Este conteúdo não está disponível no idioma selecionado.
Chapter 3. Deploying confidential containers on Microsoft Azure Red Hat OpenShift
You can deploy confidential containers workloads on Microsoft Azure Red Hat OpenShift.
3.1. Preparation Copiar o linkLink copiado para a área de transferência!
Review these prerequisites and concepts before you deploy confidential containers on Azure Red Hat OpenShift.
3.1.1. Prerequisites Copiar o linkLink copiado para a área de transferência!
- You have installed the latest version of Red Hat OpenShift Container Platform on the cluster where you are running your confidential containers workload.
- You have deployed Red Hat build of Trustee on an OpenShift Container Platform cluster in a trusted environment. For more information, see Deploying Red Hat build of Trustee.
- You have enabled ports 15150 and 9000 for communication in the subnet used for worker nodes and the pod virtual machine (VM). The ports enable communication between the Kata shim running on the worker node and the Kata agent running on the pod VM.
3.1.2. Outbound connections Copiar o linkLink copiado para a área de transferência!
To enable peer pods to communicate with external networks, such as the public internet, you must configure outbound connectivity for the pod virtual machine (VM) subnet. This involves setting up a NAT gateway and, optionally, defining how the subnet integrates with your cluster’s virtual network (VNet) in Azure.
- Peer pods and subnets
- Peer pods operate in a dedicated Azure subnet that requires explicit configuration for outbound access. This subnet can either be the default worker subnet used by OpenShift Container Platform nodes or a separate, custom subnet created specifically for peer pods.
- VNet peering
- When using a separate subnet, VNet peering connects the peer pod VNet to the cluster’s VNet, ensuring internal communication while maintaining isolation. This requires non-overlapping CIDR ranges between the VNets.
You can configure outbound connectivity in two ways:
- Default worker subnet: Modify the existing worker subnet to include a NAT gateway. This is simpler and reuses cluster resources, but it offers less isolation.
- Peer pod VNet: Set up a dedicated VNet and subnet for peer pods, attach a NAT gateway, and peer it with the cluster VNet. This provides greater isolation and flexibility at the cost of additional complexity.
3.1.3. Peer pod resource requirements Copiar o linkLink copiado para a área de transferência!
You must ensure that your cluster has sufficient resources.
Peer pod virtual machines (VMs) require resources in two locations:
-
The worker node. The worker node stores metadata, Kata shim resources (
containerd-shim-kata-v2), remote-hypervisor resources (cloud-api-adaptor), and the tunnel setup between the worker nodes and the peer pod VM. - The cloud instance. This is the actual peer pod VM running in the cloud.
The CPU and memory resources used in the Kubernetes worker node are handled by the pod overhead included in the RuntimeClass (kata-remote) definition used for creating peer pods.
The total number of peer pod VMs running in the cloud is defined as Kubernetes Node extended resources. This limit is per node and is set by the PEERPODS_LIMIT_PER_NODE attribute in the peer-pods-cm config map.
The extended resource is named kata.peerpods.io/vm, and enables the Kubernetes scheduler to handle capacity tracking and accounting.
You can edit the limit per node based on the requirements for your environment after you install the OpenShift sandboxed containers Operator.
A mutating webhook adds the extended resource kata.peerpods.io/vm to the pod specification. It also removes any resource-specific entries from the pod specification, if present. This enables the Kubernetes scheduler to account for these extended resources, ensuring the peer pod is only scheduled when resources are available.
The mutating webhook modifies a Kubernetes pod as follows:
-
The mutating webhook checks the pod for the expected
RuntimeClassNamevalue, specified in theTARGET_RUNTIMECLASSenvironment variable. If the value in the pod specification does not match the value in theTARGET_RUNTIMECLASS, the webhook exits without modifying the pod. If the
RuntimeClassNamevalues match, the webhook makes the following changes to the pod spec:-
The webhook removes every resource specification from the
resourcesfield of all containers and init containers in the pod. -
The webhook adds the extended resource (
kata.peerpods.io/vm) to the spec by modifying the resources field of the first container in the pod. The extended resourcekata.peerpods.io/vmis used by the Kubernetes scheduler for accounting purposes.
-
The webhook removes every resource specification from the
The mutating webhook excludes specific system namespaces in OpenShift Container Platform from mutation. If a peer pod is created in those system namespaces, then resource accounting using Kubernetes extended resources does not work unless the pod spec includes the extended resource.
As a best practice, define a cluster-wide policy to only allow peer pod creation in specific namespaces.
3.1.4. Initdata Copiar o linkLink copiado para a área de transferência!
The initdata specification provides a flexible way to initialize a pod with workload-specific data at runtime, avoiding the need to embed such data in the virtual machine (VM) image.
This approach enhances security by reducing the exposure of confidential information and improves flexibility by eliminating custom image builds. For example, initdata can include three configuration settings:
- An X.509 certificate for secure communication.
- A cryptographic key for authentication.
-
An optional Kata Agent
policy.regofile to enforce runtime behavior when overriding the default Kata Agent policy.
The initdata content configures the following components:
- Attestation Agent (AA), which verifies the trustworthiness of the pod by sending evidence for attestation.
- Confidential Data Hub (CDH), which manages secrets and secure data access within the pod VM.
- Kata Agent, which enforces runtime policies and manages the lifecycle of the containers inside the pod VM.
You create an initdata.toml file and convert it to a Base64-encoded, gzip-format string. You apply the initdata string to your workload by one of the following methods:
-
Global configuration: Add the initdata string as the value of the
INITDATAkey in the peer pods config map to create a default configuration for all peer pods. Pod configuration: Add the initdata string as an annotation to a pod manifest, allowing customization for individual workloads.
NoteThe initdata annotation in the pod manifest overrides the global
INITDATAvalue in the peer pods config map for that specific pod. The Kata runtime handles this precedence automatically at pod creation time.
Then, you create a hash from the initdata file. This hash is required as a reference value for the Reference Value Provider Service (RVPS) config map for Red Hat build of Trustee.
3.2. Deployment overview Copiar o linkLink copiado para a área de transferência!
You deploy confidential containers on Azure Red Hat OpenShift by performing the following steps:
- Prepare your network by configuring outbound connectivity for the peer pods.
- Install the OpenShift sandboxed containers Operator.
- Enable the confidential containers feature gate.
- Create initdata to initialize a peer pod with sensitive or workload-specific data at runtime.
- Create the peer pods config map. You can add initdata to the config map to create a default global configuration for your peer pods.
-
Create the
KataConfigCR. - Verify the attestation process.
- You can add initdata to a pod manifest to override the global initdata configuration you set in the peer pods config map.
- Optional: If you select a container image from an authenticated registry, you must configure a pull secret for the pod.
- Optional: You can select a custom peer pod VM image.
3.3. Creating MachineConfig config map for TDX Copiar o linkLink copiado para a área de transferência!
If you use Intel Trust Domain Extensions (TDX), you must create a MachineConfig object before you install the Red Hat build of Trustee Operator.
Procedure
Create a
tdx-machine-config.yamlmanifest file according to the following example:Copy to Clipboard Copied! Toggle word wrap Toggle overflow - 1
- Specify
masterfor single-node OpenShift orkata-ocfor a multi-node cluster.
Create the TDX config map by running the following command:
oc create -f tdx-config.yaml
$ oc create -f tdx-config.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow
3.4. Preparing your network Copiar o linkLink copiado para a área de transferência!
You must prepare your network by configuring outbound connectivity for the peer pods. You can perform this task by using one of the following methods:
- Add a NAT gateway to the default worker subnet. This method is simple and reuses cluster resources, but it offers less isolation.
- Create a dedicated VNet and subnet for your peer pods, attach a NAT gateway, and peer it with the cluster VNet. This method is more complex but it provides greater isolation and flexibility.
3.4.1. Configuring the default worker subnet Copiar o linkLink copiado para a área de transferência!
You can configure the default worker subnet for outbound connections by attaching a NAT gateway. This method is simple and reuses cluster resources, but it offers less isolation than a dedicated virtual network.
Prerequisites
-
The Azure CLI (
az) is installed and authenticated. - You have administrator access to the Azure resource group and the VNet.
Procedure
Set the
AZURE_RESOURCE_GROUPenvironment variable by running the following command:AZURE_RESOURCE_GROUP=$(oc get infrastructure/cluster \ -o jsonpath='{.status.platformStatus.azure.resourceGroupName}')$ AZURE_RESOURCE_GROUP=$(oc get infrastructure/cluster \ -o jsonpath='{.status.platformStatus.azure.resourceGroupName}')Copy to Clipboard Copied! Toggle word wrap Toggle overflow Set the
AZURE_REGIONenvironment variable by running the following command:AZURE_REGION=$(az group show --resource-group ${AZURE_RESOURCE_GROUP}\ --query "{Location:location}" --output tsv) && \ echo "AZURE_REGION: \"$AZURE_REGION\""$ AZURE_REGION=$(az group show --resource-group ${AZURE_RESOURCE_GROUP}\ --query "{Location:location}" --output tsv) && \ echo "AZURE_REGION: \"$AZURE_REGION\""Copy to Clipboard Copied! Toggle word wrap Toggle overflow Set the
AZURE_VNET_NAMEenvironment variable by running the following command:AZURE_VNET_NAME=$(az network vnet list \ -g "${AZURE_RESOURCE_GROUP}" --query '[].name' -o tsv)$ AZURE_VNET_NAME=$(az network vnet list \ -g "${AZURE_RESOURCE_GROUP}" --query '[].name' -o tsv)Copy to Clipboard Copied! Toggle word wrap Toggle overflow Set the
AZURE_SUBNET_IDenvironment variable by running the following command:AZURE_SUBNET_ID=$(az network vnet subnet list \ --resource-group "${AZURE_RESOURCE_GROUP}" \ --vnet-name "${AZURE_VNET_NAME}" --query "[].{Id:id} \ | [? contains(Id, 'worker')]" --output tsv)$ AZURE_SUBNET_ID=$(az network vnet subnet list \ --resource-group "${AZURE_RESOURCE_GROUP}" \ --vnet-name "${AZURE_VNET_NAME}" --query "[].{Id:id} \ | [? contains(Id, 'worker')]" --output tsv)Copy to Clipboard Copied! Toggle word wrap Toggle overflow Set the NAT gateway environment variables for the peer pod subnet by running the following commands:
export PEERPOD_NAT_GW=peerpod-nat-gw
$ export PEERPOD_NAT_GW=peerpod-nat-gwCopy to Clipboard Copied! Toggle word wrap Toggle overflow export PEERPOD_NAT_GW_IP=peerpod-nat-gw-ip
$ export PEERPOD_NAT_GW_IP=peerpod-nat-gw-ipCopy to Clipboard Copied! Toggle word wrap Toggle overflow Create a public IP address for the NAT gateway by running the following command:
az network public-ip create -g "${AZURE_RESOURCE_GROUP}" \ -n "${PEERPOD_NAT_GW_IP}" -l "${AZURE_REGION}" --sku Standard$ az network public-ip create -g "${AZURE_RESOURCE_GROUP}" \ -n "${PEERPOD_NAT_GW_IP}" -l "${AZURE_REGION}" --sku StandardCopy to Clipboard Copied! Toggle word wrap Toggle overflow Create the NAT gateway and associate it with the public IP address by running the following command:
az network nat gateway create -g "${AZURE_RESOURCE_GROUP}" \ -l "${AZURE_REGION}" --public-ip-addresses "${PEERPOD_NAT_GW_IP}" \ -n "${PEERPOD_NAT_GW}"$ az network nat gateway create -g "${AZURE_RESOURCE_GROUP}" \ -l "${AZURE_REGION}" --public-ip-addresses "${PEERPOD_NAT_GW_IP}" \ -n "${PEERPOD_NAT_GW}"Copy to Clipboard Copied! Toggle word wrap Toggle overflow Update the VNet subnet to use the NAT gateway by running the following command:
az network vnet subnet update --nat-gateway "${PEERPOD_NAT_GW}" \ --ids "${AZURE_SUBNET_ID}"$ az network vnet subnet update --nat-gateway "${PEERPOD_NAT_GW}" \ --ids "${AZURE_SUBNET_ID}"Copy to Clipboard Copied! Toggle word wrap Toggle overflow
Verification
Confirm the NAT gateway is attached to the VNet subnet by running the following command:
az network vnet subnet show --ids "${AZURE_SUBNET_ID}" \ --query "natGateway.id" -o tsv$ az network vnet subnet show --ids "${AZURE_SUBNET_ID}" \ --query "natGateway.id" -o tsvCopy to Clipboard Copied! Toggle word wrap Toggle overflow The output contains the NAT gateway resource ID. If no NAT gateway is attached, the output is empty.
Example output
/subscriptions/12345678-1234-1234-1234-1234567890ab/resourceGroups/myResourceGroup/providers/Microsoft.Network/natGateways/myNatGateway
/subscriptions/12345678-1234-1234-1234-1234567890ab/resourceGroups/myResourceGroup/providers/Microsoft.Network/natGateways/myNatGatewayCopy to Clipboard Copied! Toggle word wrap Toggle overflow
3.4.2. Creating a dedicated peer pod virtual network Copiar o linkLink copiado para a área de transferência!
You can configure outbound connections for peer pods by creating a dedicated virtual network (VNet). Then, you create a network address translation (NAT) gateway for the VNet, create a subnet within the VNet, and enable VNet peering with non-overlapping address spaces.
This method is more complex than creating a NAT gateway for the default worker subnet but it provides greater isolation and flexibility.
Prerequisites
-
The Azure CLI (
az) is installed - You have signed in to Azure. See Authenticate to Azure using Azure CLI.
- You have administrator access to the Azure resource group and VNet hosting the cluster.
-
You have verified the cluster VNet classless inter-domain routing (CIDR) address. The default value is
10.0.0.0/14. If you overrode the default value, you have ensured that you chose a non-overlapping CIDR address for the peer pod VNet. For example,192.168.0.0/16.
Procedure
Set the environmental variables for the peer pod network:
Set the peer pod VNet environment variables by running the following commands:
export PEERPOD_VNET_NAME="${PEERPOD_VNET_NAME:-peerpod-vnet}"$ export PEERPOD_VNET_NAME="${PEERPOD_VNET_NAME:-peerpod-vnet}"Copy to Clipboard Copied! Toggle word wrap Toggle overflow export PEERPOD_VNET_CIDR="${PEERPOD_VNET_CIDR:-192.168.0.0/16}"$ export PEERPOD_VNET_CIDR="${PEERPOD_VNET_CIDR:-192.168.0.0/16}"Copy to Clipboard Copied! Toggle word wrap Toggle overflow Set the peer pod subnet environment variables by running the following commands:
export PEERPOD_SUBNET_NAME="${PEERPOD_SUBNET_NAME:-peerpod-subnet}"$ export PEERPOD_SUBNET_NAME="${PEERPOD_SUBNET_NAME:-peerpod-subnet}"Copy to Clipboard Copied! Toggle word wrap Toggle overflow export PEERPOD_SUBNET_CIDR="${PEERPOD_SUBNET_CIDR:-192.168.0.0/16}"$ export PEERPOD_SUBNET_CIDR="${PEERPOD_SUBNET_CIDR:-192.168.0.0/16}"Copy to Clipboard Copied! Toggle word wrap Toggle overflow
Set the environmental variables for Azure:
AZURE_RESOURCE_GROUP=$(oc get infrastructure/cluster \ -o jsonpath='{.status.platformStatus.azure.resourceGroupName}')$ AZURE_RESOURCE_GROUP=$(oc get infrastructure/cluster \ -o jsonpath='{.status.platformStatus.azure.resourceGroupName}')Copy to Clipboard Copied! Toggle word wrap Toggle overflow AZURE_REGION=$(az group show --resource-group ${AZURE_RESOURCE_GROUP}\ --query "{Location:location}" --output tsv) && \ echo "AZURE_REGION: \"$AZURE_REGION\""$ AZURE_REGION=$(az group show --resource-group ${AZURE_RESOURCE_GROUP}\ --query "{Location:location}" --output tsv) && \ echo "AZURE_REGION: \"$AZURE_REGION\""Copy to Clipboard Copied! Toggle word wrap Toggle overflow AZURE_VNET_NAME=$(az network vnet list \ -g "${AZURE_RESOURCE_GROUP}" --query '[].name' -o tsv)$ AZURE_VNET_NAME=$(az network vnet list \ -g "${AZURE_RESOURCE_GROUP}" --query '[].name' -o tsv)Copy to Clipboard Copied! Toggle word wrap Toggle overflow Set the peer pod NAT gateway environment variables by running the following commands:
export PEERPOD_NAT_GW="${PEERPOD_NAT_GW:-peerpod-nat-gw}"$ export PEERPOD_NAT_GW="${PEERPOD_NAT_GW:-peerpod-nat-gw}"Copy to Clipboard Copied! Toggle word wrap Toggle overflow export PEERPOD_NAT_GW_IP="${PEERPOD_NAT_PUBLIC_IP:-peerpod-nat-gw-ip}"$ export PEERPOD_NAT_GW_IP="${PEERPOD_NAT_PUBLIC_IP:-peerpod-nat-gw-ip}"Copy to Clipboard Copied! Toggle word wrap Toggle overflow Configure the VNET:
Create the peer pod VNet by running the following command:
az network vnet create --resource-group "${AZURE_RESOURCE_GROUP}" \ --name "${PEERPOD_VNET_NAME}" \ --address-prefixes "${PEERPOD_VNET_CIDR}"$ az network vnet create --resource-group "${AZURE_RESOURCE_GROUP}" \ --name "${PEERPOD_VNET_NAME}" \ --address-prefixes "${PEERPOD_VNET_CIDR}"Copy to Clipboard Copied! Toggle word wrap Toggle overflow Create a public IP address for the peer pod VNet by running the following command:
az network public-ip create -g "${AZURE_RESOURCE_GROUP}" \ -n "${PEERPOD_NAT_GW_IP}" -l "${AZURE_REGION}"$ az network public-ip create -g "${AZURE_RESOURCE_GROUP}" \ -n "${PEERPOD_NAT_GW_IP}" -l "${AZURE_REGION}"Copy to Clipboard Copied! Toggle word wrap Toggle overflow Create a NAT gateway for the peer pod VNet by running the following command:
az network nat gateway create -g "${AZURE_RESOURCE_GROUP}" \ -l "${AZURE_REGION}" \ --public-ip-addresses "${PEERPOD_NAT_GW_IP}" \ -n "${PEERPOD_NAT_GW}"$ az network nat gateway create -g "${AZURE_RESOURCE_GROUP}" \ -l "${AZURE_REGION}" \ --public-ip-addresses "${PEERPOD_NAT_GW_IP}" \ -n "${PEERPOD_NAT_GW}"Copy to Clipboard Copied! Toggle word wrap Toggle overflow Create a subnet in the peer pod VNet and attach the NAT gateway by running the following command:
Copy to Clipboard Copied! Toggle word wrap Toggle overflow
Configure the virtual network peering connection:
Create the peering connection by running the following command:
az network vnet peering create -g "${AZURE_RESOURCE_GROUP}" \ -n peerpod-azure-vnet-to-peerpod-vnet \ --vnet-name "${AZURE_VNET_NAME}" \ --remote-vnet "${PEERPOD_VNET_NAME}" --allow-vnet-access \ --allow-forwarded-traffic$ az network vnet peering create -g "${AZURE_RESOURCE_GROUP}" \ -n peerpod-azure-vnet-to-peerpod-vnet \ --vnet-name "${AZURE_VNET_NAME}" \ --remote-vnet "${PEERPOD_VNET_NAME}" --allow-vnet-access \ --allow-forwarded-trafficCopy to Clipboard Copied! Toggle word wrap Toggle overflow Sync the peering connection by running the following command:
az network vnet peering sync -g "${AZURE_RESOURCE_GROUP}" \ -n peerpod-azure-vnet-to-peerpod-vnet \ --vnet-name "${AZURE_VNET_NAME}"$ az network vnet peering sync -g "${AZURE_RESOURCE_GROUP}" \ -n peerpod-azure-vnet-to-peerpod-vnet \ --vnet-name "${AZURE_VNET_NAME}"Copy to Clipboard Copied! Toggle word wrap Toggle overflow Complete the peering connection by running the following command:
az network vnet peering create -g "${AZURE_RESOURCE_GROUP}" \ -n peerpod-peerpod-vnet-to-azure-vnet \ --vnet-name "${PEERPOD_VNET_NAME}" \ --remote-vnet "${AZURE_VNET_NAME}" --allow-vnet-access \ --allow-forwarded-traffic$ az network vnet peering create -g "${AZURE_RESOURCE_GROUP}" \ -n peerpod-peerpod-vnet-to-azure-vnet \ --vnet-name "${PEERPOD_VNET_NAME}" \ --remote-vnet "${AZURE_VNET_NAME}" --allow-vnet-access \ --allow-forwarded-trafficCopy to Clipboard Copied! Toggle word wrap Toggle overflow
Verification
Check the peering connection status from the cluster VNet by running the following command:
az network vnet peering show -g "${AZURE_RESOURCE_GROUP}" \ -n peerpod-azure-vnet-to-peerpod-vnet \ --vnet-name "${AZURE_VNET_NAME}" \ --query "peeringState" -o tsv$ az network vnet peering show -g "${AZURE_RESOURCE_GROUP}" \ -n peerpod-azure-vnet-to-peerpod-vnet \ --vnet-name "${AZURE_VNET_NAME}" \ --query "peeringState" -o tsvCopy to Clipboard Copied! Toggle word wrap Toggle overflow This should return
Connected.Verify that the NAT gateway is attached to the peer pod subnet by running the following command:
az network vnet subnet show --resource-group "${AZURE_RESOURCE_GROUP}" \ --vnet-name "${PEERPOD_VNET_NAME}" --name "${PEERPOD_SUBNET_NAME}" \ --query "natGateway.id" -o tsv$ az network vnet subnet show --resource-group "${AZURE_RESOURCE_GROUP}" \ --vnet-name "${PEERPOD_VNET_NAME}" --name "${PEERPOD_SUBNET_NAME}" \ --query "natGateway.id" -o tsvCopy to Clipboard Copied! Toggle word wrap Toggle overflow
3.5. Installing the OpenShift sandboxed containers Operator Copiar o linkLink copiado para a área de transferência!
You install the OpenShift sandboxed containers Operator by using the command line interface (CLI).
Prerequisites
-
You have access to the cluster as a user with the
cluster-adminrole.
Procedure
Create an
osc-namespace.yamlmanifest file:apiVersion: v1 kind: Namespace metadata: name: openshift-sandboxed-containers-operator
apiVersion: v1 kind: Namespace metadata: name: openshift-sandboxed-containers-operatorCopy to Clipboard Copied! Toggle word wrap Toggle overflow Create the namespace by running the following command:
oc apply -f osc-namespace.yaml
$ oc apply -f osc-namespace.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow Create an
osc-operatorgroup.yamlmanifest file:Copy to Clipboard Copied! Toggle word wrap Toggle overflow Create the operator group by running the following command:
oc apply -f osc-operatorgroup.yaml
$ oc apply -f osc-operatorgroup.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow Create an
osc-subscription.yamlmanifest file:Copy to Clipboard Copied! Toggle word wrap Toggle overflow Create the subscription by running the following command:
oc create -f osc-subscription.yaml
$ oc create -f osc-subscription.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow Verify that the Operator is correctly installed by running the following command:
oc get csv -n openshift-sandboxed-containers-operator
$ oc get csv -n openshift-sandboxed-containers-operatorCopy to Clipboard Copied! Toggle word wrap Toggle overflow This command can take several minutes to complete.
Watch the process by running the following command:
watch oc get csv -n openshift-sandboxed-containers-operator
$ watch oc get csv -n openshift-sandboxed-containers-operatorCopy to Clipboard Copied! Toggle word wrap Toggle overflow Example output
NAME DISPLAY VERSION REPLACES PHASE openshift-sandboxed-containers openshift-sandboxed-containers-operator 1.11.0 1.10.3 Succeeded
NAME DISPLAY VERSION REPLACES PHASE openshift-sandboxed-containers openshift-sandboxed-containers-operator 1.11.0 1.10.3 SucceededCopy to Clipboard Copied! Toggle word wrap Toggle overflow
3.6. Creating the osc-feature-gates config map Copiar o linkLink copiado para a área de transferência!
You enable the confidential containers feature gate by creating the config map.
Procedure
Create a
my-feature-gate.yamlmanifest file:Copy to Clipboard Copied! Toggle word wrap Toggle overflow where
<deployment_mode>On OpenShift Container Platform clusters with the Machine Config Operator (MCO), the
deploymentModefield is optional and can be omitted. Specifies the strategy for installing and configuring the Kata runtime. Specify the deployment mode:-
MachineConfigfor clusters that always use the MCO -
DaemonSetfor clusters that never use the MCO -
DaemonSetFallbackfor clusters that sometimes use the MCO
-
Create the
my-feature-gatesconfig map by running the following command:oc create -f my-feature-gate.yaml
$ oc create -f my-feature-gate.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow
3.7. Creating initdata Copiar o linkLink copiado para a área de transferência!
You create initdata to securely initialize a pod with sensitive or workload-specific data at runtime, thus avoiding the need to embed this data in a virtual machine image. This approach provides additional security by reducing the risk of exposure of confidential information and eliminates the need for custom image builds.
You can specify initdata in the pods config map, for global configuration, or in a pod manifest, for a specific pod. The initdata value in a pod manifest overrides the value set in the pods config map.
In a production environment, you must create initdata to override the default permissive Kata agent policy.
You can specify initdata in the peer pods config map, for global configuration, or in a peer pod manifest, for a specific pod. The initdata value in a peer pod manifest overrides the value set in the peer pods config map.
Then, you generate a Platform Configuration Register (PCR) 8 hash from the initdata.toml file for the Reference Value Provider Service (RVPS) config map for Red Hat build of Trustee.
Red Hat build of Trustee uses the RVPS to validate attestation evidence sent by confidential workloads. The RVPS contains trusted reference values, such as file hashes, that are compared to the PCR measurements included in attestation requests. These hashes are not generated by Red Hat build of Trustee.
You must delete the kbs_cert setting if you configure insecure_http = true in the kbs-config config map for Red Hat build of Trustee.
Procedure
Obtain the Red Hat build of Trustee URL by running the following command:
TRUSTEE_URL=$(oc get route kbs-service \ -n trustee-operator-system -o jsonpath='{.spec.host}') \ && echo $TRUSTEE_URL$ TRUSTEE_URL=$(oc get route kbs-service \ -n trustee-operator-system -o jsonpath='{.spec.host}') \ && echo $TRUSTEE_URLCopy to Clipboard Copied! Toggle word wrap Toggle overflow Create the
initdata.tomlfile:Copy to Clipboard Copied! Toggle word wrap Toggle overflow - url
-
Specify the Red Hat build of Trustee URL. If you configure the Red Hat build of Trustee with
insecure_httpfor testing purposes, use HTTP. Otherwise, use HTTPS. For production systems, avoid usinginsecure_httpunless you configure your environment to handle TLS externally, for example, with a proxy. - <kbs_certificate>
- Specify the Base64-encoded TLS certificate for the attestation agent.
- kbs_cert
-
Delete the
kbs_certsetting if you configureinsecure_http = truein thekbs-configconfig map for Red Hat build of Trustee. - image_security_policy_uri
-
Optional, only if you enabled the container image signature verification policy. Replace
<secret-policy-name>and<key>with the secret name and key, respectively specified in Creating the KbsConfig custom resource.
Convert the
initdata.tomlfile to a Base64-encoded string in gzip format in a text file by running the following command:cat initdata.toml | gzip | base64 -w0 > initdata.txt
$ cat initdata.toml | gzip | base64 -w0 > initdata.txtCopy to Clipboard Copied! Toggle word wrap Toggle overflow Record this string to use in the peer pods config map or the peer pod manifest.
Calculate the SHA-256 hash of an
initdata.tomlfile and assign its value to thehashvariable by running the following command:hash=$(sha256sum initdata.toml | cut -d' ' -f1)
$ hash=$(sha256sum initdata.toml | cut -d' ' -f1)Copy to Clipboard Copied! Toggle word wrap Toggle overflow Assign 32 bytes of 0s to the
initial_pcrvariable by running the following command:initial_pcr=0000000000000000000000000000000000000000000000000000000000000000
$ initial_pcr=0000000000000000000000000000000000000000000000000000000000000000Copy to Clipboard Copied! Toggle word wrap Toggle overflow Calculate the SHA-256 hash of
hashandinitial_pcrand assign its value to thePCR8_HASHvariable by running the following command:PCR8_HASH=$(echo -n "$initial_pcr$hash" | xxd -r -p | sha256sum | cut -d' ' -f1) && echo $PCR8_HASH
$ PCR8_HASH=$(echo -n "$initial_pcr$hash" | xxd -r -p | sha256sum | cut -d' ' -f1) && echo $PCR8_HASHCopy to Clipboard Copied! Toggle word wrap Toggle overflow Record the
PCR8_HASHvalue for the RVPS config map.
3.8. Creating the peer pods config map Copiar o linkLink copiado para a área de transferência!
You must create the peer pods config map.
Optional: Add initdata to the peer pods config map to create a default configuration for all peer pods.
Procedure
Obtain the following values from your Azure instance:
Retrieve and record the Azure resource group:
AZURE_RESOURCE_GROUP=$(oc get infrastructure/cluster \ -o jsonpath='{.status.platformStatus.azure.resourceGroupName}') \ && echo "AZURE_RESOURCE_GROUP: \"$AZURE_RESOURCE_GROUP\""$ AZURE_RESOURCE_GROUP=$(oc get infrastructure/cluster \ -o jsonpath='{.status.platformStatus.azure.resourceGroupName}') \ && echo "AZURE_RESOURCE_GROUP: \"$AZURE_RESOURCE_GROUP\""Copy to Clipboard Copied! Toggle word wrap Toggle overflow Retrieve and record the Azure VNet name:
AZURE_VNET_NAME=$(az network vnet list \ --resource-group ${AZURE_RESOURCE_GROUP} \ --query "[].{Name:name}" --output tsv)$ AZURE_VNET_NAME=$(az network vnet list \ --resource-group ${AZURE_RESOURCE_GROUP} \ --query "[].{Name:name}" --output tsv)Copy to Clipboard Copied! Toggle word wrap Toggle overflow This value is used to retrieve the Azure subnet ID.
Retrieve and record the Azure subnet ID:
AZURE_SUBNET_ID=$(az network vnet subnet list \ --resource-group ${AZURE_RESOURCE_GROUP} --vnet-name $AZURE_VNET_NAME \ --query "[].{Id:id} | [? contains(Id, 'worker')]" --output tsv) \ && echo "AZURE_SUBNET_ID: \"$AZURE_SUBNET_ID\""$ AZURE_SUBNET_ID=$(az network vnet subnet list \ --resource-group ${AZURE_RESOURCE_GROUP} --vnet-name $AZURE_VNET_NAME \ --query "[].{Id:id} | [? contains(Id, 'worker')]" --output tsv) \ && echo "AZURE_SUBNET_ID: \"$AZURE_SUBNET_ID\""Copy to Clipboard Copied! Toggle word wrap Toggle overflow Retrieve and record the Azure network security group (NSG) ID:
AZURE_NSG_ID=$(az network nsg list --resource-group ${AZURE_RESOURCE_GROUP} \ --query "[].{Id:id}" --output tsv) && echo "AZURE_NSG_ID: \"$AZURE_NSG_ID\""$ AZURE_NSG_ID=$(az network nsg list --resource-group ${AZURE_RESOURCE_GROUP} \ --query "[].{Id:id}" --output tsv) && echo "AZURE_NSG_ID: \"$AZURE_NSG_ID\""Copy to Clipboard Copied! Toggle word wrap Toggle overflow Retrieve and record the Azure region:
AZURE_REGION=$(az group show --resource-group ${AZURE_RESOURCE_GROUP} \ --query "{Location:location}" --output tsv) \ && echo "AZURE_REGION: \"$AZURE_REGION\""$ AZURE_REGION=$(az group show --resource-group ${AZURE_RESOURCE_GROUP} \ --query "{Location:location}" --output tsv) \ && echo "AZURE_REGION: \"$AZURE_REGION\""Copy to Clipboard Copied! Toggle word wrap Toggle overflow
Create a
peer-pods-cm.yamlmanifest file according to the following example:Copy to Clipboard Copied! Toggle word wrap Toggle overflow AZURE_INSTANCE_SIZE-
Defines the default instance size that is used if the instance size is not defined in the workload object.
"Standard_DC2as_v5"is for AMD SEV-SNP. If your TEE is Intel TDX, specifyStandard_EC4eds_v5. AZURE_IMAGE_ID- Leave this value empty. When you install the Operator, a Job is scheduled to download the default pod VM image from the Red Hat Ecosystem Catalog and upload it to the Azure Image Gallery within the same Azure Resource Group as the OpenShift Container Platform cluster. This image provides root disk integrity protection (dm-verity) and encrypted container storage. See Confidential VMs: The core of confidential containers for details.
AZURE_INSTANCE_SIZES- Specify the allowed instance sizes, without spaces, for creating the pod. You can define smaller instance sizes for workloads that need less memory and fewer CPUs or larger instance sizes for larger workloads.
TAGS-
You can configure custom tags as
key:valuepairs for pod VM instances to track peer pod costs or to identify peer pods in different clusters. PEERPODS_LIMIT_PER_NODE-
You can increase this value to run more peer pods on a node. The default value is
10. ROOT_VOLUME_SIZE- You can increase this value for pods with larger container images. Specify the root volume size in gigabytes for the pod VM. The default and minimum size is 6 GB.
- INITDATA
- Specify the initdata string to create a default configuration for all peer pods. If you add initdata to a peer pod manifest, that setting overrides this global configuration.
Create the config map by running the following command:
oc create -f peer-pods-cm.yaml
$ oc create -f peer-pods-cm.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow
3.9. Applying initdata to a pod Copiar o linkLink copiado para a área de transferência!
You can override the global INITDATA setting you applied in the peer pods config map by applying customized initdata to a specific pod for special use cases, such as development and testing with a relaxed policy, or when using different Red Hat build of Trustee configurations. You can customize initdata by adding an annotation to the workload pod YAML.
Prerequisite
- You have created an initdata string.
Procedure
Add the initdata string to the pod manifest:
Copy to Clipboard Copied! Toggle word wrap Toggle overflow Create the pod by running the following command:
oc create -f my-pod.yaml
$ oc create -f my-pod.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow
3.10. Creating the KataConfig custom resource Copiar o linkLink copiado para a área de transferência!
You must create the KataConfig custom resource (CR) to install kata-remote as a runtime class on your worker nodes.
OpenShift sandboxed containers installs kata-remote as a secondary, optional runtime on the cluster and not as the primary runtime.
Creating the KataConfig CR automatically reboots the worker nodes. The reboot can take from 10 to more than 60 minutes. The following factors can increase the reboot time:
- A large OpenShift Container Platform deployment with a greater number of worker nodes.
- Activation of the BIOS and Diagnostics utility.
- Deployment on a hard disk drive rather than an SSD.
- Deployment on physical nodes such as bare metal, rather than on virtual nodes.
- A slow CPU and network.
Procedure
Create an
example-kataconfig.yamlmanifest file according to the following example:Copy to Clipboard Copied! Toggle word wrap Toggle overflow - 1
- Optional: If you have applied node labels to install
kata-remoteon specific nodes, specify the key and value, for example,cc: 'true'.
Create the
KataConfigCR by running the following command:oc create -f example-kataconfig.yaml
$ oc create -f example-kataconfig.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow The new
KataConfigCR is created and installskata-remoteas a runtime class on the worker nodes.Wait for the
kata-remoteinstallation to complete and the worker nodes to reboot before verifying the installation.Monitor the installation progress by running the following command:
watch "oc describe kataconfig | sed -n /^Status:/,/^Events/p"
$ watch "oc describe kataconfig | sed -n /^Status:/,/^Events/p"Copy to Clipboard Copied! Toggle word wrap Toggle overflow When the status of all workers under
kataNodesisinstalledand the conditionInProgressisFalsewithout specifying a reason, thekata-remoteis installed on the cluster.Verify the daemon set by running the following command:
oc get -n openshift-sandboxed-containers-operator ds/osc-caa-ds
$ oc get -n openshift-sandboxed-containers-operator ds/osc-caa-dsCopy to Clipboard Copied! Toggle word wrap Toggle overflow Verify the runtime classes by running the following command:
oc get runtimeclass
$ oc get runtimeclassCopy to Clipboard Copied! Toggle word wrap Toggle overflow Example output
NAME HANDLER AGE kata-remote kata-remote 152m
NAME HANDLER AGE kata-remote kata-remote 152mCopy to Clipboard Copied! Toggle word wrap Toggle overflow
3.11. Verifying attestation Copiar o linkLink copiado para a área de transferência!
You can verify the attestation process by creating a test pod to retrieve a specific resource from Red Hat build of Trustee.
This procedure is an example to verify that attestation is working. Do not write sensitive data to standard I/O, because the data can be captured by using a memory dump. Only data written to memory is encrypted.
Procedure
Create a
test-pod.yamlmanifest file:Copy to Clipboard Copied! Toggle word wrap Toggle overflow - 1
- Optional: Setting initdata in a pod annotation overrides the global
INITDATAsetting in the peer pods config map.
Create the pod by running the following command:
oc create -f test-pod.yaml
$ oc create -f test-pod.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow Log in to the pod by running the following command:
oc exec -it ocp-cc-pod -- bash
$ oc exec -it ocp-cc-pod -- bashCopy to Clipboard Copied! Toggle word wrap Toggle overflow Fetch the Red Hat build of Trustee resource by running the following command:
curl http://127.0.0.1:8006/cdh/resource/default/attestation-status/status
$ curl http://127.0.0.1:8006/cdh/resource/default/attestation-status/statusCopy to Clipboard Copied! Toggle word wrap Toggle overflow Example output
success #/
success #/Copy to Clipboard Copied! Toggle word wrap Toggle overflow
3.12. Configuring a pull secret for peer pods Copiar o linkLink copiado para a área de transferência!
If you select a custom peer pod VM image from a private registry such as registry.access.redhat.com, you must configure a pull secret for peer pods.
Then, you can link the pull secret to the default service account or you can specify the pull secret in the peer pod manifest.
Procedure
Set the
NSvariable to the namespace where you deploy your peer pods:NS=<namespace>
$ NS=<namespace>Copy to Clipboard Copied! Toggle word wrap Toggle overflow Copy the pull secret to the peer pod namespace:
oc get secret pull-secret -n openshift-config -o yaml \ | sed "s/namespace: openshift-config/namespace: ${NS}/" \ | oc apply -n "${NS}" -f -$ oc get secret pull-secret -n openshift-config -o yaml \ | sed "s/namespace: openshift-config/namespace: ${NS}/" \ | oc apply -n "${NS}" -f -Copy to Clipboard Copied! Toggle word wrap Toggle overflow You can use the cluster pull secret, as in this example, or a custom pull secret.
Optional: Link the pull secret to the default service account:
oc secrets link default pull-secret --for=pull -n ${NS}$ oc secrets link default pull-secret --for=pull -n ${NS}Copy to Clipboard Copied! Toggle word wrap Toggle overflow Alternatively, add the pull secret to the peer pod manifest:
Copy to Clipboard Copied! Toggle word wrap Toggle overflow
3.13. Selecting a custom peer pod VM image Copiar o linkLink copiado para a área de transferência!
You can select a custom peer pod virtual machine (VM) image, tailored to your workload requirements, by adding an annotation to the pod manifest. The custom image overrides the default image specified in the peer pods config map.
Prerequisites
- If the custom peer pod VM image is in a private registry, you have created a pull secret.
- You have the ID of a custom pod VM image, which is compatible with your cloud provider or hypervisor.
Procedure
Create a
my-pod-manifest.yamlfile according to the following example:Copy to Clipboard Copied! Toggle word wrap Toggle overflow Create the pod by running the following command:
oc create -f my-pod-manifest.yaml
$ oc create -f my-pod-manifest.yamlCopy to Clipboard Copied! Toggle word wrap Toggle overflow