이 콘텐츠는 선택한 언어로 제공되지 않습니다.

Chapter 4. Network policies


4.1. About network policies

Learn how network policies work for MicroShift to restrict or allow network traffic to pods in your cluster.

4.1.1. How network policy works in MicroShift

In a cluster using the default OVN-Kubernetes Container Network Interface (CNI) plugin for MicroShift, network isolation is controlled by both firewalld, which is configured on the host, and by NetworkPolicy objects created within MicroShift. Simultaneous use of firewalld and NetworkPolicy is supported.

  • Network policies work only within boundaries of OVN-Kubernetes-controlled traffic, so they can apply to every situation except for hostPort/hostNetwork enabled pods.
  • Firewalld settings also do not apply to hostPort/hostNetwork enabled pods.
Note

Firewalld rules run before any NetworkPolicy is enforced.

Warning

Network policy does not apply to the host network namespace. Pods with host networking enabled are unaffected by network policy rules. However, pods connecting to the host-networked pods might be affected by the network policy rules.

Network policies cannot block traffic from localhost.

By default, all pods in a MicroShift node are accessible from other pods and network endpoints. To isolate one or more pods in a cluster, you can create NetworkPolicy objects to indicate allowed incoming connections. You can create and delete NetworkPolicy objects.

If a pod is matched by selectors in one or more NetworkPolicy objects, then the pod accepts only connections that are allowed by at least one of those NetworkPolicy objects. A pod that is not selected by any NetworkPolicy objects is fully accessible.

A network policy applies to only the TCP, UDP, ICMP, and SCTP protocols. Other protocols are not affected.

The following example NetworkPolicy objects demonstrate supporting different scenarios:

  • Deny all traffic:

    To make a project deny by default, add a NetworkPolicy object that matches all pods but accepts no traffic:

    kind: NetworkPolicy
    apiVersion: networking.k8s.io/v1
    metadata:
      name: deny-by-default
    spec:
      podSelector: {}
      ingress: []
  • Allow connections from the default router, which is the ingress in MicroShift:

    To allow connections from the MicroShift default router, add the following NetworkPolicy object:

    apiVersion: networking.k8s.io/v1
    kind: NetworkPolicy
    metadata:
      name: allow-from-openshift-ingress
    spec:
      ingress:
      - from:
        - namespaceSelector:
            matchLabels:
              ingresscontroller.operator.openshift.io/deployment-ingresscontroller: default
      podSelector: {}
      policyTypes:
      - Ingress
  • Only accept connections from pods within the same namespace:

    To make pods accept connections from other pods in the same namespace, but reject all other connections from pods in other namespaces, add the following NetworkPolicy object:

    kind: NetworkPolicy
    apiVersion: networking.k8s.io/v1
    metadata:
      name: allow-same-namespace
    spec:
      podSelector: {}
      ingress:
      - from:
        - podSelector: {}
  • Only allow HTTP and HTTPS traffic based on pod labels:

    To enable only HTTP and HTTPS access to the pods with a specific label (role=frontend in following example), add a NetworkPolicy object similar to the following:

    kind: NetworkPolicy
    apiVersion: networking.k8s.io/v1
    metadata:
      name: allow-http-and-https
    spec:
      podSelector:
        matchLabels:
          role: frontend
      ingress:
      - ports:
        - protocol: TCP
          port: 80
        - protocol: TCP
          port: 443
  • Accept connections by using both namespace and pod selectors:

    To match network traffic by combining namespace and pod selectors, you can use a NetworkPolicy object similar to the following:

    kind: NetworkPolicy
    apiVersion: networking.k8s.io/v1
    metadata:
      name: allow-pod-and-namespace-both
    spec:
      podSelector:
        matchLabels:
          name: test-pods
      ingress:
        - from:
          - namespaceSelector:
              matchLabels:
                project: project_name
            podSelector:
              matchLabels:
                name: test-pods

NetworkPolicy objects are additive, which means you can combine multiple NetworkPolicy objects together to satisfy complex network requirements.

For example, for the NetworkPolicy objects defined in previous examples, you can define both allow-same-namespace and allow-http-and-https policies. That configuration allows the pods with the label role=frontend to accept any connection allowed by each policy. That is, connections on any port from pods in the same namespace, and connections on ports 80 and 443 from pods in any namespace.

4.1.2. Optimizations for network policy with OVN-Kubernetes network plugin

When designing your network policy, refer to the following guidelines:

  • For network policies with the same spec.podSelector spec, it is more efficient to use one network policy with multiple ingress or egress rules, than multiple network policies with subsets of ingress or egress rules.
  • Every ingress or egress rule based on the podSelector or namespaceSelector spec generates the number of OVS flows proportional to number of pods selected by network policy + number of pods selected by ingress or egress rule. Therefore, it is preferable to use the podSelector or namespaceSelector spec that can select as many pods as you need in one rule, instead of creating individual rules for every pod.

    For example, the following policy contains two rules:

    apiVersion: networking.k8s.io/v1
    kind: NetworkPolicy
    metadata:
      name: test-network-policy
    spec:
      podSelector: {}
      ingress:
      - from:
        - podSelector:
            matchLabels:
              role: frontend
      - from:
        - podSelector:
            matchLabels:
              role: backend

    The following policy expresses those same two rules as one:

    apiVersion: networking.k8s.io/v1
    kind: NetworkPolicy
    metadata:
      name: test-network-policy
    spec:
      podSelector: {}
      ingress:
      - from:
        - podSelector:
            matchExpressions:
            - {key: role, operator: In, values: [frontend, backend]}

    The same guideline applies to the spec.podSelector spec. If you have the same ingress or egress rules for different network policies, it might be more efficient to create one network policy with a common spec.podSelector spec. For example, the following two policies have different rules:

    apiVersion: networking.k8s.io/v1
    kind: NetworkPolicy
    metadata:
      name: policy1
    spec:
      podSelector:
        matchLabels:
          role: db
      ingress:
      - from:
        - podSelector:
            matchLabels:
              role: frontend
    ---
    apiVersion: networking.k8s.io/v1
    kind: NetworkPolicy
    metadata:
      name: policy2
    spec:
      podSelector:
        matchLabels:
          role: client
      ingress:
      - from:
        - podSelector:
            matchLabels:
              role: frontend

    The following network policy expresses those same two rules as one:

    apiVersion: networking.k8s.io/v1
    kind: NetworkPolicy
    metadata:
      name: policy3
    spec:
      podSelector:
        matchExpressions:
        - {key: role, operator: In, values: [db, client]}
      ingress:
      - from:
        - podSelector:
            matchLabels:
              role: frontend

    You can apply this optimization when only multiple selectors are expressed as one. In cases where selectors are based on different labels, it may not be possible to apply this optimization. In those cases, consider applying some new labels for network policy optimization specifically.

4.2. Creating network policies

You can create a network policy for a namespace.

4.2.1. Example NetworkPolicy object

The following annotates an example NetworkPolicy object:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: allow-27107 1
spec:
  podSelector: 2
    matchLabels:
      app: mongodb
  ingress:
  - from:
    - podSelector: 3
        matchLabels:
          app: app
    ports: 4
    - protocol: TCP
      port: 27017
1
The name of the NetworkPolicy object.
2
A selector that describes the pods to which the policy applies.
3
A selector that matches the pods from which the policy object allows ingress traffic. The selector matches pods in the same namespace as the NetworkPolicy.
4
A list of one or more destination ports on which to accept traffic.

4.2.2. Creating a network policy using the CLI

To define granular rules describing ingress or egress network traffic allowed for namespaces in your cluster, you can create a network policy.

Prerequisites

  • You installed the OpenShift CLI (oc).
  • You are working in the namespace that the network policy applies to.

Procedure

  1. Create a policy rule:

    1. Create a <policy_name>.yaml file:

      $ touch <policy_name>.yaml

      where:

      <policy_name>
      Specifies the network policy file name.
    2. Define a network policy in the file that you just created, such as in the following examples:

      Deny ingress from all pods in all namespaces

      This is a fundamental policy, blocking all cross-pod networking other than cross-pod traffic allowed by the configuration of other Network Policies.

      kind: NetworkPolicy
      apiVersion: networking.k8s.io/v1
      metadata:
        name: deny-by-default
      spec:
        podSelector: {}
        policyTypes:
        - Ingress
        ingress: []

      Allow ingress from all pods in the same namespace

      kind: NetworkPolicy
      apiVersion: networking.k8s.io/v1
      metadata:
        name: allow-same-namespace
      spec:
        podSelector:
        ingress:
        - from:
          - podSelector: {}

      Allow ingress traffic to one pod from a particular namespace

      This policy allows traffic to pods labelled pod-a from pods running in namespace-y.

      kind: NetworkPolicy
      apiVersion: networking.k8s.io/v1
      metadata:
        name: allow-traffic-pod
      spec:
        podSelector:
         matchLabels:
            pod: pod-a
        policyTypes:
        - Ingress
        ingress:
        - from:
          - namespaceSelector:
              matchLabels:
                 kubernetes.io/metadata.name: namespace-y
  2. To create the network policy object, enter the following command:

    $ oc apply -f <policy_name>.yaml -n <namespace>

    where:

    <policy_name>
    Specifies the network policy file name.
    <namespace>
    Optional: Specifies the namespace if the object is defined in a different namespace than the current namespace.

    Example output

    networkpolicy.networking.k8s.io/deny-by-default created

4.2.3. Creating a default deny all network policy

This is a fundamental policy, blocking all cross-pod networking other than network traffic allowed by the configuration of other deployed network policies. This procedure enforces a default deny-by-default policy.

Prerequisites

  • You installed the OpenShift CLI (oc).
  • You are working in the namespace that the network policy applies to.

Procedure

  1. Create the following YAML that defines a deny-by-default policy to deny ingress from all pods in all namespaces. Save the YAML in the deny-by-default.yaml file:

    kind: NetworkPolicy
    apiVersion: networking.k8s.io/v1
    metadata:
      name: deny-by-default
      namespace: default 1
    spec:
      podSelector: {} 2
      ingress: [] 3
    1
    namespace: default deploys this policy to the default namespace.
    2
    podSelector: is empty, this means it matches all the pods. Therefore, the policy applies to all pods in the default namespace.
    3
    There are no ingress rules specified. This causes incoming traffic to be dropped to all pods.
  2. Apply the policy by entering the following command:

    $ oc apply -f deny-by-default.yaml

    Example output

    networkpolicy.networking.k8s.io/deny-by-default created

4.2.4. Creating a network policy to allow traffic from external clients

With the deny-by-default policy in place you can proceed to configure a policy that allows traffic from external clients to a pod with the label app=web.

Note

Firewalld rules run before any NetworkPolicy is enforced.

Follow this procedure to configure a policy that allows external service from the public Internet directly or by using a Load Balancer to access the pod. Traffic is only allowed to a pod with the label app=web.

Prerequisites

  • You installed the OpenShift CLI (oc).
  • You are working in the namespace that the network policy applies to.

Procedure

  1. Create a policy that allows traffic from the public Internet directly or by using a load balancer to access the pod. Save the YAML in the web-allow-external.yaml file:

    kind: NetworkPolicy
    apiVersion: networking.k8s.io/v1
    metadata:
      name: web-allow-external
      namespace: default
    spec:
      policyTypes:
      - Ingress
      podSelector:
        matchLabels:
          app: web
      ingress:
        - {}
  2. Apply the policy by entering the following command:

    $ oc apply -f web-allow-external.yaml

    Example output

    networkpolicy.networking.k8s.io/web-allow-external created

4.2.5. Creating a network policy allowing traffic to an application from all namespaces

Follow this procedure to configure a policy that allows traffic from all pods in all namespaces to a particular application.

Prerequisites

  • You installed the OpenShift CLI (oc).
  • You are working in the namespace that the network policy applies to.

Procedure

  1. Create a policy that allows traffic from all pods in all namespaces to a particular application. Save the YAML in the web-allow-all-namespaces.yaml file:

    kind: NetworkPolicy
    apiVersion: networking.k8s.io/v1
    metadata:
      name: web-allow-all-namespaces
      namespace: default
    spec:
      podSelector:
        matchLabels:
          app: web 1
      policyTypes:
      - Ingress
      ingress:
      - from:
        - namespaceSelector: {} 2
    1
    Applies the policy only to app:web pods in default namespace.
    2
    Selects all pods in all namespaces.
    Note

    By default, if you omit specifying a namespaceSelector it does not select any namespaces, which means the policy allows traffic only from the namespace the network policy is deployed to.

  2. Apply the policy by entering the following command:

    $ oc apply -f web-allow-all-namespaces.yaml

    Example output

    networkpolicy.networking.k8s.io/web-allow-all-namespaces created

Verification

  1. Start a web service in the default namespace by entering the following command:

    $ oc run web --namespace=default --image=nginx --labels="app=web" --expose --port=80
  2. Run the following command to deploy an alpine image in the secondary namespace and to start a shell:

    $ oc run test-$RANDOM --namespace=secondary --rm -i -t --image=alpine -- sh
  3. Run the following command in the shell and observe that the request is allowed:

    # wget -qO- --timeout=2 http://web.default

    Expected output

    <!DOCTYPE html>
    <html>
    <head>
    <title>Welcome to nginx!</title>
    <style>
    html { color-scheme: light dark; }
    body { width: 35em; margin: 0 auto;
    font-family: Tahoma, Verdana, Arial, sans-serif; }
    </style>
    </head>
    <body>
    <h1>Welcome to nginx!</h1>
    <p>If you see this page, the nginx web server is successfully installed and
    working. Further configuration is required.</p>
    
    <p>For online documentation and support please refer to
    <a href="http://nginx.org/">nginx.org</a>.<br/>
    Commercial support is available at
    <a href="http://nginx.com/">nginx.com</a>.</p>
    
    <p><em>Thank you for using nginx.</em></p>
    </body>
    </html>

4.2.6. Creating a network policy allowing traffic to an application from a namespace

Follow this procedure to configure a policy that allows traffic to a pod with the label app=web from a particular namespace. You might want to do this to:

  • Restrict traffic to a production database only to namespaces where production workloads are deployed.
  • Enable monitoring tools deployed to a particular namespace to scrape metrics from the current namespace.

Prerequisites

  • You installed the OpenShift CLI (oc).
  • You are working in the namespace that the network policy applies to.

Procedure

  1. Create a policy that allows traffic from all pods in a particular namespaces with a label purpose=production. Save the YAML in the web-allow-prod.yaml file:

    kind: NetworkPolicy
    apiVersion: networking.k8s.io/v1
    metadata:
      name: web-allow-prod
      namespace: default
    spec:
      podSelector:
        matchLabels:
          app: web 1
      policyTypes:
      - Ingress
      ingress:
      - from:
        - namespaceSelector:
            matchLabels:
              purpose: production 2
    1
    Applies the policy only to app:web pods in the default namespace.
    2
    Restricts traffic to only pods in namespaces that have the label purpose=production.
  2. Apply the policy by entering the following command:

    $ oc apply -f web-allow-prod.yaml

    Example output

    networkpolicy.networking.k8s.io/web-allow-prod created

Verification

  1. Start a web service in the default namespace by entering the following command:

    $ oc run web --namespace=default --image=nginx --labels="app=web" --expose --port=80
  2. Run the following command to create the prod namespace:

    $ oc create namespace prod
  3. Run the following command to label the prod namespace:

    $ oc label namespace/prod purpose=production
  4. Run the following command to create the dev namespace:

    $ oc create namespace dev
  5. Run the following command to label the dev namespace:

    $ oc label namespace/dev purpose=testing
  6. Run the following command to deploy an alpine image in the dev namespace and to start a shell:

    $ oc run test-$RANDOM --namespace=dev --rm -i -t --image=alpine -- sh
  7. Run the following command in the shell and observe that the request is blocked:

    # wget -qO- --timeout=2 http://web.default

    Expected output

    wget: download timed out

  8. Run the following command to deploy an alpine image in the prod namespace and start a shell:

    $ oc run test-$RANDOM --namespace=prod --rm -i -t --image=alpine -- sh
  9. Run the following command in the shell and observe that the request is allowed:

    # wget -qO- --timeout=2 http://web.default

    Expected output

    <!DOCTYPE html>
    <html>
    <head>
    <title>Welcome to nginx!</title>
    <style>
    html { color-scheme: light dark; }
    body { width: 35em; margin: 0 auto;
    font-family: Tahoma, Verdana, Arial, sans-serif; }
    </style>
    </head>
    <body>
    <h1>Welcome to nginx!</h1>
    <p>If you see this page, the nginx web server is successfully installed and
    working. Further configuration is required.</p>
    
    <p>For online documentation and support please refer to
    <a href="http://nginx.org/">nginx.org</a>.<br/>
    Commercial support is available at
    <a href="http://nginx.com/">nginx.com</a>.</p>
    
    <p><em>Thank you for using nginx.</em></p>
    </body>
    </html>

4.3. Editing a network policy

You can edit an existing network policy for a namespace. Typical edits might include changes to the pods to which the policy applies, allowed ingress traffic, and the destination ports on which to accept traffic. The apiVersion, kind, and name fields must not be changed when editing NetworkPolicy objects, as these define the resource itself.

4.3.1. Editing a network policy

You can edit a network policy in a namespace.

Prerequisites

  • You installed the OpenShift CLI (oc).
  • You are working in the namespace where the network policy exists.

Procedure

  1. Optional: To list the network policy objects in a namespace, enter the following command:

    $ oc get networkpolicy

    where:

    <namespace>
    Optional: Specifies the namespace if the object is defined in a different namespace than the current namespace.
  2. Edit the network policy object.

    • If you saved the network policy definition in a file, edit the file and make any necessary changes, and then enter the following command.

      $ oc apply -n <namespace> -f <policy_file>.yaml

      where:

      <namespace>
      Optional: Specifies the namespace if the object is defined in a different namespace than the current namespace.
      <policy_file>
      Specifies the name of the file containing the network policy.
    • If you need to update the network policy object directly, enter the following command:

      $ oc edit networkpolicy <policy_name> -n <namespace>

      where:

      <policy_name>
      Specifies the name of the network policy.
      <namespace>
      Optional: Specifies the namespace if the object is defined in a different namespace than the current namespace.
  3. Confirm that the network policy object is updated.

    $ oc describe networkpolicy <policy_name> -n <namespace>

    where:

    <policy_name>
    Specifies the name of the network policy.
    <namespace>
    Optional: Specifies the namespace if the object is defined in a different namespace than the current namespace.

4.3.2. Example NetworkPolicy object

The following annotates an example NetworkPolicy object:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
  name: allow-27107 1
spec:
  podSelector: 2
    matchLabels:
      app: mongodb
  ingress:
  - from:
    - podSelector: 3
        matchLabels:
          app: app
    ports: 4
    - protocol: TCP
      port: 27017
1
The name of the NetworkPolicy object.
2
A selector that describes the pods to which the policy applies.
3
A selector that matches the pods from which the policy object allows ingress traffic. The selector matches pods in the same namespace as the NetworkPolicy.
4
A list of one or more destination ports on which to accept traffic.

4.4. Deleting a network policy

You can delete a network policy from a namespace.

4.4.1. Deleting a network policy using the CLI

You can delete a network policy in a namespace.

Prerequisites

  • You installed the OpenShift CLI (oc).
  • You are working in the namespace where the network policy exists.

Procedure

  • To delete a network policy object, enter the following command:

    $ oc delete networkpolicy <policy_name> -n <namespace>

    where:

    <policy_name>
    Specifies the name of the network policy.
    <namespace>
    Optional: Specifies the namespace if the object is defined in a different namespace than the current namespace.

    Example output

    networkpolicy.networking.k8s.io/default-deny deleted

4.5. Viewing a network policy

Use the following procedure to view a network policy for a namespace.

4.5.1. Viewing network policies using the CLI

You can examine the network policies in a namespace.

Prerequisites

  • You installed the OpenShift CLI (oc).
  • You are working in the namespace where the network policy exists.

Procedure

  • List network policies in a namespace:

    • To view network policy objects defined in a namespace, enter the following command:

      $ oc get networkpolicy
    • Optional: To examine a specific network policy, enter the following command:

      $ oc describe networkpolicy <policy_name> -n <namespace>

      where:

      <policy_name>
      Specifies the name of the network policy to inspect.
      <namespace>
      Optional: Specifies the namespace if the object is defined in a different namespace than the current namespace.

      For example:

      $ oc describe networkpolicy allow-same-namespace

      Output for oc describe command

      Name:         allow-same-namespace
      Namespace:    ns1
      Created on:   2021-05-24 22:28:56 -0400 EDT
      Labels:       <none>
      Annotations:  <none>
      Spec:
        PodSelector:     <none> (Allowing the specific traffic to all pods in this namespace)
        Allowing ingress traffic:
          To Port: <any> (traffic allowed to all ports)
          From:
            PodSelector: <none>
        Not affecting egress traffic
        Policy Types: Ingress

Red Hat logoGithubRedditYoutubeTwitter

자세한 정보

평가판, 구매 및 판매

커뮤니티

Red Hat 문서 정보

Red Hat을 사용하는 고객은 신뢰할 수 있는 콘텐츠가 포함된 제품과 서비스를 통해 혁신하고 목표를 달성할 수 있습니다.

보다 포괄적 수용을 위한 오픈 소스 용어 교체

Red Hat은 코드, 문서, 웹 속성에서 문제가 있는 언어를 교체하기 위해 최선을 다하고 있습니다. 자세한 내용은 다음을 참조하세요.Red Hat 블로그.

Red Hat 소개

Red Hat은 기업이 핵심 데이터 센터에서 네트워크 에지에 이르기까지 플랫폼과 환경 전반에서 더 쉽게 작업할 수 있도록 강화된 솔루션을 제공합니다.

© 2024 Red Hat, Inc.