarch microshift-4.13.1-202305250827.p0.g4105d3b.assembly.4.13.1.el9.x86_64 microshift-selinux-4.13.1-202305250827.p0.g4105d3b.assembly.4.13.1.el9.noarch
Optional: Verify the Image Builder configuration listing all components to be installed by running the following command:
$ sudo composer-cli blueprints depsolve minimal-microshift
2.4. Creating the Red Hat Enterprise Linux (RHEL) for Edge image
Use the following procedure to create the ISO. The RHEL for Edge Installer image pulls the commit from the running container and creates an installable boot ISO with a Kickstart file configured to use the embedded OSTree commit.
Prerequisites
- Your build host meets the Image Builder system requirements.
-
You have installed and set up Image Builder and the
composer-cli
tool. - You have root-user access to your build host.
-
You have the
podman
tool.
Procedure
Start an
ostree
container image build by running the following command:$ BUILDID=$(sudo composer-cli compose start-ostree --ref "rhel/9/$(uname -m)/edge" minimal-microshift edge-container | awk '{print $2}')
This command also returns the identification (ID) of the build for monitoring.
You can check the status of the build periodically by running the following command:
$ sudo composer-cli compose status
Example output of a running build
ID Status Time Blueprint Version Type Size cc3377ec-4643-4483-b0e7-6b0ad0ae6332 RUNNING Wed Jun 7 12:26:23 2023 minimal-microshift 0.0.1 edge-container
Example output of a completed build
ID Status Time Blueprint Version Type Size cc3377ec-4643-4483-b0e7-6b0ad0ae6332 FINISHED Wed Jun 7 12:32:37 2023 minimal-microshift 0.0.1 edge-container
NoteYou can use the
watch
command to monitor your build if you are familiar with how to start and stop it.Download the container image using the ID and get the image ready for use by running the following command:
$ sudo composer-cli compose image ${BUILDID}
Change the ownership of the downloaded container image to the current user by running the following command:
$ sudo chown $(whoami). ${BUILDID}-container.tar
Add read permissions for the current user to the image by running the following command:
$ sudo chmod a+r ${BUILDID}-container.tar
Bootstrap a server on port 8085 for the
ostree
container image to be consumed by the ISO build by completing the following steps:Get the
IMAGEID
variable result by running the following command:$ IMAGEID=$(cat < "./${BUILDID}-container.tar" | sudo podman load | grep -o -P '(?<=sha256[@:])[a-z0-9]*')
Use the
IMAGEID
variable result to execute the podman command step by running the following command:$ sudo podman run -d --name=minimal-microshift-server -p 8085:8080 ${IMAGEID}
This command also returns the ID of the container saved in the
IMAGEID
variable for monitoring.
Generate the installer blueprint file by running the following command:
$ cat > microshift-installer.toml <<EOF name = "microshift-installer" description = "" version = "0.0.0" modules = [] groups = [] packages = [] EOF
2.5. Add the blueprint to Image Builder and build the ISO
Add the blueprint to the Image Builder by running the following command:
$ sudo composer-cli blueprints push microshift-installer.toml
Start the
ostree
ISO build by running the following command:$ BUILDID=$(sudo composer-cli compose start-ostree --url http://localhost:8085/repo/ --ref "rhel/9/$(uname -m)/edge" microshift-installer edge-installer | awk '{print $2}')
This command also returns the identification (ID) of the build for monitoring.
You can check the status of the build periodically by running the following command:
$ sudo composer-cli compose status
Example output for a running build
ID Status Time Blueprint Version Type Size c793c24f-ca2c-4c79-b5b7-ba36f5078e8d RUNNING Wed Jun 7 13:22:20 2023 microshift-installer 0.0.0 edge-installer
Example output for a completed build
ID Status Time Blueprint Version Type Size c793c24f-ca2c-4c79-b5b7-ba36f5078e8d FINISHED Wed Jun 7 13:34:49 2023 microshift-installer 0.0.0 edge-installer
2.6. Download the ISO and prepare it for use
Download the ISO using the ID by running the following command:
$ sudo composer-cli compose image ${BUILDID}
Change the ownership of the downloaded container image to the current user by running the following command:
$ sudo chown $(whoami). ${BUILDID}-installer.iso
Add read permissions for the current user to the image by running the following command:
$ sudo chmod a+r ${BUILDID}-installer.iso
2.7. Provisioning a machine for MicroShift
Provision a machine with your RHEL for Edge image by using the procedures from the RHEL for Edge documentation.
To use MicroShift, you must provision the system so that it meets the following requirements:
- The machine you are provisioning must meet the system requirements for installing MicroShift.
- The file system must have a logical volume manager (LVM) volume group (VG) with sufficient capacity for the persistent volumes (PVs) of your workload.
-
A pull secret from the Red Hat Hybrid Cloud Console must be present as
/etc/crio/openshift-pull-secret
and have root user-only read/write permissions. - The firewall must be configured with MicroShift’s required firewall settings.
If you are using a Kickstart such as the RHEL for Edge Installer (ISO) image, you can update your Kickstart file to meet the provisioning requirements.
Prerequisites
You have created an RHEL for Edge Installer (ISO) image containing your RHEL for Edge commit with MicroShift.
- This requirement includes the steps of composing an RFE Container image, creating the RFE Installer blueprint, starting the RFE container, and composing the RFE Installer image.
Create a Kickstart file or use an existing one. In the Kickstart file, you must include:
- Detailed instructions about how to create a user.
- How to fetch and deploy the RHEL for Edge image.
For more information, read "Additional resources."
Procedure
In the main section of the Kickstart file, update the setup of the filesystem such that it contains an LVM volume group called
rhel
with at least 10GB system root. Leave free space for the LVMS CSI driver to use for storing the data for your workloads.Example kickstart snippet for configuring the filesystem
# Partition disk such that it contains an LVM volume group called `rhel` with a # 10GB+ system root but leaving free space for the LVMS CSI driver for storing data. # # For example, a 20GB disk would be partitioned in the following way: # # NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT # sda 8:0 0 20G 0 disk # ├─sda1 8:1 0 200M 0 part /boot/efi # ├─sda1 8:1 0 800M 0 part /boot # └─sda2 8:2 0 19G 0 part # └─rhel-root 253:0 0 10G 0 lvm /sysroot # ostreesetup --nogpg --osname=rhel --remote=edge \ --url=file:///run/install/repo/ostree/repo --ref=rhel/<RHEL VERSION NUMBER>/x86_64/edge zerombr clearpart --all --initlabel part /boot/efi --fstype=efi --size=200 part /boot --fstype=xfs --asprimary --size=800 # Uncomment this line to add a SWAP partition of the recommended size #part swap --fstype=swap --recommended part pv.01 --grow volgroup rhel pv.01 logvol / --vgname=rhel --fstype=xfs --size=10000 --name=root # To add users, use a line such as the following user --name=<YOUR_USER_NAME> \ --password=<YOUR_HASHED_PASSWORD> \ --iscrypted --groups=<YOUR_USER_GROUPS>
In the
%post
section of the Kickstart file, add your pull secret and the mandatory firewall rules.Example Kickstart snippet for adding the pull secret and firewall rules
%post --log=/var/log/anaconda/post-install.log --erroronfail # Add the pull secret to CRI-O and set root user-only read/write permissions cat > /etc/crio/openshift-pull-secret << EOF YOUR_OPENSHIFT_PULL_SECRET_HERE EOF chmod 600 /etc/crio/openshift-pull-secret # Configure the firewall with the mandatory rules for MicroShift firewall-offline-cmd --zone=trusted --add-source=10.42.0.0/16 firewall-offline-cmd --zone=trusted --add-source=169.254.169.1 %end
Install the
mkksiso
tool by running the following command:$ sudo yum install -y lorax
Update the Kickstart file in the ISO with your new Kickstart file by running the following command:
$ sudo mkksiso <your_kickstart>.ks <your_installer>.iso <updated_installer>.iso
2.8. How to access the MicroShift cluster
Use the procedures in this section to access the MicroShift cluster, either from the same machine running the MicroShift service or remotely from a workstation. You can use this access to observe and administrate workloads. When using these steps, choose the kubeconfig
file that contains the host name or IP address you want to connect with and place it in the relevant directory. As listed in each procedure, you use the OpenShift Container Platform CLI tool (oc
) for cluster activities.
2.8.1. Accessing the MicroShift cluster locally
Use the following procedure to access the MicroShift cluster locally by using a kubeconfig
file.
Prerequisites
-
You have installed the
oc
binary.
Procedure
Optional: to create a
~/.kube/
folder if your RHEL machine does not have one, run the following command:$ mkdir -p ~/.kube/
Copy the generated local access
kubeconfig
file to the~/.kube/
directory by running the following command:$ sudo cat /var/lib/microshift/resources/kubeadmin/kubeconfig > ~/.kube/config
Update the permissions on your
~/.kube/config
file by running the following command:$ chmod go-r ~/.kube/config
Verification
Verify that MicroShift is running by entering the following command:
$ oc get all -A
2.8.2. Opening the firewall for remote access to the MicroShift cluster
Use the following procedure to open the firewall so that a remote user can access the MicroShift cluster. This procedure must be completed before a workstation user can access the cluster remotely.
For this procedure, user@microshift
is the user on the MicroShift host machine and is responsible for setting up that machine so that it can be accessed by a remote user on a separate workstation.
Prerequisites
-
You have installed the
oc
binary. - Your account has cluster administration privileges.
Procedure
As
user@microshift
on the MicroShift host, open the firewall port for the Kubernetes API server (6443/tcp
) by running the following command:[user@microshift]$ sudo firewall-cmd --permanent --zone=public --add-port=6443/tcp && sudo firewall-cmd --reload
Verification
As
user@microshift
, verify that MicroShift is running by entering the following command:[user@microshift]$ oc get all -A
2.8.3. Accessing the MicroShift cluster remotely
Use the following procedure to access the MicroShift cluster from a remote workstation by using a kubeconfig
file.
The user@workstation
login is used to access the host machine remotely. The <user>
value in the procedure is the name of the user that user@workstation
logs in with to the MicroShift host.
Prerequisites
-
You have installed the
oc
binary. -
The
@user@microshift
has opened the firewall from the local host.
Procedure
As
user@workstation
, create a~/.kube/
folder if your RHEL machine does not have one by running the following command:[user@workstation]$ mkdir -p ~/.kube/
As
user@workstation
, set a variable for the hostname of your MicroShift host by running the following command:[user@workstation]$ MICROSHIFT_MACHINE=<name or IP address of MicroShift machine>
As
user@workstation
, copy the generatedkubeconfig
file that contains the host name or IP address you want to connect with from the RHEL machine running MicroShift to your local machine by running the following command:[user@workstation]$ ssh <user>@$MICROSHIFT_MACHINE "sudo cat /var/lib/microshift/resources/kubeadmin/$MICROSHIFT_MACHINE/kubeconfig" > ~/.kube/config
As
user@workstation
, update the permissions on your~/.kube/config
file by running the following command:$ chmod go-r ~/.kube/config
Verification
As
user@workstation
, verify that MicroShift is running by entering the following command:[user@workstation]$ oc get all -A