이 콘텐츠는 선택한 언어로 제공되지 않습니다.

Chapter 9. Managing persistent volume claims


9.1. Configuring application pods to use OpenShift Container Storage

Follow the instructions in this section to configure OpenShift Container Storage as storage for an application pod.

Prerequisites

  • You have administrative access to OpenShift Web Console.
  • OpenShift Container Storage Operator is installed and running in the openshift-storage namespace. In OpenShift Web Console, click Operators Installed Operators to view installed operators.
  • The default storage classes provided by OpenShift Container Storage are available. In OpenShift Web Console, click Storage Storage Classes to view default storage classes.

Procedure

  1. Create a Persistent Volume Claim (PVC) for the application to use.

    1. In OpenShift Web Console, click Storage Persistent Volume Claims.
    2. Set the Project for the application pod.
    3. Click Create Persistent Volume Claim.

      1. Specify a Storage Class provided by OpenShift Container Storage.
      2. Specify the PVC Name, for example, myclaim.
      3. Select the required Access Mode.
      4. Specify a Size as per application requirement.
      5. Click Create and wait until the PVC is in Bound status.
  2. Configure a new or existing application pod to use the new PVC.

    • For a new application pod, perform the following steps:

      1. Click WorkloadsPods.
      2. Create a new application pod.
      3. Under the spec: section, add volume: section to add the new PVC as a volume for the application pod.

        volumes:
          - name: <volume_name>
            persistentVolumeClaim:
              claimName: <pvc_name>
        Copy to Clipboard Toggle word wrap

        For example:

        volumes:
          - name: mypd
            persistentVolumeClaim:
              claimName: myclaim
        Copy to Clipboard Toggle word wrap
    • For an existing application pod, perform the following steps:

      1. Click WorkloadsDeployment Configs.
      2. Search for the required deployment config associated with the application pod.
      3. Click on its Action menu (⋮) Edit Deployment Config.
      4. Under the spec: section, add volume: section to add the new PVC as a volume for the application pod and click Save.

        volumes:
          - name: <volume_name>
            persistentVolumeClaim:
              claimName: <pvc_name>
        Copy to Clipboard Toggle word wrap

        For example:

        volumes:
          - name: mypd
            persistentVolumeClaim:
              claimName: myclaim
        Copy to Clipboard Toggle word wrap
  3. Verify that the new configuration is being used.

    1. Click Workloads Pods.
    2. Set the Project for the application pod.
    3. Verify that the application pod appears with a status of Running.
    4. Click the application pod name to view pod details.
    5. Scroll down to Volumes section and verify that the volume has a Type that matches your new Persistent Volume Claim, for example, myclaim.

9.2. Viewing Persistent Volume Claim request status

Use this procedure to view the status of a PVC request.

Prerequisites

  • Administrator access to OpenShift Container Storage.

Procedure

  1. Log in to OpenShift Web Console.
  2. Click Storage Persistent Volume Claims
  3. Search for the required PVC name by using the Filter textbox. You can also filter the list of PVCs by Name or Label to narrow down the list
  4. Check the Status column corresponding to the required PVC.
  5. Click the required Name to view the PVC details.

9.3. Reviewing Persistent Volume Claim request events

Use this procedure to review and address Persistent Volume Claim (PVC) request events.

Prerequisites

  • Administrator access to OpenShift Web Console.

Procedure

  1. Log in to OpenShift Web Console.
  2. Click Home Overview Persistent Storage
  3. Locate the Inventory card to see the number of PVCs with errors.
  4. Click Storage Persistent Volume Claims
  5. Search for the required PVC using the Filter textbox.
  6. Click on the PVC name and navigate to Events
  7. Address the events as required or as directed.

9.4. Expanding Persistent Volume Claims

OpenShift Container Storage 4.6 introduces the ability to expand Persistent Volume Claims providing more flexibility in the management of persistent storage resources.

Expansion is supported for the following Persistent Volumes:

  • PVC with ReadWriteOnce (RWO) and ReadWriteMany (RWX) access that is based on Ceph File System (CephFS) for volume mode Filesystem.
  • PVC with ReadWriteOnce (RWO) access that is based on Ceph RADOS Block Devices (RBDs) with volume mode Filesystem.
  • PVC with ReadWriteOnce (RWO) access that is based on Ceph RADOS Block Devices (RBDs) with volume mode Block.
Warning

OSD and MON PVC expansion is not supported by Red Hat.

Prerequisites

  • Administrator access to OpenShift Web Console.

Procedure

  1. In OpenShift Web Console, navigate to Storage Persistent Volume Claims.
  2. Click the Action Menu (⋮) next to the Persistent Volume Claim you want to expand.
  3. Click Expand PVC:

  4. Select the new size of the Persistent Volume Claim, then click Expand:

  5. To verify the expansion, navigate to the PVC’s details page and verify the Capacity field has the correct size requested.

    Note

    When expanding PVCs based on Ceph RADOS Block Devices (RBDs), if the PVC is not already attached to a pod the Condition type is FileSystemResizePending in the PVC’s details page. Once the volume is mounted, filesystem resize succeeds and the new size is reflected in the Capacity field.

9.5. Dynamic provisioning

9.5.1. About dynamic provisioning

The StorageClass resource object describes and classifies storage that can be requested, as well as provides a means for passing parameters for dynamically provisioned storage on demand. StorageClass objects can also serve as a management mechanism for controlling different levels of storage and access to the storage. Cluster Administrators (cluster-admin) or Storage Administrators (storage-admin) define and create the StorageClass objects that users can request without needing any intimate knowledge about the underlying storage volume sources.

The OpenShift Container Storage persistent volume framework enables this functionality and allows administrators to provision a cluster with persistent storage. The framework also gives users a way to request those resources without having any knowledge of the underlying infrastructure.

Many storage types are available for use as persistent volumes in OpenShift Container Storage. While all of them can be statically provisioned by an administrator, some types of storage are created dynamically using the built-in provider and plug-in APIs.

9.5.2. Dynamic provisioning in OpenShift Container Storage

Red Hat OpenShift Container Storage is software-defined storage that is optimised for container environments. It runs as an operator on OpenShift Container Platform to provide highly integrated and simplified persistent storage management for containers.

OpenShift Container Storage supports a variety of storage types, including:

  • Block storage for databases
  • Shared file storage for continuous integration, messaging, and data aggregation
  • Object storage for archival, backup, and media storage

Version 4 uses Red Hat Ceph Storage to provide the file, block, and object storage that backs persistent volumes, and Rook.io to manage and orchestrate provisioning of persistent volumes and claims. NooBaa provides object storage, and its Multicloud Gateway allows object federation across multiple cloud environments (available as a Technology Preview).

In OpenShift Container Storage 4, the Red Hat Ceph Storage Container Storage Interface (CSI) driver for RADOS Block Device (RBD) and Ceph File System (CephFS) handles the dynamic provisioning requests. When a PVC request comes in dynamically, the CSI driver has the following options:

  • Create a PVC with ReadWriteOnce (RWO) and ReadWriteMany (RWX) access that is based on Ceph RBDs with volume mode Block
  • Create a PVC with ReadWriteOnce (RWO) access that is based on Ceph RBDs with volume mode Filesystem
  • Create a PVC with ReadWriteOnce (RWO) and ReadWriteMany (RWX) access that is based on CephFS for volume mode Filesystem

The judgment of which driver (RBD or CephFS) to use is based on the entry in the storageclass.yaml file.

9.5.3. Available dynamic provisioning plug-ins

OpenShift Container Storage provides the following provisioner plug-ins, which have generic implementations for dynamic provisioning that use the cluster’s configured provider’s API to create new storage resources:

Expand
Storage typeProvisioner plug-in nameNotes

OpenStack Cinder

kubernetes.io/cinder

 

AWS Elastic Block Store (EBS)

kubernetes.io/aws-ebs

For dynamic provisioning when using multiple clusters in different zones, tag each node with Key=kubernetes.io/cluster/<cluster_name>,Value=<cluster_id> where <cluster_name> and <cluster_id> are unique per cluster.

AWS Elastic File System (EFS)

 

Dynamic provisioning is accomplished through the EFS provisioner pod and not through a provisioner plug-in.

Azure Disk

kubernetes.io/azure-disk

 

Azure File

kubernetes.io/azure-file

The persistent-volume-binder ServiceAccount requires permissions to create and get Secrets to store the Azure storage account and keys.

GCE Persistent Disk (gcePD)

kubernetes.io/gce-pd

In multi-zone configurations, it is advisable to run one OpenShift Container Storage cluster per GCE project to avoid PVs from being created in zones where no node in the current cluster exists.

VMware vSphere

kubernetes.io/vsphere-volume

 
Important

Any chosen provisioner plug-in also requires configuration for the relevant cloud, host, or third-party provider as per the relevant documentation.

맨 위로 이동
Red Hat logoGithubredditYoutubeTwitter

자세한 정보

평가판, 구매 및 판매

커뮤니티

Red Hat 문서 정보

Red Hat을 사용하는 고객은 신뢰할 수 있는 콘텐츠가 포함된 제품과 서비스를 통해 혁신하고 목표를 달성할 수 있습니다. 최신 업데이트를 확인하세요.

보다 포괄적 수용을 위한 오픈 소스 용어 교체

Red Hat은 코드, 문서, 웹 속성에서 문제가 있는 언어를 교체하기 위해 최선을 다하고 있습니다. 자세한 내용은 다음을 참조하세요.Red Hat 블로그.

Red Hat 소개

Red Hat은 기업이 핵심 데이터 센터에서 네트워크 에지에 이르기까지 플랫폼과 환경 전반에서 더 쉽게 작업할 수 있도록 강화된 솔루션을 제공합니다.

Theme

© 2025 Red Hat