이 콘텐츠는 선택한 언어로 제공되지 않습니다.

Chapter 1. About model serving


Serving trained models on Red Hat OpenShift AI means deploying the models on your OpenShift cluster to test and then integrate them into intelligent applications. Deploying a model makes it available as a service that you can access by using an API. This enables you to return predictions based on data inputs that you provide through API calls. This process is known as model inferencing. When you serve a model on OpenShift AI, the inference endpoints that you can access for the deployed model are shown in the dashboard.

OpenShift AI provides the following model serving platforms:

Single model serving platform
For deploying large models such as large language models (LLMs), OpenShift AI includes a single model serving platform that is based on the KServe component. Because each model is deployed from its own model server, the single model serving platform helps you to deploy, monitor, scale, and maintain large models that require increased resources.
Multi-model serving platform
For deploying small and medium-sized models, OpenShift AI includes a multi-model serving platform that is based on the ModelMesh component. On the multi-model serving platform, you can deploy multiple models on the same model server. Each of the deployed models shares the server resources. This approach can be advantageous on OpenShift clusters that have finite compute resources or pods.
맨 위로 이동
Red Hat logoGithubredditYoutubeTwitter

자세한 정보

평가판, 구매 및 판매

커뮤니티

Red Hat 문서 정보

Red Hat을 사용하는 고객은 신뢰할 수 있는 콘텐츠가 포함된 제품과 서비스를 통해 혁신하고 목표를 달성할 수 있습니다. 최신 업데이트를 확인하세요.

보다 포괄적 수용을 위한 오픈 소스 용어 교체

Red Hat은 코드, 문서, 웹 속성에서 문제가 있는 언어를 교체하기 위해 최선을 다하고 있습니다. 자세한 내용은 다음을 참조하세요.Red Hat 블로그.

Red Hat 소개

Red Hat은 기업이 핵심 데이터 센터에서 네트워크 에지에 이르기까지 플랫폼과 환경 전반에서 더 쉽게 작업할 수 있도록 강화된 솔루션을 제공합니다.

Theme

© 2025 Red Hat