이 콘텐츠는 선택한 언어로 제공되지 않습니다.

Chapter 1. Overview of model registries and model catalog


A model registry acts as a central repository for administrators and data scientists to register, version, and manage the lifecycle of AI models before configuring them for deployment. A model registry is a key component for AI model governance.

The model catalog provides a curated library where data scientists can discover and evaluate the available generative AI models to find the best fit for their use cases.

1.1. Model registry

A model registry is an important component in the lifecycle of an artificial intelligence/machine learning (AI/ML) model, and is a vital part of any machine learning operations (MLOps) platform or workflow. A model registry acts as a central repository, storing metadata related to machine learning models from development to deployment. This metadata ranges from high-level information like the deployment environment and project, to specific details like training hyperparameters, performance metrics, and deployment events.

A model registry acts as a bridge between model experimentation and serving, offering a secure, collaborative metadata store interface for stakeholders in the ML lifecycle. Model registries provide a structured and organized way to store, share, version, deploy, and track models.

OpenShift AI administrators can create model registries in OpenShift AI and grant model registry access to data scientists. For more information, see Managing model registries.

Data scientists with access to a model registry can use it to store, share, version, deploy, and track models. For more information, see Working with model registries.

1.2. Model catalog

Data scientists can use the model catalog to discover and evaluate the models that are available and ready for their organization to register, deploy, and customize.

The model catalog provides models from different providers that data scientists can search and discover before they register models in a model registry and deploy them to a model serving runtime. OpenShift AI administrators can configure the available repository sources for models displayed in the model catalog.

OpenShift AI provides a default model catalog, which includes models from providers such as Red Hat, IBM, Meta, Nvidia, Mistral AI, and Google.

For more information about how data scientists can use the model catalog, see Working with the model catalog.

맨 위로 이동
Red Hat logoGithubredditYoutubeTwitter

자세한 정보

평가판, 구매 및 판매

커뮤니티

Red Hat 문서 정보

Red Hat을 사용하는 고객은 신뢰할 수 있는 콘텐츠가 포함된 제품과 서비스를 통해 혁신하고 목표를 달성할 수 있습니다. 최신 업데이트를 확인하세요.

보다 포괄적 수용을 위한 오픈 소스 용어 교체

Red Hat은 코드, 문서, 웹 속성에서 문제가 있는 언어를 교체하기 위해 최선을 다하고 있습니다. 자세한 내용은 다음을 참조하세요.Red Hat 블로그.

Red Hat 소개

Red Hat은 기업이 핵심 데이터 센터에서 네트워크 에지에 이르기까지 플랫폼과 환경 전반에서 더 쉽게 작업할 수 있도록 강화된 솔루션을 제공합니다.

Theme

© 2025 Red Hat